WorldWideScience

Sample records for network analysis identified

  1. Structural parameter identifiability analysis for dynamic reaction networks

    DEFF Research Database (Denmark)

    Davidescu, Florin Paul; Jørgensen, Sten Bay

    2008-01-01

    method based on Lie derivatives. The proposed systematic two phase methodology is illustrated on a mass action based model for an enzymatically catalyzed reaction pathway network where only a limited set of variables is measured. The methodology clearly pinpoints the structurally identifiable parameters...... where for a given set of measured variables it is desirable to investigate which parameters may be estimated prior to spending computational effort on the actual estimation. This contribution addresses the structural parameter identifiability problem for the typical case of reaction network models....... The proposed analysis is performed in two phases. The first phase determines the structurally identifiable reaction rates based on reaction network stoichiometry. The second phase assesses the structural parameter identifiability of the specific kinetic rate expressions using a generating series expansion...

  2. Social Network Analysis Identifies Key Participants in Conservation Development.

    Science.gov (United States)

    Farr, Cooper M; Reed, Sarah E; Pejchar, Liba

    2018-05-01

    Understanding patterns of participation in private lands conservation, which is often implemented voluntarily by individual citizens and private organizations, could improve its effectiveness at combating biodiversity loss. We used social network analysis (SNA) to examine participation in conservation development (CD), a private land conservation strategy that clusters houses in a small portion of a property while preserving the remaining land as protected open space. Using data from public records for six counties in Colorado, USA, we compared CD participation patterns among counties and identified actors that most often work with others to implement CDs. We found that social network characteristics differed among counties. The network density, or proportion of connections in the network, varied from fewer than 2 to nearly 15%, and was higher in counties with smaller populations and fewer CDs. Centralization, or the degree to which connections are held disproportionately by a few key actors, was not correlated strongly with any county characteristics. Network characteristics were not correlated with the prevalence of wildlife-friendly design features in CDs. The most highly connected actors were biological and geological consultants, surveyors, and engineers. Our work demonstrates a new application of SNA to land-use planning, in which CD network patterns are examined and key actors are identified. For better conservation outcomes of CD, we recommend using network patterns to guide strategies for outreach and information dissemination, and engaging with highly connected actor types to encourage widespread adoption of best practices for CD design and stewardship.

  3. Social network analysis in identifying influential webloggers: A preliminary study

    Science.gov (United States)

    Hasmuni, Noraini; Sulaiman, Nor Intan Saniah; Zaibidi, Nerda Zura

    2014-12-01

    In recent years, second generation of internet-based services such as weblog has become an effective communication tool to publish information on the Web. Weblogs have unique characteristics that deserve users' attention. Some of webloggers have seen weblogs as appropriate medium to initiate and expand business. These webloggers or also known as direct profit-oriented webloggers (DPOWs) communicate and share knowledge with each other through social interaction. However, survivability is the main issue among DPOW. Frequent communication with influential webloggers is one of the way to keep survive as DPOW. This paper aims to understand the network structure and identify influential webloggers within the network. Proper understanding of the network structure can assist us in knowing how the information is exchanged among members and enhance survivability among DPOW. 30 DPOW were involved in this study. Degree centrality and betweenness centrality measurement in Social Network Analysis (SNA) were used to examine the strength relation and identify influential webloggers within the network. Thus, webloggers with the highest value of these measurements are considered as the most influential webloggers in the network.

  4. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Identifying a system of predominant negative symptoms: Network analysis of three randomized clinical trials.

    Science.gov (United States)

    Levine, Stephen Z; Leucht, Stefan

    2016-12-01

    Reasons for the recent mixed success of research into negative symptoms may be informed by conceptualizing negative symptoms as a system that is identifiable from network analysis. We aimed to identify: (I) negative symptom systems; (I) central negative symptoms within each system; and (III) differences between the systems, based on network analysis of negative symptoms for baseline, endpoint and change. Patients with chronic schizophrenia and predominant negative symptoms participated in three clinical trials that compared placebo and amisulpride to 60days (n=487). Networks analyses were computed from the Scale for the Assessment of Negative Symptoms (SANS) scores for baseline and endpoint for severity, and estimated change based on mixed models. Central symptoms to each network were identified. The networks were contrasted for connectivity with permutation tests. Network analysis showed that the baseline and endpoint symptom severity systems formed symptom groups of Affect, Poor responsiveness, Lack of interest, and Apathy-inattentiveness. The baseline and endpoint networks did not significantly differ in terms of connectivity, but both significantly (Psymptom group split into three other groups. The most central symptoms were Decreased Spontaneous Movements at baseline and endpoint, and Poverty of Speech for estimated change. Results provide preliminary evidence for: (I) a replicable negative symptom severity system; and (II) symptoms with high centrality (e.g., Decreased Spontaneous Movement), that may be future treatment targets following replication to ensure the curent results generalize to other samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Network analysis of translocated Takahe populations to identify disease surveillance targets.

    Science.gov (United States)

    Grange, Zoë L; VAN Andel, Mary; French, Nigel P; Gartrell, Brett D

    2014-04-01

    Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final

  7. Social Network Analysis: A Simple but Powerful Tool for Identifying Teacher Leaders

    Science.gov (United States)

    Smith, P. Sean; Trygstad, Peggy J.; Hayes, Meredith L.

    2018-01-01

    Instructional teacher leadership is central to a vision of distributed leadership. However, identifying instructional teacher leaders can be a daunting task, particularly for administrators who find themselves either newly appointed or faced with high staff turnover. This article describes the use of social network analysis (SNA), a simple but…

  8. Using the Contextual Hub Analysis Tool (CHAT) in Cytoscape to Identify Contextually Relevant Network Hubs.

    Science.gov (United States)

    Muetze, Tanja; Lynn, David J

    2017-09-13

    Highly connected nodes in biological networks are called network hubs. Hubs are topologically important to the structure of the network and have been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we provide a step-by-step protocol for using the Contextual Hub Analysis Tool (CHAT), an application within Cytoscape 3, which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene or protein expression data, and identify hub nodes that are more highly connected to contextual nodes than expected by chance. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Identifying the new Influencers in the Internet Era: Social Media and Social Network Analysis

    Directory of Open Access Journals (Sweden)

    MIGUEL DEL FRESNO GARCÍA

    2016-01-01

    Full Text Available Social media influencers (SMIs can be defined as a new type of independent actor who are able to shape audience attitudes through the use of social media channels in competition and coexistence with professional media. Being able to accurately identify SMIs is critical no matter what is being transmitted in a social system. Social Network Analysis (SNA has been recognized as a powerful tool for representing social network structures and information dissemination. SMIs can be identifi ed by their high-ranking position in a network as the most important or central nodes. The results reveal the existence of three different typologies of SMIs: disseminator, engager and leader. This methodology permits the optimization of resources to create effective online communication strategies.

  10. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  12. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

    Directory of Open Access Journals (Sweden)

    J R Managbanag

    Full Text Available BACKGROUND: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of

  13. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    Science.gov (United States)

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RPpathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RPpathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017

  14. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    Science.gov (United States)

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  15. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    Science.gov (United States)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  16. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes.

    Science.gov (United States)

    Chen, Juan; Xu, Juan; Li, Yongsheng; Zhang, Jinwen; Chen, Hong; Lu, Jianping; Wang, Zishan; Zhao, Xueying; Xu, Kang; Li, Yixue; Li, Xia; Zhang, Yan

    2017-02-07

    Although competing endogenous RNAs (ceRNAs) have been implicated in many solid tumors, their roles in breast cancer subtypes are not well understood. We therefore generated a ceRNA network for each subtype based on the significance of both, positive co-expression and the shared miRNAs, in the corresponding subtype miRNA dys-regulatory network, which was constructed based on negative regulations between differentially expressed miRNAs and targets. All four subtype ceRNA networks exhibited scale-free architecture and showed that the common ceRNAs were at the core of the networks. Furthermore, the common ceRNA hubs had greater connectivity than the subtype-specific hubs. Functional analysis of the common subtype ceRNA hubs highlighted factors involved in proliferation, MAPK signaling pathways and tube morphogenesis. Subtype-specific ceRNA hubs highlighted unique subtype-specific pathways, like the estrogen response and inflammatory pathways in the luminal subtypes or the factors involved in the coagulation process that participates in the basal-like subtype. Ultimately, we identified 29 critical subtype-specific ceRNA hubs that characterized the different breast cancer subtypes. Our study thus provides new insight into the common and specific subtype ceRNA interactions that define the different categories of breast cancer and enhances our understanding of the pathology underlying the different breast cancer subtypes, which can have prognostic and therapeutic implications in the future.

  17. Pathway Interaction Network Analysis Identifies Dysregulated Pathways in Human Monocytes Infected by Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Wufeng Fan

    2017-01-01

    Full Text Available In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM based on pathway interaction network (PIN which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs, and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.

  18. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  19. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  20. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    Science.gov (United States)

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  1. A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components.

    Science.gov (United States)

    Wang, Chun-Hua; Zhong, Yi; Zhang, Yan; Liu, Jin-Ping; Wang, Yue-Fei; Jia, Wei-Na; Wang, Guo-Cai; Li, Zheng; Zhu, Yan; Gao, Xiu-Mei

    2016-02-01

    Chinese medicine is known to treat complex diseases with multiple components and multiple targets. However, the main effective components and their related key targets and functions remain to be identified. Herein, a network analysis method was developed to identify the main effective components and key targets of a Chinese medicine, Lianhua-Qingwen Formula (LQF). The LQF is commonly used for the prevention and treatment of viral influenza in China. It is composed of 11 herbs, gypsum and menthol with 61 compounds being identified in our previous work. In this paper, these 61 candidate compounds were used to find their related targets and construct the predicted-target (PT) network. An influenza-related protein-protein interaction (PPI) network was constructed and integrated with the PT network. Then the compound-effective target (CET) network and compound-ineffective target network (CIT) were extracted, respectively. A novel approach was developed to identify effective components by comparing CET and CIT networks. As a result, 15 main effective components were identified along with 61 corresponding targets. 7 of these main effective components were further experimentally validated to have antivirus efficacy in vitro. The main effective component-target (MECT) network was further constructed with main effective components and their key targets. Gene Ontology (GO) analysis of the MECT network predicted key functions such as NO production being modulated by the LQF. Interestingly, five effective components were experimentally tested and exhibited inhibitory effects on NO production in the LPS induced RAW 264.7 cell. In summary, we have developed a novel approach to identify the main effective components in a Chinese medicine LQF and experimentally validated some of the predictions.

  2. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    NARCIS (Netherlands)

    Waaijenborg, S.; Zwinderman, A.H.

    2009-01-01

    ABSTRACT: BACKGROUND: We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the

  3. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Cristina Pina

    2015-06-01

    Full Text Available We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  4. Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks

    Science.gov (United States)

    Hanke, John R.; Fischer, Mark P.; Pollyea, Ryan M.

    2018-03-01

    In this study, the directional semivariogram is deployed to investigate the spatial variability of map-scale fracture network attributes in the Paradox Basin, Utah. The relative variability ratio (R) is introduced as the ratio of integrated anisotropic semivariogram models, and R is shown to be an effective metric for quantifying the magnitude of spatial variability for any two azimuthal directions. R is applied to a GIS-based data set comprising roughly 1200 fractures, in an area which is bounded by a map-scale anticline and a km-scale normal fault. This analysis reveals that proximity to the fault strongly influences the magnitude of spatial variability for both fracture intensity and intersection density within 1-2 km. Additionally, there is significant anisotropy in the spatial variability, which is correlated with trends of the anticline and fault. The direction of minimum spatial correlation is normal to the fault at proximal distances, and gradually rotates and becomes subparallel to the fold axis over the same 1-2 km distance away from the fault. We interpret these changes to reflect varying scales of influence of the fault and the fold on fracture network development: the fault locally influences the magnitude and variability of fracture network attributes, whereas the fold sets the background level and structure of directional variability.

  5. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  6. Sex Venue-Based Network Analysis to Identify HIV Prevention Dissemination Targets for Men Who Have Sex with Men.

    Science.gov (United States)

    Patel, Rupa R; Luke, Douglas A; Proctor, Enola K; Powderly, William G; Chan, Philip A; Mayer, Kenneth H; Harrison, Laura C; Dhand, Amar

    2018-01-01

    The aim of this study was to identify sex venue-based networks among men who have sex with men (MSM) to inform HIV preexposure prophylaxis (PrEP) dissemination efforts. Using a cross-sectional design, we interviewed MSM about the venues where their recent sexual partners were found. Venues were organized into network matrices grouped by condom use and race. We examined network structure, central venues, and network subgroups. Among 49 participants, the median age was 27 years, 49% were Black and 86% reported condomless anal sex (ncAS). Analysis revealed a map of 54 virtual and physical venues with an overlap in the ncAS and with condom anal sex (cAS) venues. In the ncAS network, virtual and physical locations were more interconnected. The ncAS venues reported by Blacks were more diffusely organized than those reported by Whites. The network structures of sex venues for at-risk MSM differed by race. Network information can enhance HIV prevention dissemination efforts among subpopulations, including PrEP implementation.

  7. Network analysis of patient flow in two UK acute care hospitals identifies key sub-networks for A&E performance.

    Science.gov (United States)

    Bean, Daniel M; Stringer, Clive; Beeknoo, Neeraj; Teo, James; Dobson, Richard J B

    2017-01-01

    The topology of the patient flow network in a hospital is complex, comprising hundreds of overlapping patient journeys, and is a determinant of operational efficiency. To understand the network architecture of patient flow, we performed a data-driven network analysis of patient flow through two acute hospital sites of King's College Hospital NHS Foundation Trust. Administration databases were queried for all intra-hospital patient transfers in an 18-month period and modelled as a dynamic weighted directed graph. A 'core' subnetwork containing only 13-17% of all edges channelled 83-90% of the patient flow, while an 'ephemeral' network constituted the remainder. Unsupervised cluster analysis and differential network analysis identified sub-networks where traffic is most associated with A&E performance. Increased flow to clinical decision units was associated with the best A&E performance in both sites. The component analysis also detected a weekend effect on patient transfers which was not associated with performance. We have performed the first data-driven hypothesis-free analysis of patient flow which can enhance understanding of whole healthcare systems. Such analysis can drive transformation in healthcare as it has in industries such as manufacturing.

  8. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  9. Identifying apple surface defects using principal components analysis and artifical neural networks

    Science.gov (United States)

    Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...

  10. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  11. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  12. Application of Network Analysis to Identify and Map Relationships between Information Systems in the context of Arctic Sustainability

    Science.gov (United States)

    Kontar, Y. Y.

    2017-12-01

    The Arctic Council is an intergovernmental forum promoting cooperation, coordination and interaction among the Arctic States and indigenous communities on issues of sustainable development and environmental protection in the North. The work of the Council is primarily carried out by six Working Groups: Arctic Contaminants Action Program, Arctic Monitoring and Assessment Programme, Conservation of Arctic Flora and Fauna, Emergency Prevention, Preparedness and Response, Protection of the Arctic Marine Environment, and Sustainable Development Working Group. The Working Groups are composed of researchers and representatives from government agencies. Each Working Group issues numerous scientific assessments and reports on a broad field of subjects, from climate change to emergency response in the Arctic. A key goal of these publications is to contribute to policy-making in the Arctic. Complex networks of information systems and the connections between the diverse elements within the systems have been identified via network analysis. This allowed to distinguish data sources that were used in the composition of the primary publications of the Working Groups. Next step is to implement network analysis to identify and map the relationships between the Working Groups and policy makers in the Arctic.

  13. Novel subgroups of attention-deficit/hyperactivity disorder identified by topological data analysis and their functional network modular organizations.

    Science.gov (United States)

    Kyeong, Sunghyon; Kim, Jae-Jin; Kim, Eunjoo

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous condition and identification of clinically meaningful subgroups would open up a new window for personalized medicine. Thus, we aimed to identify new clinical phenotypes in children and adolescents with ADHD and to investigate whether neuroimaging findings validate the identified phenotypes. Neuroimaging and clinical data from 67 children with ADHD and 62 typically developing controls (TDCs) from the ADHD-200 database were selected. Clinical measures of ADHD symptoms and intelligence quotient (IQ) were used as input features into a topological data analysis (TDA) to identify ADHD subgroups within our sample. As external validators, graph theoretical measures obtained from the functional connectome were compared to address the biological meaningfulness of the identified subtypes. The TDA identified two unique subgroups of ADHD, labelled as mild symptom ADHD (mADHD) and severe symptom ADHD (sADHD). The output topology shape was repeatedly observed in the independent validation dataset. The graph theoretical analysis showed a decrease in the degree centrality and PageRank in the bilateral posterior cingulate cortex in the sADHD group compared with the TDC group. The mADHD group showed similar patterns of intra- and inter-module connectivity to the sADHD group. Relative to the TDC group, the inter-module connectivity between the default mode network and executive control network were significantly increased in the sADHD group but not in the mADHD group. Taken together, our results show that the data-driven TDA is potentially useful in identifying objective and biologically relevant disease phenotypes in children and adolescents with ADHD.

  14. Novel subgroups of attention-deficit/hyperactivity disorder identified by topological data analysis and their functional network modular organizations.

    Directory of Open Access Journals (Sweden)

    Sunghyon Kyeong

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is a clinically heterogeneous condition and identification of clinically meaningful subgroups would open up a new window for personalized medicine. Thus, we aimed to identify new clinical phenotypes in children and adolescents with ADHD and to investigate whether neuroimaging findings validate the identified phenotypes. Neuroimaging and clinical data from 67 children with ADHD and 62 typically developing controls (TDCs from the ADHD-200 database were selected. Clinical measures of ADHD symptoms and intelligence quotient (IQ were used as input features into a topological data analysis (TDA to identify ADHD subgroups within our sample. As external validators, graph theoretical measures obtained from the functional connectome were compared to address the biological meaningfulness of the identified subtypes. The TDA identified two unique subgroups of ADHD, labelled as mild symptom ADHD (mADHD and severe symptom ADHD (sADHD. The output topology shape was repeatedly observed in the independent validation dataset. The graph theoretical analysis showed a decrease in the degree centrality and PageRank in the bilateral posterior cingulate cortex in the sADHD group compared with the TDC group. The mADHD group showed similar patterns of intra- and inter-module connectivity to the sADHD group. Relative to the TDC group, the inter-module connectivity between the default mode network and executive control network were significantly increased in the sADHD group but not in the mADHD group. Taken together, our results show that the data-driven TDA is potentially useful in identifying objective and biologically relevant disease phenotypes in children and adolescents with ADHD.

  15. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    Full Text Available Abstract Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2 regulated by RUNX1 and STAT3 is correlated to the pathological stage

  16. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    Science.gov (United States)

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct

  17. Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Vinay Lanke

    2018-05-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder contributing to rapid decline in cognitive function and ultimately dementia. Most cases of AD occur in elderly and later years. There is a growing need for understanding the relationship between aging and AD to identify shared and unique hallmarks associated with the disease in a region and cell-type specific manner. Although genomic studies on AD have been performed extensively, the molecular mechanism of disease progression is still not clear. The major objective of our study is to obtain a higher-order network-level understanding of aging and AD, and their relationship using the hippocampal gene expression profiles of young (20–50 years, aging (70–99 years, and AD (70–99 years. The hippocampus is vulnerable to damage at early stages of AD and altered neurogenesis in the hippocampus is linked to the onset of AD. We combined the weighted gene co-expression network and weighted protein–protein interaction network-level approaches to study the transition from young to aging to AD. The network analysis revealed the organization of co-expression network into functional modules that are cell-type specific in aging and AD. We found that modules associated with astrocytes, endothelial cells and microglial cells are upregulated and significantly correlate with both aging and AD. The modules associated with neurons, mitochondria and endoplasmic reticulum are downregulated and significantly correlate with AD than aging. The oligodendrocytes module does not show significant correlation with neither aging nor disease. Further, we identified aging- and AD-specific interactions/subnetworks by integrating the gene expression with a human protein–protein interaction network. We found dysregulation of genes encoding protein kinases (FYN, SYK, SRC, PKC, MAPK1, ephrin receptors and transcription factors (FOS, STAT3, CEBPB, MYC, NFKβ, and EGR1 in AD. Further, we found genes that encode proteins

  18. Social Network Analysis and Mining to Monitor and Identify Problems with Large-Scale Information and Communication Technology Interventions.

    Science.gov (United States)

    da Silva, Aleksandra do Socorro; de Brito, Silvana Rossy; Vijaykumar, Nandamudi Lankalapalli; da Rocha, Cláudio Alex Jorge; Monteiro, Maurílio de Abreu; Costa, João Crisóstomo Weyl Albuquerque; Francês, Carlos Renato Lisboa

    2016-01-01

    The published literature reveals several arguments concerning the strategic importance of information and communication technology (ICT) interventions for developing countries where the digital divide is a challenge. Large-scale ICT interventions can be an option for countries whose regions, both urban and rural, present a high number of digitally excluded people. Our goal was to monitor and identify problems in interventions aimed at certification for a large number of participants in different geographical regions. Our case study is the training at the Telecentros.BR, a program created in Brazil to install telecenters and certify individuals to use ICT resources. We propose an approach that applies social network analysis and mining techniques to data collected from Telecentros.BR dataset and from the socioeconomics and telecommunications infrastructure indicators of the participants' municipalities. We found that (i) the analysis of interactions in different time periods reflects the objectives of each phase of training, highlighting the increased density in the phase in which participants develop and disseminate their projects; (ii) analysis according to the roles of participants (i.e., tutors or community members) reveals that the interactions were influenced by the center (or region) to which the participant belongs (that is, a community contained mainly members of the same region and always with the presence of tutors, contradicting expectations of the training project, which aimed for intense collaboration of the participants, regardless of the geographic region); (iii) the social network of participants influences the success of the training: that is, given evidence that the degree of the community member is in the highest range, the probability of this individual concluding the training is 0.689; (iv) the North region presented the lowest probability of participant certification, whereas the Northeast, which served municipalities with similar

  19. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  20. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis.

    Science.gov (United States)

    Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat

    2017-05-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.

  1. Applying Social Network Analysis to Identify the Social Support Needs of Adolescent and Young Adult Cancer Patients and Survivors.

    Science.gov (United States)

    Koltai, Kolina; Walsh, Casey; Jones, Barbara; Berkelaar, Brenda L

    2018-04-01

    This article examines how theoretical and clinical applications of social network analysis (SNA) can inform opportunities for innovation and advancement of social support programming for adolescent and young adult (AYA) cancer patients and survivors. SNA can help address potential barriers and challenges to initiating and sustaining AYA peer support by helping to identify the diverse psychosocial needs among individuals in the AYA age range; find strategic ways to support and connect AYAs at different phases of the cancer trajectory with resources and services; and increase awareness of psychosocial resources and referrals from healthcare providers. Network perspectives on homophily, proximity, and evolution provide a foundational basis to explore the utility of SNA in AYA clinical care and research initiatives. The uniqueness of the AYA oncology community can also provide insight into extending and developing current SNA theories. Using SNA in AYA psychosocial cancer research has the potential to create new ideas and pathways for supporting AYAs across the continuum of care, while also extending theories of SNA. SNA may also prove to be a useful tool for examining social support resources for AYAs with various chronic health conditions and other like groups.

  2. Ecological network analysis: network construction

    NARCIS (Netherlands)

    Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.

    2007-01-01

    Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but

  3. Demonstration of statistical approaches to identify component's ageing by operational data analysis-A case study for the ageing PSA network

    International Nuclear Information System (INIS)

    Rodionov, Andrei; Atwood, Corwin L.; Kirchsteiger, Christian; Patrik, Milan

    2008-01-01

    The paper presents some results of a case study on 'Demonstration of statistical approaches to identify the component's ageing by operational data analysis', which was done in the frame of the EC JRC Ageing PSA Network. Several techniques: visual evaluation, nonparametric and parametric hypothesis tests, were proposed and applied in order to demonstrate the capacity, advantages and limitations of statistical approaches to identify the component's ageing by operational data analysis. Engineering considerations are out of the scope of the present study

  4. Identifying PHM market and network opportunities.

    Science.gov (United States)

    Grube, Mark E; Krishnaswamy, Anand; Poziemski, John; York, Robert W

    2015-11-01

    Two key processes for healthcare organizations seeking to assume a financially sustainable role in population health management (PHM), after laying the groundwork for the effort, are to identify potential PHM market opportunities and determine the scope of the PHM network. Key variables organizations should consider with respect to market opportunities include the patient population, the overall insurance/employer market, and available types of insurance products. Regarding the network's scope, organizations should consider both traditional strategic criteria for a viable network and at least five additional criteria: network essentiality and PHM care continuum, network adequacy, service distribution right-sizing, network growth strategy, and organizational agility.

  5. Exploratory Network Meta Regression Analysis of Stroke Prevention in Atrial Fibrillation Fails to Identify Any Interactions with Treatment Effect.

    Science.gov (United States)

    Batson, Sarah; Sutton, Alex; Abrams, Keith

    2016-01-01

    Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates. To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation. We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke. None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of 'study follow-up' as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network. This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD) to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to include additional

  6. Exploratory Network Meta Regression Analysis of Stroke Prevention in Atrial Fibrillation Fails to Identify Any Interactions with Treatment Effect.

    Directory of Open Access Journals (Sweden)

    Sarah Batson

    Full Text Available Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates.To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation.We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke.None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of 'study follow-up' as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network.This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to

  7. Opportunistic Beacon Networks: Information Dissemination via Wireless Network Identifiers

    NARCIS (Netherlands)

    Türkes, Okan; Scholten, Johan; Havinga, Paul J.M.

    2016-01-01

    This paper presents OBN, a universal opportunistic ad hoc networking model particularly intended for smart mobile devices. It enables fast and lightweight data dissemination in wireless community networks through the utilization of universally-available wireless network identifiers. As a ubiquitous

  8. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.

    Directory of Open Access Journals (Sweden)

    Bordeaux John M

    2011-05-01

    Full Text Available Abstract Background Global transcriptional analysis of loblolly pine (Pinus taeda L. is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes. Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01. Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs including those with significant homology (E-values ≤ 2 × 10-30 to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in

  9. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Science.gov (United States)

    2011-01-01

    Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the

  10. Identifying influential spreaders in interconnected networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Huo, Yujia; Yang, Yixian; Li, Shudong

    2014-01-01

    Identifying the most influential spreaders in spreading dynamics is of the utmost importance for various purposes for understanding or controlling these processes. The existing relevant works are limited to a single network. Most real networks are actually not isolated, but typically coupled and affected by others. The properties of epidemic spreading have recently been found to have some significant differences in interconnected networks from those in a single network. In this paper, we focus on identifying the influential spreaders in interconnected networks. We find that the well-known k-shell index loses effectiveness; some insignificant spreaders in a single network become the influential spreaders in the whole interconnected networks while some influential spreaders become no longer important. The simulation results show that the spreading capabilities of the nodes not only depend on their influence for the network topology, but also are dramatically influenced by the spreading rate. Based on this perception, a novel index is proposed for measuring the influential spreaders in interconnected networks. We then support the efficiency of this index with numerical simulations. (paper)

  11. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  12. Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease.

    Science.gov (United States)

    Reppe, Sjur; Datta, Harish K; Gautvik, Kaare M

    2017-08-01

    The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Identifying modular relations in complex brain networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Mørup, Morten; Siebner, Hartwig

    2012-01-01

    We evaluate the infinite relational model (IRM) against two simpler alternative nonparametric Bayesian models for identifying structures in multi subject brain networks. The models are evaluated for their ability to predict new data and infer reproducible structures. Prediction and reproducibility...... and obtains comparable reproducibility and predictability. For resting state functional magnetic resonance imaging data from 30 healthy controls the IRM model is also superior to the two simpler alternatives, suggesting that brain networks indeed exhibit universal complex relational structure...

  14. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    Science.gov (United States)

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  15. Use of social network analysis in maternity care to identify the profession most suited for case manager role

    NARCIS (Netherlands)

    Groenen, C.J.M.; Duijnhoven, N.T.L. van; Faber, M.J.; Koetsenruijter, J.; Kremer, J.A.M.; Vandenbussche, F.P.H.A.

    2017-01-01

    OBJECTIVE: To improve Dutch maternity care, professionals start working in interdisciplinary patient-centred networks, which includes the patients as a member. The introduction of the case manager is expected to work positively on both the individual and the network level. However, case management

  16. Application of gene network analysis techniques identifies AXIN1/PDIA2 and endoglin haplotypes associated with bicuspid aortic valve.

    Directory of Open Access Journals (Sweden)

    Eric C Wooten

    2010-01-01

    Full Text Available Bicuspid Aortic Valve (BAV is a highly heritable congenital heart defect. The low frequency of BAV (1% of general population limits our ability to perform genome-wide association studies. We present the application of four a priori SNP selection techniques, reducing the multiple-testing penalty by restricting analysis to SNPs relevant to BAV in a genome-wide SNP dataset from a cohort of 68 BAV probands and 830 control subjects. Two knowledge-based approaches, CANDID and STRING, were used to systematically identify BAV genes, and their SNPs, from the published literature, microarray expression studies and a genome scan. We additionally tested Functionally Interpolating SNPs (fitSNPs present on the array; the fourth consisted of SNPs selected by Random Forests, a machine learning approach. These approaches reduced the multiple testing penalty by lowering the fraction of the genome probed to 0.19% of the total, while increasing the likelihood of studying SNPs within relevant BAV genes and pathways. Three loci were identified by CANDID, STRING, and fitSNPS. A haplotype within the AXIN1-PDIA2 locus (p-value of 2.926x10(-06 and a haplotype within the Endoglin gene (p-value of 5.881x10(-04 were found to be strongly associated with BAV. The Random Forests approach identified a SNP on chromosome 3 in association with BAV (p-value 5.061x10(-06. The results presented here support an important role for genetic variants in BAV and provide support for additional studies in well-powered cohorts. Further, these studies demonstrate that leveraging existing expression and genomic data in the context of GWAS studies can identify biologically relevant genes and pathways associated with a congenital heart defect.

  17. The Art of Athlete Leadership: Identifying High-Quality Athlete Leadership at the Individual and Team Level Through Social Network Analysis.

    Science.gov (United States)

    Fransen, Katrien; Van Puyenbroeck, Stef; Loughead, Todd M; Vanbeselaere, Norbert; De Cuyper, Bert; Vande Broek, Gert; Boen, Filip

    2015-06-01

    This research aimed to introduce social network analysis as a novel technique in sports teams to identify the attributes of high-quality athlete leadership, both at the individual and at the team level. Study 1 included 25 sports teams (N = 308 athletes) and focused on athletes' general leadership quality. Study 2 comprised 21 sports teams (N = 267 athletes) and focused on athletes' specific leadership quality as a task, motivational, social, and external leader. The extent to which athletes felt connected with their leader proved to be most predictive for athletes' perceptions of that leader's quality on each leadership role. Also at the team level, teams with higher athlete leadership quality were more strongly connected. We conclude that social network analysis constitutes a valuable tool to provide more insight in the attributes of high-quality leadership both at the individual and at the team level.

  18. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  19. Contextual Hub Analysis Tool (CHAT: A Cytoscape app for identifying contextually relevant hubs in biological networks [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tanja Muetze

    2016-08-01

    Full Text Available Highly connected nodes (hubs in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT, which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest.   Availability: CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store (http://apps.cytoscape.org/apps/chat.

  20. Identifying Tracks Duplicates via Neural Network

    CERN Document Server

    Sunjerga, Antonio; CERN. Geneva. EP Department

    2017-01-01

    The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.

  1. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  2. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    Science.gov (United States)

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  3. Factor analysis in the Genetics of Asthma International Network family study identifies five major quantitative asthma phenotypes

    NARCIS (Netherlands)

    Pillai, S. G.; Tang, Y.; van den Oord, E.; Klotsman, M.; Barnes, K.; Carlsen, K.; Gerritsen, J.; Lenney, W.; Silverman, M.; Sly, P.; Sundy, J.; Tsanakas, J.; von Berg, A.; Whyte, M.; Ortega, H. G.; Anderson, W. H.; Helms, P. J.

    Background Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the

  4. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  5. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  6. Hydraulic analysis of harmonic pumping tests in frequency and time domains for identifying the conduits networks in a karstic aquifer

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.

    2018-04-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.

  7. A neural network to identify neutral mesons

    International Nuclear Information System (INIS)

    Lefevre, F.; Lautridou, P.; Marques, M.; Matulewicz, T.; Ostendorf, R.; Schutz, Y.

    1994-01-01

    Both π 0 and η mesons decay long before they can reach a detector. They predominantly decay by emission of two photons, and are identified by constructing the invariant mass of the photons. Misidentified mesons result from ambiguity in associating photons. Our work tries to select which pair is the most likely to be a physical one rather than a chance one. We first designed a Hopfield neural net, but all the activities converged rapidly towards zero except the highest one. To improve the solution we slew down the computation in order to let the network explore several states and to impose activities to converge towards one for all selected pairs. This was achieved by adding links connecting each cell to itself. The network performance is all the more interesting that the solid angle covered by the detector is greater than 15%. (D.L.). 5 refs

  8. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    Science.gov (United States)

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co

  9. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    Directory of Open Access Journals (Sweden)

    Xiaolin Xiao

    2014-01-01

    Full Text Available Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states. Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based and humans (mRNA-sequencing-based and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi

  10. Yeast Augmented Network Analysis (YANA: a new systems approach to identify therapeutic targets for human genetic diseases [v1; ref status: indexed, http://f1000r.es/3gk

    Directory of Open Access Journals (Sweden)

    David J. Wiley

    2014-06-01

    Full Text Available Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA approach and test it with the X-linked spinal muscular atrophy (SMA disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.

  11. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  12. How to Identify Success Among Networks That Promote Active Living.

    Science.gov (United States)

    Litt, Jill; Varda, Danielle; Reed, Hannah; Retrum, Jessica; Tabak, Rachel; Gustat, Jeanette; O'Hara Tompkins, Nancy

    2015-11-01

    We evaluated organization- and network-level factors that influence organizations' perceived success. This is important for managing interorganizational networks, which can mobilize communities to address complex health issues such as physical activity, and for achieving change. In 2011, we used structured interview and network survey data from 22 states in the United States to estimate multilevel random-intercept models to understand organization- and network-level factors that explain perceived network success. A total of 53 of 59 "whole networks" met the criteria for inclusion in the analysis (89.8%). Coordinators identified 559 organizations, with 3 to 12 organizations from each network taking the online survey (response rate = 69.7%; range = 33%-100%). Occupying a leadership position (P Organizations' perceptions of success can influence decisions about continuing involvement and investment in networks designed to promote environment and policy change for active living. Understanding these factors can help leaders manage complex networks that involve diverse memberships, varied interests, and competing community-level priorities.

  13. Identifying Gatekeepers in Online Learning Networks

    Science.gov (United States)

    Gursakal, Necmi; Bozkurt, Aras

    2017-01-01

    The rise of the networked society has not only changed our perceptions but also the definitions, roles, processes and dynamics of online learning networks. From offline to online worlds, networks are everywhere and gatekeepers are an important entity in these networks. In this context, the purpose of this paper is to explore gatekeeping and…

  14. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  15. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis

    Directory of Open Access Journals (Sweden)

    Zhou X

    2018-05-01

    characterize the results of WGCNA.Results: Two gene modules (Gmagenta and Ggreen and one miRNA module were associated with the pathological stage. Six hub genes (COL1A2, THBS2, BGN, COL1A1, TAGLN and DACT3 were related to prognosis and validated to be associated with the pathological stage. Five hub miRNAs were identified to be related to prognosis (hsa-miR-125b-5p, hsa-miR-145-5p, hsa-let-7c-5p, hsa-miR-218-5p and hsa-miR-125b-2-3p. A total of 18 hub genes and seven hub miRNAs were predominantly expressed in tumor stroma. Proteoglycans in cancer, focal adhesion, extracellular matrix (ECM–receptor interaction and so on were common pathways of the three modules. Hsa-let-7c-5p was located at the core of miRNA–gene network.Conclusion: These findings help to advance the understanding of tumor stroma in the progression of CAC and provide prognostic biomarkers as well as therapeutic targets. Keywords: colon adenocarcinoma, weighted gene co-expression network analysis, differentially expressed genes, differentially expressed miRNA, tumor stroma

  16. Identifying Jets Using Artifical Neural Networks

    Science.gov (United States)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  17. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    Science.gov (United States)

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Biomarker MicroRNAs for Diagnosis of Oral Squamous Cell Carcinoma Identified Based on Gene Expression Data and MicroRNA-mRNA Network Analysis

    Science.gov (United States)

    Zhang, Hui; Li, Tangxin; Zheng, Linqing

    2017-01-01

    Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of the conditional microRNA-mRNA network and their important functions. These findings were confirmed by literature verification and functional enrichment analysis. Future experimental validation is expected for the further investigation of their molecular mechanisms. PMID:29098014

  19. An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Arunachalam Vinayagam

    2016-09-01

    Full Text Available Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and metabolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network surrounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phosphoproteomics, we demonstrate that ∼10% of interacting proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by identifying regulatory roles for the Protein Phosphatase 2A (PP2A and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network.

  20. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  1. Identifying tau hadronic decay with neural network

    International Nuclear Information System (INIS)

    Chen Guoming; Chen Gang

    1995-01-01

    The identification of tau one prong hadronic decay using neural network is presented. Based on the identification, we measured the branching ratios: Br(π/Kν) = (12.18 +- 0.26 +- 0.42)%, Br(π/Kπ 0 ν) = (25.20 +-0.35 +- 0.50)%, Br(π/K2π 0 ν) = (8.88 +- 0.37 +- 0.38)%, Br(π/K3π 0 ν) = (1.70 +- 0.24 +- 0.39)%

  2. Interchange. Program Improvement Products Identified through Networking.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This catalog lists exemplary field-based program improvement products identified by the Dissemination and Utilization Products and Services Program (D&U) at the National Center for Research in Vocational Education. It is designed to increase awareness of these products among vocational educators and to provide information about them that…

  3. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  4. Application of artificial neural network to identify nuclear materials

    International Nuclear Information System (INIS)

    Xu Peng; Wang Zhe; Li Tiantuo

    2005-01-01

    Applying the neutral network, the article studied the technology of identifying the gamma spectra of the nuclear material in the nuclear components. In the article, theory of the network identifying the spectra is described, and the results of identification of gamma spectra are given.(authors)

  5. Communication Network Analysis Methods.

    Science.gov (United States)

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  6. Have No PHEAR: Networks Without Identifiers

    Science.gov (United States)

    2015-12-07

    and bulk file sharing traffic, the PHEAR prototype offers sufficient performance to support expected user traffic. Fur - thermore, PHEAR offers similar...Analysis for Connection-Based Anonymity Systems. In Proceedings of ESORICS 2003, October 2003. [47] C. Wacek, H. Tan , K. Bauer, and M. Sherr. An Empirical

  7. On Identifying which Intermediate Nodes Should Code in Multicast Networks

    DEFF Research Database (Denmark)

    Pinto, Tiago; Roetter, Daniel Enrique Lucani; Médard, Muriel

    2013-01-01

    the data packets. Previous work has shown that in lossless wireline networks, the performance of tree-packing mechanisms is comparable to network coding, albeit with added complexity at the time of computing the trees. This means that most nodes in the network need not code. Thus, mechanisms that identify...... intermediate nodes that do require coding is instrumental for the efficient operation of coded networks and can have a significant impact in overall energy consumption. We present a distributed, low complexity algorithm that allows every node to identify if it should code and, if so, through what output link...

  8. Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer’s disease animal model

    Directory of Open Access Journals (Sweden)

    Xiao-Rui eCheng

    2013-10-01

    Full Text Available Harboring the behavioral and histopathological signatures of Alzheimer’s disease (AD, senescence accelerated mouse-prone 8 (SAMP8 mice are currently considered a robust model for studying AD. However, the underlying mechanisms, prioritized pathways and genes in SAMP8 mice linked to AD remain unclear. In this study, we provide a biological interpretation of the molecular underpinnings of SAMP8 mice. Our results were derived from differentially expressed genes in the hippocampus and cerebral cortex of SAMP8 mice compared to age-matched SAMR1 mice at 2, 6, and 12 months of age using cDNA microarray analysis. On the basis of PPI, MetaCore and the co-expression network, we constructed a distinct genetic sub-network in the brains of SAMP8 mice. Next, we determined that the regulation of synaptic transmission and apoptosis were disrupted in the brains of SAMP8 mice. We found abnormal gene expression of RAF1, MAPT, PTGS2, CDKN2A, CAMK2A, NTRK2, AGER, ADRBK1, MCM3AP and STUB1, which may have initiated the dysfunction of biological processes in the brains of SAMP8 mice. Specifically, we found microRNAs, including miR-20a, miR-17, miR-34a, miR-155, miR-18a, miR-22, miR-26a, miR-101, miR-106b and miR-125b, that might regulate the expression of nodes in the sub-network. Taken together, these results provide new insights into the biological and genetic mechanisms of SAMP8 mice and add an important dimension to our understanding of the neuro-pathogenesis in SAMP8 mice from a systems perspective.

  9. Identifying online user reputation of user-object bipartite networks

    Science.gov (United States)

    Liu, Xiao-Lu; Liu, Jian-Guo; Yang, Kai; Guo, Qiang; Han, Jing-Ti

    2017-02-01

    Identifying online user reputation based on the rating information of the user-object bipartite networks is important for understanding online user collective behaviors. Based on the Bayesian analysis, we present a parameter-free algorithm for ranking online user reputation, where the user reputation is calculated based on the probability that their ratings are consistent with the main part of all user opinions. The experimental results show that the AUC values of the presented algorithm could reach 0.8929 and 0.8483 for the MovieLens and Netflix data sets, respectively, which is better than the results generated by the CR and IARR methods. Furthermore, the experimental results for different user groups indicate that the presented algorithm outperforms the iterative ranking methods in both ranking accuracy and computation complexity. Moreover, the results for the synthetic networks show that the computation complexity of the presented algorithm is a linear function of the network size, which suggests that the presented algorithm is very effective and efficient for the large scale dynamic online systems.

  10. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-06-01

    Full Text Available Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other

  11. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism.

    Science.gov (United States)

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed

  12. Identifying the Key Weaknesses in Network Security at Colleges.

    Science.gov (United States)

    Olsen, Florence

    2000-01-01

    A new study identifies and ranks the 10 security gaps responsible for most outsider attacks on college computer networks. The list is intended to help campus system administrators establish priorities as they work to increase security. One network security expert urges that institutions utilize multiple security layers. (DB)

  13. Identifying key nodes in multilayer networks based on tensor decomposition.

    Science.gov (United States)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  14. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI

    DEFF Research Database (Denmark)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin

    2017-01-01

    BACKGROUND: The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis......) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database...

  15. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  16. Identify Dynamic Network Modules with Temporal and Spatial Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J

    2007-09-24

    Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.

  17. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  18. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  19. Identifying influential directors in the United States corporate governance network

    Science.gov (United States)

    Huang, Xuqing; Vodenska, Irena; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene

    2011-10-01

    The influence of directors has been one of the most engaging topics recently, but surprisingly little research has been done to quantitatively evaluate the influence and power of directors. We analyze the structure of the US corporate governance network for the 11-year period 1996-2006 based on director data from the Investor Responsibility Research Center director database, and we develop a centrality measure named the influence factor to estimate the influence of directors quantitatively. The US corporate governance network is a network of directors with nodes representing directors and links between two directors representing their service on common company boards. We assume that information flows in the network through information-sharing processes among linked directors. The influence factor assigned to a director is based on the level of information that a director obtains from the entire network. We find that, contrary to commonly accepted belief that directors of large companies, measured by market capitalization, are the most powerful, in some instances, the directors who are influential do not necessarily serve on boards of large companies. By applying our influence factor method to identify the influential people contained in the lists created by popular magazines such as Fortune, Networking World, and Treasury and Risk Management, we find that the influence factor method is consistently either the best or one of the two best methods in identifying powerful people compared to other general centrality measures that are used to denote the significance of a node in complex network theory.

  20. Identifying influential directors in the United States corporate governance network.

    Science.gov (United States)

    Huang, Xuqing; Vodenska, Irena; Wang, Fengzhong; Havlin, Shlomo; Stanley, H Eugene

    2011-10-01

    The influence of directors has been one of the most engaging topics recently, but surprisingly little research has been done to quantitatively evaluate the influence and power of directors. We analyze the structure of the US corporate governance network for the 11-year period 1996-2006 based on director data from the Investor Responsibility Research Center director database, and we develop a centrality measure named the influence factor to estimate the influence of directors quantitatively. The US corporate governance network is a network of directors with nodes representing directors and links between two directors representing their service on common company boards. We assume that information flows in the network through information-sharing processes among linked directors. The influence factor assigned to a director is based on the level of information that a director obtains from the entire network. We find that, contrary to commonly accepted belief that directors of large companies, measured by market capitalization, are the most powerful, in some instances, the directors who are influential do not necessarily serve on boards of large companies. By applying our influence factor method to identify the influential people contained in the lists created by popular magazines such as Fortune, Networking World, and Treasury and Risk Management, we find that the influence factor method is consistently either the best or one of the two best methods in identifying powerful people compared to other general centrality measures that are used to denote the significance of a node in complex network theory.

  1. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  2. Identifying and tracking dynamic processes in social networks

    Science.gov (United States)

    Chung, Wayne; Savell, Robert; Schütt, Jan-Peter; Cybenko, George

    2006-05-01

    The detection and tracking of embedded malicious subnets in an active social network can be computationally daunting due to the quantity of transactional data generated in the natural interaction of large numbers of actors comprising a network. In addition, detection of illicit behavior may be further complicated by evasive strategies designed to camouflage the activities of the covert subnet. In this work, we move beyond traditional static methods of social network analysis to develop a set of dynamic process models which encode various modes of behavior in active social networks. These models will serve as the basis for a new application of the Process Query System (PQS) to the identification and tracking of covert dynamic processes in social networks. We present a preliminary result from application of our technique in a real-world data stream-- the Enron email corpus.

  3. Network Analysis in Community Psychology: Looking Back, Looking Forward

    OpenAIRE

    Neal, Zachary P.; Neal, Jennifer Watling

    2017-01-01

    Highlights Network analysis is ideally suited for community psychology research because it focuses on context. Use of network analysis in community psychology is growing. Network analysis in community psychology has employed some potentially problematic practices. Recommended practices are identified to improve network analysis in community psychology.

  4. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  5. Personal identifiers in medical research networks: evaluation of the personal identifier generator in the Competence Network Paediatric Oncology and Haematology

    Directory of Open Access Journals (Sweden)

    Pommerening, Klaus

    2006-06-01

    Full Text Available The Society for Paediatric Oncology and Haematology (GPOH and the corresponding Competence Network Paediatric Oncology and Haematology conduct various clinical trials. The comprehensive analysis requires reliable identification of the recruited patients. Therefore, a personal identifier (PID generator is used to assign unambiguous, pseudonymous, non-reversible PIDs to participants in those trials. We tested the matching algorithm of the PID generator using a configuration specific to the GPOH. False data was used to verify the correct processing of PID requests (functionality tests, while test data was used to evaluate the matching outcome. We also assigned PIDs to more than 44,000 data records from the German Childhood Cancer Registry (GCCR and assessed the status of the associated patient list which contains the PIDs, partly encrypted data items and information on the PID generation process for each data record. All the functionality tests showed the expected results. Neither 14,915 test data records nor the GCCR data records yielded any homonyms. Six synonyms were found in the test data, due to erroneous birth dates, and 22 synonyms were found when the GCCR data was run against the actual patient list of 2579 records. In the resulting patient list of 45,693 entries, duplicate record submissions were found for about 7% of all listed patients, while more frequent submissions occurred in less than 1% of cases. The synonym error rate depends mainly on the quality of the input data and on the frequency of multiple submissions. Depending on the requirements on maximally tolerable synonym and homonym error rates, additional measures for securing input data quality might be necessary. The results demonstrate that the PID generator is an appropriate tool for reliably identifying trial participants in medical research networks.

  6. Identifying and tracking attacks on networks: C3I displays and related technologies

    Science.gov (United States)

    Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.

    2003-09-01

    Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.

  7. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  8. Towards Mining Latent Client Identifiers from Network Traffic

    Directory of Open Access Journals (Sweden)

    Jain Sakshi

    2016-04-01

    Full Text Available Websites extensively track users via identifiers that uniquely map to client machines or user accounts. Although such tracking has desirable properties like enabling personalization and website analytics, it also raises serious concerns about online user privacy, and can potentially enable illicit surveillance by adversaries who broadly monitor network traffic.

  9. Exploiting The Brain’s Network Structure in Identifying ADHD

    Directory of Open Access Journals (Sweden)

    Soumyabrata eDey

    2012-11-01

    Full Text Available Attention Deficit Hyperactive Disorder (ADHD is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state Functional Magnetic Resonance Imaging (fMRI sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59% is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.

  10. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  11. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  12. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    Science.gov (United States)

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and

  13. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  14. Identifying Controlling Nodes in Neuronal Networks in Different Scales

    Science.gov (United States)

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2012-01-01

    Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of networks. In this study, we focus on the identification of controlling regions in cortical networks of cats’ brain in microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low degree. Interestingly, the community Auditory in cats’ brain, which has sparse connections with other communities, plays an important role in controlling the neuronal networks. PMID:22848475

  15. Effectively identifying user profiles in network and host metrics

    Science.gov (United States)

    Murphy, John P.; Berk, Vincent H.; Gregorio-de Souza, Ian

    2010-04-01

    This work presents a collection of methods that is used to effectively identify users of computers systems based on their particular usage of the software and the network. Not only are we able to identify individual computer users by their behavioral patterns, we are also able to detect significant deviations in their typical computer usage over time, or compared to a group of their peers. For instance, most people have a small, and relatively unique selection of regularly visited websites, certain email services, daily work hours, and typical preferred applications for mandated tasks. We argue that these habitual patterns are sufficiently specific to identify fully anonymized network users. We demonstrate that with only a modest data collection capability, profiles of individual computer users can be constructed so as to uniquely identify a profiled user from among their peers. As time progresses and habits or circumstances change, the methods presented update each profile so that changes in user behavior can be reliably detected over both abrupt and gradual time frames, without losing the ability to identify the profiled user. The primary benefit of our methodology allows one to efficiently detect deviant behaviors, such as subverted user accounts, or organizational policy violations. Thanks to the relative robustness, these techniques can be used in scenarios with very diverse data collection capabilities, and data privacy requirements. In addition to behavioral change detection, the generated profiles can also be compared against pre-defined examples of known adversarial patterns.

  16. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    OpenAIRE

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major d...

  17. Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens

    Science.gov (United States)

    Gong, Ping; Madak-Erdogan, Zeynep; Li, Jilong; Cheng, Jianlin; Greenlief, C. Michael; Helferich, William G.; Katzenellenbogen, John A.

    2014-01-01

    The estrogen receptors (ERs) ERα and ERβ mediate the actions of endogenous estrogens as well as those of botanical estrogens (BEs) present in plants. BEs are ingested in the diet and also widely consumed by postmenopausal women as dietary supplements, often as a substitute for the loss of endogenous estrogens at menopause. However, their activities and efficacies, and similarities and differences in gene expression programs with respect to endogenous estrogens such as estradiol (E2) are not fully understood. Because gene expression patterns underlie and control the broad physiological effects of estrogens, we have investigated and compared the gene networks that are regulated by different BEs and by E2. Our aim was to determine if the soy and licorice BEs control similar or different gene expression programs and to compare their gene regulations with that of E2. Gene expression was examined by RNA-Seq in human breast cancer (MCF7) cells treated with control vehicle, BE or E2. These cells contained three different complements of ERs, ERα only, ERα+ERβ, or ERβ only, reflecting the different ratios of these two receptors in different human breast cancers and in different estrogen target cells. Using principal component, hierarchical clustering, and gene ontology and interactome analyses, we found that BEs regulated many of the same genes as did E2. The genes regulated by each BE, however, were somewhat different from one another, with some genes being regulated uniquely by each compound. The overlap with E2 in regulated genes was greatest for the soy isoflavones genistein and S-equol, while the greatest difference from E2 in gene expression pattern was observed for the licorice root BE liquiritigenin. The gene expression pattern of each ligand depended greatly on the cell background of ERs present. Despite similarities in gene expression pattern with E2, the BEs were generally less stimulatory of genes promoting proliferation and were more pro-apoptotic in their

  18. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  19. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok

    2017-08-01

    BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.

  20. On the way to identify microorganisms in drinking water distribution networks via DNA analysis of the gut content of freshwater isopods.

    Science.gov (United States)

    Mayer, Michael; Keller, Adrian; Szewzyk, Ulrich; Warnecke, Hans-Joachim

    2015-05-10

    Pure drinking water is the basis for a healthy society. In Germany the drinking water regulations demand for analysis of water via detection of certain microbiological parameters by cultivation only. However, not all prokaryotes can be detected by these standard methods. How to gain more and better information about the bacteria present in drinking water and its distribution systems? The biofilms in drinking water distribution systems are built by bacteria and therefore represent a valuable source of information about the species present. Unfortunately, these biofilms are badly accessible. We thus exploited the circumstance that a lot of metazoans graze the biofilms, so that the content of their guts partly reflects the respective biofilm biocenosis. Therefore, we collected omnivorous isopods, prepared their guts and examined and characterized their contents based on 16S und 18S rDNA analysis. These molecularbiological investigations provide a profound basis for the characterization of the biocenosis and thereby biologically assess the drinking water ecosystems. Combined with a thorough identification of the species and the knowledge of their habitats, this approach can provide useful indications for the assessment of drinking-water quality and the early detection of problems in the distribution system. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A bio-inspired methodology of identifying influential nodes in complex networks.

    Directory of Open Access Journals (Sweden)

    Cai Gao

    Full Text Available How to identify influential nodes is a key issue in complex networks. The degree centrality is simple, but is incapable to reflect the global characteristics of networks. Betweenness centrality and closeness centrality do not consider the location of nodes in the networks, and semi-local centrality, leaderRank and pageRank approaches can be only applied in unweighted networks. In this paper, a bio-inspired centrality measure model is proposed, which combines the Physarum centrality with the K-shell index obtained by K-shell decomposition analysis, to identify influential nodes in weighted networks. Then, we use the Susceptible-Infected (SI model to evaluate the performance. Examples and applications are given to demonstrate the adaptivity and efficiency of the proposed method. In addition, the results are compared with existing methods.

  2. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis

    Science.gov (United States)

    Malhotra, Deepti; Portales-Casamar, Elodie; Singh, Anju; Srivastava, Siddhartha; Arenillas, David; Happel, Christine; Shyr, Casper; Wakabayashi, Nobunao; Kensler, Thomas W.; Wasserman, Wyeth W.; Biswal, Shyam

    2010-01-01

    The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1−/−) or depletion (Nrf2−/−) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response. PMID:20460467

  3. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  4. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  5. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  6. Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat

    2016-09-15

    We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.

  7. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  8. Identifying potential kidney donors using social networking web sites.

    Science.gov (United States)

    Chang, Alexander; Anderson, Emily E; Turner, Hang T; Shoham, David; Hou, Susan H; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2-69); 88% were US residents. Other posted information included the individual's photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live-donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. © 2013 John Wiley & Sons A/S.

  9. Emerging Fabric of Science: Persistent Identifiers and Knowledge Networks

    Science.gov (United States)

    Hugo, W.

    2017-12-01

    There is an increasing emphasis on the use of persistent identifiers in the description of scientific activity, whether this is done to cite scholarly publications and research output, reliably identify role players such as funders and researchers, or to provide long-lasting references to controlled vocabulary. The ICSU World Data System has been promoting the establishment of a "Knowledge Network" to describe research activity, realising that parts of the network will be established as a federated `system', based on linkages between registries of persistent identifiers. In addition, there is a growing focus on not only the relationship between these major role players and associated digital objects, but also on the processes of science: provenance, reproducibility, and re-usability being significant topics of discussion. The paper will focus on description of the `Fabric of Science' from the perspectives of both structure and processes, review the state of implementation of real services and infrastructure in support of it. A case is made for inclusion of persistent identifiers into the mainstream activities of scientists and data infrastructure managers, and for the development of services, such as Scholix, to make better use of the relationships between digital objects and major role players. A proposal is made for the adoption of a federated system of services that are based on a hybrid graph-object framework similar to Scholix for recording the activity of scientific research. Finally, links to related ideas are explored: novel ways of representing of knowledge (such as Nanopublications) and the possibility that the publication paradigm currently in use may have to be amended.

  10. Identifying a set of influential spreaders in complex networks

    Science.gov (United States)

    Zhang, Jian-Xiong; Chen, Duan-Bing; Dong, Qiang; Zhao, Zhi-Dan

    2016-06-01

    Identifying a set of influential spreaders in complex networks plays a crucial role in effective information spreading. A simple strategy is to choose top-r ranked nodes as spreaders according to influence ranking method such as PageRank, ClusterRank and k-shell decomposition. Besides, some heuristic methods such as hill-climbing, SPIN, degree discount and independent set based are also proposed. However, these approaches suffer from a possibility that some spreaders are so close together that they overlap sphere of influence or time consuming. In this report, we present a simply yet effectively iterative method named VoteRank to identify a set of decentralized spreaders with the best spreading ability. In this approach, all nodes vote in a spreader in each turn, and the voting ability of neighbors of elected spreader will be decreased in subsequent turn. Experimental results on four real networks show that under Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models, VoteRank outperforms the traditional benchmark methods on both spreading rate and final affected scale. What’s more, VoteRank has superior computational efficiency.

  11. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  12. Identifying MMORPG Bots: A Traffic Analysis Approach

    Science.gov (United States)

    Chen, Kuan-Ta; Jiang, Jhih-Wei; Huang, Polly; Chu, Hao-Hua; Lei, Chin-Laung; Chen, Wen-Chin

    2008-12-01

    Massively multiplayer online role playing games (MMORPGs) have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1) the regularity in the release time of client commands, 2) the trend and magnitude of traffic burstiness in multiple time scales, and 3) the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  13. Identifying MMORPG Bots: A Traffic Analysis Approach

    Directory of Open Access Journals (Sweden)

    Wen-Chin Chen

    2008-11-01

    Full Text Available Massively multiplayer online role playing games (MMORPGs have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1 the regularity in the release time of client commands, 2 the trend and magnitude of traffic burstiness in multiple time scales, and 3 the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  14. Parallel ICA identifies sub-components of resting state networks that covary with behavioral indices.

    Science.gov (United States)

    Meier, Timothy B; Wildenberg, Joseph C; Liu, Jingyu; Chen, Jiayu; Calhoun, Vince D; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-01-01

    Parallel Independent Component Analysis (para-ICA) is a multivariate method that can identify complex relationships between different data modalities by simultaneously performing Independent Component Analysis on each data set while finding mutual information between the two data sets. We use para-ICA to test the hypothesis that spatial sub-components of common resting state networks (RSNs) covary with specific behavioral measures. Resting state scans and a battery of behavioral indices were collected from 24 younger adults. Group ICA was performed and common RSNs were identified by spatial correlation to publically available templates. Nine RSNs were identified and para-ICA was run on each network with a matrix of behavioral measures serving as the second data type. Five networks had spatial sub-components that significantly correlated with behavioral components. These included a sub-component of the temporo-parietal attention network that differentially covaried with different trial-types of a sustained attention task, sub-components of default mode networks that covaried with attention and working memory tasks, and a sub-component of the bilateral frontal network that split the left inferior frontal gyrus into three clusters according to its cytoarchitecture that differentially covaried with working memory performance. Additionally, we demonstrate the validity of para-ICA in cases with unbalanced dimensions using simulated data.

  15. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  16. A method for identifying hierarchical sub-networks / modules and weighting network links based on their similarity in sub-network / module affiliation

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-06-01

    Full Text Available Some networks, including biological networks, consist of hierarchical sub-networks / modules. Based on my previous study, in present study a method for both identifying hierarchical sub-networks / modules and weighting network links is proposed. It is based on the cluster analysis in which between-node similarity in sets of adjacency nodes is used. Two matrices, linkWeightMat and linkClusterIDs, are achieved by using the algorithm. Two links with both the same weight in linkWeightMat and the same cluster ID in linkClusterIDs belong to the same sub-network / module. Two links with the same weight in linkWeightMat but different cluster IDs in linkClusterIDs belong to two sub-networks / modules at the same hirarchical level. However, a link with an unique cluster ID in linkClusterIDs does not belong to any sub-networks / modules. A sub-network / module of the greater weight is the more connected sub-network / modules. Matlab codes of the algorithm are presented.

  17. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  18. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  19. Gaussian Graphical Models Identify Networks of Dietary Intake in a German Adult Population.

    Science.gov (United States)

    Iqbal, Khalid; Buijsse, Brian; Wirth, Janine; Schulze, Matthias B; Floegel, Anna; Boeing, Heiner

    2016-03-01

    Data-reduction methods such as principal component analysis are often used to derive dietary patterns. However, such methods do not assess how foods are consumed in relation to each other. Gaussian graphical models (GGMs) are a set of novel methods that can address this issue. We sought to apply GGMs to derive sex-specific dietary intake networks representing consumption patterns in a German adult population. Dietary intake data from 10,780 men and 16,340 women of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort were cross-sectionally analyzed to construct dietary intake networks. Food intake for each participant was estimated using a 148-item food-frequency questionnaire that captured the intake of 49 food groups. GGMs were applied to log-transformed intakes (grams per day) of 49 food groups to construct sex-specific food networks. Semiparametric Gaussian copula graphical models (SGCGMs) were used to confirm GGM results. In men, GGMs identified 1 major dietary network that consisted of intakes of red meat, processed meat, cooked vegetables, sauces, potatoes, cabbage, poultry, legumes, mushrooms, soup, and whole-grain and refined breads. For women, a similar network was identified with the addition of fried potatoes. Other identified networks consisted of dairy products and sweet food groups. SGCGMs yielded results comparable to those of GGMs. GGMs are a powerful exploratory method that can be used to construct dietary networks representing dietary intake patterns that reveal how foods are consumed in relation to each other. GGMs indicated an apparent major role of red meat intake in a consumption pattern in the studied population. In the future, identified networks might be transformed into pattern scores for investigating their associations with health outcomes. © 2016 American Society for Nutrition.

  20. Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-01-01

    Full Text Available Comprehensively understanding pharmacological functions of natural products is a key issue to be addressed for the discovery of new drugs. Unlike some single-target drugs, natural products always exert diverse therapeutic effects through acting on a “network” that consists of multiple targets, making it necessary to develop a systematic approach, e.g., network pharmacology, to reveal pharmacological functions of natural products and infer their mechanisms of action. In this work, to identify the “network target” of a natural product, we perform a functional analysis of matrine, a marketed drug in China extracted from a medical herb Ku-Shen (Radix Sophorae Flavescentis. Here, the network target of matrine was firstly predicted by drugCIPHER, a genome-wide target prediction method. Based on the network target of matrine, we performed a functional gene set enrichment analysis to computationally identify the potential pharmacological functions of matrine, most of which are supported by the literature evidence, including neurotoxicity and neuropharmacological activities of matrine. Furthermore, computational results demonstrated that matrine has the potential for the induction of macropinocytosis and the regulation of ATP metabolism. Our experimental data revealed that the large vesicles induced by matrine are consistent with the typical characteristics of macropinosome. Our verification results also suggested that matrine could decrease cellular ATP level. These findings demonstrated the availability and effectiveness of the network target strategy for identifying the comprehensive pharmacological functions of natural products.

  1. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  2. Cellular signaling identifiability analysis: a case study.

    Science.gov (United States)

    Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo

    2010-05-21

    Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks.

    Science.gov (United States)

    Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua

    2017-09-01

    The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.

  4. Trimming of mammalian transcriptional networks using network component analysis

    Directory of Open Access Journals (Sweden)

    Liao James C

    2010-10-01

    Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm

  5. Identifying failure in a tree network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.

    2010-08-24

    Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.

  6. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  7. Identifying influential spreaders in complex networks through local effective spreading paths

    Science.gov (United States)

    Wang, Xiaojie; Zhang, Xue; Yi, Dongyun; Zhao, Chengli

    2017-05-01

    How to effectively identify a set of influential spreaders in complex networks is of great theoretical and practical value, which can help to inhibit the rapid spread of epidemics, promote the sales of products by word-of-mouth advertising, and so on. A naive strategy is to select the top ranked nodes as identified by some centrality indices, and other strategies are mainly based on greedy methods and heuristic methods. However, most of those approaches did not concern the connections between nodes. Usually, the distances between the selected spreaders are very close, leading to a serious overlapping of their influence. As a consequence, the global influence of the spreaders in networks will be greatly reduced, which largely restricts the performance of those methods. In this paper, a simple and efficient method is proposed to identify a set of discrete yet influential spreaders. By analyzing the spreading paths in the network, we present the concept of effective spreading paths and measure the influence of nodes via expectation calculation. The numerical analysis in undirected and directed networks all show that our proposed method outperforms many other centrality-based and heuristic benchmarks, especially in large-scale networks. Besides, experimental results on different spreading models and parameters demonstrates the stability and wide applicability of our method.

  8. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  9. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  10. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  11. Identifying quantum phase transitions with adversarial neural networks

    Science.gov (United States)

    Huembeli, Patrick; Dauphin, Alexandre; Wittek, Peter

    2018-04-01

    The identification of phases of matter is a challenging task, especially in quantum mechanics, where the complexity of the ground state appears to grow exponentially with the size of the system. Traditionally, physicists have to identify the relevant order parameters for the classification of the different phases. We here follow a radically different approach: we address this problem with a state-of-the-art deep learning technique, adversarial domain adaptation. We derive the phase diagram of the whole parameter space starting from a fixed and known subspace using unsupervised learning. This method has the advantage that the input of the algorithm can be directly the ground state without any ad hoc feature engineering. Furthermore, the dimension of the parameter space is unrestricted. More specifically, the input data set contains both labeled and unlabeled data instances. The first kind is a system that admits an accurate analytical or numerical solution, and one can recover its phase diagram. The second type is the physical system with an unknown phase diagram. Adversarial domain adaptation uses both types of data to create invariant feature extracting layers in a deep learning architecture. Once these layers are trained, we can attach an unsupervised learner to the network to find phase transitions. We show the success of this technique by applying it on several paradigmatic models: the Ising model with different temperatures, the Bose-Hubbard model, and the Su-Schrieffer-Heeger model with disorder. The method finds unknown transitions successfully and predicts transition points in close agreement with standard methods. This study opens the door to the classification of physical systems where the phase boundaries are complex such as the many-body localization problem or the Bose glass phase.

  12. A Visual Analytics Technique for Identifying Heat Spots in Transportation Networks

    Directory of Open Access Journals (Sweden)

    Marian Sorin Nistor

    2016-12-01

    Full Text Available The decision takers of the public transportation system, as part of urban critical infrastructures, need to increase the system resilience. For doing so, we identified analysis tools for biological networks as an adequate basis for visual analytics in that domain. In the paper at hand we therefore translate such methods for transportation systems and show the benefits by applying them on the Munich subway network. Here, visual analytics is used to identify vulnerable stations from different perspectives. The applied technique is presented step by step. Furthermore, the key challenges in applying this technique on transportation systems are identified. Finally, we propose the implementation of the presented features in a management cockpit to integrate the visual analytics mantra for an adequate decision support on transportation systems.

  13. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  14. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  15. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  16. Identifying influential user communities on the social network

    Science.gov (United States)

    Hu, Weishu; Gong, Zhiguo; Hou U, Leong; Guo, Jingzhi

    2015-10-01

    Nowadays social network services have been popularly used in electronic commerce systems. Users on the social network can develop different relationships based on their common interests and activities. In order to promote the business, it is interesting to explore hidden relationships among users developed on the social network. Such knowledge can be used to locate target users for different advertisements and to provide effective product recommendations. In this paper, we define and study a novel community detection problem that is to discover the hidden community structure in large social networks based on their common interests. We observe that the users typically pay more attention to those users who share similar interests, which enable a way to partition the users into different communities according to their common interests. We propose two algorithms to detect influential communities using common interests in large social networks efficiently and effectively. We conduct our experimental evaluation using a data set from Epinions, which demonstrates that our method achieves 4-11.8% accuracy improvement over the state-of-the-art method.

  17. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  18. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  19. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  20. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  1. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  2. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  3. Applying network theory to animal movements to identify properties of landscape space use.

    Science.gov (United States)

    Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George

    2018-04-01

    Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a

  4. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  5. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  6. Correlation Networks for Identifying Changes in Brain Connectivity during Epileptiform Discharges and Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Elsa Siggiridou

    2014-07-01

    Full Text Available The occurrence of epileptiform discharges (ED in electroencephalographic (EEG recordings of patients with epilepsy signifies a change in brain dynamics and particularly brain connectivity. Transcranial magnetic stimulation (TMS has been recently acknowledged as a non-invasive brain stimulation technique that can be used in focal epilepsy for therapeutic purposes. In this case study, it is investigated whether simple time-domain connectivity measures, namely cross-correlation and partial cross-correlation, can detect alterations in the connectivity structure estimated from selected EEG channels before and during ED, as well as how this changes with the application of TMS. The correlation for each channel pair is computed on non-overlapping windows of 1 s duration forming weighted networks. Further, binary networks are derived by thresholding or statistical significance tests (parametric and randomization tests. The information for the binary networks is summarized by statistical network measures, such as the average degree and the average path length. Alterations of brain connectivity before, during and after ED with or without TMS are identified by statistical analysis of the network measures at each state.

  7. Identify and analyze the opportunities and threats of social networks for shahid Beheshti University students

    Directory of Open Access Journals (Sweden)

    R. Tavalaee

    2017-09-01

    Full Text Available Due to the growth of information and communication technology in societies Especially among students, the use of these technologies has become as part of regular working people. Social networks as one of the most important and widely in cyberspace which is Used by many people in various fields. application of social network by students as young and educated population is important.In this regard, this study aimed to investigate and identify the opportunities and threats for shahid Beheshti University students in social network. This study aims to develop a practical and descriptive methodology. Information obtained from the questionnaires using SPSS statistical analysis software in two parts: descriptive and inferential statistics were analyzed.The results indicate that five variables related to social networking opportunities, including e-learning, leisure, organized social groups, the possibility of dialogue and culture, as well as five variables related to social networking threats, including transfer value unethical, abusive, spreading false information, internet & Communications destructive addiction, has a significant positive effect on students.

  8. Application of OLAM network in X-ray spectral analysis

    International Nuclear Information System (INIS)

    Liu Yinbing; Zhou Rongsheng

    2001-01-01

    The author describes a new approach to the automatic radioisotope identification problem based on the use of OLAM network. Different from the traditional methods, the OLAM network takes the spectrum as a whole comparing its shape with the patterns learned during the training period of the network. It is found that the OLAM network, once adequately trained, is quite suitable to identify a given isotope present in a mixture of elements as well as the relative proportions of each identified substance. Preliminary results are good enough to consider OLAM network as powerful and simple tools in the automatic spectrum analysis

  9. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  10. Identifying Interbank Loans, Rates, and Claims Networks from Transactional Data

    NARCIS (Netherlands)

    Leon Rincon, C.E.; Cely, Jorge; Cadena, Carlos

    2015-01-01

    We identify interbank (i.e. non-collateralized) loans from the Colombian large-value payment system by implementing Furfine’s method. After identifying interbank loans from transactional data we obtain the interbank rates and claims without relying on financial institutions’ reported data.

  11. Identifiability of tree-child phylogenetic networks under a probabilistic recombination-mutation model of evolution.

    Science.gov (United States)

    Francis, Andrew; Moulton, Vincent

    2018-06-07

    Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...

  13. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  14. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    steps can be taken in order to make it more resilient. Performing such an analysis of network break-ups requires consideration of the network as a whole, ideally identifying all the cases generated by simultaneous closure of multiple links and evaluating them using various criteria. The spatial distribution of settlements, important companies and the overall population in the nodes of the network are several factors, apart from the topology of the network which could be taken into account when computing vulnerability indices and identifying the weakest links and/or weakest link combinations. However, even for small networks (i.e., hundreds of nodes and links), the problem of break-up identification becomes extremely difficult to resolve. The naive approaches of the brute force examination consequently fail and more elaborated algorithms have to be applied. We address the problem of evaluating the vulnerability of road networks in our work by simulating the impacts of the simultaneous closure of multiple roads/links. We present an ongoing work on a sophisticated algorithm focused on the identification of network break-ups and evaluating them by various criteria.

  15. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  16. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  17. Identifying Pornographic Materials with Judgment Analysis

    Science.gov (United States)

    Houston, Judith A.; Houston, Samuel R.

    1974-01-01

    The primary purpose of this study was to determine if a policy-capturing methodology (JAN) which has been successfully utilized in military and educational research could be adapted for use as a procedure in identifying pornographic material. (Author)

  18. The network researchers' network: A social network analysis of the IMP Group 1985-2006

    DEFF Research Database (Denmark)

    Henneberg, Stephan C. M.; Ziang, Zhizhong; Naudé, Peter

    The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...

  19. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  20. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Xinguo Lu

    2018-01-01

    Full Text Available With advances in next-generation sequencing(NGS technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.

  1. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  2. Identifiable Data Files - Medicare Provider Analysis and ...

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Provider Analysis and Review (MEDPAR) File contains data from claims for services provided to beneficiaries admitted to Medicare certified inpatient...

  3. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  4. Assessing Group Interaction with Social Language Network Analysis

    Science.gov (United States)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  5. Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for health care policy and decision-making.

    Science.gov (United States)

    Owen, Rhiannon K; Cooper, Nicola J; Quinn, Terence J; Lees, Rosalind; Sutton, Alex J

    2018-07-01

    Network meta-analyses (NMA) have extensively been used to compare the effectiveness of multiple interventions for health care policy and decision-making. However, methods for evaluating the performance of multiple diagnostic tests are less established. In a decision-making context, we are often interested in comparing and ranking the performance of multiple diagnostic tests, at varying levels of test thresholds, in one simultaneous analysis. Motivated by an example of cognitive impairment diagnosis following stroke, we synthesized data from 13 studies assessing the efficiency of two diagnostic tests: Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), at two test thresholds: MMSE accounting for the correlations between multiple test accuracy measures from the same study. We developed and successfully fitted a model comparing multiple tests/threshold combinations while imposing threshold constraints. Using this model, we found that MoCA at threshold decision making. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  7. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  8. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  9. Centrality measures in temporal networks with time series analysis

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  10. Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics.

    Directory of Open Access Journals (Sweden)

    István A Kovács

    Full Text Available BACKGROUND: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. METHODOLOGY/PRINCIPAL FINDINGS: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1 determine persvasively overlapping modules with high resolution; (2 uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3 allow the determination of key network nodes and (4 help to predict network dynamics. CONCLUSIONS/SIGNIFICANCE: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.

  11. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  12. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  13. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  14. Applications of social network analysis to obesity: a systematic review.

    Science.gov (United States)

    Zhang, S; de la Haye, K; Ji, M; An, R

    2018-04-20

    People's health behaviours and outcomes can be profoundly shaped by the social networks they are embedded in. Based on graph theory, social network analysis is a research framework for the study of social interactions and the structure of these interactions among social actors. A literature search was conducted in PubMed and Web of Science for articles published until August 2017 that applied social network analysis to examine obesity and social networks. Eight studies (three cross-sectional and five longitudinal) conducted in the US (n = 6) and Australia (n = 2) were identified. Seven focused on adolescents' and one on adults' friendship networks. They examined structural features of these networks that were associated with obesity, including degree distribution, popularity, modularity maximization and K-clique percolation. All three cross-sectional studies that used exponential random graph models found individuals with similar body weight status and/or weight-related behaviour were more likely to share a network tie than individuals with dissimilar traits. Three longitudinal studies using stochastic actor-based models found friendship network characteristics influenced change in individuals' body weight status and/or weight-related behaviour over time. Future research should focus on diverse populations and types of social networks and identifying the mechanisms by which social networks influence obesity to inform network-based interventions. © 2018 World Obesity Federation.

  15. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  16. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  17. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  18. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  19. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  20. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  1. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  2. Identifying the greatest team and captain—A complex network approach to cricket matches

    Science.gov (United States)

    Mukherjee, Satyam

    2012-12-01

    We consider all Test matches played between 1877 and 2010 and One Day International (ODI) matches played between 1971 and 2010. We form directed and weighted networks of teams and also of their captains. The success of a team (or captain) is determined by the ‘quality’ of the wins, not simply by the number of wins. We apply the diffusion-based PageRank algorithm to the networks to assess the importance of the wins, and rank the respective teams and captains. Our analysis identifies Australia as the best team in both forms of cricket, Test and ODI. Steve Waugh is identified as the best captain in Test cricket and Ricky Ponting is the best captain in the ODI format. We also compare our ranking scheme with an existing ranking scheme, the Reliance ICC ranking. Our method does not depend on ‘external’ criteria in the ranking of teams (captains). The purpose of this paper is to introduce a revised ranking of cricket teams and to quantify the success of the captains.

  3. Identifying the relevant dependencies of the neural network response on characteristics of the input space

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This talk presents an approach to identify those characteristics of the neural network inputs that are most relevant for the response and therefore provides essential information to determine the systematic uncertainties.

  4. [Study of algorithms to identify schizophrenia in the SNIIRAM database conducted by the REDSIAM network].

    Science.gov (United States)

    Quantin, C; Collin, C; Frérot, M; Besson, J; Cottenet, J; Corneloup, M; Soudry-Faure, A; Mariet, A-S; Roussot, A

    2017-10-01

    The aim of the REDSIAM network is to foster communication between users of French medico-administrative databases and to validate and promote analysis methods suitable for the data. Within this network, the working group "Mental and behavioral disorders" took an interest in algorithms to identify adult schizophrenia in the SNIIRAM database and inventoried identification criteria for patients with schizophrenia in these databases. The methodology was based on interviews with nine experts in schizophrenia concerning the procedures they use to identify patients with schizophrenia disorders in databases. The interviews were based on a questionnaire and conducted by telephone. The synthesis of the interviews showed that the SNIIRAM contains various tables which allow coders to identify patients suffering from schizophrenia: chronic disease status, drugs and hospitalizations. Taken separately, these criteria were not sufficient to recognize patients with schizophrenia, an algorithm should be based on all of them. Apparently, only one-third of people living with schizophrenia benefit from the longstanding disease status. Not all patients are hospitalized, and coding for diagnoses at the hospitalization, notably for short stays in medicine, surgery or obstetrics departments, is not exhaustive. As for treatment with antipsychotics, it is not specific enough as such treatments are also prescribed to patients with bipolar disorders, or even other disorders. It seems appropriate to combine these complementary criteria, while keeping in mind out-patient care (every year 80,000 patients are seen exclusively in an outpatient setting), even if these data are difficult to link with other information. Finally, the experts made three propositions for selection algorithms of patients with schizophrenia. Patients with schizophrenia can be relatively accurately identified using SNIIRAM data. Different combinations of the selected criteria must be used depending on the objectives and

  5. Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-12-01

    Full Text Available Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs, one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (ΔS was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation.

  6. Identifying Vulnerable Nodes of Complex Networks in Cascading Failures Induced by Node-Based Attacks

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2013-01-01

    Full Text Available In the research on network security, distinguishing the vulnerable components of networks is very important for protecting infrastructures systems. Here, we probe how to identify the vulnerable nodes of complex networks in cascading failures, which was ignored before. Concerned with random attack (RA and highest load attack (HL on nodes, we model cascading dynamics of complex networks. Then, we introduce four kinds of weighting methods to characterize the nodes of networks including Barabási-Albert scale-free networks (SF, Watts-Strogatz small-world networks (WS, Erdos-Renyi random networks (ER, and two real-world networks. The simulations show that, for SF networks under HL attack, the nodes with small value of the fourth kind of weight are the most vulnerable and the ones with small value of the third weight are also vulnerable. Also, the real-world autonomous system with power-law distribution verifies these findings. Moreover, for WS and ER networks under both RA and HL attack, when the nodes have low tolerant ability, the ones with small value of the fourth kind of weight are more vulnerable and also the ones with high degree are easier to break down. The results give us important theoretical basis for digging the potential safety loophole and making protection strategy.

  7. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  8. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  9. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  10. Identifying uncertainty of the mean of some water quality variables along water quality monitoring network of Bahr El Baqar drain

    Directory of Open Access Journals (Sweden)

    Hussein G. Karaman

    2013-10-01

    Full Text Available Assigning objectives to the environmental monitoring network is the pillar of the design to these kinds of networks. Conflicting network objectives may affect the adequacy of the design in terms of sampling frequency and the spatial distribution of the monitoring stations which in turn affect the accuracy of the data and the information extracted. The first step in resolving this problem is to identify the uncertainty inherent in the network as the result of the vagueness of the design objective. Entropy has been utilized and adopted over the past decades to identify uncertainty in similar water data sets. Therefore it is used to identify the uncertainties inherent in the water quality monitoring network of Bahr El-Baqar drain located in the Eastern Delta. Toward investigating the applicability of the Entropy methodology, comprehensive analysis at the selected drain as well as their data sets is carried out. Furthermore, the uncertainty calculated by the entropy function will be presented by the means of the geographical information system to give the decision maker a global view to these uncertainties and to open the door to other researchers to find out innovative approaches to lower these uncertainties reaching optimal monitoring network in terms of the spatial distribution of the monitoring stations.

  11. Identifying and characterizing key nodes among communities based on electrical-circuit networks.

    Science.gov (United States)

    Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying

    2014-01-01

    Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.

  12. Identifying partial topology of complex dynamical networks via a pinning mechanism

    Science.gov (United States)

    Zhu, Shuaibing; Zhou, Jin; Lu, Jun-an

    2018-04-01

    In this paper, we study the problem of identifying the partial topology of complex dynamical networks via a pinning mechanism. By using the network synchronization theory and the adaptive feedback controlling method, we propose a method which can greatly reduce the number of nodes and observers in the response network. Particularly, this method can also identify the whole topology of complex networks. A theorem is established rigorously, from which some corollaries are also derived in order to make our method more cost-effective. Several numerical examples are provided to verify the effectiveness of the proposed method. In the simulation, an approach is also given to avoid possible identification failure caused by inner synchronization of the drive network.

  13. Network Analysis of Urban Traffic with Big Bus Data

    OpenAIRE

    Zhao, Kai

    2016-01-01

    Urban traffic analysis is crucial for traffic forecasting systems, urban planning and, more recently, various mobile and network applications. In this paper, we analyse urban traffic with network and statistical methods. Our analysis is based on one big bus dataset containing 45 million bus arrival samples in Helsinki. We mainly address following questions: 1. How can we identify the areas that cause most of the traffic in the city? 2. Why there is a urban traffic? Is bus traffic a key cause ...

  14. PhysarumSpreader: A New Bio-Inspired Methodology for Identifying Influential Spreaders in Complex Networks.

    Directory of Open Access Journals (Sweden)

    Hongping Wang

    Full Text Available Identifying influential spreaders in networks, which contributes to optimizing the use of available resources and efficient spreading of information, is of great theoretical significance and practical value. A random-walk-based algorithm LeaderRank has been shown as an effective and efficient method in recognizing leaders in social network, which even outperforms the well-known PageRank method. As LeaderRank is initially developed for binary directed networks, further extensions should be studied in weighted networks. In this paper, a generalized algorithm PhysarumSpreader is proposed by combining LeaderRank with a positive feedback mechanism inspired from an amoeboid organism called Physarum Polycephalum. By taking edge weights into consideration and adding the positive feedback mechanism, PhysarumSpreader is applicable in both directed and undirected networks with weights. By taking two real networks for examples, the effectiveness of the proposed method is demonstrated by comparing with other standard centrality measures.

  15. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  16. PhysarumSpreader: A New Bio-Inspired Methodology for Identifying Influential Spreaders in Complex Networks.

    Science.gov (United States)

    Wang, Hongping; Zhang, Yajuan; Zhang, Zili; Mahadevan, Sankaran; Deng, Yong

    2015-01-01

    Identifying influential spreaders in networks, which contributes to optimizing the use of available resources and efficient spreading of information, is of great theoretical significance and practical value. A random-walk-based algorithm LeaderRank has been shown as an effective and efficient method in recognizing leaders in social network, which even outperforms the well-known PageRank method. As LeaderRank is initially developed for binary directed networks, further extensions should be studied in weighted networks. In this paper, a generalized algorithm PhysarumSpreader is proposed by combining LeaderRank with a positive feedback mechanism inspired from an amoeboid organism called Physarum Polycephalum. By taking edge weights into consideration and adding the positive feedback mechanism, PhysarumSpreader is applicable in both directed and undirected networks with weights. By taking two real networks for examples, the effectiveness of the proposed method is demonstrated by comparing with other standard centrality measures.

  17. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  18. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  19. Effect of the size of an artificial neural network used as pattern identifier

    International Nuclear Information System (INIS)

    Reynoso V, M.R.; Vega C, J.J.

    2003-01-01

    A novel way to extract relevant parameters associated with the outgoing ions from nuclear reactions, obtained by digitizing the signals provided by a Bragg curve spectrometer (BCS) is presented. This allowed the implementation of a more thorough pulse-shape analysis. Due to the complexity of this task, it was required to take advantage of new and more powerful computational paradigms. This was fulfilled using a back-propagation artificial neural network (ANN) as a pattern identifier. Over training of ANNs is a common problem during the training stage. In the performance of the ANN there is a compromise between its size and the size of the training set. Here, this effect will be illustrated in relation to the problem of Bragg Curve (BC) identification. (Author)

  20. Effect of the size of an artificial neural network used as pattern identifier

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso V, M.R.; Vega C, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    A novel way to extract relevant parameters associated with the outgoing ions from nuclear reactions, obtained by digitizing the signals provided by a Bragg curve spectrometer (BCS) is presented. This allowed the implementation of a more thorough pulse-shape analysis. Due to the complexity of this task, it was required to take advantage of new and more powerful computational paradigms. This was fulfilled using a back-propagation artificial neural network (ANN) as a pattern identifier. Over training of ANNs is a common problem during the training stage. In the performance of the ANN there is a compromise between its size and the size of the training set. Here, this effect will be illustrated in relation to the problem of Bragg Curve (BC) identification. (Author)

  1. Identifying functional reorganization of spelling networks: an individual peak probability comparison approach

    Science.gov (United States)

    Purcell, Jeremy J.; Rapp, Brenda

    2013-01-01

    Previous research has shown that damage to the neural substrates of orthographic processing can lead to functional reorganization during reading (Tsapkini et al., 2011); in this research we ask if the same is true for spelling. To examine the functional reorganization of spelling networks we present a novel three-stage Individual Peak Probability Comparison (IPPC) analysis approach for comparing the activation patterns obtained during fMRI of spelling in a single brain-damaged individual with dysgraphia to those obtained in a set of non-impaired control participants. The first analysis stage characterizes the convergence in activations across non-impaired control participants by applying a technique typically used for characterizing activations across studies: Activation Likelihood Estimate (ALE) (Turkeltaub et al., 2002). This method was used to identify locations that have a high likelihood of yielding activation peaks in the non-impaired participants. The second stage provides a characterization of the degree to which the brain-damaged individual's activations correspond to the group pattern identified in Stage 1. This involves performing a Mahalanobis distance statistics analysis (Tsapkini et al., 2011) that compares each of a control group's peak activation locations to the nearest peak generated by the brain-damaged individual. The third stage evaluates the extent to which the brain-damaged individual's peaks are atypical relative to the range of individual variation among the control participants. This IPPC analysis allows for a quantifiable, statistically sound method for comparing an individual's activation pattern to the patterns observed in a control group and, thus, provides a valuable tool for identifying functional reorganization in a brain-damaged individual with impaired spelling. Furthermore, this approach can be applied more generally to compare any individual's activation pattern with that of a set of other individuals. PMID:24399981

  2. WGCNA: an R package for weighted correlation network analysis.

    Science.gov (United States)

    Langfelder, Peter; Horvath, Steve

    2008-12-29

    Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.

  3. Improving Family Forest Knowledge Transfer through Social Network Analysis

    Science.gov (United States)

    Gorczyca, Erika L.; Lyons, Patrick W.; Leahy, Jessica E.; Johnson, Teresa R.; Straub, Crista L.

    2012-01-01

    To better engage Maine's family forest landowners our study used social network analysis: a computational social science method for identifying stakeholders, evaluating models of engagement, and targeting areas for enhanced partnerships. Interviews with researchers associated with a research center were conducted to identify how social network…

  4. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  5. Identifying Typhoon Tracks based on Event Synchronization derived Spatially Embedded Climate Networks

    Science.gov (United States)

    Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen

    2017-04-01

    Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.

  6. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  7. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Science.gov (United States)

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  8. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Andrea De Martino

    Full Text Available The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  9. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  10. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  11. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  12. Identifying the cutting tool type used in excavations using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Jonak, J.; Gajewski, J. [Lublin University of Technology, Lublin (Poland). Faculty of Mechanical Engineering

    2006-03-15

    The paper presents results of preliminary research on utilising neural networks to identify excavating cutting tool's type used in multi-tool excavating heads of mechanical coal miners. Such research is necessary to identify rock excavating process with a given head, and construct adaptation systems for control of excavating process with such a head.

  13. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.; Rocco S, C.M.

    2012-01-01

    In this paper, an analysis of the vulnerability of the Italian high-voltage (380 kV) electrical transmission network (HVIET) is carried out for the identification of the groups of links (or edges, or arcs) most critical considering the network structure and flow. Betweenness centrality and network connection efficiency variations are considered as measures of the importance of the network links. The search of the most critical ones is carried out within a multi-objective optimization problem aimed at the maximization of the importance of the groups and minimization of their dimension. The problem is solved using a genetic algorithm. The analysis is based only on information on the topology of the network and leads to the identification of the most important single component, couples of components, triplets and so forth. The comparison of the results obtained with those reported by previous analyses indicates that the proposed approach provides useful complementary information.

  14. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

    Directory of Open Access Journals (Sweden)

    Taosheng Xu

    Full Text Available Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms. Therefore, there are great opportunities for developing methods that can utilise network information in identifying cancer subtypes.In this paper, we propose a method, weighted similarity network fusion (WSNF, to utilise the information in the complex miRNA-TF-mRNA regulatory network in identifying cancer subtypes. We firstly build the regulatory network where the nodes represent the features, i.e. the microRNAs (miRNAs, transcription factors (TFs and messenger RNAs (mRNAs and the edges indicate the interactions between the features. The interactions are retrieved from various interatomic databases. We then use the network information and the expression data of the miRNAs, TFs and mRNAs to calculate the weight of the features, representing the level of importance of the features. The feature weight is then integrated into a network fusion approach to cluster the samples (patients and thus to identify cancer subtypes. We applied our method to the TCGA breast invasive carcinoma (BRCA and glioblastoma multiforme (GBM datasets. The experimental results show that WSNF performs better than the other commonly used computational methods, and the information from miRNA-TF-mRNA regulatory network contributes to the performance improvement. The WSNF method successfully identified five breast cancer subtypes and three GBM subtypes which show significantly different survival patterns. We observed that the expression patterns of the features in some mi

  15. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  16. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

    Science.gov (United States)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston-Campbell, Lara E; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A; Monteiro, Alvaro N A; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P

    2015-10-01

    Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. ©2015 American Association for Cancer Research.

  17. Network Analysis in Community Psychology: Looking Back, Looking Forward.

    Science.gov (United States)

    Neal, Zachary P; Neal, Jennifer Watling

    2017-09-01

    Network analysis holds promise for community psychology given the field's aim to understand the interplay between individuals and their social contexts. Indeed, because network analysis focuses explicitly on patterns of relationships between actors, its theories and methods are inherently extra-individual in nature and particularly well suited to characterizing social contexts. But, to what extent has community psychology taken advantage of this network analysis as a tool for capturing context? To answer these questions, this study provides a review of the use network analysis in articles published in American Journal of Community Psychology. Looking back, we describe and summarize the ways that network analysis has been employed in community psychology research to understand the range of ways community psychologists have found the technique helpful. Looking forward and paying particular attention to analytic issues identified in past applications, we provide some recommendations drawn from the network analysis literature to facilitate future applications of network analysis in community psychology. © 2017 The Authors. American Journal of Community Psychology published by Wiley Periodicals, Inc. on behalf of Society for Community Research and Action.

  18. NATbox: a network analysis toolbox in R.

    Science.gov (United States)

    Chavan, Shweta S; Bauer, Michael A; Scutari, Marco; Nagarajan, Radhakrishnan

    2009-10-08

    There has been recent interest in capturing the functional relationships (FRs) from high-throughput assays using suitable computational techniques. FRs elucidate the working of genes in concert as a system as opposed to independent entities hence may provide preliminary insights into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques and its extensions have been used successfully for modelling FRs from expression profiles. Such techniques are especially useful in discovering undocumented FRs, investigating non-canonical signalling mechanisms and cross-talk between pathways. The objective of the present study is to develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in the form of acyclic networks from gene expression profiles and their subsequent analysis. NATbox is a menu-driven open-source GUI implemented in the R statistical language for modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute missing observations in the given data (ii) model FRs and network structure from gene expression profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its topological properties using network analysis metrics, (iv) retrieve FRs of interest from published literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL across high-dimensional data by parallelizing the bootstrap routines. NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene expression profiles. By incorporating readily available functions from existing R-packages, it minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic of open-source environments

  19. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jianhua Ni

    2016-08-01

    Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  20. On the Use of Machine Learning for Identifying Botnet Network Traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    contemporary approaches use machine learning techniques for identifying malicious traffic. This paper presents a survey of contemporary botnet detection methods that rely on machine learning for identifying botnet network traffic. The paper provides a comprehensive overview on the existing scientific work thus...... contributing to the better understanding of capabilities, limitations and opportunities of using machine learning for identifying botnet traffic. Furthermore, the paper outlines possibilities for the future development of machine learning-based botnet detection systems....

  1. Using neural networks with jet shapes to identify b jets in e+e- interactions

    International Nuclear Information System (INIS)

    Bellantoni, L.; Conway, J.S.; Jacobsen, J.E.; Pan, Y.B.; Wu Saulan

    1991-01-01

    A feed-forward neural network trained using backpropagation was used to discriminate between b and light quark jets in e + e - → Z 0 → qanti q events. The information presented to the network consisted of 25 jet shape variables. The network successfully identified b jets in two- and three-jet events modeled using a detector simulation. The jet identification efficiency for two-jet events was 61% and the probability to call a light quark jet a b jet equal to 20%. (orig.)

  2. Application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2007-01-01

    In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence, whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra. (authors)

  3. An Approach to Data Analysis in 5G Networks

    Directory of Open Access Journals (Sweden)

    Lorena Isabel Barona López

    2017-02-01

    Full Text Available 5G networks expect to provide significant advances in network management compared to traditional mobile infrastructures by leveraging intelligence capabilities such as data analysis, prediction, pattern recognition and artificial intelligence. The key idea behind these actions is to facilitate the decision-making process in order to solve or mitigate common network problems in a dynamic and proactive way. In this context, this paper presents the design of Self-Organized Network Management in Virtualized and Software Defined Networks (SELFNET Analyzer Module, which main objective is to identify suspicious or unexpected situations based on metrics provided by different network components and sensors. The SELFNET Analyzer Module provides a modular architecture driven by use cases where analytic functions can be easily extended. This paper also proposes the data specification to define the data inputs to be taking into account in diagnosis process. This data specification has been implemented with different use cases within SELFNET Project, proving its effectiveness.

  4. Spatial analysis of bus transport networks using network theory

    Science.gov (United States)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison

  5. The application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2006-01-01

    Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)

  6. Noise Analysis studies with neural networks

    International Nuclear Information System (INIS)

    Seker, S.; Ciftcioglu, O.

    1996-01-01

    Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)

  7. Studying Policy Transfer through the Lens of Social Network Analysis

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Brøgger, Katja; Steiner-Khamsi, Gita

    Studying Policy Transfer through the Lens of Social Network Analysis The panelists present the findings of a joint empirical research project carried out at Aarhus University (DPU/Copenhagen) and at Teachers College, Columbia University (New York). The research project succeeded to identify...... discursive networks of political stakeholders and policy advisors that were considered key actors in the Danish school reform. The research team investigated how these networks interrelate, change over time, and represent different constituents (government, academe, business), at times contradicting...... or collaborating with each other, respectively. Against the backdrop of globalization studies in comparative education, the research project attempted to identify borrowers, translators, and brokers of educational reform drawing on a complementary set of expertise from social network analysis methodology (Oren...

  8. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance.

    Science.gov (United States)

    Carey, Maureen A; Papin, Jason A; Guler, Jennifer L

    2017-07-19

    Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.

  9. A Neural Network Approach for Identifying Particle Pitch Angle Distributions in Van Allen Probes Data

    Science.gov (United States)

    Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; hide

    2016-01-01

    Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90deg peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.

  10. Major component analysis of dynamic networks of physiologic organ interactions

    International Nuclear Information System (INIS)

    Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P

    2015-01-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)

  11. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  12. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  13. Method and tool for network vulnerability analysis

    Science.gov (United States)

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  14. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  15. Identifying Clusters of Complex Urban–Rural Issues as Part of Policy Making Process Using a Network Analysis Approach: A Case Study in Bahía de Los Ángeles, Mexico

    Directory of Open Access Journals (Sweden)

    Javier Sandoval

    2017-06-01

    Full Text Available Improving human settlements diagnosis is a key factor in effective urban planning and the design of efficient policy making. In this paper, we illustrate how network theory concepts can be applied to reveal the topological structure of functional relationships in a network of heterogeneous urban–rural issues. This mapping is done using clustering algorithms and centrality value techniques. By analyzing emergent groups of urban–rural related issues, our methodology was applied to a rural community, considering in this exercise environmental matters and real estate interests as a way to better understand the structure of salient issues in the context of its urban development program design. Results show clusters that arrange themselves not by an obvious similarity in their constituent components, but by relations observed in urban–rural settings that hint on the issues that the urban development program must focus. Due to its complex nature, the classification of these emerging clusters and how they must be treated in traditional planning instruments is a new challenge that this novel methodology reveals.

  16. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer

    Science.gov (United States)

    Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-01

    Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723

  17. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  18. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  19. An integrative -omics approach to identify functional sub-networks in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Rod K Nibbe

    2010-01-01

    Full Text Available Emerging evidence indicates that gene products implicated in human cancers often cluster together in "hot spots" in protein-protein interaction (PPI networks. Additionally, small sub-networks within PPI networks that demonstrate synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the proteome. Here, we demonstrate that integration of these complementary data sources with a "proteomics-first" approach can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease. We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we hypothesize that proteomic targets with significant fold change between phenotype and control may be used to "seed" a search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select proteomic targets having significant expression changes in human colorectal cancer (CRC from two independent 2-D gel-based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets. Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-networks based on genome-wide screens of mRNA expression in CRC

  20. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    Science.gov (United States)

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Identifying and localizing network problems using the PuNDIT project

    International Nuclear Information System (INIS)

    Batista, Jorge; McKee, Shawn; Dovrolis, Constantine; Lee, Danny

    2015-01-01

    In today's world of distributed collaborations of scientists, there are many challenges to providing effective infrastructures to couple these groups of scientists with their shared computing and storage resources. The Pythia Network Diagnostic InfrasTructure (PuNDIT[1]) project is integrating and scaling research tools and creating robust code suitable for operational needs addressing the difficult challenge of automating the detection and location of network problems.PuNDIT is building upon the de-facto standard perfSONAR[2] network measurement infrastructure deployed in Open Science Grid(OSG)[3] and the Worldwide LHC Computing Grid(WLCG)[4]to gather and analyze complex real-world network topologies coupled with their corresponding network metrics to identify possible signatures of network problems from a set of symptoms. The PuNDIT Team is working closely with the perfSONAR developers from ESnet and Internet2 to integrate PuNDIT components as part of the perfSONAR Toolkit. A primary goal for PuNDIT is to convert complex network metrics into easily understood diagnoses in an automated way. We will report on the project progress to-date in working with the OSG and WLCG communities, describe the current implementation including some initial results and discuss future plans and the project timeline. (paper)

  2. Identifying vital edges in Chinese air route network via memetic algorithm

    Directory of Open Access Journals (Sweden)

    Wenbo Du

    2017-02-01

    Full Text Available Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges, and hence the solution of this model is the set of vital edges. Counterintuitively, our results show that the most vital edges are not necessarily the edges of the highest topological importance, for which we provide an extensive explanation from the microscope view. Our findings also offer new insights to understanding and optimizing other real-world network systems.

  3. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  4. Least-squares methods for identifying biochemical regulatory networks from noisy measurements

    Directory of Open Access Journals (Sweden)

    Heslop-Harrison Pat

    2007-01-01

    Full Text Available Abstract Background We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS. The Total Least Squares (TLS technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks. Results The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and mdm2 messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL-6 and (IL-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL-6 and (IL-12b by ATF3. Conclusion The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable

  5. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways.

    Directory of Open Access Journals (Sweden)

    Francesca eSacco

    2014-05-01

    Full Text Available Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI#K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26 respectively.

  6. Identifying compromised systems through correlation of suspicious traffic from malware behavioral analysis

    Science.gov (United States)

    Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.

    2016-05-01

    Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.

  7. Application of artificial neural networks to identify equilibration in computer simulations

    Science.gov (United States)

    Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric

    2017-11-01

    Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.

  8. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  9. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  10. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  11. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  12. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  13. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  14. Molecular Epidemiology Identifies HIV Transmission Networks Associated With Younger Age and Heterosexual Exposure Among Korean Individuals

    OpenAIRE

    Chin, Bum Sik; Chaillon, Antoine; Mehta, Sanjay R.; Wertheim, Joel O.; Kim, Gayeon; Shin, Hyoung-Shik; Smith, Davey M.

    2016-01-01

    To evaluate if HIV transmission networks could be elucidated from data collected in a short time frame, 131 HIV-1 pol sequences were analyzed which were generated from treatment-naïve Korean individuals who were sequentially identified over 1 year. A transmission linkage was inferred when there was a genetic distance

  15. Social Networking Privacy Control: Exploring University Variables Related to Young Adults' Sharing of Personally Identifiable Information

    Science.gov (United States)

    Zimmerman, Melisa S.

    2014-01-01

    The growth of the Internet, and specifically social networking sites (SNSs) like Facebook, create opportunities for individuals to share private and identifiable information with a closed or open community. Internet crime has been on the rise and research has shown that criminals are using individuals' personal information pulled from social…

  16. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  17. NREL Analysis Identifies Where Commercial Customers Might Benefit from

    Science.gov (United States)

    Battery Energy Storage | NREL | News | NREL NREL Analysis Identifies Where Commercial Customers Customers Might Benefit from Battery Energy Storage August 24, 2017 After upfront costs, batteries may reduce operating costs for customers paying demand charges Commercial electricity customers who are

  18. Identifying Importance-Performance Matrix Analysis (IPMA) of ...

    African Journals Online (AJOL)

    Identifying Importance-Performance Matrix Analysis (IPMA) of intellectual capital and Islamic work ethics in Malaysian SMES. ... capital and Islamic work ethics significantly influenced business performance. ... AJOL African Journals Online.

  19. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  20. Analysis of FOXO transcriptional networks

    NARCIS (Netherlands)

    van der Vos, K.E.

    2010-01-01

    The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In

  1. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  2. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  3. How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach

    Directory of Open Access Journals (Sweden)

    Tong Qiao

    2017-11-01

    Full Text Available Centrality is one of the most studied concepts in network analysis. Despite an abundance of methods for measuring centrality in social networks has been proposed, each approach exclusively characterizes limited parts of what it implies for an actor to be “vital” to the network. In this paper, a novel mechanism is proposed to quantitatively measure centrality using the re-defined entropy centrality model, which is based on decompositions of a graph into subgraphs and analysis on the entropy of neighbor nodes. By design, the re-defined entropy centrality which describes associations among node pairs and captures the process of influence propagation can be interpreted explained as a measure of actor potential for communication activity. We evaluate the efficiency of the proposed model by using four real-world datasets with varied sizes and densities and three artificial networks constructed by models including Barabasi-Albert, Erdos-Renyi and Watts-Stroggatz. The four datasets are Zachary’s karate club, USAir97, Collaboration network and Email network URV respectively. Extensive experimental results prove the effectiveness of the proposed method.

  4. msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2014-01-01

    Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.

  5. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  6. Identifying the community structure of the food-trade international multi-network

    Science.gov (United States)

    Torreggiani, S.; Mangioni, G.; Puma, M. J.; Fagiolo, G.

    2018-05-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network’s community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001–2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors—such as geographical proximity and trade-agreement co-membership—than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential ‘shocks’ to global food trade.

  7. Discrete particle swarm optimization for identifying community structures in signed social networks.

    Science.gov (United States)

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2006-11-01

    Full Text Available Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.

  9. Identifying influential spreaders in complex networks based on kshell hybrid method

    Science.gov (United States)

    Namtirtha, Amrita; Dutta, Animesh; Dutta, Biswanath

    2018-06-01

    Influential spreaders are the key players in maximizing or controlling the spreading in a complex network. Identifying the influential spreaders using kshell decomposition method has become very popular in the recent time. In the literature, the core nodes i.e. with the largest kshell index of a network are considered as the most influential spreaders. We have studied the kshell method and spreading dynamics of nodes using Susceptible-Infected-Recovered (SIR) epidemic model to understand the behavior of influential spreaders in terms of its topological location in the network. From the study, we have found that every node in the core area is not the most influential spreader. Even a strategically placed lower shell node can also be a most influential spreader. Moreover, the core area can also be situated at the periphery of the network. The existing indexing methods are only designed to identify the most influential spreaders from core nodes and not from lower shells. In this work, we propose a kshell hybrid method to identify highly influential spreaders not only from the core but also from lower shells. The proposed method comprises the parameters such as kshell power, node's degree, contact distance, and many levels of neighbors' influence potential. The proposed method is evaluated using nine real world network datasets. In terms of the spreading dynamics, the experimental results show the superiority of the proposed method over the other existing indexing methods such as the kshell method, the neighborhood coreness centrality, the mixed degree decomposition, etc. Furthermore, the proposed method can also be applied to large-scale networks by considering the three levels of neighbors' influence potential.

  10. Quantifying sources of bias in National Healthcare Safety Network laboratory-identified Clostridium difficile infection rates.

    Science.gov (United States)

    Haley, Valerie B; DiRienzo, A Gregory; Lutterloh, Emily C; Stricof, Rachel L

    2014-01-01

    To assess the effect of multiple sources of bias on state- and hospital-specific National Healthcare Safety Network (NHSN) laboratory-identified Clostridium difficile infection (CDI) rates. Sensitivity analysis. A total of 124 New York hospitals in 2010. New York NHSN CDI events from audited hospitals were matched to New York hospital discharge billing records to obtain additional information on patient age, length of stay, and previous hospital discharges. "Corrected" hospital-onset (HO) CDI rates were calculated after (1) correcting inaccurate case reporting found during audits, (2) incorporating knowledge of laboratory results from outside hospitals, (3) excluding days when patients were not at risk from the denominator of the rates, and (4) adjusting for patient age. Data sets were simulated with each of these sources of bias reintroduced individually and combined. The simulated rates were compared with the corrected rates. Performance (ie, better, worse, or average compared with the state average) was categorized, and misclassification compared with the corrected data set was measured. Counting days patients were not at risk in the denominator reduced the state HO rate by 45% and resulted in 8% misclassification. Age adjustment and reporting errors also shifted rates (7% and 6% misclassification, respectively). Changing the NHSN protocol to require reporting of age-stratified patient-days and adjusting for patient-days at risk would improve comparability of rates across hospitals. Further research is needed to validate the risk-adjustment model before these data should be used as hospital performance measures.

  11. Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model

    Directory of Open Access Journals (Sweden)

    Kese Pontes Freitas Alberton

    2015-01-01

    Full Text Available This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.

  12. 1st International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2013-01-01

    This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...

  13. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  14. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....

  15. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...

  16. A Network Text Analysis of David Ayer’s Fury

    Directory of Open Access Journals (Sweden)

    Starling David Hunter

    2015-12-01

    Full Text Available Network Text Analysis (NTA involves the creation of networks of words and/or concepts from linguistic data. Its key insight is that the position of words and concepts in a text network provides vital clues to the central and underlying themes of the text as a whole. Recent research has relied on inductive approaches to identify these themes. In this study we demonstrate a deductive approach that we apply to the screenplay of the 2014 World War II-era film Fury. Specifically, we first use genre expectations theory to establish prior expectations as to the key themes associated with war films. We then empirically test whether words and concepts associated with the most influentially-positioned nodes are consistent with themes common to the war-film genre. As predicted, we find that words and concepts associated with the least constrained nodes in the text network were significantly more likely to be associated with the war, action, and biography genres and significantly less likely to be associated with the mystery, science-fiction, fantasy, and film-noir genres. Keywords: content analysis, text analysis, network text analysis, semantic network analysis, film studies, screenplay, screenwriting, war movies, World War II, tanks

  17. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  18. Detecting Network Communities: An Application to Phylogenetic Analysis

    Science.gov (United States)

    Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.

    2011-01-01

    This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202

  19. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  20. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  1. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  2. Identifying potential survival strategies of HIV-1 through virus-host protein interaction networks

    Directory of Open Access Journals (Sweden)

    Boucher Charles AB

    2010-07-01

    Full Text Available Abstract Background The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics. Results Our analyses show that human proteins interacting with HIV form a densely connected and central sub-network within the total human protein interaction network. The evaluation of this sub-network for connectivity and centrality resulted in a set of proteins essential for the HIV life-cycle. Remarkably, we were able to associate proteins involved in RNA polymerase II transcription with hubs and proteasome formation with bottlenecks. Inferred network motifs show significant over-representation of positive and negative feedback patterns between virus and host. Strikingly, such patterns have never been reported in combined virus-host systems. Conclusions HIV infection results in a reprioritization of cellular processes reflected by an increase in the relative importance of transcriptional machinery and proteasome formation. We conclude that during the evolution of HIV, some patterns of interaction have been selected for resulting in a system where virus proteins preferably interact with central human proteins for direct control and with proteasomal proteins for indirect control over the cellular processes. Finally, the patterns described by network motifs illustrate how virus and host interact with one another.

  3. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  4. A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation.

    Directory of Open Access Journals (Sweden)

    Warren D Anderson

    2017-07-01

    Full Text Available Multiple physiological systems interact throughout the development of a complex disease. Knowledge of the dynamics and connectivity of interactions across physiological systems could facilitate the prevention or mitigation of organ damage underlying complex diseases, many of which are currently refractory to available therapeutics (e.g., hypertension. We studied the regulatory interactions operating within and across organs throughout disease development by integrating in vivo analysis of gene expression dynamics with a reverse engineering approach to infer data-driven dynamic network models of multi-organ gene regulatory influences. We obtained experimental data on the expression of 22 genes across five organs, over a time span that encompassed the development of autonomic nervous system dysfunction and hypertension. We pursued a unique approach for identification of continuous-time models that jointly described the dynamics and structure of multi-organ networks by estimating a sparse subset of ∼12,000 possible gene regulatory interactions. Our analyses revealed that an autonomic dysfunction-specific multi-organ sequence of gene expression activation patterns was associated with a distinct gene regulatory network. We analyzed the model structures for adaptation motifs, and identified disease-specific network motifs involving genes that exhibited aberrant temporal dynamics. Bioinformatic analyses identified disease-specific single nucleotide variants within or near transcription factor binding sites upstream of key genes implicated in maintaining physiological homeostasis. Our approach illustrates a novel framework for investigating the pathogenesis through model-based analysis of multi-organ system dynamics and network properties. Our results yielded novel candidate molecular targets driving the development of cardiovascular disease, metabolic syndrome, and immune dysfunction.

  5. Structural and practical identifiability analysis of S-system.

    Science.gov (United States)

    Zhan, Choujun; Li, Benjamin Yee Shing; Yeung, Lam Fat

    2015-12-01

    In the field of systems biology, biological reaction networks are usually modelled by ordinary differential equations. A sub-class, the S-systems representation, is a widely used form of modelling. Existing S-systems identification techniques assume that the system itself is always structurally identifiable. However, due to practical limitations, biological reaction networks are often only partially measured. In addition, the captured data only covers a limited trajectory, therefore data can only be considered as a local snapshot of the system responses with respect to the complete set of state trajectories over the entire state space. Hence the estimated model can only reflect partial system dynamics and may not be unique. To improve the identification quality, the structural and practical identifiablility of S-system are studied. The S-system is shown to be identifiable under a set of assumptions. Then, an application on yeast fermentation pathway was conducted. Two case studies were chosen; where the first case is based on a larger state trajectories and the second case is based on a smaller one. By expanding the dataset which span a relatively larger state space, the uncertainty of the estimated system can be reduced. The results indicated that initial concentration is related to the practical identifiablity.

  6. Identifying influential nodes in large-scale directed networks: the role of clustering.

    Science.gov (United States)

    Chen, Duan-Bing; Gao, Hui; Lü, Linyuan; Zhou, Tao

    2013-01-01

    Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.

  7. Identifying influential nodes in large-scale directed networks: the role of clustering.

    Directory of Open Access Journals (Sweden)

    Duan-Bing Chen

    Full Text Available Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.

  8. Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering

    Science.gov (United States)

    Chen, Duan-Bing; Gao, Hui; Lü, Linyuan; Zhou, Tao

    2013-01-01

    Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank. PMID:24204833

  9. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    Science.gov (United States)

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  10. WMAXC: a weighted maximum clique method for identifying condition-specific sub-network.

    Directory of Open Access Journals (Sweden)

    Bayarbaatar Amgalan

    Full Text Available Sub-networks can expose complex patterns in an entire bio-molecular network by extracting interactions that depend on temporal or condition-specific contexts. When genes interact with each other during cellular processes, they may form differential co-expression patterns with other genes across different cell states. The identification of condition-specific sub-networks is of great importance in investigating how a living cell adapts to environmental changes. In this work, we propose the weighted MAXimum clique (WMAXC method to identify a condition-specific sub-network. WMAXC first proposes scoring functions that jointly measure condition-specific changes to both individual genes and gene-gene co-expressions. It then employs a weaker formula of a general maximum clique problem and relates the maximum scored clique of a weighted graph to the optimization of a quadratic objective function under sparsity constraints. We combine a continuous genetic algorithm and a projection procedure to obtain a single optimal sub-network that maximizes the objective function (scoring function over the standard simplex (sparsity constraints. We applied the WMAXC method to both simulated data and real data sets of ovarian and prostate cancer. Compared with previous methods, WMAXC selected a large fraction of cancer-related genes, which were enriched in cancer-related pathways. The results demonstrated that our method efficiently captured a subset of genes relevant under the investigated condition.

  11. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    Science.gov (United States)

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  13. Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.

    Science.gov (United States)

    Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K

    2015-01-01

    Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.

  14. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  15. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  16. Crawling Facebook for Social Network Analysis Purposes

    OpenAIRE

    Catanese, Salvatore A.; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo; Provetti, Alessandro

    2011-01-01

    We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that w...

  17. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...

  18. A new centrality measure for identifying influential nodes in social networks

    Science.gov (United States)

    Rhouma, Delel; Ben Romdhane, Lotfi

    2018-04-01

    The identification of central nodes has been a key problem in the field of social network analysis. In fact, it is a measure that accounts the popularity or the visibility of an actor within a network. In order to capture this concept, various measures, either sample or more elaborate, has been developed. Nevertheless, many of "traditional" measures are not designed to be applicable to huge data. This paper sets out a new node centrality index suitable for large social network. It uses the amount of the neighbors of a node and connections between them to characterize a "pivot" node in the graph. We presented experimental results on real data sets which show the efficiency of our proposal.

  19. Identifying the most influential spreaders in complex networks by an Extended Local K-Shell Sum

    Science.gov (United States)

    Yang, Fan; Zhang, Ruisheng; Yang, Zhao; Hu, Rongjing; Li, Mengtian; Yuan, Yongna; Li, Keqin

    Identifying influential spreaders is crucial for developing strategies to control the spreading process on complex networks. Following the well-known K-Shell (KS) decomposition, several improved measures are proposed. However, these measures cannot identify the most influential spreaders accurately. In this paper, we define a Local K-Shell Sum (LKSS) by calculating the sum of the K-Shell indices of the neighbors within 2-hops of a given node. Based on the LKSS, we propose an Extended Local K-Shell Sum (ELKSS) centrality to rank spreaders. The ELKSS is defined as the sum of the LKSS of the nearest neighbors of a given node. By assuming that the spreading process on networks follows the Susceptible-Infectious-Recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performance between the ELKSS centrality and other six measures. The results show that the ELKSS centrality has a better performance than the six measures to distinguish the spreading ability of nodes and to identify the most influential spreaders accurately.

  20. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  1. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  2. Identifying organizational deficiencies through root-cause analysis

    International Nuclear Information System (INIS)

    Tuli, R.W.; Apostolakis, G.E.

    1996-01-01

    All nuclear power plants incorporate root-cause analysis as an instrument to help identify and isolate key factors judged to be of significance following an incident or accident. Identifying the principal deficiencies can become very difficult when the event involves not only human and machine interaction, but possibly the underlying safety and quality culture of the organization. The current state of root-cause analysis is to conclude the investigation after identifying human and/or hardware failures. In this work, root-cause analysis is taken one step further by examining plant work processes and organizational factors. This extension is considered significant to the success of the analysis, especially when management deficiency is believed to contribute to the incident. The results of root-cause analysis can be most effectively implemented if the organization, as a whole, wishes to improve the overall operation of the plant by preventing similar incidents from occurring again. The study adds to the existing root-cause analysis the ability to localize the causes of undesirable events and to focus on those problems hidden deeply within the work processes that are routinely followed in the operation and maintenance of the facility

  3. Network analysis of PTSD symptoms following mass violence.

    Science.gov (United States)

    Sullivan, Connor P; Smith, Andrew J; Lewis, Michael; Jones, Russell T

    2018-01-01

    Network analysis is a useful tool for understanding how symptoms interact with one another to influence psychopathology. However, this analytic strategy has not been fully utilized in the PTSD field. The current study utilized network analysis to examine connectedness and strength among PTSD symptoms (employing both partial correlation and regression network analyses) among a community sample of students exposed to the 2007 Virginia Tech shootings. Respondents (N = 4,639) completed online surveys 3-4 months postshootings, with PTSD symptom severity measured via the Trauma Symptom Questionnaire. Data were analyzed via adaptive least absolute shrinkage and selection operator (LASSO) and relative importance networks, as well as Dijkstra's algorithm to identify the shortest path from each symptom to all other symptoms. Relative importance network analysis revealed that intrusive thoughts had the strongest influence on other symptoms (i.e., had many strong connections [highest outdegree]) while computing Dijkstra's algorithm indicated that anger produced the shortest path to all other symptoms (i.e., the strongest connections to all other symptoms). Findings suggest that anger or intrusion likely play a crucial role in the development and maintenance of PTSD (i.e., are more influential within the network than are other symptoms). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Q. Wang

    Full Text Available Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC based on the functional dependency among pathways. Protein-protein interaction (PPI information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN, where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  5. An improved algorithm for connectivity analysis of distribution networks

    International Nuclear Information System (INIS)

    Kansal, M.L.; Devi, Sunita

    2007-01-01

    In the present paper, an efficient algorithm for connectivity analysis of moderately sized distribution networks has been suggested. Algorithm is based on generation of all possible minimal system cutsets. The algorithm is efficient as it identifies only the necessary and sufficient conditions of system failure conditions in n-out-of-n type of distribution networks. The proposed algorithm is demonstrated with the help of saturated and unsaturated distribution networks. The computational efficiency of the algorithm is justified by comparing the computational efforts with the previously suggested appended spanning tree (AST) algorithm. The proposed technique has the added advantage as it can be utilized for generation of system inequalities which is useful in reliability estimation of capacitated networks

  6. BIOELECTRICAL IMPEDANCE VECTOR ANALYSIS IDENTIFIES SARCOPENIA IN NURSING HOME RESIDENTS

    Science.gov (United States)

    Loss of muscle mass and water shifts between body compartments are contributing factors to frailty in the elderly. The body composition changes are especially pronounced in institutionalized elderly. We investigated the ability of single-frequency bioelectrical impedance analysis (BIA) to identify b...

  7. Identifying Students’ Misconceptions on Basic Algorithmic Concepts Through Flowchart Analysis

    NARCIS (Netherlands)

    Rahimi, E.; Barendsen, E.; Henze, I.; Dagienė, V.; Hellas, A.

    2017-01-01

    In this paper, a flowchart-based approach to identifying secondary school students’ misconceptions (in a broad sense) on basic algorithm concepts is introduced. This approach uses student-generated flowcharts as the units of analysis and examines them against plan composition and construct-based

  8. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  9. Using LTI Dynamics to Identify the Influential Nodes in a Network.

    Directory of Open Access Journals (Sweden)

    Goran Murić

    Full Text Available Networks are used for modeling numerous technical, social or biological systems. In order to better understand the system dynamics, it is a matter of great interest to identify the most important nodes within the network. For a large set of problems, whether it is the optimal use of available resources, spreading information efficiently or even protection from malicious attacks, the most important node is the most influential spreader, the one that is capable of propagating information in the shortest time to a large portion of the network. Here we propose the Node Imposed Response (NiR, a measure which accurately evaluates node spreading power. It outperforms betweenness, degree, k-shell and h-index centrality in many cases and shows the similar accuracy to dynamics-sensitive centrality. We utilize the system-theoretic approach considering the network as a Linear Time-Invariant system. By observing the system response we can quantify the importance of each node. In addition, our study provides a robust tool set for various protective strategies.

  10. Bank-firm credit network in Japan: an analysis of a bipartite network.

    Science.gov (United States)

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms.

  11. Bank-Firm Credit Network in Japan: An Analysis of a Bipartite Network

    Science.gov (United States)

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N.

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms. PMID:25933413

  12. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  13. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    Science.gov (United States)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  14. Identifying Opinion Leaders to Promote Organ Donation on Social Media: Network Study

    Science.gov (United States)

    Salmon, Charles T

    2018-01-01

    Background In the recent years, social networking sites (SNSs, also called social media) have been adopted in organ donation campaigns, and recruiting opinion leaders for such campaigns has been found effective in promoting behavioral changes. Objective The aim of this paper was to focus on the dissemination of organ donation tweets on Weibo, the Chinese equivalent of Twitter, and to examine the opinion leadership in the retweet network of popular organ donation messages using social network analysis. It also aimed to investigate how personal and social attributes contribute to a user’s opinion leadership on the topic of organ donation. Methods All messages about organ donation posted on Weibo from January 1, 2015 to December 31, 2015 were extracted using Python Web crawler. A retweet network with 505,047 nodes and 545,312 edges of the popular messages (n=206) was constructed and analyzed. The local and global opinion leaderships were measured using network metrics, and the roles of personal attributes, professional knowledge, and social positions in obtaining the opinion leadership were examined using general linear model. Results The findings revealed that personal attributes, professional knowledge, and social positions predicted individual’s local opinion leadership in the retweet network of popular organ donation messages. Alternatively, personal attributes and social positions, but not professional knowledge, were significantly associated with global opinion leadership. Conclusions The findings of this study indicate that health campaign designers may recruit peer leaders in SNS organ donation promotions to facilitate information sharing among the target audience. Users who are unverified, active, well connected, and experienced with information and communications technology (ICT) will accelerate the sharing of organ donation messages in the global environment. Medical professionals such as organ transplant surgeons who can wield a great amount of

  15. Identifying Opinion Leaders to Promote Organ Donation on Social Media: Network Study.

    Science.gov (United States)

    Shi, Jingyuan; Salmon, Charles T

    2018-01-09

    In the recent years, social networking sites (SNSs, also called social media) have been adopted in organ donation campaigns, and recruiting opinion leaders for such campaigns has been found effective in promoting behavioral changes. The aim of this paper was to focus on the dissemination of organ donation tweets on Weibo, the Chinese equivalent of Twitter, and to examine the opinion leadership in the retweet network of popular organ donation messages using social network analysis. It also aimed to investigate how personal and social attributes contribute to a user's opinion leadership on the topic of organ donation. All messages about organ donation posted on Weibo from January 1, 2015 to December 31, 2015 were extracted using Python Web crawler. A retweet network with 505,047 nodes and 545,312 edges of the popular messages (n=206) was constructed and analyzed. The local and global opinion leaderships were measured using network metrics, and the roles of personal attributes, professional knowledge, and social positions in obtaining the opinion leadership were examined using general linear model. The findings revealed that personal attributes, professional knowledge, and social positions predicted individual's local opinion leadership in the retweet network of popular organ donation messages. Alternatively, personal attributes and social positions, but not professional knowledge, were significantly associated with global opinion leadership. The findings of this study indicate that health campaign designers may recruit peer leaders in SNS organ donation promotions to facilitate information sharing among the target audience. Users who are unverified, active, well connected, and experienced with information and communications technology (ICT) will accelerate the sharing of organ donation messages in the global environment. Medical professionals such as organ transplant surgeons who can wield a great amount of influence on their direct connections could also effectively

  16. Identifying the Effective Factors in Making Trust in Online Social Networks on the perspective of Iranian experts Using Fuzzy ELECTRE

    Directory of Open Access Journals (Sweden)

    Elham Haghighi

    2015-12-01

    Full Text Available this paper attempts to rank the effective factors in making trust in social networks to provide the possibility of attracting and increasing users’ trust on these social networks for providers and designers of online social networks. Identifying the effective factors in making trust in social networks is a multi-criteria decision making problem and most of effective factors are ambiguous and uncertain, thereby this article uses Fuzzy ELECTRE to rank them. By implementing Fuzzy ELECTRE on gathered data, respectively «usability factor», «supporting up to date technology factor», «integrity» and «the rate of ethics factor» are on the top of effective factors in making trust in users. In general, «web features» and «technology features» have a higher degree of importance than «security features», «individual-social features» and «cultural features». Ranking of Fuzzy ELECTRE comparison ranking of Fuzzy TOPSIS and Fuzzy ELECTRE method becomes validate because Spearman correlation coefficients is 0/867. Result of sensitivity analysis on changing weight of criteria shows that Fuzzy ELECTRE isn’t affected by ambiguity and uncertainty in inputs.

  17. Mapping industrial networks as an approach to identify inter-organisational collaborative potential in new product development

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    2012-01-01

    . Consequently, identifying and selecting potential partners to establish collaboration agreements can be a key activity in the new product development process. This paper explores the implications of mapping industrial networks with the purpose of identifying inter-organisational collaborative potential...

  18. Network analysis of Chinese provincial economies

    Science.gov (United States)

    Sun, Xiaoqi; An, Haizhong; Liu, Xiaojia

    2018-02-01

    Global economic system is a huge network formed by national subnetworks that contains the provincial networks. As the second largest world economy, China has "too big to fail" impact on the interconnected global economy. Detecting the critical sectors and vital linkages inside Chinese economic network is meaningful for understanding the origin of this Chinese impact. Different from tradition network research at national level, this paper focuses on the provincial networks and inter-provincial network. Using Chinese inter-regional input-output table to construct 30 provincial input-output networks and one inter-provincial input-output network, we identify central sectors and vital linkages, as well as analyze economic structure similarity. Results show that (1) Communication Devices sector in Guangdong and that in Jiangsu, Transportation and Storage sector in Shanghai play critical roles in Chinese economy. (2) Advanced manufactures and services industry occupy the central positions in eastern provincial economies, while Construction sector, Heavy industry, and Wholesale and Retail Trades sector are influential in middle and western provinces. (3) The critical monetary flow paths in Chinese economy are Communication Devices sector to Communication Devices sector in Guangdong, Metals Mining sector to Iron and Steel Smelting sector in Henan, Communication Devices sector to Communication Devices sector in Jiangsu, as well as Petroleum Mining sector in Heilongjiang to Petroleum Processing sector in Liaoning. (4) Collective influence results suggest that Finance sector, Transportation and Storage sector, Production of Electricity and Heat sector, and Rubber and Plastics sector in Hainan are strategic influencers, despite being weakly connected. These sectors and input-output relations are worthy of close attention for monitoring Chinese economy.

  19. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  20. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  1. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  2. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  3. Identifying clinical course patterns in SMS data using cluster analysis

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice

    2012-01-01

    ABSTRACT: BACKGROUND: Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important...... showed that clinical course patterns can be identified by cluster analysis using all SMS time points as cluster variables. This method is simple, intuitive and does not require a high level of statistical skill. However, there are alternative ways of managing SMS data and many different methods...

  4. Network analysis shining light on parasite ecology and diversity.

    Science.gov (United States)

    Poulin, Robert

    2010-10-01

    The vast number of species making up natural communities, and the myriad interactions among them, pose great difficulties for the study of community structure, dynamics and stability. Borrowed from other fields, network analysis is making great inroads in community ecology and is only now being applied to host-parasite interactions. It allows a complex system to be examined in its entirety, as opposed to one or a few components at a time. This review explores what network analysis is and how it can be used to investigate parasite ecology. It also summarizes the first findings to emerge from network analyses of host-parasite interactions and identifies promising future directions made possible by this approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Diversity Performance Analysis on Multiple HAP Networks

    Science.gov (United States)

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  6. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  7. Large-Scale Analysis of Network Bistability for Human Cancers

    Science.gov (United States)

    Shiraishi, Tetsuya; Matsuyama, Shinako; Kitano, Hiroaki

    2010-01-01

    Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers. PMID:20628618

  8. Mixed Methods Analysis of Enterprise Social Networks

    DEFF Research Database (Denmark)

    Behrendt, Sebastian; Richter, Alexander; Trier, Matthias

    2014-01-01

    The increasing use of enterprise social networks (ESN) generates vast amounts of data, giving researchers and managerial decision makers unprecedented opportunities for analysis. However, more transparency about the available data dimensions and how these can be combined is needed to yield accurate...

  9. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  10. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  11. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    2009-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  12. Identifying functions for ex-core neutron noise analysis

    International Nuclear Information System (INIS)

    Avila, J.M.; Oliveira, J.C.

    1987-01-01

    A method of performing the phase analysis of signals arising from neutron detectors placed in the periphery of a pressurized water reactor is proposed. It consists in the definition of several identifying functions, based on the phases of cross power spectral densities corresponding to four ex-core neutron detectors. Each of these functions enhances the appearance of different sources of noise. The method, applied to the ex-core neutron fluctuation analysis of a French PWR, proved to be very useful as it allows quick recognition of various patterns in the power spectral densities. (orig.) [de

  13. Use of Photogrammetry and Biomechanical Gait analysis to Identify Individuals

    DEFF Research Database (Denmark)

    Larsen, Peter Kastmand; Simonsen, Erik Bruun; Lynnerup, Niels

    Photogrammetry and recognition of gait patterns are valuable tools to help identify perpetrators based on surveillance recordings. We have found that stature but only few other measures have a satisfying reproducibility for use in forensics. Several gait variables with high recognition rates were...... found. Especially the variables located in the frontal plane are interesting due to large inter-individual differences in time course patterns. The variables with high recognition rates seem preferable for use in forensic gait analysis and as input variables to waveform analysis techniques...

  14. Identifying influential factors of business process performance using dependency analysis

    Science.gov (United States)

    Wetzstein, Branimir; Leitner, Philipp; Rosenberg, Florian; Dustdar, Schahram; Leymann, Frank

    2011-02-01

    We present a comprehensive framework for identifying influential factors of business process performance. In particular, our approach combines monitoring of process events and Quality of Service (QoS) measurements with dependency analysis to effectively identify influential factors. The framework uses data mining techniques to construct tree structures to represent dependencies of a key performance indicator (KPI) on process and QoS metrics. These dependency trees allow business analysts to determine how process KPIs depend on lower-level process metrics and QoS characteristics of the IT infrastructure. The structure of the dependencies enables a drill-down analysis of single factors of influence to gain a deeper knowledge why certain KPI targets are not met.

  15. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  16. Network analysis for the visualization and analysis of qualitative data.

    Science.gov (United States)

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  18. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  19. A statistical framework for differential network analysis from microarray data

    Directory of Open Access Journals (Sweden)

    Datta Somnath

    2010-02-01

    Full Text Available Abstract Background It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. Results We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i whether the overall modular structures of the two networks are different, (ii whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. Conclusions Examining changes in network structure can provide valuable information about the

  20. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  1. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration.

    Science.gov (United States)

    Arneson, Douglas; Bhattacharya, Anindya; Shu, Le; Mäkinen, Ville-Petteri; Yang, Xia

    2016-09-09

    Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development. To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server ( http://mergeomics. idre.ucla.edu/ ). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use. Our Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators

  2. Identifying Organizational Inefficiencies with Pictorial Process Analysis (PPA

    Directory of Open Access Journals (Sweden)

    David John Patrishkoff

    2013-11-01

    Full Text Available Pictorial Process Analysis (PPA was created by the author in 2004. PPA is a unique methodology which offers ten layers of additional analysis when compared to standard process mapping techniques.  The goal of PPA is to identify and eliminate waste, inefficiencies and risk in manufacturing or transactional business processes at 5 levels in an organization. The highest level being assessed is the process management, followed by the process work environment, detailed work habits, process performance metrics and general attitudes towards the process. This detailed process assessment and analysis is carried out during process improvement brainstorming efforts and Kaizen events. PPA creates a detailed visual efficiency rating for each step of the process under review.  A selection of 54 pictorial Inefficiency Icons (cards are available for use to highlight major inefficiencies and risks that are present in the business process under review. These inefficiency icons were identified during the author's independent research on the topic of why things go wrong in business. This paper will highlight how PPA was developed and show the steps required to conduct Pictorial Process Analysis on a sample manufacturing process. The author has successfully used PPA to dramatically improve business processes in over 55 different industries since 2004.  

  3. Dissecting molecular stress networks: identifying nodes of divergence between life-history phenotypes.

    Science.gov (United States)

    Schwartz, Tonia S; Bronikowski, Anne M

    2013-02-01

    The complex molecular network that underlies physiological stress response is comprised of nodes (proteins, metabolites, mRNAs, etc.) whose connections span cells, tissues and organs. Variable nodes are points in the network upon which natural selection may act. Thus, identifying variable nodes will reveal how this molecular stress network may evolve among populations in different habitats and how it might impact life-history evolution. Here, we use physiological and genetic assays to test whether laboratory-born juveniles from natural populations of garter snakes (Thamnophis elegans), which have diverged in their life-history phenotypes, vary concomitantly at candidate nodes of the stress response network, (i) under unstressed conditions and (ii) in response to an induced stress. We found that two common measures of stress (plasma corticosterone and liver gene expression of heat shock proteins) increased under stress in both life-history phenotypes. In contrast, the phenotypes diverged at four nodes both under unstressed conditions and in response to stress: circulating levels of reactive oxygen species (superoxide, H(2)O(2)); liver gene expression of GPX1 and erythrocyte DNA damage. Additionally, allele frequencies for SOD2 diverge from neutral markers, suggesting diversifying selection on SOD2 alleles. This study supports the hypothesis that these life-history phenotypes have diverged at the molecular level in how they respond to stress, particularly in nodes regulating oxidative stress. Furthermore, the differences between the life-history phenotypes were more pronounced in females. We discuss the responses to stress in the context of the associated life-history phenotype and the evolutionary pressures thought to be responsible for divergence between the phenotypes. © 2012 Blackwell Publishing Ltd.

  4. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  5. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  6. Reconstruction, visualization and explorative analysis of human pluripotency network

    Directory of Open Access Journals (Sweden)

    Priyanka Narad

    2017-09-01

    Full Text Available Identification of genes/proteins involved in pluripotency and their inter-relationships is important for understanding the induction/loss and maintenance of pluripotency. With the availability of large volume of data on interaction/regulation of pluripotency scattered across a large number of biological databases and hundreds of scientific journals, it is required a systematic integration of data which will create a complete view of pluripotency network. Describing and interpreting such a network of interaction and regulation (i.e., stimulation and inhibition links are essential tasks of computational biology, an important first step in systems-level understanding of the underlying mechanisms of pluripotency. To address this, we have assembled a network of 166 molecular interactions, stimulations and inhibitions, based on a collection of research data from 147 publications, involving 122 human genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its Apps (formerly called "Plugins". The network includes the core circuit of OCT4 (POU5F1, SOX2 and NANOG, its periphery (such as STAT3, KLF4, UTF1, ZIC3, and c-MYC, connections to upstream signaling pathways (such as ACTIVIN, WNT, FGF, and BMP, and epigenetic regulators (such as L1TD1, LSD1 and PRC2. We describe the general properties of the network and compare it with other literature-based networks. Gene Ontology (GO analysis is being performed to find out the over-represented GO terms in the network. We use several expression datasets to condense the network to a set of network links that identify the key players (genes/proteins and the pathways involved in transition from one state of pluripotency to other state (i.e., native to primed state, primed to non-pluripotent state and pluripotent to non-pluripotent state.

  7. Semantic network analysis of vaccine sentiment in online social media.

    Science.gov (United States)

    Kang, Gloria J; Ewing-Nelson, Sinclair R; Mackey, Lauren; Schlitt, James T; Marathe, Achla; Abbas, Kaja M; Swarup, Samarth

    2017-06-22

    To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage

  8. Exploration of Online Culture Through Network Analysis of Wikipedia.

    Science.gov (United States)

    Park, Sung Joo; Kim, Jong Woo; Lee, Hong Joo; Park, Hyunjung; Han, Deugcheon; Gloor, Peter

    2015-11-01

    Understanding online culture is becoming crucial in the global and connected world. Contrary to conventional attitudinal surveys used in cultural research, this study uses the approach of directly observing culture-specific behavior that emerges from online collaboration on the Internet. The editing data of Wikipedia were analyzed in 12 languages. Distinctive cultural dimensions were identified, including collectivism, extraversion, boldness, and egalitarianism. Using network analysis, the language-framed cultural factors were extracted as an emergent phenomenon in the virtual world.

  9. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer.

    Directory of Open Access Journals (Sweden)

    Matthew Ruffalo

    2015-12-01

    Full Text Available Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these "silent players". For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation.

  10. An artificial neural network system to identify alleles in reference electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  12. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    Science.gov (United States)

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  13. Identifying and Analyzing Strong Components of an Industrial Network Based on Cycle Degree

    Directory of Open Access Journals (Sweden)

    Zhiying Zhang

    2016-01-01

    Full Text Available In the era of big data and cloud computing, data research focuses not only on describing the individual characteristics but also on depicting the relationships among individuals. Studying dependence and constraint relationships among industries has aroused significant interest in the academic field. From the network perspective, this paper tries to analyze industrial relational structures based on cycle degree. The cycle degree of a vertex, that is, the number of cycles through a vertex in an industrial network, can describe the roles of the vertices of strong components in industrial circulation. In most cases, different vertices in a strong component have different cycle degrees, and the one with a larger cycle degree plays more important roles. However, the concept of cycle degree does not involve the lengths of the cycles, which are also important for circulations. The more indirect the relationship between two industries is, the weaker it is. In order to analyze strong components thoroughly, this paper proposes the concept of circular centrality taking into consideration the influence by two factors: the lengths and the numbers of cycles through a vertex. Exemplification indicates that a profound analysis of strong components in an industrial network can reveal the features of an economy.

  14. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  15. Identifying influential individuals on intensive care units: using cluster analysis to explore culture.

    Science.gov (United States)

    Fong, Allan; Clark, Lindsey; Cheng, Tianyi; Franklin, Ella; Fernandez, Nicole; Ratwani, Raj; Parker, Sarah Henrickson

    2017-07-01

    The objective of this paper is to identify attribute patterns of influential individuals in intensive care units using unsupervised cluster analysis. Despite the acknowledgement that culture of an organisation is critical to improving patient safety, specific methods to shift culture have not been explicitly identified. A social network analysis survey was conducted and an unsupervised cluster analysis was used. A total of 100 surveys were gathered. Unsupervised cluster analysis was used to group individuals with similar dimensions highlighting three general genres of influencers: well-rounded, knowledge and relational. Culture is created locally by individual influencers. Cluster analysis is an effective way to identify common characteristics among members of an intensive care unit team that are noted as highly influential by their peers. To change culture, identifying and then integrating the influencers in intervention development and dissemination may create more sustainable and effective culture change. Additional studies are ongoing to test the effectiveness of utilising these influencers to disseminate patient safety interventions. This study offers an approach that can be helpful in both identifying and understanding influential team members and may be an important aspect of developing methods to change organisational culture. © 2017 John Wiley & Sons Ltd.

  16. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  17. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  18. Obesogenic family types identified through latent profile analysis.

    Science.gov (United States)

    Martinson, Brian C; VazquezBenitez, Gabriela; Patnode, Carrie D; Hearst, Mary O; Sherwood, Nancy E; Parker, Emily D; Sirard, John; Pasch, Keryn E; Lytle, Leslie

    2011-10-01

    Obesity may cluster in families due to shared physical and social environments. This study aims to identify family typologies of obesity risk based on family environments. Using 2007-2008 data from 706 parent/youth dyads in Minnesota, we applied latent profile analysis and general linear models to evaluate associations between family typologies and body mass index (BMI) of youth and parents. Three typologies described most families with 18.8% "Unenriched/Obesogenic," 16.9% "Risky Consumer," and 64.3% "Healthy Consumer/Salutogenic." After adjustment for demographic and socioeconomic factors, parent BMI and youth BMI Z-scores were higher in unenriched/obesogenic families (BMI difference = 2.7, p typology. In contrast, parent BMI and youth BMI Z-scores were similar in the risky consumer families relative to those in healthy consumer/salutogenic type. We can identify family types differing in obesity risks with implications for public health interventions.

  19. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  20. Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Christian A Tiemann

    Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1

  1. Identifying inaccuracy of MS Project using system analysis

    Science.gov (United States)

    Fachrurrazi; Husin, Saiful; Malahayati, Nurul; Irzaidi

    2018-05-01

    The problem encountered in project owner’s financial accounting report is the difference in total project costs of MS Project to the Indonesian Standard (Standard Indonesia Standard / Cost Estimating Standard Book of Indonesia). It is one of the MS Project problems concerning to its cost accuracy, so cost data cannot be used in an integrated way for all project components. This study focuses on finding the causes of inaccuracy of the MS Projects. The aim of this study, which is operationally, are: (i) identifying cost analysis procedures for both current methods (SNI) and MS Project; (ii) identifying cost bias in each element of the cost analysis procedure; and (iii) analysing the cost differences (cost bias) in each element to identify what the cause of inaccuracies in MS Project toward SNI is. The method in this study is comparing for both the system analysis of MS Project and SNI. The results are: (i) MS Project system in Work of Resources element has limitation for two decimal digits only, have led to its inaccuracy. Where the Work of Resources (referred to as effort) in MS Project represents multiplication between the Quantities of Activities and Requirements of resources in SNI; (ii) MS Project and SNI have differences in the costing methods (the cost estimation methods), in which the SNI uses the Quantity-Based Costing (QBC), meanwhile MS Project uses the Time-Based Costing (TBC). Based on this research, we recommend to the contractors who use SNI should make an adjustment for Work of Resources in MS Project (with correction index) so that it can be used in an integrated way to the project owner’s financial accounting system. Further research will conduct for improvement the MS Project as an integrated tool toward all part of the project participant.

  2. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Krantz, James; Barker, Natalie

    2017-01-01

    . The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and also revealed MARK2 can co-IP SOGA1......, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and also with tubulin, which identifies SOGA1 as a new microtubule-associated protein....... These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology....

  3. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases

    DEFF Research Database (Denmark)

    Bergholdt, R.; Størling, Zenia, Marian; Hansen, Kasper Lage

    2007-01-01

    We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We...... identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases....

  4. Narcissism and Social Networking Behavior: A Meta-Analysis.

    Science.gov (United States)

    Gnambs, Timo; Appel, Markus

    2018-04-01

    The increasing popularity of social networking sites (SNS) such as Facebook and Twitter has given rise to speculations that the intensity of using these platforms is associated with narcissistic tendencies. However, recent research on this issue has been all but conclusive. We present a three-level, random effects meta-analysis including 289 effect sizes from 57 studies (total N = 25,631) on the association between trait narcissism and social networking behavior. The meta-analysis identified a small to moderate effect of ρ = .17 (τ = .11), 95% CI [.13, .21], for grandiose narcissism that replicated across different social networking platforms, respondent characteristics, and time. Moderator analyses revealed pronounced cultural differences, with stronger associations in power-distant cultures. Moreover, social networking behaviors geared toward self-presentation and the number of SNS friends exhibited stronger effects than usage durations. Overall, the study not only supported but also refined the notion of a relationship between engaging in social networking sites and narcissistic personality traits. © 2017 Wiley Periodicals, Inc.

  5. Trends in Archaeological Network Research: A Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Tom Brughmans

    2017-10-01

    Full Text Available This paper presents an overview of major trends in archaeological network research through a bibliometric analysis of the full corpus of publications on the topic between 1965 and 2016. It illustrates we can begin identifying the outlines of a new sub-discipline within archaeology with its distinct traditions, including a diversity of research approaches, dedicated events and preferred publication venues. This sub-discipline is at a similar stage of development as historical network research, and we argue that archaeologists and historians alike interested in establishing network research as a key tool for exploring social change will have a greater chance for success to the extent that we actively collaborate, pool resources, engage in common community activities and publications, and learn from each other’s mistakes.

  6. Improving assessment of personality disorder traits through social network analysis.

    Science.gov (United States)

    Clifton, Allan; Turkheimer, Eric; Oltmanns, Thomas F

    2007-10-01

    When assessing personality disorder traits, not all judges make equally valid judgments of all targets. The present study uses social network analysis to investigate factors associated with reliability and validity in peer assessment. Participants were groups of military recruits (N=809) who acted as both targets and judges in a round-robin design. Participants completed self- and informant versions of the Multisource Assessment of Personality Pathology. Social network matrices were constructed based on reported acquaintance, and cohesive subgroups were identified. Judges who shared a mutual subgroup were more reliable and had higher self-peer agreement than those who did not. Partitioning networks into two subgroups achieved more consistent improvements than multiple subgroups. We discuss implications for multiple informant assessments.

  7. A Framework for Security Analysis of Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nanz, Sebastian; Hankin, Chris

    2006-01-01

    processes and the network's connectivity graph, which may change independently from protocol actions. We identify a property characterising an important aspect of security in this setting and express it using behavioural equivalences of the calculus. We complement this approach with a control flow analysis......We present a framework for specification and security analysis of communication protocols for mobile wireless networks. This setting introduces new challenges which are not being addressed by classical protocol analysis techniques. The main complication stems from the fact that the actions...... of intermediate nodes and their connectivity can no longer be abstracted into a single unstructured adversarial environment as they form an inherent part of the system's security. In order to model this scenario faithfully, we present a broadcast calculus which makes a clear distinction between the protocol...

  8. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    Science.gov (United States)

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  9. NETWORK ANALYSIS OF PORTUGUESE TEAM ON FIFA WORLD CUP 2014

    Directory of Open Access Journals (Sweden)

    Rui Sousa Mendes,

    2015-05-01

    Full Text Available Match analysis has been using in football case to identify properties and patterns of teams (Sarmento et al., 2014. From the regular notational analysis until the most recent computational tactical metrics, a lot of different outcomes can be possible to extract from a single match (Clemente, Couceiro, Martins, & Mendes, 2015. In the specific case of football, the cooperation among team-members is one of the main factors that contribute for a better performance (Grund, 2012. Thus, to analyse such cooperation the Social Network Analysis have been used to identify how team-members are connected and if there are cooperation tendencies inside the team (Clemente et al., 2015. The prominent players have been also analysed in order to identify the central players in the team (Clemente, Couceiro, Martins, & Mendes, 2014.Objectives: Therefore, using the social network analysis approach the aim of this study was to analyse the centrality levels of Portuguese positional roles during the FIFA World Cup 2014 and to identify the prominent tactical positions that determined the moments with ball.

  10. Brain Network Analysis from High-Resolution EEG Signals

    Science.gov (United States)

    de Vico Fallani, Fabrizio; Babiloni, Fabio

    Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular

  11. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  12. Service network analysis for agricultural mental health

    Directory of Open Access Journals (Sweden)

    Fuller Jeffrey D

    2009-05-01

    Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.

  13. Method for identifying drivers, barriers and synergies related to the deployment of a CO2 pipeline network : A case study for the Iberian Peninsula and Morocco

    NARCIS (Netherlands)

    Berghout, Niels; Cabal, Helena; Gouveia, João Pedro; van den Broek, Machteld; Faaij, André

    2015-01-01

    This paper provides a method to identify drivers, barriers and synergies (DBS) related to the deployment of a CO2 pipeline network. The method was demonstrated for the West Mediterranean region (WMR) (i.e. Spain, Portugal and Morocco). The method comprises a literature review, analysis of

  14. Using lexical analysis to identify emotional distress in psychometric schizotypy.

    Science.gov (United States)

    Abplanalp, Samuel J; Buck, Benjamin; Gonzenbach, Virgilio; Janela, Carlos; Lysaker, Paul H; Minor, Kyle S

    2017-09-01

    Through the use of lexical analysis software, researchers have demonstrated a greater frequency of negative affect word use in those with schizophrenia and schizotypy compared to the general population. In addition, those with schizotypy endorse greater emotional distress than healthy controls. In this study, our aim was to expand on previous findings in schizotypy to determine whether negative affect word use could be linked to emotional distress. Schizotypy (n=33) and non-schizotypy groups (n=33) completed an open-ended, semi-structured interview and negative affect word use was analyzed using a validated lexical analysis instrument. Emotional distress was assessed using subjective questionnaires of depression and psychological quality of life (QOL). When groups were compared, those with schizotypy used significantly more negative affect words; endorsed greater depression; and reported lower QOL. Within schizotypy, a trend level association between depression and negative affect word use was observed; QOL and negative affect word use showed a significant inverse association. Our findings offer preliminary evidence of the potential effectiveness of lexical analysis as an objective, behavior-based method for identifying emotional distress throughout the schizophrenia-spectrum. Utilizing lexical analysis in schizotypy offers promise for providing researchers with an assessment capable of objectively detecting emotional distress. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.

    Directory of Open Access Journals (Sweden)

    Koon-Kiu Yan

    2017-07-01

    Full Text Available Genome-wide proximity ligation based assays such as Hi-C have revealed that eukaryotic genomes are organized into structural units called topologically associating domains (TADs. From a visual examination of the chromosomal contact map, however, it is clear that the organization of the domains is not simple or obvious. Instead, TADs exhibit various length scales and, in many cases, a nested arrangement. Here, by exploiting the resemblance between TADs in a chromosomal contact map and densely connected modules in a network, we formulate TAD identification as a network optimization problem and propose an algorithm, MrTADFinder, to identify TADs from intra-chromosomal contact maps. MrTADFinder is based on the network-science concept of modularity. A key component of it is deriving an appropriate background model for contacts in a random chain, by numerically solving a set of matrix equations. The background model preserves the observed coverage of each genomic bin as well as the distance dependence of the contact frequency for any pair of bins exhibited by the empirical map. Also, by introducing a tunable resolution parameter, MrTADFinder provides a self-consistent approach for identifying TADs at different length scales, hence the acronym "Mr" standing for Multiple Resolutions. We then apply MrTADFinder to various Hi-C datasets. The identified domain boundaries are marked by characteristic signatures in chromatin marks and transcription factors (TF that are consistent with earlier work. Moreover, by calling TADs at different length scales, we observe that boundary signatures change with resolution, with different chromatin features having different characteristic length scales. Furthermore, we report an enrichment of HOT (high-occupancy target regions near TAD boundaries and investigate the role of different TFs in determining boundaries at various resolutions. To further explore the interplay between TADs and epigenetic marks, as tumor mutational

  16. Social network analysis: Presenting an underused method for nursing research.

    Science.gov (United States)

    Parnell, James Michael; Robinson, Jennifer C

    2018-06-01

    This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.

  17. CATHENA 4. A thermalhydraulics network analysis code

    International Nuclear Information System (INIS)

    Aydemir, N.U.; Hanna, B.N.

    2009-01-01

    Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)

  18. Cluster analysis of clinical data identifies fibromyalgia subgroups.

    Directory of Open Access Journals (Sweden)

    Elisa Docampo

    Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.

  19. Network value and optimum analysis on the mode of networked marketing in TV media

    Directory of Open Access Journals (Sweden)

    Xiao Dongpo

    2012-12-01

    Full Text Available Purpose: With the development of the networked marketing in TV media, it is important to do the research on network value and optimum analysis in this field.Design/methodology/approach: According to the research on the mode of networked marketing in TV media and Correlation theory, the essence of media marketing is creating, spreading and transferring values. The Participants of marketing value activities are in network, and value activities proceed in networked form. Network capability is important to TV media marketing activities.Findings: This article raises the direction of research of analysis and optimization about network based on the mode of networked marketing in TV media by studying TV media marketing Development Mechanism , network analysis and network value structure.

  20. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  1. Identifying diabetes knowledge network nodes as sites for a diabetes prevention program.

    Science.gov (United States)

    Gesler, Wilbert M; Arcury, Thomas A; Skelly, Anne H; Nash, Sally; Soward, April; Dougherty, Molly

    2006-12-01

    This paper reports on the methods used and results of a study that identified specific places within a community that have the potential to be sites for a diabetes prevention program. These sites, termed diabetes knowledge network nodes (DKNNs), are based on the concept of socio-spatial knowledge networks (SSKNs), the web of social relationships within which people obtain knowledge about type 2 diabetes. The target population for the study was working poor African Americans, Latinos, and European Americans of both sexes in a small rural southern town who had not been diagnosed with diabetes. Information was collected from a sample of 121 respondents on the places they visited in carrying out their daily activities. Data on number of visits to specific sites, degree of familiarity with these sites, and ratings of sites as places to receive diabetes information were used to develop three categories of DKNNs for six subgroups based on ethnicity and sex. Primary potential sites of importance to one or more subgroups included churches, grocery stores, drugstores, the local library, a beauty salon, laundromats, a community service agency, and a branch of the County Health Department. Secondary potential sites included gas stations, restaurants, banks, and post offices. Latent potential sites included three medical facilities. Most of the DKNNs were located either in the downtown area or in one of two shopping areas along the most used highway that passed through the town. The procedures used in this study can be generalized to other communities and prevention programs for other chronic diseases.

  2. An algorithm for identifying the best current friend in a social network

    Directory of Open Access Journals (Sweden)

    Francisco Javier Moreno

    2015-05-01

    Full Text Available A research field in the area of social networks (SNs is the identification of some types of users and groups. To facilitate this process, a SN is usually represented by a graph. The centrality measures, which identify the most important vertices in a graph according to some criterion, are usual tools to analyze a graph. One of these measures is the PageRank (a measure originally designed to classify web pages. Informally, in the context of a SN, the PageRank of a user i represents the probability that another user of the SN is seeing the page of i after a considerable time of navigation in the SN. In this paper, we define a new type of user in a SN: the best current friend. The idea is to identify, among the friends of a user i, who is the friend k that would generate the highest decrease in the PageRank of i if k stops being his/her friend. This may be useful to identify the users/customers whose friendship/relationship should be a priority to keep. We provide formal definitions, algorithms and some experiments for this subject. Our experiments showed that the best current friend of a user is not necessarily the one who has the highest PageRank in the SN nor the one who has more friends.

  3. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Victor Trevino

    2016-04-01

    Full Text Available The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell

  4. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  5. NIF ICCS network design and loading analysis

    International Nuclear Information System (INIS)

    Tietbohl, G; Bryant, R

    1998-01-01

    The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)

  6. Distinguishing manipulated stocks via trading network analysis

    Science.gov (United States)

    Sun, Xiao-Qian; Cheng, Xue-Qi; Shen, Hua-Wei; Wang, Zhao-Yang

    2011-10-01

    Manipulation is an important issue for both developed and emerging stock markets. For the study of manipulation, it is critical to analyze investor behavior in the stock market. In this paper, an analysis of the full transaction records of over a hundred stocks in a one-year period is conducted. For each stock, a trading network is constructed to characterize the relations among its investors. In trading networks, nodes represent investors and a directed link connects a stock seller to a buyer with the total trade size as the weight of the link, and the node strength is the sum of all edge weights of a node. For all these trading networks, we find that the node degree and node strength both have tails following a power-law distribution. Compared with non-manipulated stocks, manipulated stocks have a high lower bound of the power-law tail, a high average degree of the trading network and a low correlation between the price return and the seller-buyer ratio. These findings may help us to detect manipulated stocks.

  7. Identifying colon cancer risk modules with better classification performance based on human signaling network.

    Science.gov (United States)

    Qu, Xiaoli; Xie, Ruiqiang; Chen, Lina; Feng, Chenchen; Zhou, Yanyan; Li, Wan; Huang, Hao; Jia, Xu; Lv, Junjie; He, Yuehan; Du, Youwen; Li, Weiguo; Shi, Yuchen; He, Weiming

    2014-10-01

    Identifying differences between normal and tumor samples from a modular perspective may help to improve our understanding of the mechanisms responsible for colon cancer. Many cancer studies have shown that signaling transduction and biological pathways are disturbed in disease states, and expression profiles can distinguish variations in diseases. In this study, we integrated a weighted human signaling network and gene expression profiles to select risk modules associated with tumor conditions. Risk modules as classification features by our method had a better classification performance than other methods, and one risk module for colon cancer had a good classification performance for distinguishing between normal/tumor samples and between tumor stages. All genes in the module were annotated to the biological process of positive regulation of cell proliferation, and were highly associated with colon cancer. These results suggested that these genes might be the potential risk genes for colon cancer. Copyright © 2013. Published by Elsevier Inc.

  8. The Application of Social Network Analysis to Team Sports

    Science.gov (United States)

    Lusher, Dean; Robins, Garry; Kremer, Peter

    2010-01-01

    This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…

  9. Analysis and visualization of citation networks

    CERN Document Server

    Zhao, Dangzhi

    2015-01-01

    Citation analysis-the exploration of reference patterns in the scholarly and scientific literature-has long been applied in a number of social sciences to study research impact, knowledge flows, and knowledge networks. It has important information science applications as well, particularly in knowledge representation and in information retrieval.Recent years have seen a burgeoning interest in citation analysis to help address research, management, or information service issues such as university rankings, research evaluation, or knowledge domain visualization. This renewed and growing interest

  10. An Intelligent technical analysis using neural network

    Directory of Open Access Journals (Sweden)

    Reza Raei

    2011-07-01

    Full Text Available Technical analysis has been one of the most popular methods for stock market predictions for the past few decades. There have been enormous technical analysis methods to study the behavior of stock market for different kinds of trading markets such as currency, commodity or stock. In this paper, we propose two different methods based on volume adjusted moving average and ease of movement for stock trading. These methods are used with and without generalized regression neural network methods and the results are compared with each other. The preliminary results on historical stock price of 20 firms indicate that there is no meaningful difference between various proposed models of this paper.

  11. A network-base analysis of CMIP5 "historical" experiments

    Science.gov (United States)

    Bracco, A.; Foudalis, I.; Dovrolis, C.

    2012-12-01

    In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.

  12. A Critical Analysis of Anesthesiology Podcasts: Identifying Determinants of Success.

    Science.gov (United States)

    Singh, Devin; Alam, Fahad; Matava, Clyde

    2016-08-17

    Audio and video podcasts have gained popularity in recent years. Increasingly, podcasts are being used in the field of medicine as a tool to disseminate information. This format has multiple advantages including highly accessible creation tools, low distribution costs, and portability for the user. However, despite its ongoing use in medical education, there are no data describing factors associated with the success or quality of podcasts. The goal of the study was to assess the landscape of anesthesia podcasts in Canada and develop a methodology for evaluating the quality of the podcast. To achieve our objective, we identified the scope of podcasts in anesthesia specifically, constructed an algorithmic model for measuring success, and identified factors linked to both successful podcasts and a peer-review process. Independent reviewers performed a systematic search of anesthesia-related podcasts on iTunes Canada. Data and metrics recorded for each podcast included podcast's authorship, number posted, podcast series duration, target audience, topics, and social media presence. Descriptive statistics summarized mined data, and univariate analysis was used to identify factors associated with podcast success and a peer-review process. Twenty-two podcasts related to anesthesia were included in the final analysis. Less than a third (6/22=27%) were still active. The median longevity of the podcasts' series was just 13 months (interquartile range: 1-39 months). Anesthesiologists were the target audience for 77% of podcast series with clinical topics being most commonly addressed. We defined a novel algorithm for measuring success: Podcast Success Index. Factors associated with a high Podcast Success Index included podcasts targeting fellows (Spearman R=0.434; P=.04), inclusion of professional topics (Spearman R=0.456-0.603; P=.01-.03), and the use of Twitter as a means of social media (Spearman R=0.453;P=.03). In addition, more than two-thirds (16/22=73%) of podcasts

  13. Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus

    Directory of Open Access Journals (Sweden)

    Tzai-Hung Wen

    2015-04-01

    Full Text Available Respiratory diseases mainly spread through interpersonal contact. Class suspension is the most direct strategy to prevent the spread of disease through elementary or secondary schools by blocking the contact network. However, as university students usually attend courses in different buildings, the daily contact patterns on a university campus are complicated, and once disease clusters have occurred, suspending classes is far from an efficient strategy to control disease spread. The purpose of this study is to propose a methodological framework for generating campus location networks from a routine administration database, analyzing the community structure of the network, and identifying the critical links and nodes for blocking respiratory disease transmission. The data comes from the student enrollment records of a major comprehensive university in Taiwan. We combined the social network analysis and spatial interaction model to establish a geo-referenced community structure among the classroom buildings. We also identified the critical links among the communities that were acting as contact bridges and explored the changes in the location network after the sequential removal of the high-risk buildings. Instead of conducting a questionnaire survey, the study established a standard procedure for constructing a location network on a large-scale campus from a routine curriculum database. We also present how a location network structure at a campus could function to target the high-risk buildings as the bridges connecting communities for blocking disease transmission.

  14. Simultaneity Analysis In A Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Malović Miodrag

    2015-06-01

    Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.

  15. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    Directory of Open Access Journals (Sweden)

    Ilan Kelman

    Full Text Available This study integrates quantitative social network analysis (SNA and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  16. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    Science.gov (United States)

    Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  17. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks

    Science.gov (United States)

    Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007

  18. Aspects regarding the use of the INFREP network for identifying possible seismic precursors

    Science.gov (United States)

    Dolea, Paul; Cristea, Octavian; Dascal, Paul Vladut; Moldovan, Iren-Adelina; Biagi, Pier Francesco

    In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level. The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers' locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths. The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or

  19. Identifying essential genes in bacterial metabolic networks with machine learning methods

    Science.gov (United States)

    2010-01-01

    Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for Salmonella typhimurium. We compared our predictions to the viability of experimental knock-outs of S. typhimurium and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway. Conclusions Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism. PMID:20438628

  20. Identifying Time Measurement Tampering in the Traversal Time and Hop Count Analysis (TTHCA Wormhole Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Jonny Karlsson

    2013-05-01

    Full Text Available Traversal time and hop count analysis (TTHCA is a recent wormhole detection algorithm for mobile ad hoc networks (MANET which provides enhanced detection performance against all wormhole attack variants and network types. TTHCA involves each node measuring the processing time of routing packets during the route discovery process and then delivering the measurements to the source node. In a participation mode (PM wormhole where malicious nodes appear in the routing tables as legitimate nodes, the time measurements can potentially be altered so preventing TTHCA from successfully detecting the wormhole. This paper analyses the prevailing conditions for time tampering attacks to succeed for PM wormholes, before introducing an extension to the TTHCA detection algorithm called ∆T Vector which is designed to identify time tampering, while preserving low false positive rates. Simulation results confirm that the ∆T Vector extension is able to effectively detect time tampering attacks, thereby providing an important security enhancement to the TTHCA algorithm.

  1. Identifying Network Motifs that Buffer Front-to-Back Signaling in Polarized Neutrophils

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    2013-05-01

    Full Text Available Neutrophil polarity relies on local, mutual inhibition to segregate incompatible signaling circuits to the leading and trailing edges. Mutual inhibition alone should lead to cells having strong fronts and weak backs or vice versa. However, analysis of cell-to-cell variation in human neutrophils revealed that back polarity remains consistent despite changes in front strength. How is this buffering achieved? Pharmacological perturbations and mathematical modeling revealed a functional role for microtubules in buffering back polarity by mediating positive, long-range crosstalk from front to back; loss of microtubules inhibits buffering and results in anticorrelation between front and back signaling. Furthermore, a systematic, computational search of network topologies found that a long-range, positive front-to-back link is necessary for back buffering. Our studies suggest a design principle that can be employed by polarity networks: short-range mutual inhibition establishes distinct signaling regions, after which directed long-range activation insulates one region from variations in the other.

  2. Identifying subgroups of patients using latent class analysis

    DEFF Research Database (Denmark)

    Nielsen, Anne Mølgaard; Kent, Peter; Hestbæk, Lise

    2017-01-01

    BACKGROUND: Heterogeneity in patients with low back pain (LBP) is well recognised and different approaches to subgrouping have been proposed. Latent Class Analysis (LCA) is a statistical technique that is increasingly being used to identify subgroups based on patient characteristics. However......, as LBP is a complex multi-domain condition, the optimal approach when using LCA is unknown. Therefore, this paper describes the exploration of two approaches to LCA that may help improve the identification of clinically relevant and interpretable LBP subgroups. METHODS: From 928 LBP patients consulting...... of statistical performance measures, qualitative evaluation of clinical interpretability (face validity) and a subgroup membership comparison. RESULTS: For the single-stage LCA, a model solution with seven patient subgroups was preferred, and for the two-stage LCA, a nine patient subgroup model. Both approaches...

  3. Cluster Analysis of Clinical Data Identifies Fibromyalgia Subgroups

    Science.gov (United States)

    Docampo, Elisa; Collado, Antonio; Escaramís, Geòrgia; Carbonell, Jordi; Rivera, Javier; Vidal, Javier; Alegre, José

    2013-01-01

    Introduction Fibromyalgia (FM) is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. Material and Methods 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. Results Variables clustered into three independent dimensions: “symptomatology”, “comorbidities” and “clinical scales”. Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1), high symptomatology and comorbidities (Cluster 2), and high symptomatology but low comorbidities (Cluster 3), showing differences in measures of disease severity. Conclusions We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment. PMID:24098674

  4. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  5. Global Proteome Analysis Identifies Active Immunoproteasome Subunits in Human Platelets*

    Science.gov (United States)

    Klockenbusch, Cordula; Walsh, Geraldine M.; Brown, Lyda M.; Hoffman, Michael D.; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-01-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. PMID:25146974

  6. Global proteome analysis identifies active immunoproteasome subunits in human platelets.

    Science.gov (United States)

    Klockenbusch, Cordula; Walsh, Geraldine M; Brown, Lyda M; Hoffman, Michael D; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-12-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Network Analysis of Time-Lapse Microscopy Recordings

    Directory of Open Access Journals (Sweden)

    Erik eSmedler

    2014-09-01

    Full Text Available Multicellular organisms rely on intercellular communication to regulate important cellular processes critical to life. To further our understanding of those processes there is a need to scrutinize dynamical signaling events and their functions in both cells and organisms. Here, we report a method and provide MATLAB code that analyzes time-lapse microscopy recordings to identify and characterize network structures within large cell populations, such as interconnected neurons. The approach is demonstrated using intracellular calcium (Ca2+ recordings in neural progenitors and cardiac myocytes, but could be applied to a wide variety of biosensors employed in diverse cell types and organisms. In this method, network structures are analyzed by applying cross-correlation signal processing and graph theory to single-cell recordings. The goal of the analysis is to determine if the single cell activity constitutes a network of interconnected cells and to decipher the properties of this network. The method can be applied in many fields of biology in which biosensors are used to monitor signaling events in living cells. Analyzing intercellular communication in cell ensembles can reveal essential network structures that provide important biological insights.

  8. Using principal component analysis for selecting network behavioral anomaly metrics

    Science.gov (United States)

    Gregorio-de Souza, Ian; Berk, Vincent; Barsamian, Alex

    2010-04-01

    This work addresses new approaches to behavioral analysis of networks and hosts for the purposes of security monitoring and anomaly detection. Most commonly used approaches simply implement anomaly detectors for one, or a few, simple metrics and those metrics can exhibit unacceptable false alarm rates. For instance, the anomaly score of network communication is defined as the reciprocal of the likelihood that a given host uses a particular protocol (or destination);this definition may result in an unrealistically high threshold for alerting to avoid being flooded by false positives. We demonstrate that selecting and adapting the metrics and thresholds, on a host-by-host or protocol-by-protocol basis can be done by established multivariate analyses such as PCA. We will show how to determine one or more metrics, for each network host, that records the highest available amount of information regarding the baseline behavior, and shows relevant deviances reliably. We describe the methodology used to pick from a large selection of available metrics, and illustrate a method for comparing the resulting classifiers. Using our approach we are able to reduce the resources required to properly identify misbehaving hosts, protocols, or networks, by dedicating system resources to only those metrics that actually matter in detecting network deviations.

  9. Protocol for a thematic synthesis to identify key themes and messages from a palliative care research network.

    LENUS (Irish Health Repository)

    Nicholson, Emma

    2016-10-21

    Research networks that facilitate collaborative research are increasing both regionally and globally and such collaborations contribute greatly to knowledge transfer particularly in health research. The Palliative Care Research Network is an Irish-based network that seeks to create opportunities and engender a collaborative environment to encourage innovative research that is relevant for policy and practice. The current review outlines a methodology to identify cross-cutting messages to identify how dissemination outputs can be optimized to ensure that key messages from this research reaches all knowledge users.

  10. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    Science.gov (United States)

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. City networks and commodity chains: identifying global flows and local connections in Ho Chi Minh City

    DEFF Research Database (Denmark)

    Vind, Ingeborg; Fold, Niels

    2010-01-01

    Any analytical framework for understanding actual forms of the intensified incorporation of cities into the world economy needs to go beyond the exclusive focus on advanced producer services, which is characteristic of most of the World City Network (WCN) approach. Simultaneously, an account...... of the role of advanced producer services will strengthen Global Commodity Chain (GCC) analysis. A combination of the literatures on WCN and GCC can contribute to a broader conceptualization of the connections and connectivities of global cities. In addition, a combined approach will improve our understanding...... of globalization processes within many so-called 'third-world' cities that are experiencing booms in export-oriented industrialization and in migration from rural hinterlands as they are being integrated into Global Commodity Chains. We illustrate our argument with insights from GCC analyses of the electronics...

  12. Two novel antimicrobial defensins from rice identified by gene coexpression network analyses.

    Science.gov (United States)

    Tantong, Supaluk; Pringsulaka, Onanong; Weerawanich, Kamonwan; Meeprasert, Arthitaya; Rungrotmongkol, Thanyada; Sarnthima, Rakrudee; Roytrakul, Sittiruk; Sirikantaramas, Supaart

    2016-10-01

    Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63μg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  14. Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks.

    Science.gov (United States)

    Azcorra, A; Chiroque, L F; Cuevas, R; Fernández Anta, A; Laniado, H; Lillo, R E; Romo, J; Sguera, C

    2018-05-03

    Billions of users interact intensively every day via Online Social Networks (OSNs) such as Facebook, Twitter, or Google+. This makes OSNs an invaluable source of information, and channel of actuation, for sectors like advertising, marketing, or politics. To get the most of OSNs, analysts need to identify influential users that can be leveraged for promoting products, distributing messages, or improving the image of companies. In this report we propose a new unsupervised method, Massive Unsupervised Outlier Detection (MUOD), based on outliers detection, for providing support in the identification of influential users. MUOD is scalable, and can hence be used in large OSNs. Moreover, it labels the outliers as of shape, magnitude, or amplitude, depending of their features. This allows classifying the outlier users in multiple different classes, which are likely to include different types of influential users. Applying MUOD to a subset of roughly 400 million Google+ users, it has allowed identifying and discriminating automatically sets of outlier users, which present features associated to different definitions of influential users, like capacity to attract engagement, capacity to attract a large number of followers, or high infection capacity.

  15. Differential network analysis with multiply imputed lipidomic data.

    Directory of Open Access Journals (Sweden)

    Maiju Kujala

    Full Text Available The importance of lipids for cell function and health has been widely recognized, e.g., a disorder in the lipid composition of cells has been related to atherosclerosis caused cardiovascular disease (CVD. Lipidomics analyses are characterized by large yet not a huge number of mutually correlated variables measured and their associations to outcomes are potentially of a complex nature. Differential network analysis provides a formal statistical method capable of inferential analysis to examine differences in network structures of the lipids under two biological conditions. It also guides us to identify potential relationships requiring further biological investigation. We provide a recipe to conduct permutation test on association scores resulted from partial least square regression with multiple imputed lipidomic data from the LUdwigshafen RIsk and Cardiovascular Health (LURIC study, particularly paying attention to the left-censored missing values typical for a wide range of data sets in life sciences. Left-censored missing values are low-level concentrations that are known to exist somewhere between zero and a lower limit of quantification. To make full use of the LURIC data with the missing values, we utilize state of the art multiple imputation techniques and propose solutions to the challenges that incomplete data sets bring to differential network analysis. The customized network analysis helps us to understand the complexities of the underlying biological processes by identifying lipids and lipid classes that interact with each other, and by recognizing the most important differentially expressed lipids between two subgroups of coronary artery disease (CAD patients, the patients that had a fatal CVD event and the ones who remained stable during two year follow-up.

  16. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    Science.gov (United States)

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  17. Analysis of Trends in Cooperative Network Patterns for KAERI Researchers

    International Nuclear Information System (INIS)

    Chun, Young Choon; Lee, Hyun Soo

    2016-01-01

    There has been a trend toward faster results of research and accelerating inter-disciplinary convergence, under constraints in available resources. Under such reality, national and international cooperation with inter-sectoral research on science-technology-industry is becoming inevitable as a strategic approach for enhancing competitive edge on global dimension. This study gives an analysis on the cooperative network in nuclear research which bears multi-disciplinary technical feature. The study aims to visualize the cooperative network of KAERI(Korea Atomic Energy Research Institute) researchers, as the hub of the network, including academics and industry, with a view to provide insight on strengthening the cooperative network in nuclear research. This study accounted for the paper entries in SCI(E) in 2013 (538 papers) and 2015 (551 papers) with a view to identify cooperative research activities centered for KAERI. On international cooperation, the analysis showed a trend toward, first of all, diversification of partner countries. There were 118 entries of co-authorship with 22 countries in 2013 (41 with USA, 12 with Japan, 9 with India), which evolved to 121 entries in 2015 (34 for USA, 11 with China, 10 each with Japan and India). Secondly, there was a trend toward more number of countries evenly spread in 2015 compared to 2013, except a few major countries like USA, Japan, and India

  18. Analysis of Trends in Cooperative Network Patterns for KAERI Researchers

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Choon; Lee, Hyun Soo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There has been a trend toward faster results of research and accelerating inter-disciplinary convergence, under constraints in available resources. Under such reality, national and international cooperation with inter-sectoral research on science-technology-industry is becoming inevitable as a strategic approach for enhancing competitive edge on global dimension. This study gives an analysis on the cooperative network in nuclear research which bears multi-disciplinary technical feature. The study aims to visualize the cooperative network of KAERI(Korea Atomic Energy Research Institute) researchers, as the hub of the network, including academics and industry, with a view to provide insight on strengthening the cooperative network in nuclear research. This study accounted for the paper entries in SCI(E) in 2013 (538 papers) and 2015 (551 papers) with a view to identify cooperative research activities centered for KAERI. On international cooperation, the analysis showed a trend toward, first of all, diversification of partner countries. There were 118 entries of co-authorship with 22 countries in 2013 (41 with USA, 12 with Japan, 9 with India), which evolved to 121 entries in 2015 (34 for USA, 11 with China, 10 each with Japan and India). Secondly, there was a trend toward more number of countries evenly spread in 2015 compared to 2013, except a few major countries like USA, Japan, and India.

  19. Coordination of locomotor and cardiorespiratory networks of Lymnaea stagnalis by a pair of identified interneurones.

    Science.gov (United States)

    Syed, N I; Winlow, W

    1991-07-01

    1. The morphology and electrophysiology of a newly identified bilateral pair of interneurones in the central nervous system of the pulmonate pond snail Lymnaea stagnalis is described. 2. These interneurones, identified as left and right pedal dorsal 11 (L/RPeD11), are electrically coupled to each other as well as to a large number of foot and body wall motoneurones, forming a fast-acting neural network which coordinates the activities of foot and body wall muscles. 3. The left and right sides of the body wall of Lymnaea are innervated by left and right cerebral A cluster neurones. Although these motoneurones have only ipsilateral projections, they are indirectly electrically coupled to their contralateral homologues via their connections with L/RPeD11. Similarly, the activities of left and right pedal G cluster neurones, which are known to be involved in locomotion, are also coordinated by L/RPeD11. 4. Selective ablation of both neurones PeD11 results in the loss of coordination between the bilateral cerebral A clusters. 5. Interneurones L/RPeD11 are multifunctional. In addition to coordinating motoneuronal activity, they make chemical excitatory connections with heart motoneurones. They also synapse upon respiratory motoneurones, hyperpolarizing those involved in pneumostome opening (expiration) and depolarizing those involved in pneumostome closure (inspiration). 6. An identified respiratory interneurone involved in pneumostome closure (visceral dorsal 4) inhibits L/RPeD11 together with all their electrically coupled follower cells. 7. Both L/RPeD11 have strong excitatory effects on another pair of electrically coupled neurones, visceral dorsal 1 and right parietal dorsal 2, which have previously been shown to be sensitive to changes in the partial pressure of environmental oxygen (PO2). 8. Although L/RPeD11 participate in whole-body withdrawal responses, electrical stimulation applied directly to these neurones was not sufficient to induce this behaviour.

  20. Applications of social media and social network analysis

    CERN Document Server

    Kazienko, Przemyslaw

    2015-01-01

    This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to commun

  1. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  2. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  3. Identifying target processes for microbial electrosynthesis by elementary mode analysis.

    Science.gov (United States)

    Kracke, Frauke; Krömer, Jens O

    2014-12-30

    Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to

  4. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  5. Performance Analysis: Work Control Events Identified January - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    De Grange, C E; Freeman, J W; Kerr, C E; Holman, G; Marsh, K; Beach, R

    2011-01-14

    This performance analysis evaluated 24 events that occurred at LLNL from January through August 2010. The analysis identified areas of potential work control process and/or implementation weaknesses and several common underlying causes. Human performance improvement and safety culture factors were part of the causal analysis of each event and were analyzed. The collective significance of all events in 2010, as measured by the occurrence reporting significance category and by the proportion of events that have been reported to the DOE ORPS under the ''management concerns'' reporting criteria, does not appear to have increased in 2010. The frequency of reporting in each of the significance categories has not changed in 2010 compared to the previous four years. There is no change indicating a trend in the significance category and there has been no increase in the proportion of occurrences reported in the higher significance category. Also, the frequency of events, 42 events reported through August 2010, is not greater than in previous years and is below the average of 63 occurrences per year at LLNL since 2006. Over the previous four years, an average of 43% of the LLNL's reported occurrences have been reported as either ''management concerns'' or ''near misses.'' In 2010, 29% of the occurrences have been reported as ''management concerns'' or ''near misses.'' This rate indicates that LLNL is now reporting fewer ''management concern'' and ''near miss'' occurrences compared to the previous four years. From 2008 to the present, LLNL senior management has undertaken a series of initiatives to strengthen the work planning and control system with the primary objective to improve worker safety. In 2008, the LLNL Deputy Director established the Work Control Integrated Project Team to develop the core requirements and graded

  6. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  7. Models as Tools of Analysis of a Network Organisation

    Directory of Open Access Journals (Sweden)

    Wojciech Pająk

    2013-06-01

    Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.

  8. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  9. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    Science.gov (United States)

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Benefits analysis of Soft Open Points for electrical distribution network operation

    International Nuclear Information System (INIS)

    Cao, Wanyu; Wu, Jianzhong; Jenkins, Nick; Wang, Chengshan; Green, Timothy

    2016-01-01

    Highlights: • An analysis framework was developed to quantify the operational benefits. • The framework considers both network reconfiguration and SOP control. • Benefits were analyzed through both quantitative and sensitivity analysis. - Abstract: Soft Open Points (SOPs) are power electronic devices installed in place of normally-open points in electrical power distribution networks. They are able to provide active power flow control, reactive power compensation and voltage regulation under normal network operating conditions, as well as fast fault isolation and supply restoration under abnormal conditions. A steady state analysis framework was developed to quantify the operational benefits of a distribution network with SOPs under normal network operating conditions. A generic power injection model was developed and used to determine the optimal SOP operation using an improved Powell’s Direct Set method. Physical limits and power losses of the SOP device (based on back to back voltage-source converters) were considered in the model. Distribution network reconfiguration algorithms, with and without SOPs, were developed and used to identify the benefits of using SOPs. Test results on a 33-bus distribution network compared the benefits of using SOPs, traditional network reconfiguration and the combination of both. The results showed that using only one SOP achieved a similar improvement in network operation compared to the case of using network reconfiguration with all branches equipped with remotely controlled switches. A combination of SOP control and network reconfiguration provided the optimal network operation.

  11. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    Science.gov (United States)

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  12. A Sensitivity Analysis Approach to Identify Key Environmental Performance Factors

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2014-01-01

    Full Text Available Life cycle assessment (LCA is widely used in design phase to reduce the product’s environmental impacts through the whole product life cycle (PLC during the last two decades. The traditional LCA is restricted to assessing the environmental impacts of a product and the results cannot reflect the effects of changes within the life cycle. In order to improve the quality of ecodesign, it is a growing need to develop an approach which can reflect the changes between the design parameters and product’s environmental impacts. A sensitivity analysis approach based on LCA and ecodesign is proposed in this paper. The key environmental performance factors which have significant influence on the products’ environmental impacts can be identified by analyzing the relationship between environmental impacts and the design parameters. Users without much environmental knowledge can use this approach to determine which design parameter should be first considered when (redesigning a product. A printed circuit board (PCB case study is conducted; eight design parameters are chosen to be analyzed by our approach. The result shows that the carbon dioxide emission during the PCB manufacture is highly sensitive to the area of PCB panel.

  13. Social network analysis for startups finding connections on the social web

    CERN Document Server

    Tsvetovat, Maksim

    2011-01-01

    Does your startup rely on social network analysis? This concise guide provides a statistical framework to help you identify social processes hidden among the tons of data now available. Social network analysis (SNA) is a discipline that predates Facebook and Twitter by 30 years. Through expert SNA researchers, you''ll learn concepts and techniques for recognizing patterns in social media, political groups, companies, cultural trends, and interpersonal networks. You''ll also learn how to use Python and other open source tools-such as NetworkX, NumPy, and Matplotlib-to gather, analyze, and vis

  14. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  15. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  16. Identifying socio-ecological networks in rural-urban gradients: Diagnosis of a changing cultural landscape.

    Science.gov (United States)

    Arnaiz-Schmitz, C; Schmitz, M F; Herrero-Jáuregui, C; Gutiérrez-Angonese, J; Pineda, F D; Montes, C

    2018-01-15

    Socio-ecological systems maintain reciprocal interactions between biophysical and socioeconomic structures. As a result of these interactions key essential services for society emerge. Urban expansion is a direct driver of land change and cause serious shifts in socio-ecological relationships and the associated lifestyles. The framework of rural-urban gradients has proved to be a powerful tool for ecological research about urban influences on ecosystems and on sociological issues related to social welfare. However, to date there has not been an attempt to achieve a classification of municipalities in rural-urban gradients based on socio-ecological interactions. In this paper, we developed a methodological approach that allows identifying and classifying a set of socio-ecological network configurations in the Region of Madrid, a highly dynamic cultural landscape considered one of the European hotspots in urban development. According to their socio-ecological links, the integrated model detects four groups of municipalities, ordered along a rural-urban gradient, characterized by their degree of biophysical and socioeconomic coupling and different indicators of landscape structure and social welfare. We propose the developed model as a useful tool to improve environmental management schemes and land planning from a socio-ecological perspective, especially in territories subject to intense urban transformations and loss of rurality. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  18. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    Directory of Open Access Journals (Sweden)

    Wasserman Wyeth W

    2011-03-01

    Full Text Available Abstract Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs, microRNAs (miRNAs and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs. Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL. In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT, an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http

  19. Identifying options for regulating the coordination of network investments with investments in distributed electricity generation

    International Nuclear Information System (INIS)

    Nisten, E.

    2010-02-01

    The increase in the distributed generation of electricity, with wind turbines and solar panels, necessitates investments in the distribution network. The current tariff regulation in the Dutch electricity industry, with its ex post evaluation of the efficiency of investments and the frontier shift in the x-factor, delays these investments. In the unbundled electricity industry, the investments in the network need to be coordinated with those in the distributed generation of electricity to enable the DSOs to build enough network capacity. The current Dutch regulations do not provide for a sufficient information exchange between the generators and the system operators to coordinate the investments. This paper analyses these two effects of the Dutch regulation, and suggests improvements to the regulation of the network connection and transportation tariffs to allow for sufficient network capacity and coordination between the investments in the network and in the generation of electricity. These improvements include locally differentiated tariffs that increase with an increasing concentration of distributed generators.

  20. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  1. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research

    Science.gov (United States)

    Grunspan, Daniel Z.; Wiggins, Benjamin L.; Goodreau, Steven M.

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA)…

  2. Network Analysis of Students' Use of Representations in Problem Solving

    Science.gov (United States)

    McPadden, Daryl; Brewe, Eric

    2016-03-01

    We present the preliminary results of a study on student use of representations in problem solving within the Modeling Instruction - Electricity and Magnetism (MI-E&M) course. Representational competence is a critical skill needed for students to develop a sophisticated understanding of college science topics and to succeed in their science courses. In this study, 70 students from the MI-E&M, calculus-based course were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M). For each problem statement, students were asked which representations they would use in that given situation. We analyze the survey results through network analysis, identifying which representations are linked together in which contexts. We also compare the representation networks for those students who had already taken the first-semester Modeling Instruction Mechanics course and those students who had taken a non-Modeling Mechanics course.

  3. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    Efficient and cost effective transportation and logistics plays a vital role in the supply chains of the modern world’s manufacturers. Global distribution of goods is a very complicated matter as it involves many different distinct planning problems. The focus of this presentation is to demonstrate...... a number of important issues which have been identified when addressing the Distribution Network Design problem from a modelling angle. More specifically, we present an analysis of the research which has been performed in utilizing operational research in developing and optimising distribution systems....

  4. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  5. Syphilis Networks in Louisiana: An Analysis of Network Configuration and Disease Transmission

    Science.gov (United States)

    Desmarais, Catherine Theresa

    Background: In 2009, Louisiana had the highest rate of primary and secondary syphilis in the country. Recent partner notification approaches have been insufficient in addressing Louisiana's deeply entrenched areas of syphilis infection. Prior researchers have suggested that surveillance systems may benefit from utilizing social and spatial network analysis in syphilis control efforts. Objective: To expand the understanding of the spread of syphilis in Louisiana, and to add new tools to the state's case finding resources through the description of the characteristics of cases of early syphilis and their partners in Louisiana, the socio-sexual networks of these cases, and the geospatial clustering of cases and partners. Methods: Utilizing state surveillance data, all cases of primary, secondary, and early latent syphilis that were diagnosed in 2009 and data on their sexual or needle sharing partners were analyzed using a combination of descriptive, network, and geospatial measures. Results: In 2009, Louisiana experienced a high rate of heterosexual syphilis transmission. Within syphilis transmission networks, 50.8% of all cases were female and 84.2% of all cases were black. The average and median ages of males with reactive syphilis tests were higher than that of females in Louisiana, and in 88.9% of regions, older individuals were more likely to have a syphilis test than no test. A greater proportion of males (11.4%) refused to discuss partners than females (7.4%) and a greater proportion of males (5.5%) refused testing and prophylactic treatment than females (2.8%). No distinct patterns were seen in disease prevalence between regions based upon demographic data. Classic summary network measures such as density, degree, centrality, and betweenness provided little information on similarities and differences between the different regions in Louisiana. All measures indicated low density and extreme fragmentation of networks in Louisiana. The majority of network

  6. Information transfer and information modification to identify the structure of cardiovascular and cardiorespiratory networks.

    Science.gov (United States)

    Faes, Luca; Nollo, Giandomenico; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Javorka, Michal

    2017-07-01

    To fully elucidate the complex physiological mechanisms underlying the short-term autonomic regulation of heart period (H), systolic and diastolic arterial pressure (S, D) and respiratory (R) variability, the joint dynamics of these variables need to be explored using multivariate time series analysis. This study proposes the utilization of information-theoretic measures to measure causal interactions between nodes of the cardiovascular/cardiorespiratory network and to assess the nature (synergistic or redundant) of these directed interactions. Indexes of information transfer and information modification are extracted from the H, S, D and R series measured from healthy subjects in a resting state and during postural stress. Computations are performed in the framework of multivariate linear regression, using bootstrap techniques to assess on a single-subject basis the statistical significance of each measure and of its transitions across conditions. We find patterns of information transfer and modification which are related to specific cardiovascular and cardiorespiratory mechanisms in resting conditions and to their modification induced by the orthostatic stress.

  7. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  8. Analysis and monitoring design for networks

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  9. Network analysis of team communication in a busy emergency department

    Science.gov (United States)

    2013-01-01

    Background The Emergency Department (ED) is consistently described as a high-risk environment for patients and clinicians that demands colleagues quickly work together as a cohesive group. Communication between nurses, physicians, and other ED clinicians is complex and difficult to track. A clear understanding of communications in the ED is lacking, which has a potentially negative impact on the design and effectiveness of interventions to improve communications. We sought to use Social Network Analysis (SNA) to characterize communication between clinicians in the ED. Methods Over three-months, we surveyed to solicit the communication relationships between clinicians at one urban academic ED across all shifts. We abstracted survey responses into matrices, calculated three standard SNA measures (network density, network centralization, and in-degree centrality), and presented findings stratified by night/day shift and over time. Results We received surveys from 82% of eligible participants and identified wide variation in the magnitude of communication cohesion (density) and concentration of communication between clinicians (centralization) by day/night shift and over time. We also identified variation in in-degree centrality (a measure of power/influence) by day/night shift and over time. Conclusions We show that SNA measurement techniques provide a comprehensive view of ED communication patterns. Our use of SNA revealed that frequency of communication as a measure of interdependencies between ED clinicians varies by day/night shift and over time. PMID:23521890

  10. A probabilistic approach to identify putative drug targets in biochemical networks.

    NARCIS (Netherlands)

    Murabito, E.; Smalbone, K.; Swinton, J.; Westerhoff, H.V.; Steuer, R.

    2011-01-01

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual

  11. 6th International Conference on Network Analysis

    CERN Document Server

    Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg

    2017-01-01

    This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...

  12. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....

  13. Artificial neural network for violation analysis

    International Nuclear Information System (INIS)

    Zhang, Z.; Polet, P.; Vanderhaegen, F.; Millot, P.

    2004-01-01

    Barrier removal (BR) is a safety-related violation, and it can be analyzed in terms of benefits, costs, and potential deficits. In order to allow designers to integrate BR into the risk analysis during the initial design phase or during re-design work, we propose a connectionist method integrating self-organizing maps (SOM). The basic SOM is an artificial neural network that, on the basis of the information contained in a multi-dimensional space, generates a space of lesser dimensions. Three algorithms--Unsupervised SOM, Supervised SOM, and Hierarchical SOM--have been developed to permit BR classification and prediction in terms of the different criteria. The proposed method can be used, on the one hand, to foresee/predict the possibility level of a new/changed barrier (prospective analysis), and on the other hand, to synthetically regroup/rearrange the BR of a given human-machine system (retrospective analysis). We applied this method to the BR analysis of an experimental railway simulator, and our preliminary results are presented here

  14. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    Science.gov (United States)

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  15. Constructing disease-specific gene networks using pair-wise relevance metric: Application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2008-08-01

    Full Text Available Abstract Background With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. Results The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8 (p ≈ 0, desmin (DES (p = 2.71 × 10-6 and enolase 1 (ENO1 (p = 4.19 × 10-5], while two novel hub genes [RNA binding motif protein 9 (RBM9 (p = 1.50 × 10-4 and ribosomal protein L30 (RPL30 (p = 1.50 × 10-4] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO based analysis of the colon cancer-specific gene network and

  16. Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements.

    Science.gov (United States)

    Jiang, Wei; Li, Xia; Rao, Shaoqi; Wang, Lihong; Du, Lei; Li, Chuanxing; Wu, Chao; Wang, Hongzhi; Wang, Yadong; Yang, Baofeng

    2008-08-10

    With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8) (p approximately 0), desmin (DES) (p = 2.71 x 10(-6)) and enolase 1 (ENO1) (p = 4.19 x 10(-5))], while two novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 x 10(-4)) and ribosomal protein L30 (RPL30) (p = 1.50 x 10(-4))] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-network that

  17. In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling.

    Science.gov (United States)

    Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio; Ortega-Villaizan, María Del Mar

    2018-04-09

    Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.

  18. <