WorldWideScience

Sample records for network analysis computer

  1. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  2. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  3. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  4. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  5. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  6. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  7. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    various classification modes (decision trees, rulesets, boosting, softening thresholds) regarding the classification accuracy and the time required to create the classifier. We showed how to use our VBS tool to obtain per-flow, per-application, and per-content statistics of traffic in computer networks...

  8. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  9. computer networks

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  10. Spatial Analysis Along Networks Statistical and Computational Methods

    CERN Document Server

    Okabe, Atsuyuki

    2012-01-01

    In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process

  11. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    Science.gov (United States)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  12. Applied and computational harmonic analysis on graphs and networks

    Science.gov (United States)

    Irion, Jeff; Saito, Naoki

    2015-09-01

    In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.

  13. Computer-communication networks

    CERN Document Server

    Meditch, James S

    1983-01-01

    Computer- Communication Networks presents a collection of articles the focus of which is on the field of modeling, analysis, design, and performance optimization. It discusses the problem of modeling the performance of local area networks under file transfer. It addresses the design of multi-hop, mobile-user radio networks. Some of the topics covered in the book are the distributed packet switching queuing network design, some investigations on communication switching techniques in computer networks and the minimum hop flow assignment and routing subject to an average message delay constraint

  14. Fluid Centrality: A Social Network Analysis of Social-Technical Relations in Computer-Mediated Communication

    Science.gov (United States)

    Enriquez, Judith Guevarra

    2010-01-01

    In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…

  15. Syntactic computations in the language network: Characterising dynamic network properties using representational similarity analysis

    Directory of Open Access Journals (Sweden)

    Lorraine Komisarjevsky Tyler

    2013-05-01

    Full Text Available The core human capacity of syntactic analysis involves a left hemisphere network involving left inferior frontal gyrus (LIFG and posterior middle temporal gyrus (LMTG and the anatomical connections between them. Here we use MEG to determine the spatio-temporal properties of syntactic computations in this network. Listeners heard spoken sentences containing a local syntactic ambiguity (e.g. …landing planes…, at the offset of which they heard a disambiguating verb and decided whether it was an acceptable/unacceptable continuation of the sentence. We charted the time-course of processing and resolving syntactic ambiguity by measuring MEG responses from the onset of each word in the ambiguous phrase and the disambiguating word. We used representational similarity analysis (RSA to characterize syntactic information represented in the LIFG and LpMTG over time and to investigate their relationship to each other. Testing a variety of lexico-syntactic and ambiguity models against the MEG data, our results suggest early lexico-syntactic responses in the LpMTG and later effects of ambiguity in the LIFG, pointing to a clear differentiation in the functional roles of these two regions. Our results suggest the LpMTG represents and transmits lexical information to the LIFG, which responds to and resolves the ambiguity.

  16. Offline computing and networking

    International Nuclear Information System (INIS)

    Appel, J.A.; Avery, P.; Chartrand, G.

    1985-01-01

    This note summarizes the work of the Offline Computing and Networking Group. The report is divided into two sections; the first deals with the computing and networking requirements and the second with the proposed way to satisfy those requirements. In considering the requirements, we have considered two types of computing problems. The first is CPU-intensive activity such as production data analysis (reducing raw data to DST), production Monte Carlo, or engineering calculations. The second is physicist-intensive computing such as program development, hardware design, physics analysis, and detector studies. For both types of computing, we examine a variety of issues. These included a set of quantitative questions: how much CPU power (for turn-around and for through-put), how much memory, mass-storage, bandwidth, and so on. There are also very important qualitative issues: what features must be provided by the operating system, what tools are needed for program design, code management, database management, and for graphics

  17. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    Science.gov (United States)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  18. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    Science.gov (United States)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  19. Development of Computer Science Disciplines - A Social Network Analysis Approach

    OpenAIRE

    Pham, Manh Cuong; Klamma, Ralf; Jarke, Matthias

    2011-01-01

    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and ...

  20. Introduction to computer networking

    CERN Document Server

    Robertazzi, Thomas G

    2017-01-01

    This book gives a broad look at both fundamental networking technology and new areas that support it and use it. It is a concise introduction to the most prominent, recent technological topics in computer networking. Topics include network technology such as wired and wireless networks, enabling technologies such as data centers, software defined networking, cloud and grid computing and applications such as networks on chips, space networking and network security. The accessible writing style and non-mathematical treatment makes this a useful book for the student, network and communications engineer, computer scientist and IT professional. • Features a concise, accessible treatment of computer networking, focusing on new technological topics; • Provides non-mathematical introduction to networks in their most common forms today;< • Includes new developments in switching, optical networks, WiFi, Bluetooth, LTE, 5G, and quantum cryptography.

  1. Parallel computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    Science.gov (United States)

    Janetzke, D. C.; Murthy, D. V.

    1991-01-01

    Aeroelastic analysis is mult-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic analysis capability on a distributed-memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a three-dimensional unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent are demonstrated using 32 processors. The effects of subtask ordering, problem size and network topology are presented. A comparison to results on a shared-memory computer indicates that higher speedup is achieved on the distributed-memory system.

  2. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  3. Basics of Computer Networking

    CERN Document Server

    Robertazzi, Thomas

    2012-01-01

    Springer Brief Basics of Computer Networking provides a non-mathematical introduction to the world of networks. This book covers both technology for wired and wireless networks. Coverage includes transmission media, local area networks, wide area networks, and network security. Written in a very accessible style for the interested layman by the author of a widely used textbook with many years of experience explaining concepts to the beginner.

  4. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  5. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    Science.gov (United States)

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for

  6. Classroom Computer Network.

    Science.gov (United States)

    Lent, John

    1984-01-01

    This article describes a computer network system that connects several microcomputers to a single disk drive and one copy of software. Many schools are switching to networks as a cheaper and more efficient means of computer instruction. Teachers may be faced with copywriting problems when reproducing programs. (DF)

  7. Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    2017-01-01

    Full Text Available This paper proposes a framework for a reliability-based flow analysis for a water pipe network after an earthquake. For the first part of the framework, we propose to use a modeling procedure for multiple leaks and breaks in the water pipe segments of a network that has been damaged by an earthquake. For the second part, we propose an efficient system-level probabilistic flow analysis process that integrates the matrix-based system reliability (MSR formulation and the branch-and-bound method. This process probabilistically predicts flow quantities by considering system-level damage scenarios consisting of combinations of leaks and breaks in network pipes and significantly reduces the computational cost by sequentially prioritizing the system states according to their likelihoods and by using the branch-and-bound method to select their partial sets. The proposed framework is illustrated and demonstrated by examining two example water pipe networks that have been subjected to a seismic event. These two examples consist of 11 and 20 pipe segments, respectively, and are computationally modeled considering their available topological, material, and mechanical properties. Considering different earthquake scenarios and the resulting multiple leaks and breaks in the water pipe segments, the water flows in the segments are estimated in a computationally efficient manner.

  8. Use of artificial neural networks (computer analysis) in the diagnosis of microcalcifications on mammography

    International Nuclear Information System (INIS)

    Markopoulos, Christos; Kouskos, Efstratios; Koufopoulos, Konstantinos; Kyriakou, Vasiliki; Gogas, John

    2001-01-01

    Introduction/objective: the purpose of this study was to evaluate a computer based method for differentiating malignant from benign clustered microcalcifications, comparing it with the performance of three physicians. Methods and material: materials for the study are 240 suspicious microcalcifications on mammograms from 220 female patients who underwent breast biopsy, following hook wire localization under mammographic guidance. The histologic findings were malignant in 108 cases (45%) and benign in 132 cases (55%). Those clusters were analyzed by a computer program and eight features of the calcifications (density, number, area, brightness, diameter average, distance average, proximity average, perimeter compacity average) were quantitatively estimated by a specific artificial neural network. Human input was limited to initial identification of the calcifications. Three physicians-observers were also evaluated for the malignant or benign nature of the clustered microcalcifications. Results: the performance of the artificial network was evaluated by receiver operating characteristics (ROC) curves. ROC curves were also generated for the performance of each observer and for the three observers as a group. The ROC curves for the computer and for the physicians were compared and the results are:area under the curve (AUC) value for computer is 0.937, for physician-1 is 0.746, for physician-2 is 0.785, for physician-3 is 0.835 and for physicians as a group is 0.810. The results of the Student's t-test for paired data showed statistically significant difference between the artificial neural network and the physicians' performance, independently and as a group. Discussion and conclusion: our study showed that computer analysis achieves statistically significantly better performance than that of physicians in the classification of malignant and benign calcifications. This method, after further evaluation and improvement, may help radiologists and breast surgeons in better

  9. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  10. Dynamics of global supply chain and electric power networks: Models, pricing analysis, and computations

    Science.gov (United States)

    Matsypura, Dmytro

    In this dissertation, I develop a new theoretical framework for the modeling, pricing analysis, and computation of solutions to electric power supply chains with power generators, suppliers, transmission service providers, and the inclusion of consumer demands. In particular, I advocate the application of finite-dimensional variational inequality theory, projected dynamical systems theory, game theory, network theory, and other tools that have been recently proposed for the modeling and analysis of supply chain networks (cf. Nagurney (2006)) to electric power markets. This dissertation contributes to the extant literature on the modeling, analysis, and solution of supply chain networks, including global supply chains, in general, and electric power supply chains, in particular, in the following ways. It develops a theoretical framework for modeling, pricing analysis, and computation of electric power flows/transactions in electric power systems using the rationale for supply chain analysis. The models developed include both static and dynamic ones. The dissertation also adds a new dimension to the methodology of the theory of projected dynamical systems by proving that, irrespective of the speeds of adjustment, the equilibrium of the system remains the same. Finally, I include alternative fuel suppliers, along with their behavior into the supply chain modeling and analysis framework. This dissertation has strong practical implications. In an era in which technology and globalization, coupled with increasing risk and uncertainty, complicate electricity demand and supply within and between nations, the successful management of electric power systems and pricing become increasingly pressing topics with relevance not only for economic prosperity but also national security. This dissertation addresses such related topics by providing models, pricing tools, and algorithms for decentralized electric power supply chains. This dissertation is based heavily on the following

  11. Mapping university students’ epistemic framing of computational physics using network analysis

    Directory of Open Access Journals (Sweden)

    Madelen Bodin

    2012-04-01

    Full Text Available Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students’ beliefs about the domains as well as about learning. These knowledge and beliefs components are referred to here as epistemic elements, which together represent the students’ epistemic framing of the situation. The purpose of this study was to investigate university physics students’ epistemic framing when solving and visualizing a physics problem using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task using a network analysis approach on interview transcripts, producing visual representations as epistemic networks. The results show that students change their epistemic framing from a modeling task, with expectancies about learning programming, to a physics task, in which they are challenged to use physics principles and conservation laws in order to troubleshoot and understand their simulations. This implies that the task, even though it is not introducing any new physics, helps the students to develop a more coherent view of the importance of using physics principles in problem solving. The network analysis method used in this study is shown to give intelligible representations of the students’ epistemic framing and is proposed as a useful method of analysis of textual data.

  12. Services Recommendation System based on Heterogeneous Network Analysis in Cloud Computing

    OpenAIRE

    Junping Dong; Qingyu Xiong; Junhao Wen; Peng Li

    2014-01-01

    Resources are provided mainly in the form of services in cloud computing. In the distribute environment of cloud computing, how to find the needed services efficiently and accurately is the most urgent problem in cloud computing. In cloud computing, services are the intermediary of cloud platform, services are connected by lots of service providers and requesters and construct the complex heterogeneous network. The traditional recommendation systems only consider the functional and non-functi...

  13. SCinet Architecture: Featured at the International Conference for High Performance Computing,Networking, Storage and Analysis 2016

    Energy Technology Data Exchange (ETDEWEB)

    Lyonnais, Marc; Smith, Matt; Mace, Kate P.

    2017-02-06

    SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design and deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.

  14. Computer Networks and Globalization

    Directory of Open Access Journals (Sweden)

    J. Magliaro

    2007-07-01

    Full Text Available Communication and information computer networks connect the world in ways that make globalization more natural and inequity more subtle. As educators, we look at these phenomena holistically analyzing them from the realist’s view, thus exploring tensions, (in equity and (injustice, and from the idealist’s view, thus embracing connectivity, convergence and development of a collective consciousness. In an increasingly market- driven world we find examples of openness and human generosity that are based on networks, specifically the Internet. After addressing open movements in publishing, software industry and education, we describe the possibility of a dialectic equilibrium between globalization and indigenousness in view of ecologically designed future smart networks

  15. Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Directory of Open Access Journals (Sweden)

    Nasaruddin Nasaruddin

    2013-09-01

    Full Text Available This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA computer network with different quality of service (QoS requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs, which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks.

  16. Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Directory of Open Access Journals (Sweden)

    Nasaruddin

    2009-11-01

    Full Text Available This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA computer network with different quality of service (QoS requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs, which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks.

  17. A comparative analysis on computational methods for fitting an ERGM to biological network data

    Directory of Open Access Journals (Sweden)

    Sudipta Saha

    2015-03-01

    Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.

  18. Analysis of Various Computer System Monitoring and LCD Projector through the Network TCP/IP

    Directory of Open Access Journals (Sweden)

    Santoso Budijono

    2015-09-01

    Full Text Available Many electronic devices have a network connection facility. Projectors today have network facilities to bolster its customer satisfaction in everyday use. By using a device that can be controlled, the expected availability and reliability of the presentation system (computer and projector can be maintained to keep itscondition ready to use for presentation. Nevertheless, there is still a projector device that has no network facilities so that the necessary additional equipment with expensive price. Besides, control equipment in large quantities has problems in timing and the number of technicians in performing controls. This study began with study of literature, from searching for the projectors that has LAN and software to control and finding a number of computer control softwares where the focus is easy to use and affordable. Result of this research is creating asystem which contains suggestions of procurement of computer hardware, hardware and software projectors each of which can be controlled centrally from a distance.

  19. Classification of dried vegetables using computer image analysis and artificial neural networks

    Science.gov (United States)

    Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.

    2017-07-01

    In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.

  20. BONFIRE: benchmarking computers and computer networks

    OpenAIRE

    Bouckaert, Stefan; Vanhie-Van Gerwen, Jono; Moerman, Ingrid; Phillips, Stephen; Wilander, Jerker

    2011-01-01

    The benchmarking concept is not new in the field of computing or computer networking. With “benchmarking tools”, one usually refers to a program or set of programs, used to evaluate the performance of a solution under certain reference conditions, relative to the performance of another solution. Since the 1970s, benchmarking techniques have been used to measure the performance of computers and computer networks. Benchmarking of applications and virtual machines in an Infrastructure-as-a-Servi...

  1. Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

    Directory of Open Access Journals (Sweden)

    Bader Al-Anzi

    2015-05-01

    Full Text Available An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae. A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.

  2. Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

    Science.gov (United States)

    Al-Anzi, Bader; Arpp, Patrick; Gerges, Sherif; Ormerod, Christopher; Olsman, Noah; Zinn, Kai

    2015-05-01

    An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.

  3. Genetic networks and soft computing.

    Science.gov (United States)

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  4. An integrative computational analysis provides evidence for FBN1-associated network deregulation in trisomy 21

    Directory of Open Access Journals (Sweden)

    Mireia Vilardell

    2013-06-01

    Although approximately 50% of Down Syndrome (DS patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS. The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS. Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%, such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

  5. Computing and Network - Overview

    International Nuclear Information System (INIS)

    Jakubowski, Z.

    1999-01-01

    Full text: The responsibility of the Network Group covers: - providing central services like WWW, DNS (Domain Name Server), mail, etc.; - maintenance and support of the Local Area Networks,; - operation of the Wide Area Networks (LAN); - the support of the central UNIX servers and desktop workstations; - VAX/VMS cluster operation and support. The two-processor HP-UNIX K-200 and 6-processor SGI Challenge XL servers were delivering stable services to our users. Both servers were upgraded during the past year. SGI Challenge received additional 256 MB of memory. It was necessary in order to get all benefits of true 64-bit architecture of the SGI IRIX 6.2. The upgrade of our HP K-200 server were problematic so we decided to buy a new powerful machine and join the old and new machine via the fast network. Besides these main servers we have more than 30 workstations from IBM, DEC, HP, SGI and SUN. We observed a real race in PC technology in the past year. Intel processors deliver currently a performance that is comparable with HP or SUN workstations at very low costs. These CPU power is especially visible under Linux that is free Unix-like operating system. The clusters of cheap PC computers should be seriously considered in planning the computing power for the future experiments. The CPU power was further decentralized-smaller but powerful computers cover growing computing demands of our work-groups creating a small ''local computing centers''. The stable network and the concept of central services plays the essential role in this scenario. Unfortunately the network performance for the international communications is persistently unacceptable. We believe that attempts to join the European Quantum project is the only way to achieve the reasonable international network performance. In these plan polish scientific community will gain 34 Mbps international link. The growing costs of the ''real meetings'' give us no alternative to ''virtual meetings'' via the network in the

  6. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  7. Computing networks from cluster to cloud computing

    CERN Document Server

    Vicat-Blanc, Pascale; Guillier, Romaric; Soudan, Sebastien

    2013-01-01

    "Computing Networks" explores the core of the new distributed computing infrastructures we are using today:  the networking systems of clusters, grids and clouds. It helps network designers and distributed-application developers and users to better understand the technologies, specificities, constraints and benefits of these different infrastructures' communication systems. Cloud Computing will give the possibility for millions of users to process data anytime, anywhere, while being eco-friendly. In order to deliver this emerging traffic in a timely, cost-efficient, energy-efficient, and

  8. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  9. Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.

    1996-03-01

    Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.

  10. Conceptual metaphors in computer networking terminology ...

    African Journals Online (AJOL)

    Lakoff & Johnson, 1980) is used as a basic framework for analysing and explaining the occurrence of metaphor in the terminology used by computer networking professionals in the information technology (IT) industry. An analysis of linguistic ...

  11. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  12. Computing spin networks

    International Nuclear Information System (INIS)

    Marzuoli, Annalisa; Rasetti, Mario

    2005-01-01

    We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU (2) angular momenta. Such scheme automatically incorporates all the essential features that make quantum information encoding much more efficient than classical: it is fully discrete; it deals with inherently entangled states, naturally endowed with a tensor product structure; it allows for generic encoding patterns. The model proposed can be thought of as the non-Boolean generalization of the quantum circuit model, with unitary gates expressed in terms of 3nj coefficients connecting inequivalent binary coupling schemes of n + 1 angular momentum variables, as well as Wigner rotations in the eigenspace of the total angular momentum. A crucial role is played by elementary j-gates (6j symbols) which satisfy algebraic identities that make the structure of the model similar to 'state sum models' employed in discretizing topological quantum field theories and quantum gravity. The spin network simulator can thus be viewed also as a Combinatorial QFT model for computation. The semiclassical limit (large j) is discussed

  13. Network survivability performance (computer diskette)

    Science.gov (United States)

    1993-11-01

    File characteristics: Data file; 1 file. Physical description: 1 computer diskette; 3 1/2 in.; high density; 2.0MB. System requirements: Mac; Word. This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunication networks to user expectations for network survivability.

  14. Understanding and designing computer networks

    CERN Document Server

    King, Graham

    1995-01-01

    Understanding and Designing Computer Networks considers the ubiquitous nature of data networks, with particular reference to internetworking and the efficient management of all aspects of networked integrated data systems. In addition it looks at the next phase of networking developments; efficiency and security are covered in the sections dealing with data compression and data encryption; and future examples of network operations, such as network parallelism, are introduced.A comprehensive case study is used throughout the text to apply and illustrate new techniques and concepts as th

  15. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  16. Computer networks and advanced communications

    International Nuclear Information System (INIS)

    Koederitz, W.L.; Macon, B.S.

    1992-01-01

    One of the major methods for getting the most productivity and benefits from computer usage is networking. However, for those who are contemplating a change from stand-alone computers to a network system, the investigation of actual networks in use presents a paradox: network systems can be highly productive and beneficial; at the same time, these networks can create many complex, frustrating problems. The issue becomes a question of whether the benefits of networking are worth the extra effort and cost. In response to this issue, the authors review in this paper the implementation and management of an actual network in the LSU Petroleum Engineering Department. The network, which has been in operation for four years, is large and diverse (50 computers, 2 sites, PC's, UNIX RISC workstations, etc.). The benefits, costs, and method of operation of this network will be described, and an effort will be made to objectively weigh these elements from the point of view of the average computer user

  17. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  18. Computer Network Operations Methodology

    Science.gov (United States)

    2004-03-01

    means of their computer information systems. Disrupt - This type of attack focuses on disrupting as “attackers might surreptitiously reprogram enemy...by reprogramming the computers that control distribution within the power grid. A disruption attack introduces disorder and inhibits the effective...between commanders. The use of methodologies is widespread and done subconsciously to assist individuals in decision making. The processes that

  19. Analysis of multiuser mixed RF/FSO relay networks for performance improvements in Cloud Computing-Based Radio Access Networks (CC-RANs)

    Science.gov (United States)

    Alimi, Isiaka A.; Monteiro, Paulo P.; Teixeira, António L.

    2017-11-01

    The key paths toward the fifth generation (5G) network requirements are towards centralized processing and small-cell densification systems that are implemented on the cloud computing-based radio access networks (CC-RANs). The increasing recognitions of the CC-RANs can be attributed to their valuable features regarding system performance optimization and cost-effectiveness. Nevertheless, realization of the stringent requirements of the fronthaul that connects the network elements is highly demanding. In this paper, considering the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay networks as feasible technologies for the alleviation of the stringent requirements in the CC-RANs. In this study, we use the end-to-end (e2e) outage probability, average symbol error probability (ASEP), and ergodic channel capacity as the performance metrics in our analysis. Simulation results show the suitability of deployment of mixed RF/FSO schemes in the real-life scenarios.

  20. Social networks a framework of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2014-01-01

    This volume provides the audience with an updated, in-depth and highly coherent material on the conceptually appealing and practically sound information technology of Computational Intelligence applied to the analysis, synthesis and evaluation of social networks. The volume involves studies devoted to key issues of social networks including community structure detection in networks, online social networks, knowledge growth and evaluation, and diversity of collaboration mechanisms.  The book engages a wealth of methods of Computational Intelligence along with well-known techniques of linear programming, Formal Concept Analysis, machine learning, and agent modeling.  Human-centricity is of paramount relevance and this facet manifests in many ways including personalized semantics, trust metric, and personal knowledge management; just to highlight a few of these aspects. The contributors to this volume report on various essential applications including cyber attacks detection, building enterprise social network...

  1. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  2. Computer Network Security- The Challenges of Securing a Computer Network

    Science.gov (United States)

    Scotti, Vincent, Jr.

    2011-01-01

    This article is intended to give the reader an overall perspective on what it takes to design, implement, enforce and secure a computer network in the federal and corporate world to insure the confidentiality, integrity and availability of information. While we will be giving you an overview of network design and security, this article will concentrate on the technology and human factors of securing a network and the challenges faced by those doing so. It will cover the large number of policies and the limits of technology and physical efforts to enforce such policies.

  3. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  4. Microcomputers and computer networks

    International Nuclear Information System (INIS)

    Owens, J.L.

    1976-01-01

    Computers, for all their speed and efficiency, have their foibles and failings. Until the advent of minicomputers, users often had to supervise their programs personally to make sure they executed correctly. Minicomputers could take over some of these chores, but they were too expensive to be dedicated to any but the most vital services. Inexpensive, easily programmed microcomputers are easing this limitation, and permitting a flood of new applications. 3 figures

  5. Computer interpretation of thallium SPECT studies based on neural network analysis

    Science.gov (United States)

    Wang, David C.; Karvelis, K. C.

    1991-06-01

    A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.

  6. Computer interpretation of thallium SPECT studies based on neural network analysis

    International Nuclear Information System (INIS)

    Wang, D.C.; Karvelis, K.C.

    1991-01-01

    This paper reports that a class of artificial intelligence (AI) programs known as neural-networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from expert system AI programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The bullseye images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of the trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging

  7. Hyperswitch Network For Hypercube Computer

    Science.gov (United States)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  8. Networking DEC and IBM computers

    Science.gov (United States)

    Mish, W. H.

    1983-01-01

    Local Area Networking of DEC and IBM computers within the structure of the ISO-OSI Seven Layer Reference Model at a raw signaling speed of 1 Mops or greater are discussed. After an introduction to the ISO-OSI Reference Model nd the IEEE-802 Draft Standard for Local Area Networks (LANs), there follows a detailed discussion and comparison of the products available from a variety of manufactures to perform this networking task. A summary of these products is presented in a table.

  9. Computing motion using resistive networks

    Science.gov (United States)

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  10. An introduction to computer networks

    CERN Document Server

    Rizvi, SAM

    2011-01-01

    AN INTRODUCTION TO COMPUTER NETWORKS is a comprehensive text book which is focused and designed to elaborate the technical contents in the light of TCP/IP reference model exploring both digital and analog data communication. Various communication protocols of different layers are discussed along with their pseudo-code. This book covers the detailed and practical information about the network layer alongwith information about IP including IPV6, OSPF, and internet multicasting. It also covers TCP congestion control and emphasizes on the basic principles of fundamental importance concerning the technology and architecture and provides detailed discussion of leading edge topics of data communication, LAN & Network Layer.

  11. Collective network for computer structures

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  12. Spin networks and quantum computation

    International Nuclear Information System (INIS)

    Kauffman, L.; Lomonaco, S. Jr.

    2008-01-01

    We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods to produce unitary representations of the braid groups that are dense in the unitary groups. The simplest case of these models is the Fibonacci model, itself universal for quantum computation. We here formulate these braid group representations in a form suitable for computation and algebraic work. (authors)

  13. [Text mining, a method for computer-assisted analysis of scientific texts, demonstrated by an analysis of author networks].

    Science.gov (United States)

    Hahn, P; Dullweber, F; Unglaub, F; Spies, C K

    2014-06-01

    Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Barker, Gary C

    2014-10-24

    Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics. This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system. We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the

  15. Experimental and computational tools for analysis of signaling networks in primary cells

    DEFF Research Database (Denmark)

    Schoof, Erwin M; Linding, Rune

    2014-01-01

    Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis, or differ......Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis......; this information is critical when trying to elucidate key proteins involved in specific cellular responses. Here, methods to generate high-quality quantitative phosphorylation data from cell lysates originating from primary cells, and how to analyze the generated data to construct quantitative signaling network...

  16. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  17. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  18. CUSTOMER VALUE NETWORK ANALYSIS FOR IMPROVEMENT OF CUSTOMER LIFE-TIME VALUE COMPUTATION

    OpenAIRE

    Monireh Hosseini; Amir Albadvi

    2010-01-01

    The constant changes in the world have exposed companies to a situation of tough competition. This situation, especially in e-commerce, complicates the decision-making process about target customers and the recommendation of products to them. On the one hand, understanding and measuring the customer lifetime value (CLV) is a critical factor for long-term success. On the other hand, the value network is a new concept that considers both tangible and intangible complex dynamic value exchanges b...

  19. COMPUTATIONAL ANALYSIS BASED ON ARTIFICIAL NEURAL NETWORKS FOR AIDING IN DIAGNOSING OSTEOARTHRITIS OF THE LUMBAR SPINE

    Science.gov (United States)

    Veronezi, Carlos Cassiano Denipotti; de Azevedo Simões, Priscyla Waleska Targino; dos Santos, Robson Luiz; da Rocha, Edroaldo Lummertz; Meláo, Suelen; de Mattos, Merisandra Côrtes; Cechinel, Cristian

    2015-01-01

    Objective: To ascertain the advantages of applying artificial neural networks to recognize patterns on lumbar spine radiographies in order to aid in the process of diagnosing primary osteoarthritis. Methods: This was a cross-sectional descriptive analytical study with a quantitative approach and an emphasis on diagnosis. The training set was composed of images collected between January and July 2009 from patients who had undergone lateral-view digital radiographies of the lumbar spine, which were provided by a radiology clinic located in the municipality of Criciúma (SC). Out of the total of 260 images gathered, those with distortions, those presenting pathological conditions that altered the architecture of the lumbar spine and those with patterns that were difficult to characterize were discarded, resulting in 206 images. The image data base (n = 206) was then subdivided, resulting in 68 radiographies for the training stage, 68 images for tests and 70 for validation. A hybrid neural network based on Kohonen self-organizing maps and on Multilayer Perceptron networks was used. Results: After 90 cycles, the validation was carried out on the best results, achieving accuracy of 62.85%, sensitivity of 65.71% and specificity of 60%. Conclusions: Even though the effectiveness shown was moderate, this study is still innovative. The values show that the technique used has a promising future, pointing towards further studies on image and cycle processing methodology with a larger quantity of radiographies. PMID:27027010

  20. Mapping University Students' Epistemic Framing of Computational Physics Using Network Analysis

    Science.gov (United States)

    Bodin, Madelen

    2012-01-01

    Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students' beliefs about the domains as well as about learning. These knowledge and beliefs components are…

  1. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han; Yang, Yong Liang; Bao, Fan; Fink, Daniel; Yan, Dongming; Wonka, Peter; Mitra, Niloy J.

    2016-01-01

    of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications

  2. Computational analysis of network activity and spatial reach of sharp wave-ripples.

    Directory of Open Access Journals (Sweden)

    Sadullah Canakci

    Full Text Available Network oscillations of different frequencies, durations and amplitudes are hypothesized to coordinate information processing and transfer across brain areas. Among these oscillations, hippocampal sharp wave-ripple complexes (SPW-Rs are one of the most prominent. SPW-Rs occurring in the hippocampus are suggested to play essential roles in memory consolidation as well as information transfer to the neocortex. To-date, most of the knowledge about SPW-Rs comes from experimental studies averaging responses from neuronal populations monitored by conventional microelectrodes. In this work, we investigate spatiotemporal characteristics of SPW-Rs and how microelectrode size and distance influence SPW-R recordings using a biophysical model of hippocampus. We also explore contributions from neuronal spikes and synaptic potentials to SPW-Rs based on two different types of network activity. Our study suggests that neuronal spikes from pyramidal cells contribute significantly to ripples while high amplitude sharp waves mainly arise from synaptic activity. Our simulations on spatial reach of SPW-Rs show that the amplitudes of sharp waves and ripples exhibit a steep decrease with distance from the network and this effect is more prominent for smaller area electrodes. Furthermore, the amplitude of the signal decreases strongly with increasing electrode surface area as a result of averaging. The relative decrease is more pronounced when the recording electrode is closer to the source of the activity. Through simulations of field potentials across a high-density microelectrode array, we demonstrate the importance of finding the ideal spatial resolution for capturing SPW-Rs with great sensitivity. Our work provides insights on contributions from spikes and synaptic potentials to SPW-Rs and describes the effect of measurement configuration on LFPs to guide experimental studies towards improved SPW-R recordings.

  3. Computer Networks as a New Data Base.

    Science.gov (United States)

    Beals, Diane E.

    1992-01-01

    Discusses the use of communication on computer networks as a data source for psychological, social, and linguistic research. Differences between computer-mediated communication and face-to-face communication are described, the Beginning Teacher Computer Network is discussed, and examples of network conversations are appended. (28 references) (LRW)

  4. Computer Networking Laboratory for Undergraduate Computer Technology Program

    National Research Council Canada - National Science Library

    Naghedolfeizi, Masoud

    2000-01-01

    ...) To improve the quality of education in the existing courses related to computer networks and data communications as well as other computer science courses such programming languages and computer...

  5. Ecological network analysis: network construction

    NARCIS (Netherlands)

    Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.

    2007-01-01

    Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but

  6. Personal computer local networks report

    CERN Document Server

    1991-01-01

    Please note this is a Short Discount publication. Since the first microcomputer local networks of the late 1970's and early 80's, personal computer LANs have expanded in popularity, especially since the introduction of IBMs first PC in 1981. The late 1980s has seen a maturing in the industry with only a few vendors maintaining a large share of the market. This report is intended to give the reader a thorough understanding of the technology used to build these systems ... from cable to chips ... to ... protocols to servers. The report also fully defines PC LANs and the marketplace, with in-

  7. Traffic Dynamics of Computer Networks

    Science.gov (United States)

    Fekete, Attila

    2008-10-01

    Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.

  8. Parsimonious classification of binary lacunarity data computed from food surface images using kernel principal component analysis and artificial neural networks.

    Science.gov (United States)

    Iqbal, Abdullah; Valous, Nektarios A; Sun, Da-Wen; Allen, Paul

    2011-02-01

    Lacunarity is about quantifying the degree of spatial heterogeneity in the visual texture of imagery through the identification of the relationships between patterns and their spatial configurations in a two-dimensional setting. The computed lacunarity data can designate a mathematical index of spatial heterogeneity, therefore the corresponding feature vectors should possess the necessary inter-class statistical properties that would enable them to be used for pattern recognition purposes. The objectives of this study is to construct a supervised parsimonious classification model of binary lacunarity data-computed by Valous et al. (2009)-from pork ham slice surface images, with the aid of kernel principal component analysis (KPCA) and artificial neural networks (ANNs), using a portion of informative salient features. At first, the dimension of the initial space (510 features) was reduced by 90% in order to avoid any noise effects in the subsequent classification. Then, using KPCA, the first nineteen kernel principal components (99.04% of total variance) were extracted from the reduced feature space, and were used as input in the ANN. An adaptive feedforward multilayer perceptron (MLP) classifier was employed to obtain a suitable mapping from the input dataset. The correct classification percentages for the training, test and validation sets were 86.7%, 86.7%, and 85.0%, respectively. The results confirm that the classification performance was satisfactory. The binary lacunarity spatial metric captured relevant information that provided a good level of differentiation among pork ham slice images. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  9. Computer network for experimental research using ISDN

    International Nuclear Information System (INIS)

    Ida, Katsumi; Nakanishi, Hideya

    1997-01-01

    This report describes the development of a computer network that uses the Integrated Service Digital Network (ISDN) for real-time analysis of experimental plasma physics and nuclear fusion research. Communication speed, 64/128kbps (INS64) or 1.5Mbps (INS1500) per connection, is independent of how busy the network is. When INS-1500 is used, the communication speed, which is proportional to the public telephone connection fee, can be dynamically varied from 64kbps to 1472kbps (depending on how much data are being transferred using the Bandwidth-on-Demand (BOD) function in the ISDN Router. On-demand dial-up and time-out disconnection reduce the public telephone connection fee by 10%-97%. (author)

  10. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  11. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  12. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  13. Network Restoration for Next-Generation Communication and Computing Networks

    Directory of Open Access Journals (Sweden)

    B. S. Awoyemi

    2018-01-01

    Full Text Available Network failures are undesirable but inevitable occurrences for most modern communication and computing networks. A good network design must be robust enough to handle sudden failures, maintain traffic flow, and restore failed parts of the network within a permissible time frame, at the lowest cost achievable and with as little extra complexity in the network as possible. Emerging next-generation (xG communication and computing networks such as fifth-generation networks, software-defined networks, and internet-of-things networks have promises of fast speeds, impressive data rates, and remarkable reliability. To achieve these promises, these complex and dynamic xG networks must be built with low failure possibilities, high network restoration capacity, and quick failure recovery capabilities. Hence, improved network restoration models have to be developed and incorporated in their design. In this paper, a comprehensive study on network restoration mechanisms that are being developed for addressing network failures in current and emerging xG networks is carried out. Open-ended problems are identified, while invaluable ideas for better adaptation of network restoration to evolving xG communication and computing paradigms are discussed.

  14. A complex network approach to cloud computing

    International Nuclear Information System (INIS)

    Travieso, Gonzalo; Ruggiero, Carlos Antônio; Bruno, Odemir Martinez; Costa, Luciano da Fontoura

    2016-01-01

    Cloud computing has become an important means to speed up computing. One problem influencing heavily the performance of such systems is the choice of nodes as servers responsible for executing the clients’ tasks. In this article we report how complex networks can be used to model such a problem. More specifically, we investigate the performance of the processing respectively to cloud systems underlaid by Erdős–Rényi (ER) and Barabási-Albert (BA) topology containing two servers. Cloud networks involving two communities not necessarily of the same size are also considered in our analysis. The performance of each configuration is quantified in terms of the cost of communication between the client and the nearest server, and the balance of the distribution of tasks between the two servers. Regarding the latter, the ER topology provides better performance than the BA for smaller average degrees and opposite behaviour for larger average degrees. With respect to cost, smaller values are found in the BA topology irrespective of the average degree. In addition, we also verified that it is easier to find good servers in ER than in BA networks. Surprisingly, balance and cost are not too much affected by the presence of communities. However, for a well-defined community network, we found that it is important to assign each server to a different community so as to achieve better performance. (paper: interdisciplinary statistical mechanics )

  15. Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing.

    Science.gov (United States)

    Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio

    2009-01-01

    Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate

  16. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  17. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors.

    Science.gov (United States)

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-12-12

    Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.

  18. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Packet-Level Analysis

    Science.gov (United States)

    2015-09-01

    individual fragments using the hash-based method. In general, fragments 6 appear in order and relatively close to each other in the file. A fragment...data product derived from the data model is shown in Fig. 5, a Google Earth12 Keyhole Markup Language (KML) file. This product includes aggregate...System BLOb binary large object FPGA field-programmable gate array HPC high-performance computing IP Internet Protocol KML Keyhole Markup Language

  19. Computational movement analysis

    CERN Document Server

    Laube, Patrick

    2014-01-01

    This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fi

  20. Computing preimages of Boolean networks.

    Science.gov (United States)

    Klotz, Johannes; Bossert, Martin; Schober, Steffen

    2013-01-01

    In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

  1. Mobile Agents in Networking and Distributed Computing

    CERN Document Server

    Cao, Jiannong

    2012-01-01

    The book focuses on mobile agents, which are computer programs that can autonomously migrate between network sites. This text introduces the concepts and principles of mobile agents, provides an overview of mobile agent technology, and focuses on applications in networking and distributed computing.

  2. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2018-01-01

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Active Computer Network Defense: An Assessment

    Science.gov (United States)

    2001-04-01

    sufficient base of knowledge in information technology can be assumed to be working on some form of computer network warfare, even if only defensive in...the Defense Information Infrastructure (DII) to attack. Transmission Control Protocol/ Internet Protocol (TCP/IP) networks are inherently resistant to...aims to create this part of information superiority, and computer network defense is one of its fundamental components. Most of these efforts center

  4. Integrating Network Management for Cloud Computing Services

    Science.gov (United States)

    2015-06-01

    Backend Distributed Datastore High-­‐level   Objec.ve   Network   Policy   Perf.   Metrics   SNAT  IP   Alloca.on   Controller...azure.microsoft.com/. 114 [16] Microsoft Azure ExpressRoute. http://azure.microsoft.com/en-us/ services/expressroute/. [17] Mobility and Networking...Networking Technologies, Services, and Protocols; Performance of Computer and Commu- nication Networks; Mobile and Wireless Communications Systems

  5. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  6. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  7. Computation, cryptography, and network security

    CERN Document Server

    Rassias, Michael

    2015-01-01

    Analysis, assessment, and data management are core competencies for operation research analysts. This volume addresses a number of issues and developed methods for improving those skills. It is an outgrowth of a conference held in April 2013 at the Hellenic Military Academy, and brings together a broad variety of mathematical methods and theories with several applications. It discusses directions and pursuits of scientists that pertain to engineering sciences. It is also presents the theoretical background required for algorithms and techniques applied to a large variety of concrete problems. A number of open questions as well as new future areas are also highlighted.   This book will appeal to operations research analysts, engineers, community decision makers, academics, the military community, practitioners sharing the current “state-of-the-art,” and analysts from coalition partners. Topics covered include Operations Research, Games and Control Theory, Computational Number Theory and Information Securi...

  8. Low Computational Complexity Network Coding For Mobile Networks

    DEFF Research Database (Denmark)

    Heide, Janus

    2012-01-01

    Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...

  9. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han

    2016-07-11

    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

  10. Parallel computing and networking; Heiretsu keisanki to network

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, E; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper describes the trend of parallel computers used in geophysical exploration. Around 1993 was the early days when the parallel computers began to be used for geophysical exploration. Classification of these computers those days was mainly MIMD (multiple instruction stream, multiple data stream), SIMD (single instruction stream, multiple data stream) and the like. Parallel computers were publicized in the 1994 meeting of the Geophysical Exploration Society as a `high precision imaging technology`. Concerning the library of parallel computers, there was a shift to PVM (parallel virtual machine) in 1993 and to MPI (message passing interface) in 1995. In addition, the compiler of FORTRAN90 was released with support implemented for data parallel and vector computers. In 1993, networks used were Ethernet, FDDI, CDDI and HIPPI. In 1995, the OC-3 products under ATM began to propagate. However, ATM remains to be an interoffice high speed network because the ATM service has not spread yet for the public network. 1 ref.

  11. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    Science.gov (United States)

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  12. Characteristics of the TRISTAN control computer network

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Oide, Katsunobu; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    Twenty-four minicomputers forming an N-to-N token-ring network control the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on NODAL, a multicomputer interpretive language developed at the CERN SPS. The high-level services offered to the users of the network are remote execution by the EXEC, EXEC-P and IMEX commands of NODAL and uniform file access throughout the system. The network software was designed to achieve the fast response of the EXEC command. The performance of the network is also reported. Tasks that overload the minicomputers are processed on the KEK central computers. One minicomputer in the network serves as a gateway to KEKNET, which connects the minicomputer network and the central computers. The communication with the central computers is managed within the framework of the KEK NODAL system. NODAL programs communicate with the central computers calling NODAL functions; functions for exchanging data between a data set on the central computers and a NODAL variable, submitting a batch job to the central computers, checking the status of the submitted job, etc. are prepared. (orig.)

  13. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  14. Recurrent autoassociative networks and holistic computations

    NARCIS (Netherlands)

    Stoianov, [No Value; Amari, SI; Giles, CL; Gori, M; Piuri,

    2000-01-01

    The paper presents an experimental study of holistic computations over distributed representations (DRs) of sequences developed by the Recurrent Autoassociative Networks (KAN). Three groups of holistic operators are studied: extracting symbols at fixed position, extracting symbols at a variable

  15. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  16. Analysis of a Model for Computer Virus Transmission

    Directory of Open Access Journals (Sweden)

    Peng Qin

    2015-01-01

    Full Text Available Computer viruses remain a significant threat to computer networks. In this paper, the incorporation of new computers to the network and the removing of old computers from the network are considered. Meanwhile, the computers are equipped with antivirus software on the computer network. The computer virus model is established. Through the analysis of the model, disease-free and endemic equilibrium points are calculated. The stability conditions of the equilibria are derived. To illustrate our theoretical analysis, some numerical simulations are also included. The results provide a theoretical basis to control the spread of computer virus.

  17. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  18. Attack Methodology Analysis: Emerging Trends in Computer-Based Attack Methodologies and Their Applicability to Control System Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston

    2005-06-01

    Threat characterization is a key component in evaluating the threat faced by control systems. Without a thorough understanding of the threat faced by critical infrastructure networks, adequate resources cannot be allocated or directed effectively to the defense of these systems. Traditional methods of threat analysis focus on identifying the capabilities and motivations of a specific attacker, assessing the value the adversary would place on targeted systems, and deploying defenses according to the threat posed by the potential adversary. Too many effective exploits and tools exist and are easily accessible to anyone with access to an Internet connection, minimal technical skills, and a significantly reduced motivational threshold to be able to narrow the field of potential adversaries effectively. Understanding how hackers evaluate new IT security research and incorporate significant new ideas into their own tools provides a means of anticipating how IT systems are most likely to be attacked in the future. This research, Attack Methodology Analysis (AMA), could supply pertinent information on how to detect and stop new types of attacks. Since the exploit methodologies and attack vectors developed in the general Information Technology (IT) arena can be converted for use against control system environments, assessing areas in which cutting edge exploit development and remediation techniques are occurring can provide significance intelligence for control system network exploitation, defense, and a means of assessing threat without identifying specific capabilities of individual opponents. Attack Methodology Analysis begins with the study of what exploit technology and attack methodologies are being developed in the Information Technology (IT) security research community within the black and white hat community. Once a solid understanding of the cutting edge security research is established, emerging trends in attack methodology can be identified and the gap between

  19. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.

    1990-05-01

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  20. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    Science.gov (United States)

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  1. Communication Network Analysis Methods.

    Science.gov (United States)

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  2. Computer systems and networks: Status and perspectives

    International Nuclear Information System (INIS)

    Zacharov, Z.

    1981-01-01

    The properties of computers are discussed, both as separate units and in inter-coupled systems. The main elements of modern processor thechnology are reviewed and the associated peripheral components are disscussed in the light of the prevailling rapid pace of developments. Particular emphais is given to the impact of very large scale integrated circuitry in these developments. Computer networks, and considered in some detail, including comon-carrier and local-area networks and the problem of inter-working is included in the discussion. Components of network systems and the associated technology are also among the topics treated. (orig.)

  3. Computer systems and networks status and perspectives

    CERN Document Server

    Zacharov, V

    1981-01-01

    The properties of computers are discussed, both as separate units and in inter-coupled systems. The main elements of modern processor technology are reviewed and the associated peripheral components are discussed in the light of the prevailing rapid pace of developments. Particular emphasis is given to the impact of very large scale integrated circuitry in these developments. Computer networks are considered in some detail, including common-carrier and local-area networks, and the problem of inter-working is included in the discussion. Components of network systems and the associated technology are also among the topics treated.

  4. Autonomic computing enabled cooperative networked design

    CERN Document Server

    Wodczak, Michal

    2014-01-01

    This book introduces the concept of autonomic computing driven cooperative networked system design from an architectural perspective. As such it leverages and capitalises on the relevant advancements in both the realms of autonomic computing and networking by welding them closely together. In particular, a multi-faceted Autonomic Cooperative System Architectural Model is defined which incorporates the notion of Autonomic Cooperative Behaviour being orchestrated by the Autonomic Cooperative Networking Protocol of a cross-layer nature. The overall proposed solution not only advocates for the inc

  5. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    Directory of Open Access Journals (Sweden)

    Gabrielle Stetz

    2017-01-01

    Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of

  6. Spontaneous ad hoc mobile cloud computing network.

    Science.gov (United States)

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  7. Computer network time synchronization the network time protocol

    CERN Document Server

    Mills, David L

    2006-01-01

    What started with the sundial has, thus far, been refined to a level of precision based on atomic resonance: Time. Our obsession with time is evident in this continued scaling down to nanosecond resolution and beyond. But this obsession is not without warrant. Precision and time synchronization are critical in many applications, such as air traffic control and stock trading, and pose complex and important challenges in modern information networks.Penned by David L. Mills, the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol

  8. Computational chaos in massively parallel neural networks

    Science.gov (United States)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.

  9. Evaluation of Network Reliability for Computer Networks with Multiple Sources

    Directory of Open Access Journals (Sweden)

    Yi-Kuei Lin

    2012-01-01

    Full Text Available Evaluating the reliability of a network with multiple sources to multiple sinks is a critical issue from the perspective of quality management. Due to the unrealistic definition of paths of network models in previous literature, existing models are not appropriate for real-world computer networks such as the Taiwan Advanced Research and Education Network (TWAREN. This paper proposes a modified stochastic-flow network model to evaluate the network reliability of a practical computer network with multiple sources where data is transmitted through several light paths (LPs. Network reliability is defined as being the probability of delivering a specified amount of data from the sources to the sink. It is taken as a performance index to measure the service level of TWAREN. This paper studies the network reliability of the international portion of TWAREN from two sources (Taipei and Hsinchu to one sink (New York that goes through a submarine and land surface cable between Taiwan and the United States.

  10. Planning and management of cloud computing networks

    Science.gov (United States)

    Larumbe, Federico

    comprehensive vision. The first question to be solved is what are the optimal data center locations. We found that the location of each data center has a big impact on cost, QoS, power consumption, and greenhouse gas emissions. An optimization problem with a multi-criteria objective function is proposed to decide jointly the optimal location of data centers and software components, link capacities, and information routing. Once the network planning has been analyzed, the problem of dynamic resource provisioning in real time is addressed. In this context, virtualization is a key technique in cloud computing because each server can be shared by multiple Virtual Machines (VMs) and the total power consumption can be reduced. In the same line of location problems, we propose a Green Cloud Broker that optimizes VM placement across multiple data centers. In fact, when multiple data centers are considered, response time can be reduced by placing VMs close to users, cost can be minimized, power consumption can be optimized by using energy efficient data centers, and CO2 emissions can be decreased by choosing data centers provided with renewable energy sources. The third stage of the analysis is the short-term management of a cloud data center. In particular, a method is proposed to assign VMs to servers by considering communication traffic among VMs. Cloud data centers receive new applications over time and these applications need on-demand resource provisioning. Each application is composed of multiple types of VMs that interact among themselves. A program called scheduler must place each new VM in a server and that impacts the QoS and power consumption. Our method places VMs that communicate among themselves in servers that are close to each other in the network topology, thus reducing communication delay and increasing the throughput available among VMs. Furthermore, the power consumption of each type of server is considered and the most efficient ones are chosen to place the VMs

  11. Computational Music Analysis

    DEFF Research Database (Denmark)

    This book provides an in-depth introduction and overview of current research in computational music analysis. Its seventeen chapters, written by leading researchers, collectively represent the diversity as well as the technical and philosophical sophistication of the work being done today...... on well-established theories in music theory and analysis, such as Forte's pitch-class set theory, Schenkerian analysis, the methods of semiotic analysis developed by Ruwet and Nattiez, and Lerdahl and Jackendoff's Generative Theory of Tonal Music. The book is divided into six parts, covering...... music analysis, the book provides an invaluable resource for researchers, teachers and students in music theory and analysis, computer science, music information retrieval and related disciplines. It also provides a state-of-the-art reference for practitioners in the music technology industry....

  12. Self-Awareness in Computer Networks

    Directory of Open Access Journals (Sweden)

    Ariane Keller

    2014-01-01

    Full Text Available The Internet architecture works well for a wide variety of communication scenarios. However, its flexibility is limited because it was initially designed to provide communication links between a few static nodes in a homogeneous network and did not attempt to solve the challenges of today’s dynamic network environments. Although the Internet has evolved to a global system of interconnected computer networks, which links together billions of heterogeneous compute nodes, its static architecture remained more or less the same. Nowadays the diversity in networked devices, communication requirements, and network conditions vary heavily, which makes it difficult for a static set of protocols to provide the required functionality. Therefore, we propose a self-aware network architecture in which protocol stacks can be built dynamically. Those protocol stacks can be optimized continuously during communication according to the current requirements. For this network architecture we propose an FPGA-based execution environment called EmbedNet that allows for a dynamic mapping of network protocols to either hardware or software. We show that our architecture can reduce the communication overhead significantly by adapting the protocol stack and that the dynamic hardware/software mapping of protocols considerably reduces the CPU load introduced by packet processing.

  13. Measuring the Dynamics of Climate Change Communication in Mass Media and Social Networks with Computer-Assisted Content Analysis

    Science.gov (United States)

    Kirilenko, A.; Stepchenkova, S.

    2012-12-01

    To date, multiple authors have examined media representations of and public attitudes towards climate change, as well as how these representations and attitudes differ from scientific knowledge on the issue of climate change. Content analysis of newspaper publications, TV news, and, recently, Internet blogs has allowed for identification of major discussion themes within the climate change domain (e.g., newspaper trends, comparison of climate change discourse in different countries, contrasting liberal vs. conservative press). The majority of these studies, however, have processed texts manually, limiting textual population size, restricting the analysis to a relatively small number of themes, and using time-expensive coding procedures. The use of computer-assisted text analysis (CATA) software is important because the difficulties with manual processing become more severe with an increased volume of data. We developed a CATA approach that allows a large body of text materials to be surveyed in a quantifiable, objective, transparent, and time-efficient manner. While staying within the quantitative tradition of content analysis, the approach allows for an interpretation of the public discourse closer to one of more qualitatively oriented methods. The methodology used in this study contains several steps: (1) sample selection; (2) data preparation for computer processing and obtaining a matrix of keyword frequencies; (3) identification of themes in the texts using Exploratory Factor Analysis (EFA); (4) combining identified themes into higher order themes using Confirmatory Factor Analysis (CFA); (5) interpretation of obtained public discourse themes using factor scores; and (6) tracking the development of the main themes of the climate change discourse through time. In the report, we concentrate on two examples of CATA applied to study public perception of climate change. First example is an analysis of temporal change in public discourse on climate change. Applying

  14. Anonymous Transactions in Computer Networks

    Science.gov (United States)

    Dolev, Shlomi; Kopeetsky, Marina

    We present schemes for providing anonymous transactions while privacy and anonymity are preserved, providing user anonymous authentication in distributed networks such as the Internet. We first present a practical scheme for anonymous transactions while the transaction resolution is assisted by a Trusted Authority. This practical scheme is extended to a theoretical scheme where a Trusted Authority is not involved in the transaction resolution. Given an authority that generates for each player hard to produce evidence EVID (e. g., problem instance with or without a solution) to each player, the identity of a user U is defined by the ability to prove possession of said evidence. We use Zero-Knowledge proof techniques to repeatedly identify U by providing a proof that U has evidence EVID, without revealing EVID, therefore avoiding identity theft.

  15. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  16. International Symposium on Computing and Network Sustainability

    CERN Document Server

    Akashe, Shyam

    2017-01-01

    The book is compilation of technical papers presented at International Research Symposium on Computing and Network Sustainability (IRSCNS 2016) held in Goa, India on 1st and 2nd July 2016. The areas covered in the book are sustainable computing and security, sustainable systems and technologies, sustainable methodologies and applications, sustainable networks applications and solutions, user-centered services and systems and mobile data management. The novel and recent technologies presented in the book are going to be helpful for researchers and industries in their advanced works.

  17. Computer aided safety analysis

    International Nuclear Information System (INIS)

    1988-05-01

    The document reproduces 20 selected papers from the 38 papers presented at the Technical Committee/Workshop on Computer Aided Safety Analysis organized by the IAEA in co-operation with the Institute of Atomic Energy in Otwock-Swierk, Poland on 25-29 May 1987. A separate abstract was prepared for each of these 20 technical papers. Refs, figs and tabs

  18. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  19. Student Motivation in Computer Networking Courses

    Directory of Open Access Journals (Sweden)

    Wen-Jung Hsin

    2007-01-01

    Full Text Available This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  20. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  1. Student Motivation in Computer Networking Courses

    OpenAIRE

    Wen-Jung Hsin, PhD

    2007-01-01

    This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  2. Multiple network alignment on quantum computers

    Science.gov (United States)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  3. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  4. Computing with networks of nonlinear mechanical oscillators.

    Directory of Open Access Journals (Sweden)

    Jean C Coulombe

    Full Text Available As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words. The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.

  5. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  6. Ecological Interface Design for Computer Network Defense.

    Science.gov (United States)

    Bennett, Kevin B; Bryant, Adam; Sushereba, Christen

    2018-05-01

    A prototype ecological interface for computer network defense (CND) was developed. Concerns about CND run high. Although there is a vast literature on CND, there is some indication that this research is not being translated into operational contexts. Part of the reason may be that CND has historically been treated as a strictly technical problem, rather than as a socio-technical problem. The cognitive systems engineering (CSE)/ecological interface design (EID) framework was used in the analysis and design of the prototype interface. A brief overview of CSE/EID is provided. EID principles of design (i.e., direct perception, direct manipulation and visual momentum) are described and illustrated through concrete examples from the ecological interface. Key features of the ecological interface include (a) a wide variety of alternative visual displays, (b) controls that allow easy, dynamic reconfiguration of these displays, (c) visual highlighting of functionally related information across displays, (d) control mechanisms to selectively filter massive data sets, and (e) the capability for easy expansion. Cyber attacks from a well-known data set are illustrated through screen shots. CND support needs to be developed with a triadic focus (i.e., humans interacting with technology to accomplish work) if it is to be effective. Iterative design and formal evaluation is also required. The discipline of human factors has a long tradition of success on both counts; it is time that HF became fully involved in CND. Direct application in supporting cyber analysts.

  7. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  8. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  9. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  10. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  11. International Symposium on Complex Computing-Networks

    CERN Document Server

    Sevgi, L; CCN2005; Complex computing networks: Brain-like and wave-oriented electrodynamic algorithms

    2006-01-01

    This book uniquely combines new advances in the electromagnetic and the circuits&systems theory. It integrates both fields regarding computational aspects of common interest. Emphasized subjects are those methods which mimic brain-like and electrodynamic behaviour; among these are cellular neural networks, chaos and chaotic dynamics, attractor-based computation and stream ciphers. The book contains carefully selected contributions from the Symposium CCN2005. Pictures from the bestowal of Honorary Doctorate degrees to Leon O. Chua and Leopold B. Felsen are included.

  12. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  13. The research of computer network security and protection strategy

    Science.gov (United States)

    He, Jian

    2017-05-01

    With the widespread popularity of computer network applications, its security is also received a high degree of attention. Factors affecting the safety of network is complex, for to do a good job of network security is a systematic work, has the high challenge. For safety and reliability problems of computer network system, this paper combined with practical work experience, from the threat of network security, security technology, network some Suggestions and measures for the system design principle, in order to make the masses of users in computer networks to enhance safety awareness and master certain network security technology.

  14. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  15. Using satellite communications for a mobile computer network

    Science.gov (United States)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  16. Tensor network method for reversible classical computation

    Science.gov (United States)

    Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.

    2018-03-01

    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.

  17. Performance of the TRISTAN computer control network

    International Nuclear Information System (INIS)

    Koiso, H.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Kurihara, N.; Kurokawa, S.; Oide, K.; Shinomoto, M.

    1985-01-01

    An N-to-N token ring network of twenty-four minicomputers controls the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on the NODAL, a multi-computer interpreter language developed at CERN SPS. Typical messages exchanged between computers are NODAL programs and NODAL variables transmitted by the EXEC and the REMIT commands. These messages are exchanged as a cluster of packets whose maximum size is 512 bytes. At present, eleven minicomputers are connected to the network and the total length of the ring is 1.5 km. In this condition, the maximum attainable throughput is 980 kbytes/s. The response of a pair of an EXEC and a REMIT transactions which transmit a NODAL array A and one line of program 'REMIT A' and immediately remit the A is measured to be 95+0.039/chi/ ms, where /chi/ is the array size in byte. In ordinary accelerator operations, the maximum channel utilization is 2%, the average packet length is 96 bytes and the transmission rate is 10 kbytes/s

  18. Computer network security and cyber ethics

    CERN Document Server

    Kizza, Joseph Migga

    2014-01-01

    In its 4th edition, this book remains focused on increasing public awareness of the nature and motives of cyber vandalism and cybercriminals, the weaknesses inherent in cyberspace infrastructure, and the means available to protect ourselves and our society. This new edition aims to integrate security education and awareness with discussions of morality and ethics. The reader will gain an understanding of how the security of information in general and of computer networks in particular, on which our national critical infrastructure and, indeed, our lives depend, is based squarely on the individ

  19. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  20. Application of computer graphics to regional trunk road network planning

    OpenAIRE

    M Odani

    1992-01-01

    The author attempts to demonstrate the use of computer graphics to provide an efficient and effective visual presentation method for tranbsprtation planning. First, the basic concept of the visual presentation method of planning is explained and the required hardware is introduced. The information presented graphically by the proposed method is then shown for each step in the process of regional trunk road network planning in the Keihanshin Metropolitan Area of Japan: analysis of the traffic-...

  1. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    2014-06-01

    Full Text Available A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple

  2. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  3. Quantum computation over the butterfly network

    International Nuclear Information System (INIS)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2011-01-01

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglement resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.

  4. Proceedings of workshop on distributed computing and network

    International Nuclear Information System (INIS)

    Abe, F.; Yuasa, F.

    1993-02-01

    'Distributed Computing and Network' is one of hot topics in the field of computing. Recent progress in the computer technology is providing new paradigm for computing even in High Energy Physics. Particularly the workstation based computer system is opening new active field of computer application to sciences. The major topics discussed in this symposium are distributed computing and wide area research network for domestic and international link. The two days symposium provided so enough topics to foresee the next direction of our computing environment. 70 people have got together to discuss on these interesting thema as well as information exchange on the computer technologies. (J.P.N.)

  5. Cloud Computing Services for Seismic Networks

    Science.gov (United States)

    Olson, Michael

    This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.

  6. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  7. Choice Of Computer Networking Cables And Their Effect On Data ...

    African Journals Online (AJOL)

    Computer networking is the order of the day in this Information and Communication Technology (ICT) age. Although a network can be through a wireless device most local connections are done using cables. There are three main computer-networking cables namely coaxial cable, unshielded twisted pair cable and the optic ...

  8. Computational Aspects of Sensor Network Protocols (Distributed Sensor Network Simulator

    Directory of Open Access Journals (Sweden)

    Vasanth Iyer

    2009-08-01

    Full Text Available In this work, we model the sensor networks as an unsupervised learning and clustering process. We classify nodes according to its static distribution to form known class densities (CCPD. These densities are chosen from specific cross-layer features which maximizes lifetime of power-aware routing algorithms. To circumvent computational complexities of a power-ware communication STACK we introduce path-loss models at the nodes only for high density deployments. We study the cluster heads and formulate the data handling capacity for an expected deployment and use localized probability models to fuse the data with its side information before transmission. So each cluster head has a unique Pmax but not all cluster heads have the same measured value. In a lossless mode if there are no faults in the sensor network then we can show that the highest probability given by Pmax is ambiguous if its frequency is ≤ n/2 otherwise it can be determined by a local function. We further show that the event detection at the cluster heads can be modelled with a pattern 2m and m, the number of bits can be a correlated pattern of 2 bits and for a tight lower bound we use 3-bit Huffman codes which have entropy < 1. These local algorithms are further studied to optimize on power, fault detection and to maximize on the distributed routing algorithm used at the higher layers. From these bounds in large network, it is observed that the power dissipation is network size invariant. The performance of the routing algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed that if the network size is kept constant and the density of the nodes is kept closer then the local pathloss model effects the performance of the routing algorithms. We also obtain the maximum intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., the lifetime of sensor network.

  9. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  10. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  11. Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.

    Science.gov (United States)

    Pierre, Samuel

    2001-01-01

    Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…

  12. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  13. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  14. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  15. Applications of social media and social network analysis

    CERN Document Server

    Kazienko, Przemyslaw

    2015-01-01

    This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to commun

  16. 1st International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2013-01-01

    This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...

  17. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  18. Network and computing infrastructure for scientific applications in Georgia

    Science.gov (United States)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  19. Mechanisms of protection of information in computer networks and systems

    Directory of Open Access Journals (Sweden)

    Sergey Petrovich Evseev

    2011-10-01

    Full Text Available Protocols of information protection in computer networks and systems are investigated. The basic types of threats of infringement of the protection arising from the use of computer networks are classified. The basic mechanisms, services and variants of realization of cryptosystems for maintaining authentication, integrity and confidentiality of transmitted information are examined. Their advantages and drawbacks are described. Perspective directions of development of cryptographic transformations for the maintenance of information protection in computer networks and systems are defined and analyzed.

  20. 2013 International Conference on Computer Engineering and Network

    CERN Document Server

    Zhu, Tingshao

    2014-01-01

    This book aims to examine innovation in the fields of computer engineering and networking. The book covers important emerging topics in computer engineering and networking, and it will help researchers and engineers improve their knowledge of state-of-art in related areas. The book presents papers from The Proceedings of the 2013 International Conference on Computer Engineering and Network (CENet2013) which was held on July 20-21, in Shanghai, China.

  1. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  2. Computer network for electric power control systems. Chubu denryoku (kabu) denryoku keito seigyoyo computer network

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneizumi, T. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Shimomura, S.; Miyamura, N. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1992-06-03

    A computer network for electric power control system was developed that is applied with the open systems interconnection (OSI), an international standard for communications protocol. In structuring the OSI network, a direct session layer was accessed from the operation functions when high-speed small-capacity information is transmitted. File transfer, access and control having a function of collectively transferring large-capacity data were applied when low-speed large-capacity information is transmitted. A verification test for the realtime computer network (RCN) mounting regulation was conducted according to a verification model using a mini-computer, and a result that can satisfy practical performance was obtained. For application interface, kernel, health check and two-route transmission functions were provided as a connection control function, so were transmission verification function and late arrival abolishing function. In system mounting pattern, dualized communication server (CS) structure was adopted. A hardware structure may include a system to have the CS function contained in a host computer and a separate installation system. 5 figs., 6 tabs.

  3. Quantum Random Networks for Type 2 Quantum Computers

    National Research Council Canada - National Science Library

    Allara, David L; Hasslacher, Brosl

    2006-01-01

    Random boolean networks (RBNs) have been studied theoretically and computationally in order to be able to use their remarkable self-healing and large basins of altercation properties as quantum computing architectures, especially...

  4. Email networks and the spread of computer viruses

    Science.gov (United States)

    Newman, M. E.; Forrest, Stephanie; Balthrop, Justin

    2002-09-01

    Many computer viruses spread via electronic mail, making use of computer users' email address books as a source for email addresses of new victims. These address books form a directed social network of connections between individuals over which the virus spreads. Here we investigate empirically the structure of this network using data drawn from a large computer installation, and discuss the implications of this structure for the understanding and prevention of computer virus epidemics.

  5. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  6. An Overview of Computer Network security and Research Technology

    OpenAIRE

    Rathore, Vandana

    2016-01-01

    The rapid development in the field of computer networks and systems brings both convenience and security threats for users. Security threats include network security and data security. Network security refers to the reliability, confidentiality, integrity and availability of the information in the system. The main objective of network security is to maintain the authenticity, integrity, confidentiality, availability of the network. This paper introduces the details of the technologies used in...

  7. Assessing the efficiency of information protection systems in the computer systems and networks

    OpenAIRE

    Nachev, Atanas; Zhelezov, Stanimir

    2015-01-01

    The specific features of the information protection systems in the computer systems and networks require the development of non-trivial methods for their analysis and assessment. Attempts for solutions in this area are given in this paper.

  8. Discussion on the Technology and Method of Computer Network Security Management

    Science.gov (United States)

    Zhou, Jianlei

    2017-09-01

    With the rapid development of information technology, the application of computer network technology has penetrated all aspects of society, changed people's way of life work to a certain extent, brought great convenience to people. But computer network technology is not a panacea, it can promote the function of social development, but also can cause damage to the community and the country. Due to computer network’ openness, easiness of sharing and other characteristics, it had a very negative impact on the computer network security, especially the loopholes in the technical aspects can cause damage on the network information. Based on this, this paper will do a brief analysis on the computer network security management problems and security measures.

  9. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  10. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  11. Computer Network Attacks and Modern International Law

    Directory of Open Access Journals (Sweden)

    Andrey L. Kozik

    2014-01-01

    Full Text Available Computer network attacks (CNA is a no doubt actual theoretical and practical topic today. Espionage, public and private computer-systems disruptions committed by states have been a real life. States execute CNA's involving its agents or hiring private hacker groups. However, the application of lex lata remains unclear in practice and still undeveloped in doctrine. Nevertheless the international obligations, which states have accepted under the UN Charter and other treaties as well as customs - with any related exemptions and reservations - are still in force and create a legal framework, which one cannot ignore. Taking into account the intensity level or the consequences of a CNA the later could be considered as an unfriendly, but legal doing, or, as a use of force (prohibited under the article 2(4 of the UN Charter, or - in the case the proper threshold is taken - as an armed attack (which gives the victim-state the right to use force in self-defence under the customs and the article 51 of the UN Charter. Researches in the field of lex lata applicability to the CNAs could highlight gaps and week points of the nowadays legal regime. The subject is on agenda in western doctrine, and it is a pity - not in Russian one - the number of publication here is still unsatisfied. The article formulates issues related to CNAs and the modern international legal regime. The author explores the definition, legal volume of the term CNA, highlights main issues, which have to be analyzed from the point of the contemporary law.

  12. Social network analysis: Presenting an underused method for nursing research.

    Science.gov (United States)

    Parnell, James Michael; Robinson, Jennifer C

    2018-06-01

    This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.

  13. Computational Chemical Synthesis Analysis and Pathway Design

    Directory of Open Access Journals (Sweden)

    Fan Feng

    2018-06-01

    Full Text Available With the idea of retrosynthetic analysis, which was raised in the 1960s, chemical synthesis analysis and pathway design have been transformed from a complex problem to a regular process of structural simplification. This review aims to summarize the developments of computer-assisted synthetic analysis and design in recent years, and how machine-learning algorithms contributed to them. LHASA system started the pioneering work of designing semi-empirical reaction modes in computers, with its following rule-based and network-searching work not only expanding the databases, but also building new approaches to indicating reaction rules. Programs like ARChem Route Designer replaced hand-coded reaction modes with automatically-extracted rules, and programs like Chematica changed traditional designing into network searching. Afterward, with the help of machine learning, two-step models which combine reaction rules and statistical methods became the main stream. Recently, fully data-driven learning methods using deep neural networks which even do not require any prior knowledge, were applied into this field. Up to now, however, these methods still cannot replace experienced human organic chemists due to their relatively low accuracies. Future new algorithms with the aid of powerful computational hardware will make this topic promising and with good prospects.

  14. Analysis and Assessment of Computer-Supported Collaborative Learning Conversations

    NARCIS (Netherlands)

    Trausan-Matu, Stefan

    2008-01-01

    Trausan-Matu, S. (2008). Analysis and Assessment of Computer-Supported Collaborative Learning Conversations. Workshop presentation at the symposium Learning networks for professional. November, 14, 2008, Heerlen, Nederland: Open Universiteit Nederland.

  15. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  16. ORGANIZATION OF CLOUD COMPUTING INFRASTRUCTURE BASED ON SDN NETWORK

    Directory of Open Access Journals (Sweden)

    Alexey A. Efimenko

    2013-01-01

    Full Text Available The article presents the main approaches to cloud computing infrastructure based on the SDN network in present data processing centers (DPC. The main indexes of management effectiveness of network infrastructure of DPC are determined. The examples of solutions for the creation of virtual network devices are provided.

  17. Security of fixed and wireless computer networks

    NARCIS (Netherlands)

    Verschuren, J.; Degen, A.J.G.; Veugen, P.J.M.

    2003-01-01

    A few decades ago, most computers were stand-alone machines: they were able to process information using their own resources. Later, computer systems were connected to each other enabling a computer system to exchange data with another computer and to use resources of another computer. With the

  18. Trends and patterns in inter-firm R&D networks in the global computer industry: a historical analysis of major developments during the period 1970-1999.

    NARCIS (Netherlands)

    Cloodt, M.M.A.H.; Hagedoorn, J.; Roijakkers, A.H.W.M.

    2006-01-01

    We present a historical analysis of major trends in inter-firm R&D partnering in the international computer industry during the period 1970-1999. We first discuss different modes of R&D cooperation in the context of the overall growth patterns in R&D partnerships. We also examine major changes in

  19. 4th International Conference on Computer Engineering and Networks

    CERN Document Server

    2015-01-01

    This book aims to examine innovation in the fields of computer engineering and networking. The book covers important emerging topics in computer engineering and networking, and it will help researchers and engineers improve their knowledge of state-of-art in related areas. The book presents papers from the 4th International Conference on Computer Engineering and Networks (CENet2014) held July 19-20, 2014 in Shanghai, China.  ·       Covers emerging topics for computer engineering and networking ·       Discusses how to improve productivity by using the latest advanced technologies ·       Examines innovation in the fields of computer engineering and networking  

  20. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  1. Integrating Network Awareness in ATLAS Distributed Computing Using the ANSE Project

    CERN Document Server

    Klimentov, Alexei; The ATLAS collaboration; Petrosyan, Artem; Batista, Jorge Horacio; Mc Kee, Shawn Patrick

    2015-01-01

    A crucial contributor to the success of the massively scaled global computing system that delivers the analysis needs of the LHC experiments is the networking infrastructure upon which the system is built. The experiments have been able to exploit excellent high-bandwidth networking in adapting their computing models for the most efficient utilization of resources. New advanced networking technologies now becoming available such as software defined networking hold the potential of further leveraging the network to optimize workflows and dataflows, through proactive control of the network fabric on the part of high level applications such as experiment workload management and data management systems. End to end monitoring of networks using perfSONAR combined with data flow performance metrics further allows applications to adapt based on real time conditions. We will describe efforts underway in ATLAS on integrating network awareness at the application level, particularly in workload management, building upon ...

  2. NIF ICCS network design and loading analysis

    International Nuclear Information System (INIS)

    Tietbohl, G; Bryant, R

    1998-01-01

    The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)

  3. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  4. Analysis of computer programming languages

    International Nuclear Information System (INIS)

    Risset, Claude Alain

    1967-01-01

    This research thesis aims at trying to identify some methods of syntax analysis which can be used for computer programming languages while putting aside computer devices which influence the choice of the programming language and methods of analysis and compilation. In a first part, the author proposes attempts of formalization of Chomsky grammar languages. In a second part, he studies analytical grammars, and then studies a compiler or analytic grammar for the Fortran language

  5. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Mohammed, F.A.; Omar, A.A.; Ayad, N.M.A.; Madkour, M.A.I.; Ibrahim, M.K.

    1988-01-01

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  6. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  7. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-06

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  8. Local computer network of the JINR Neutron Physics Laboratory

    International Nuclear Information System (INIS)

    Alfimenkov, A.V.; Vagov, V.A.; Vajdkhadze, F.

    1988-01-01

    New high-speed local computer network, where intelligent network adapter (NA) is used as hardware base, is developed in the JINR Neutron Physics Laboratory to increase operation efficiency and data transfer rate. NA consists of computer bus interface, cable former, microcomputer segment designed for both program realization of channel-level protocol and organization of bidirectional transfer of information through direct access channel between monochannel and computer memory with or witout buffering in NA operation memory device

  9. Software network analyzer for computer network performance measurement planning over heterogeneous services in higher educational institutes

    OpenAIRE

    Ismail, Mohd Nazri

    2009-01-01

    In 21st century, convergences of technologies and services in heterogeneous environment have contributed multi-traffic. This scenario will affect computer network on learning system in higher educational Institutes. Implementation of various services can produce different types of content and quality. Higher educational institutes should have a good computer network infrastructure to support usage of various services. The ability of computer network should consist of i) higher bandwidth; ii) ...

  10. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  11. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  12. Effectiveness and cost-effectiveness of computer and other electronic aids for smoking cessation: a systematic review and network meta-analysis.

    Science.gov (United States)

    Chen, Y-F; Madan, J; Welton, N; Yahaya, I; Aveyard, P; Bauld, L; Wang, D; Fry-Smith, A; Munafò, M R

    2012-01-01

    of ongoing studies including National Institute for Health Research (NIHR) Clinical Research Network Portfolio Database, Current Controlled Trials and ClinicalTrials.gov were also searched, and further information was sought from contacts with experts. Randomised controlled trials (RCTs) and quasi-RCTs evaluating smoking cessation programmes that utilise computer, internet, mobile telephone or other electronic aids in adult smokers were included in the effectiveness review. Relevant studies of other design were included in the cost-effectiveness review and supplementary review. Pair-wise meta-analyses using both random- and fixed-effects models were carried out. Bayesian mixed-treatment comparisons (MTCs) were also performed. A de novo decision-analytical model was constructed for estimating the cost-effectiveness of interventions. Expected value of perfect information (EVPI) was calculated. Narrative synthesis of key themes and issues that may influence the acceptability and usability of electronic aids was provided in the supplementary review. This effectiveness review included 60 RCTs/quasi-RCTs reported in 77 publications. Pooled estimate for prolonged abstinence [relative risk (RR) = 1.32, 95% confidence interval (CI) 1.21 to 1.45] and point prevalence abstinence (RR = 1.14, 95% CI 1.07 to 1.22) suggested that computer and other electronic aids increase the likelihood of cessation compared with no intervention or generic self-help materials. There was no significant difference in effect sizes between aid to cessation studies (which provide support to smokers who are ready to quit) and cessation induction studies (which attempt to encourage a cessation attempt in smokers who are not yet ready to quit). Results from MTC also showed small but significant intervention effect (time to relapse, mean hazard ratio 0.87, 95% credible interval 0.83 to 0.92). Cost-threshold analyses indicated some form of electronic intervention is likely to be cost-effective when added to

  13. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  14. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  15. Data communications and computer communications network

    International Nuclear Information System (INIS)

    Kim, Jang Gwon; Gu, Chang Hoe

    2005-03-01

    This textbook is composed of twelve chapters, which are communication network introduction, foundation of data communication, data link control, circuit switching system, packet switching system, multiple access communication system, protocol and architecture, LAN, MAN communication network, integrated service digital network, internet and Asymmetric digital subscriber Line and Wireless Local Loop. Each chapter has the introduction of the technique, structure, function and practice problems. It also has the appendix on electricity and communication standards organization, characteristic table and glossary.

  16. Fairness in Communication and Computer Network Design

    OpenAIRE

    Nilsson, Pål

    2006-01-01

    In communication networks, fair sharing of resources is an important issue for one main reason. The growth of network capacity is in general not matching the rapid growth of traffic. Consequently, the resources consumed by each user have to be limited. This implies that users cannot always be assigned the end-to-end bandwidth they ask for. Instead, the limited network resources should be distributed to users in a way that assures fair end-to-end bandwidth assignment among them. Obtaini...

  17. HeNCE: A Heterogeneous Network Computing Environment

    Directory of Open Access Journals (Sweden)

    Adam Beguelin

    1994-01-01

    Full Text Available Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM. The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.

  18. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  19. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  20. Computing representative networks for braided rivers

    NARCIS (Netherlands)

    Kleinhans, M.; van Kreveld, M.J.; Ophelders, T.A.E.; Sonke, W.M.; Speckmann, B.; Verbeek, K.A.B.; Aronov, Boris; Katz, Matthew

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  1. Computing Representative Networks for Braided Rivers

    NARCIS (Netherlands)

    Kleinhans, Maarten; van Kreveld, M.J.; Ophelders, Tim; Sonke, Willem; Speckmann, Bettina; Verbeek, Kevin

    2017-01-01

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  2. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  3. Affective Computing and Sentiment Analysis

    CERN Document Server

    Ahmad, Khurshid

    2011-01-01

    This volume maps the watershed areas between two 'holy grails' of computer science: the identification and interpretation of affect -- including sentiment and mood. The expression of sentiment and mood involves the use of metaphors, especially in emotive situations. Affect computing is rooted in hermeneutics, philosophy, political science and sociology, and is now a key area of research in computer science. The 24/7 news sites and blogs facilitate the expression and shaping of opinion locally and globally. Sentiment analysis, based on text and data mining, is being used in the looking at news

  4. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  5. Phoebus: Network Middleware for Next-Generation Network Computing

    Energy Technology Data Exchange (ETDEWEB)

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  6. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)

    International Nuclear Information System (INIS)

    Baburin, I.A.; Blatov, V.A.; Carlucci, L.; Ciani, G.; Proserpio, D.M.

    2005-01-01

    Interpenetration in metal-organic and inorganic networks has been investigated by a systematic analysis of the crystallographic structural databases. We have used a version of TOPOS (a package for multipurpose crystallochemical analysis) adapted for searching for interpenetration and based on the concept of Voronoi-Dirichlet polyhedra and on the representation of a crystal structure as a reduced finite graph. In this paper, we report comprehensive lists of interpenetrating inorganic 3D structures from the Inorganic Crystal Structure Database (ICSD), inclusive of 144 Collection Codes for equivalent interpenetrating nets, analyzed on the basis of their topologies. Distinct Classes, corresponding to the different modes in which individual identical motifs can interpenetrate, have been attributed to the entangled structures. Interpenetrating nets of different nature as well as interpenetrating H-bonded nets were also examined

  7. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  8. Introducing remarks upon the analysis of computer systems performance

    International Nuclear Information System (INIS)

    Baum, D.

    1980-05-01

    Some of the basis ideas of analytical techniques to study the behaviour of computer systems are presented. Single systems as well as networks of computers are viewed as stochastic dynamical systems which may be modelled by queueing networks. Therefore this report primarily serves as an introduction to probabilistic methods for qualitative analysis of systems. It is supplemented by an application example of Chandy's collapsing method. (orig.) [de

  9. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  10. Effective Response to Attacks On Department of Defense Computer Networks

    National Research Council Canada - National Science Library

    Shaha, Patrick

    2001-01-01

    .... For the Commanders-in-Chief (CINCs), computer networking has proven especially useful in maintaining contact and sharing data with elements forward deployed as well as with host nation governments and agencies...

  11. Computer Network Attack Versus Operational Maneuver from the Sea

    National Research Council Canada - National Science Library

    Herdegen, Dale

    2000-01-01

    ...) vulnerable to computer network attack (CNA). Mission command and control can reduce the impact of the loss of command and control, but it can not overcome the vast and complex array of threats...

  12. Computer network prepared to handle massive data flow

    CERN Multimedia

    2006-01-01

    "Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an internationl network of computer centers, including one operated jointly by the University of Chicago and Indiana University." (2 pages)

  13. AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK

    OpenAIRE

    Mrs. Amandeep Kaur

    2011-01-01

    This paper highlights some of the basic concepts of QoS. The major research areas of Quality of Service Computer Networks are highlighted. The paper also compares some of the current QoS Routing techniques.

  14. Optical processing for future computer networks

    Science.gov (United States)

    Husain, A.; Haugen, P. R.; Hutcheson, L. D.; Warrior, J.; Murray, N.; Beatty, M.

    1986-01-01

    In the development of future data management systems, such as the NASA Space Station, a major problem represents the design and implementation of a high performance communication network which is self-correcting and repairing, flexible, and evolvable. To obtain the goal of designing such a network, it will be essential to incorporate distributed adaptive network control techniques. The present paper provides an outline of the functional and communication network requirements for the Space Station data management system. Attention is given to the mathematical representation of the operations being carried out to provide the required functionality at each layer of communication protocol on the model. The possible implementation of specific communication functions in optics is also considered.

  15. Networking Micro-Processors for Effective Computer Utilization in Nursing

    OpenAIRE

    Mangaroo, Jewellean; Smith, Bob; Glasser, Jay; Littell, Arthur; Saba, Virginia

    1982-01-01

    Networking as a social entity has important implications for maximizing computer resources for improved utilization in nursing. This paper describes the one process of networking of complementary resources at three institutions. Prairie View A&M University, Texas A&M University and the University of Texas School of Public Health, which has effected greater utilization of computers at the college. The results achieved in this project should have implications for nurses, users, and consumers in...

  16. Integrated Optoelectronic Networks for Application-Driven Multicore Computing

    Science.gov (United States)

    2017-05-08

    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  17. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.

    Science.gov (United States)

    Thorn, Graeme J; King, John R

    2016-01-01

    The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  19. The University of Michigan's Computer-Aided Engineering Network.

    Science.gov (United States)

    Atkins, D. E.; Olsen, Leslie A.

    1986-01-01

    Presents an overview of the Computer-Aided Engineering Network (CAEN) of the University of Michigan. Describes its arrangement of workstations, communication networks, and servers. Outlines the factors considered in hardware and software decision making. Reviews the program's impact on students. (ML)

  20. The Role of Computer Networks in Aerospace Engineering.

    Science.gov (United States)

    Bishop, Ann Peterson

    1994-01-01

    Presents selected results from an empirical investigation into the use of computer networks in aerospace engineering based on data from a national mail survey. The need for user-based studies of electronic networking is discussed, and a copy of the questionnaire used in the survey is appended. (Contains 46 references.) (LRW)

  1. Evolving ATLAS Computing For Today’s Networks

    CERN Document Server

    Campana, S; The ATLAS collaboration; Jezequel, S; Negri, G; Serfon, C; Ueda, I

    2012-01-01

    The ATLAS computing infrastructure was designed many years ago based on the assumption of rather limited network connectivity between computing centres. ATLAS sites have been organized in a hierarchical model, where only a static subset of all possible network links can be exploited and a static subset of well connected sites (CERN and the T1s) can cover important functional roles such as hosting master copies of the data. The pragmatic adoption of such simplified approach, in respect of a more relaxed scenario interconnecting all sites, was very beneficial during the commissioning of the ATLAS distributed computing system and essential in reducing the operational cost during the first two years of LHC data taking. In the mean time, networks evolved far beyond this initial scenario: while a few countries are still poorly connected with the rest of the WLCG infrastructure, most of the ATLAS computing centres are now efficiently interlinked. Our operational experience in running the computing infrastructure in ...

  2. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  3. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  4. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  5. Application of local computer networks in nuclear-physical experiments and technology

    International Nuclear Information System (INIS)

    Foteev, V.A.

    1986-01-01

    The bases of construction, comparative performance and potentialities of local computer networks with respect to their application in physical experiments are considered. The principle of operation of local networks is shown on the basis of the Ethernet network and the results of analysis of their operating performance are given. The examples of operating local networks in the area of nuclear-physics research and nuclear technology are presented as follows: networks of Japan Atomic Energy Research Institute, California University and Los Alamos National Laboratory, network realization according to the DECnet and Fast-bus programs, home network configurations of the USSR Academy of Sciences and JINR Neutron Physical Laboratory etc. It is shown that local networks allows significantly raise productivity in the sphere of data processing

  6. An Analysis of the Structure and Evolution of Networks

    Science.gov (United States)

    Hua, Guangying

    2011-01-01

    As network research receives more and more attention from both academic researchers and practitioners, network analysis has become a fast growing field attracting many researchers from diverse fields such as physics, computer science, and sociology. This dissertation provides a review of theory and research on different real data sets from the…

  7. Development of the computer network of IFIN-HH

    International Nuclear Information System (INIS)

    Danet, A.; Mirica, M.; Constantinescu, S.

    1998-01-01

    The general computer network of Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), as part of RNC (Romanian National Computer Network for scientific research and technological development), offers the Romanian physics research community an efficient and cost-effective infrastructure to communicate and collaborate with fellow researchers abroad, and to collect and exchange the most up-to-date information in their research area. RNC is the national project co-ordinated and established by the Ministry of Research and Technology targeted on the following main objectives: - setting up a technical and organizational infrastructure meant to provide national and international electronic services for the Romanian scientific research community; - providing a rapid and competitive tool for the exchange information in the framework of R-D community; - using the scientific and technical data bases available in the country and offered by the national networks from other countries through international networks; - providing a support for information, documentation, scientific and technical co-operation. The guiding principle in elaborating the project of general computer network of IFIN-HH was to implement an open system based on OSI standards without technical barriers in communication between different communities using different computing hardware and software. The major objectives achieved in 1997 in the direction of developing the general computer network of IFIN-HH (over 250 computers connected) were: - connecting all the existing and newly installed computer equipment and providing an adequate connectivity; - providing the usual Internet services: e-mail, ftp, telnet, finger, gopher; - providing access to the World Wide Web resources; - providing on-line statistics of IP traffic (input and output) of each node of the domain computer network; - improving the performance of the connection with the central node RNC. (authors)

  8. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  9. Applications of the parallel computing system using network

    International Nuclear Information System (INIS)

    Ido, Shunji; Hasebe, Hiroki

    1994-01-01

    Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)

  10. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  11. Efficient computation in adaptive artificial spiking neural networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)

    2017-01-01

    textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of

  12. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  13. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate

  14. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  15. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  16. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  17. Fast computation with spikes in a recurrent neural network

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.; Seung, H. Sebastian

    2002-01-01

    Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner

  18. The Role of Networks in Cloud Computing

    Science.gov (United States)

    Lin, Geng; Devine, Mac

    The confluence of technology advancements and business developments in Broadband Internet, Web services, computing systems, and application software over the past decade has created a perfect storm for cloud computing. The "cloud model" of delivering and consuming IT functions as services is poised to fundamentally transform the IT industry and rebalance the inter-relationships among end users, enterprise IT, software companies, and the service providers in the IT ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).

  19. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  20. Computational Complexity of Bosons in Linear Networks

    Science.gov (United States)

    2017-03-01

    is between one and two orders-of-magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric downconversion...expected to perform tasks intractable for a classical computer, yet requiring minimal non-classical resources as compared to full- scale quantum computers...implementations to date employed sources based on inefficient processes—spontaneous parametric downconversion—that only simulate heralded single

  1. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  2. Computer networks and their implications for nuclear data

    International Nuclear Information System (INIS)

    Carlson, J.

    1992-01-01

    Computer networks represent a valuable resource for accessing information. Just as the computer has revolutionized the ability to process and analyze information, networks have and will continue to revolutionize data collection and access. A number of services are in routine use that would not be possible without the presence of an (inter)national computer network (which will be referred to as the internet). Services such as electronic mail, remote terminal access, and network file transfers are almost a required part of any large scientific/research organization. These services only represent a small fraction of the potential uses of the internet; however, the remainder of this paper discusses some of these uses and some technological developments that may influence these uses

  3. Method and tool for network vulnerability analysis

    Science.gov (United States)

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  4. Automated classification of computer network attacks

    CSIR Research Space (South Africa)

    Van Heerden, R

    2013-11-01

    Full Text Available according to the relevant types of attack scenarios depicted in the ontology. The two network attack instances are the Distributed Denial of Service attack on SpamHaus in 2013 and the theft of 42 million Rand ($6.7 million) from South African Postbank...

  5. 1st International Conference on Signal, Networks, Computing, and Systems

    CERN Document Server

    Mohapatra, Durga; Nagar, Atulya; Sahoo, Manmath

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on Signal, Networks, Computing, and Systems (ICSNCS 2016) held at Jawaharlal Nehru University, New Delhi, India during February 25–27, 2016. The book is organized in to two volumes and primarily focuses on theory and applications in the broad areas of communication technology, computer science and information security. The book aims to bring together the latest scientific research works of academic scientists, professors, research scholars and students in the areas of signal, networks, computing and systems detailing the practical challenges encountered and the solutions adopted.

  6. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  7. CX: A Scalable, Robust Network for Parallel Computing

    Directory of Open Access Journals (Sweden)

    Peter Cappello

    2002-01-01

    Full Text Available CX, a network-based computational exchange, is presented. The system's design integrates variations of ideas from other researchers, such as work stealing, non-blocking tasks, eager scheduling, and space-based coordination. The object-oriented API is simple, compact, and cleanly separates application logic from the logic that supports interprocess communication and fault tolerance. Computations, of course, run to completion in the presence of computational hosts that join and leave the ongoing computation. Such hosts, or producers, use task caching and prefetching to overlap computation with interprocessor communication. To break a potential task server bottleneck, a network of task servers is presented. Even though task servers are envisioned as reliable, the self-organizing, scalable network of n- servers, described as a sibling-connected height-balanced fat tree, tolerates a sequence of n-1 server failures. Tasks are distributed throughout the server network via a simple "diffusion" process. CX is intended as a test bed for research on automated silent auctions, reputation services, authentication services, and bonding services. CX also provides a test bed for algorithm research into network-based parallel computation.

  8. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  9. The challenge of networked enterprises for cloud computing interoperability

    OpenAIRE

    Mezgár, István; Rauschecker, Ursula

    2014-01-01

    Manufacturing enterprises have to organize themselves into effective system architectures forming different types of Networked Enterprises (NE) to match fast changing market demands. Cloud Computing (CC) is an important up to date computing concept for NE, as it offers significant financial and technical advantages beside high-level collaboration possibilities. As cloud computing is a new concept the solutions for handling interoperability, portability, security, privacy and standardization c...

  10. Dynamic Security Assessment Of Computer Networks In Siem-Systems

    Directory of Open Access Journals (Sweden)

    Elena Vladimirovna Doynikova

    2015-10-01

    Full Text Available The paper suggests an approach to the security assessment of computer networks. The approach is based on attack graphs and intended for Security Information and Events Management systems (SIEM-systems. Key feature of the approach consists in the application of the multilevel security metrics taxonomy. The taxonomy allows definition of the system profile according to the input data used for the metrics calculation and techniques of security metrics calculation. This allows specification of the security assessment in near real time, identification of previous and future attacker steps, identification of attackers goals and characteristics. A security assessment system prototype is implemented for the suggested approach. Analysis of its operation is conducted for several attack scenarios.

  11. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  12. Biophysical constraints on the computational capacity of biochemical signaling networks

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  13. New computing systems, future computing environment, and their implications on structural analysis and design

    Science.gov (United States)

    Noor, Ahmed K.; Housner, Jerrold M.

    1993-01-01

    Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.

  14. Systems analysis and the computer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, A S

    1983-08-01

    The words systems analysis are used in at least two senses. Whilst the general nature of the topic is well understood in the or community, the nature of the term as used by computer scientists is less familiar. In this paper, the nature of systems analysis as it relates to computer-based systems is examined from the point of view that the computer system is an automaton embedded in a human system, and some facets of this are explored. It is concluded that or analysts and computer analysts have things to learn from each other and that this ought to be reflected in their education. The important role played by change in the design of systems is also highlighted, and it is concluded that, whilst the application of techniques developed in the artificial intelligence field have considerable relevance to constructing automata able to adapt to change in the environment, study of the human factors affecting the overall systems within which the automata are embedded has an even more important role. 19 references.

  15. Computer network access to scientific information systems for minority universities

    Science.gov (United States)

    Thomas, Valerie L.; Wakim, Nagi T.

    1993-08-01

    The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.

  16. Computer networks in future accelerator control systems

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1977-03-01

    Some findings of a study concerning a computer based control and monitoring system for the proposed ISABELLE Intersecting Storage Accelerator are presented. Requirements for development and implementation of such a system are discussed. An architecture is proposed where the system components are partitioned along functional lines. Implementation of some conceptually significant components is reviewed

  17. A new fault detection method for computer networks

    International Nuclear Information System (INIS)

    Lu, Lu; Xu, Zhengguo; Wang, Wenhai; Sun, Youxian

    2013-01-01

    Over the past few years, fault detection for computer networks has attracted extensive attentions for its importance in network management. Most existing fault detection methods are based on active probing techniques which can detect the occurrence of faults fast and precisely. But these methods suffer from the limitation of traffic overhead, especially in large scale networks. To relieve traffic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered after multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method

  18. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  19. FY 1999 Blue Book: Computing, Information, and Communications: Networked Computing for the 21st Century

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — U.S.research and development R and D in computing, communications, and information technologies has enabled unprecedented scientific and engineering advances,...

  20. Centrality measures in temporal networks with time series analysis

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  1. THE IMPROVEMENT OF COMPUTER NETWORK PERFORMANCE WITH BANDWIDTH MANAGEMENT IN KEMURNIAN II SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Bayu Kanigoro

    2012-05-01

    Full Text Available This research describes the improvement of computer network performance with bandwidth management in Kemurnian II Senior High School. The main issue of this research is the absence of bandwidth division on computer, which makes user who is downloading data, the provided bandwidth will be absorbed by the user. It leads other users do not get the bandwidth. Besides that, it has been done IP address division on each room, such as computer, teacher and administration room for supporting learning process in Kemurnian II Senior High School, so wireless network is needed. The method is location observation and interview with related parties in Kemurnian II Senior High School, the network analysis has run and designed a new topology network including the wireless network along with its configuration and separation bandwidth on microtic router and its limitation. The result is network traffic on Kemurnian II Senior High School can be shared evenly to each user; IX and IIX traffic are separated, which improve the speed on network access at school and the implementation of wireless network.Keywords: Bandwidth Management; Wireless Network

  2. Tactical Airborne Distributed Computing and Networks

    Science.gov (United States)

    1981-10-01

    an CnRlni-.Cj , qui ost utilis6 pour Xcuerrcpind iot q~eol CNQ on a un ’R(E~ .gui ost utilisAs pour damr-ndor la~~~~~~ ~ rernmsinLeWmot ulCP] Lea...function can result in the lailure of that tunction and cause the m.. s,.: iot , to be abandoned. For a safety critical function there is an add.iional...Controller; AP-101 interface. 30-6 ENABLE TO SRIALMANCHESTER MODULATOR CONVERTER ENCODER IDRIVER ]J .I BUS CONTROLLER - NETWORK INTERFACE Figure 5. Bus

  3. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...

  4. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  5. Characterization and Planning for Computer Network Operations

    Science.gov (United States)

    2010-07-01

    have been proposed to get around these problems ranging from pruning the state space of the kth order models [55] to using mixtures of Markov chains [40...demonstrate this, below are the top four results for the query java coffee . 71 SCORE CATEGORY...4.0189 Shopping/Food/Beverages/Coffee_and_Tea/ Coffee /Espresso 3.8427 Shopping/Food/Beverages/Coffee_and_Tea/ Coffee /Espresso 2.3447 Computers

  6. Statistical Network Analysis for Functional MRI: Mean Networks and Group Comparisons.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    2014-05-01

    Full Text Available Comparing networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by either adopting a mass-univariate approach, which produces a statistical parametric network (SPN, or by directly computing the mean network, provided that a metric has been specified on the space of all networks with a given number of nodes. In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.

  7. Wirelessly powered sensor networks and computational RFID

    CERN Document Server

    2013-01-01

    The Wireless Identification and Sensing Platform (WISP) is the first of a new class of RF-powered sensing and computing systems.  Rather than being powered by batteries, these sensor systems are powered by radio waves that are either deliberately broadcast or ambient.  Enabled by ongoing exponential improvements in the energy efficiency of microelectronics, RF-powered sensing and computing is rapidly moving along a trajectory from impossible (in the recent past), to feasible (today), toward practical and commonplace (in the near future). This book is a collection of key papers on RF-powered sensing and computing systems including the WISP.  Several of the papers grew out of the WISP Challenge, a program in which Intel Corporation donated WISPs to academic applicants who proposed compelling WISP-based projects.  The book also includes papers presented at the first WISP Summit, a workshop held in Berkeley, CA in association with the ACM Sensys conference, as well as other relevant papers. The book provides ...

  8. Six networks on a universal neuromorphic computing substrate

    Directory of Open Access Journals (Sweden)

    Thomas ePfeil

    2013-02-01

    Full Text Available In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

  9. Six networks on a universal neuromorphic computing substrate.

    Science.gov (United States)

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

  10. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  11. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  12. Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors

    International Nuclear Information System (INIS)

    Pai, Archana; Bose, Sukanta; Dhurandhar, Sanjeev

    2002-01-01

    We extend a coherent network data-analysis strategy developed earlier for detecting Newtonian waveforms to the case of post-Newtonian (PN) waveforms. Since the PN waveform depends on the individual masses of the inspiralling binary, the parameter-space dimension increases by one from that of the Newtonian case. We obtain the number of templates and estimate the computational costs for PN waveforms: for a lower mass limit of 1M o-dot , for LIGO-I noise and with 3% maximum mismatch, the online computational speed requirement for single detector is a few Gflops; for a two-detector network it is hundreds of Gflops and for a three-detector network it is tens of Tflops. Apart from idealistic networks, we obtain results for realistic networks comprising of LIGO and VIRGO. Finally, we compare costs incurred in a coincidence detection strategy with those incurred in the coherent strategy detailed above

  13. Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors

    CERN Document Server

    Pai, A; Dhurandhar, S V

    2002-01-01

    We extend a coherent network data-analysis strategy developed earlier for detecting Newtonian waveforms to the case of post-Newtonian (PN) waveforms. Since the PN waveform depends on the individual masses of the inspiralling binary, the parameter-space dimension increases by one from that of the Newtonian case. We obtain the number of templates and estimate the computational costs for PN waveforms: for a lower mass limit of 1M sub o sub - sub d sub o sub t , for LIGO-I noise and with 3% maximum mismatch, the online computational speed requirement for single detector is a few Gflops; for a two-detector network it is hundreds of Gflops and for a three-detector network it is tens of Tflops. Apart from idealistic networks, we obtain results for realistic networks comprising of LIGO and VIRGO. Finally, we compare costs incurred in a coincidence detection strategy with those incurred in the coherent strategy detailed above.

  14. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  15. Artificial intelligence. Application of the Statistical Neural Networks computer program in nuclear medicine

    International Nuclear Information System (INIS)

    Stefaniak, B.; Cholewinski, W.; Tarkowska, A.

    2005-01-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)

  16. Computing with competition in biochemical networks.

    Science.gov (United States)

    Genot, Anthony J; Fujii, Teruo; Rondelez, Yannick

    2012-11-16

    Cells rely on limited resources such as enzymes or transcription factors to process signals and make decisions. However, independent cellular pathways often compete for a common molecular resource. Competition is difficult to analyze because of its nonlinear global nature, and its role remains unclear. Here we show how decision pathways such as transcription networks may exploit competition to process information. Competition for one resource leads to the recognition of convex sets of patterns, whereas competition for several resources (overlapping or cascaded regulons) allows even more general pattern recognition. Competition also generates surprising couplings, such as correlating species that share no resource but a common competitor. The mechanism we propose relies on three primitives that are ubiquitous in cells: multiinput motifs, competition for a resource, and positive feedback loops.

  17. Energy Aware Computing in Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    In this work the idea of cooperation is applied to wireless communication systems. It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems. We propose a novel method of cooperative task computing by distributing tasks among terminals over...... the unreliable wireless link. Principles of multi–processor energy aware task scheduling are used exploiting performance scalable technologies such as Dynamic Voltage Scaling (DVS). We introduce a novel mechanism referred to as D2VS and here it is shown by means of simulation that savings of 40% can be achieved....

  18. A computer network attack taxonomy and ontology

    CSIR Research Space (South Africa)

    Van Heerden, RP

    2012-01-01

    Full Text Available of the attack that occur after the attack goal has been achieved, and occurs because the attacker loses control of some systems. For example, after the launch of a DDOS (Distributed Denial of Service) attack, zombie computers may still connect to the target...-scrap- value-of-a-hacked-pc-revisited/ . Lancor, L., & Workman, R. (2007). Using Google Hacking to Enhance Defense Strategies. ACM SIGCSE Bulletin, 39 (1), 491-495. Lau, F., Rubin, S. H., Smith, M. H., & Trajkovic, L. (2000). Distributed Denial of Service...

  19. Computational system for geostatistical analysis

    Directory of Open Access Journals (Sweden)

    Vendrusculo Laurimar Gonçalves

    2004-01-01

    Full Text Available Geostatistics identifies the spatial structure of variables representing several phenomena and its use is becoming more intense in agricultural activities. This paper describes a computer program, based on Windows Interfaces (Borland Delphi, which performs spatial analyses of datasets through geostatistic tools: Classical statistical calculations, average, cross- and directional semivariograms, simple kriging estimates and jackknifing calculations. A published dataset of soil Carbon and Nitrogen was used to validate the system. The system was useful for the geostatistical analysis process, for the manipulation of the computational routines in a MS-DOS environment. The Windows development approach allowed the user to model the semivariogram graphically with a major degree of interaction, functionality rarely available in similar programs. Given its characteristic of quick prototypation and simplicity when incorporating correlated routines, the Delphi environment presents the main advantage of permitting the evolution of this system.

  20. A Distributed Computing Network for Real-Time Systems.

    Science.gov (United States)

    1980-11-03

    7 ) AU2 o NAVA TUNDEWATER SY$TEMS CENTER NEWPORT RI F/G 9/2 UIS RIBUT E 0 COMPUTIN G N LTWORK FOR REAL - TIME SYSTEMS .(U) UASSIFIED NOV Al 6 1...MORAIS - UT 92 dLEVEL c A Distributed Computing Network for Real - Time Systems . 11 𔃺-1 Gordon E/Morson I7 y tm- ,r - t "en t As J 2 -p .. - 7 I’ cNaval...NUMBER TD 5932 / N 4. TITLE mand SubotI. S. TYPE OF REPORT & PERIOD COVERED A DISTRIBUTED COMPUTING NETWORK FOR REAL - TIME SYSTEMS 6. PERFORMING ORG

  1. Computational analysis of cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa; Abe, Osamu; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2010-08-15

    Magnetic resonance imaging (MRI) has been used in many in vivo anatomical studies of the brain. Computational neuroanatomy is an expanding field of research, and a number of automated, unbiased, objective techniques have been developed to characterize structural changes in the brain using structural MRI without the need for time-consuming manual measurements. Voxel-based morphometry is one of the most widely used automated techniques to examine patterns of brain changes. Cortical thickness analysis is also becoming increasingly used as a tool for the study of cortical anatomy. Both techniques can be relatively easily used with freely available software packages. MRI data quality is important in order for the processed data to be accurate. In this review, we describe MRI data acquisition and preprocessing for morphometric analysis of the brain and present a brief summary of voxel-based morphometry and cortical thickness analysis. (orig.)

  2. Computational analysis of cerebral cortex

    International Nuclear Information System (INIS)

    Takao, Hidemasa; Abe, Osamu; Ohtomo, Kuni

    2010-01-01

    Magnetic resonance imaging (MRI) has been used in many in vivo anatomical studies of the brain. Computational neuroanatomy is an expanding field of research, and a number of automated, unbiased, objective techniques have been developed to characterize structural changes in the brain using structural MRI without the need for time-consuming manual measurements. Voxel-based morphometry is one of the most widely used automated techniques to examine patterns of brain changes. Cortical thickness analysis is also becoming increasingly used as a tool for the study of cortical anatomy. Both techniques can be relatively easily used with freely available software packages. MRI data quality is important in order for the processed data to be accurate. In this review, we describe MRI data acquisition and preprocessing for morphometric analysis of the brain and present a brief summary of voxel-based morphometry and cortical thickness analysis. (orig.)

  3. Computing all hybridization networks for multiple binary phylogenetic input trees.

    Science.gov (United States)

    Albrecht, Benjamin

    2015-07-30

    The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.

  4. Service-oriented Software Defined Optical Networks for Cloud Computing

    Science.gov (United States)

    Liu, Yuze; Li, Hui; Ji, Yuefeng

    2017-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.

  5. Several problems of algorithmization in integrated computation programs on third generation computers for short circuit currents in complex power networks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, V.A.; Pisarenko, V.P.

    1982-01-01

    Methods of modeling complex power networks with short circuits in the networks are described. The methods are implemented in integrated computation programs for short circuit currents and equivalents in electrical networks with a large number of branch points (up to 1000) on a computer with a limited on line memory capacity (M equals 4030 for the computer).

  6. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M

    1980-01-01

    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  7. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  8. Test experience on an ultrareliable computer communication network

    Science.gov (United States)

    Abbott, L. W.

    1984-01-01

    The dispersed sensor processing mesh (DSPM) is an experimental, ultra-reliable, fault-tolerant computer communications network that exhibits an organic-like ability to regenerate itself after suffering damage. The regeneration is accomplished by two routines - grow and repair. This paper discusses the DSPM concept for achieving fault tolerance and provides a brief description of the mechanization of both the experiment and the six-node experimental network. The main topic of this paper is the system performance of the growth algorithm contained in the grow routine. The characteristics imbued to DSPM by the growth algorithm are also discussed. Data from an experimental DSPM network and software simulation of larger DSPM-type networks are used to examine the inherent limitation on growth time by the growth algorithm and the relationship of growth time to network size and topology.

  9. Distributed Problem Solving: Adaptive Networks with a Computer Intermediary Resource. Intelligent Executive Computer Communication

    Science.gov (United States)

    1991-06-01

    Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent

  10. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  11. Assessing Group Interaction with Social Language Network Analysis

    Science.gov (United States)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  12. THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS

    OpenAIRE

    Mary Violeta Bar

    2014-01-01

    The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...

  13. US computer research networks: Current and future

    Science.gov (United States)

    Kratochvil, D.; Sood, D.; Verostko, A.

    1989-01-01

    During the last decade, NASA LeRC's Communication Program has conducted a series of telecommunications forecasting studies to project trends and requirements and to identify critical telecommunications technologies that must be developed to meet future requirements. The Government Networks Division of Contel Federal Systems has assisted NASA in these studies, and the current study builds upon these earlier efforts. The current major thrust of the NASA Communications Program is aimed at developing the high risk, advanced, communications satellite and terminal technologies required to significantly increase the capacity of future communications systems. Also, major new technological, economic, and social-political events and trends are now shaping the communications industry of the future. Therefore, a re-examination of future telecommunications needs and requirements is necessary to enable NASA to make management decisions in its Communications Program and to ensure the proper technologies and systems are addressed. This study, through a series of Task Orders, is helping NASA define the likely communication service needs and requirements of the future and thereby ensuring that the most appropriate technology developments are pursued.

  14. Identifying failure in a tree network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.

    2010-08-24

    Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.

  15. Computer aided analysis of disturbances

    International Nuclear Information System (INIS)

    Baldeweg, F.; Lindner, A.

    1986-01-01

    Computer aided analysis of disturbances and the prevention of failures (diagnosis and therapy control) in technological plants belong to the most important tasks of process control. Research in this field is very intensive due to increasing requirements to security and economy of process control and due to a remarkable increase of the efficiency of digital electronics. This publication concerns with analysis of disturbances in complex technological plants, especially in so called high risk processes. The presentation emphasizes theoretical concept of diagnosis and therapy control, modelling of the disturbance behaviour of the technological process and the man-machine-communication integrating artificial intelligence methods, e.g., expert system approach. Application is given for nuclear power plants. (author)

  16. Computation and Communication Evaluation of an Authentication Mechanism for Time-Triggered Networked Control Systems

    Science.gov (United States)

    Martins, Goncalo; Moondra, Arul; Dubey, Abhishek; Bhattacharjee, Anirban; Koutsoukos, Xenofon D.

    2016-01-01

    In modern networked control applications, confidentiality and integrity are important features to address in order to prevent against attacks. Moreover, network control systems are a fundamental part of the communication components of current cyber-physical systems (e.g., automotive communications). Many networked control systems employ Time-Triggered (TT) architectures that provide mechanisms enabling the exchange of precise and synchronous messages. TT systems have computation and communication constraints, and with the aim to enable secure communications in the network, it is important to evaluate the computational and communication overhead of implementing secure communication mechanisms. This paper presents a comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication (HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis and experimental validation of the communication overhead, as well as a scalability analysis that utilizes the experimental result for both wired and wireless platforms and (2) an experimental evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation. An automotive application is used as an example, and the results show that it is feasible to implement a secure communication mechanism without interfering with the existing automotive controller execution times. The methods and results of the paper can be used for evaluating the performance impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked control systems. PMID:27463718

  17. Recurrent Neural Network for Computing the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin

    2015-11-01

    This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.

  18. Hybrid computing using a neural network with dynamic external memory.

    Science.gov (United States)

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  19. Latest developments for a computer aided thermohydraulic network

    International Nuclear Information System (INIS)

    Alemberti, A.; Graziosi, G.; Mini, G.; Susco, M.

    1999-01-01

    Thermohydraulic networks are I-D systems characterized by a small number of basic components (pumps, valves, heat exchangers, etc) connected by pipes and limited spatially by a defined number of boundary conditions (tanks, atmosphere, etc). The network system is simulated by the well known computer program RELAPS/mod3. Information concerning the network geometry component behaviour, initial and boundary conditions are usually supplied to the RELAPS code using an ASCII input file by means of 'input cards'. CATNET (Computer Aided Thermalhydraulic NETwork) is a graphically user interface that, under specific user guidelines which completely define its range of applicability, permits a very high level of standardization and simplification of the RELAPS/mod3 input deck development process as well as of the output processing. The characteristics of the components (pipes, valves, pumps etc), defining the network system can be entered through CATNET. The CATNET interface is provided by special functions to compute form losses in the most typical bending and branching configurations. When the input of all system components is ready, CATNET is able to generate the RELAPS/mod3 input file. Finally, by means of CATNET, the RELAPS/mod3 code can be run and its output results can be transformed to an intuitive display form. The paper presents an example of application of the CATNET interface as well as the latest developments which greatly simplified the work of the users and allowed to reduce the possibility of input errors. (authors)

  20. Mathematical and theoretical neuroscience cell, network and data analysis

    CERN Document Server

    Nieus, Thierry

    2017-01-01

    This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical  and numerical topics;  statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

  1. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  2. The Poor Man's Guide to Computer Networks and their Applications

    DEFF Research Database (Denmark)

    Sharp, Robin

    2003-01-01

    These notes for DTU course 02220, Concurrent Programming, give an introduction to computer networks, with focus on the modern Internet. Basic Internet protocols such as IP, TCP and UDP are presented, and two Internet application protocols, SMTP and HTTP, are described in some detail. Techniques...

  3. Improving a Computer Networks Course Using the Partov Simulation Engine

    Science.gov (United States)

    Momeni, B.; Kharrazi, M.

    2012-01-01

    Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…

  4. Development of a UNIX network compatible reactivity computer

    International Nuclear Information System (INIS)

    Sanchez, R.F.; Edwards, R.M.

    1996-01-01

    A state-of-the-art UNIX network compatible controller and UNIX host workstation with MATLAB/SIMULINK software were used to develop, implement, and validate a digital reactivity calculation. An objective of the development was to determine why a Macintosh-based reactivity computer reactivity output drifted intolerably

  5. High speed switching for computer and communication networks

    NARCIS (Netherlands)

    Dorren, H.J.S.

    2014-01-01

    The role of data centers and computers are vital for the future of our data-centric society. Historically the performance of data-centers is increasing with a factor 100-1000 every ten years and as a result of this the capacity of the data-center communication network has to scale accordingly. This

  6. Computing Nash Equilibrium in Wireless Ad Hoc Networks

    DEFF Research Database (Denmark)

    Bulychev, Peter E.; David, Alexandre; Larsen, Kim G.

    2012-01-01

    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem...

  7. Computer-Supported Modelling of Multi modal Transportation Networks Rationalization

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-09-01

    Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by

  8. Developments of the general computer network of NIPNE-HH

    International Nuclear Information System (INIS)

    Mirica, M.; Constantinescu, S.; Danet, A.

    1997-01-01

    Since 1991 the general computer network of NIPNE-HH was developed and connected to RNCN (Romanian National Computer Network) for research and development and it offers to the Romanian physics research community an efficient and cost-effective infrastructure to communicate and collaborate with fellow researchers abroad, and to collect and exchange the most up-to-date information in their research area. RNCN is targeted on the following main objectives: Setting up a technical and organizational infrastructure meant to provide national and international electronic services for the Romanian scientific research community; - Providing a rapid and competitive tool for the exchange of information in the framework of Research and Development (R-D) community; - Using the scientific and technical data bases available in the country and offered by the national networks from other countries through international networks; - Providing a support for information, scientific and technical co-operation. RNCN has two international links: to EBONE via ACONET (64kbps) and to EuropaNET via Hungarnet (64 kbps). The guiding principle in designing the project of general computer network of NIPNE-HH, as part of RNCN, was to implement an open system based on OSI standards taking into account the following criteria: - development of a flexible solution, according to OSI specifications; - solutions of reliable gateway with the existing network already in use,allowing the access to the worldwide networks; - using the TCP/IP transport protocol for each Local Area Network (LAN) and for the connection to RNCN; - ensuring the integration of different and heterogeneous software and hardware platforms (DOS, Windows, UNIX, VMS, Linux, etc) through some specific interfaces. The major objectives achieved in direction of developing the general computer network of NIPNE-HH are: - linking all the existing and newly installed computer equipment and providing an adequate connectivity. LANs from departments

  9. Computer network time synchronization the network time protocol on earth and in space

    CERN Document Server

    Mills, David L

    2010-01-01

    Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib

  10. Network architecture test-beds as platforms for ubiquitous computing.

    Science.gov (United States)

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  11. Spatial equity analysis on expressway network development in Japan: Empirical approach using the spatial computable general equilibrium model RAEM-light

    NARCIS (Netherlands)

    Koike, A.; Tavasszy, L.; Sato, K.

    2009-01-01

    The authors apply the RAEM-Light model to analyze the distribution of social benefits from expressway network projects from the viewpoint of spatial equity. The RAEM-Light model has some innovative features. The spatial behavior of producers and consumers is explicitly described and is endogenously

  12. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  13. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  14. Global tree network for computing structures enabling global processing operations

    Science.gov (United States)

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  15. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  16. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  17. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  18. Topology design and performance analysis of an integrated communication network

    Science.gov (United States)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  19. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    Science.gov (United States)

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  20. The Topological Analysis of Urban Transit System as a Small-World Network

    OpenAIRE

    Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang

    2011-01-01

    This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...

  1. Hybrid soft computing systems for electromyographic signals analysis: a review

    Science.gov (United States)

    2014-01-01

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979

  2. Hybrid soft computing systems for electromyographic signals analysis: a review.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

  3. A Computer Program for Short Circuit Analysis of Electric Power ...

    African Journals Online (AJOL)

    The Short Circuit Analysis Program (SCAP) is to be used to assess the composite effects of unbalanced and balanced faults on the overall reliability of electric power system. The program uses the symmetrical components method to compute all phase and sequence quantities for any bus or branch of a given power network ...

  4. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  5. Proceedings: Distributed digital systems, plant process computers, and networks

    International Nuclear Information System (INIS)

    1995-03-01

    These are the proceedings of a workshop on Distributed Digital Systems, Plant Process Computers, and Networks held in Charlotte, North Carolina on August 16--18, 1994. The purpose of the workshop was to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 100 representatives of electric utilities, equipment manufacturers, engineering service organizations, and government agencies. The workshop consisted of three days of presentations, exhibitions, a panel discussion and attendee interactions. Original plant process computers at the nuclear power plants are becoming obsolete resulting in increasing difficulties in their effectiveness to support plant operations and maintenance. Some utilities have already replaced their plant process computers by more powerful modern computers while many other utilities intend to replace their aging plant process computers in the future. Information on recent and planned implementations are presented. Choosing an appropriate communications and computing network architecture facilitates integrating new systems and provides functional modularity for both hardware and software. Control room improvements such as CRT-based distributed monitoring and control, as well as digital decision and diagnostic aids, can improve plant operations. Commercially available digital products connected to the plant communications system are now readily available to provide distributed processing where needed. Plant operations, maintenance activities, and engineering analyses can be supported in a cost-effective manner. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  6. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  7. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  8. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  9. Computing Tutte polynomials of contact networks in classrooms

    Science.gov (United States)

    Hincapié, Doracelly; Ospina, Juan

    2013-05-01

    Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network

  10. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  12. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  13. Validation of network communicability metrics for the analysis of brain structural networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Andreotti

    Full Text Available Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

  14. Using Social Network Analysis to Assess Mentorship and Collaboration in a Public Health Network.

    Science.gov (United States)

    Petrescu-Prahova, Miruna; Belza, Basia; Leith, Katherine; Allen, Peg; Coe, Norma B; Anderson, Lynda A

    2015-08-20

    Addressing chronic disease burden requires the creation of collaborative networks to promote systemic changes and engage stakeholders. Although many such networks exist, they are rarely assessed with tools that account for their complexity. This study examined the structure of mentorship and collaboration relationships among members of the Healthy Aging Research Network (HAN) using social network analysis (SNA). We invited 97 HAN members and partners to complete an online social network survey that included closed-ended questions about HAN-specific mentorship and collaboration during the previous 12 months. Collaboration was measured by examining the activity of the network on 6 types of products: published articles, in-progress manuscripts, grant applications, tools, research projects, and presentations. We computed network-level measures such as density, number of components, and centralization to assess the cohesiveness of the network. Sixty-three respondents completed the survey (response rate, 65%). Responses, which included information about collaboration with nonrespondents, suggested that 74% of HAN members were connected through mentorship ties and that all 97 members were connected through at least one form of collaboration. Mentorship and collaboration ties were present both within and across boundaries of HAN member organizations. SNA of public health collaborative networks provides understanding about the structure of relationships that are formed as a result of participation in network activities. This approach may offer members and funders a way to assess the impact of such networks that goes beyond simply measuring products and participation at the individual level.

  15. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jianhua Ni

    2016-08-01

    Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  16. Personal Computer Transport Analysis Program

    Science.gov (United States)

    DiStefano, Frank, III; Wobick, Craig; Chapman, Kirt; McCloud, Peter

    2012-01-01

    The Personal Computer Transport Analysis Program (PCTAP) is C++ software used for analysis of thermal fluid systems. The program predicts thermal fluid system and component transients. The output consists of temperatures, flow rates, pressures, delta pressures, tank quantities, and gas quantities in the air, along with air scrubbing component performance. PCTAP s solution process assumes that the tubes in the system are well insulated so that only the heat transfer between fluid and tube wall and between adjacent tubes is modeled. The system described in the model file is broken down into its individual components; i.e., tubes, cold plates, heat exchangers, etc. A solution vector is built from the components and a flow is then simulated with fluid being transferred from one component to the next. The solution vector of components in the model file is built at the initiation of the run. This solution vector is simply a list of components in the order of their inlet dependency on other components. The component parameters are updated in the order in which they appear in the list at every time step. Once the solution vectors have been determined, PCTAP cycles through the components in the solution vector, executing their outlet function for each time-step increment.

  17. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  18. Analysis and monitoring design for networks

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  19. Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks

    Science.gov (United States)

    Luo, Ming-Xing

    2018-04-01

    The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.

  20. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    Science.gov (United States)

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  1. Compiling gate networks on an Ising quantum computer

    International Nuclear Information System (INIS)

    Bowdrey, M.D.; Jones, J.A.; Knill, E.; Laflamme, R.

    2005-01-01

    Here we describe a simple mechanical procedure for compiling a quantum gate network into the natural gates (pulses and delays) for an Ising quantum computer. The aim is not necessarily to generate the most efficient pulse sequence, but rather to develop an efficient compilation algorithm that can be easily implemented in large spin systems. The key observation is that it is not always necessary to refocus all the undesired couplings in a spin system. Instead, the coupling evolution can simply be tracked and then corrected at some later time. Although described within the language of NMR, the algorithm is applicable to any design of quantum computer based on Ising couplings

  2. Computer, Network, Software, and Hardware Engineering with Applications

    CERN Document Server

    Schneidewind, Norman F

    2012-01-01

    There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integr

  3. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  4. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  5. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  6. Piping stress analysis with personal computers

    International Nuclear Information System (INIS)

    Revesz, Z.

    1987-01-01

    The growing market of the personal computers is providing an increasing number of professionals with unprecedented and surprisingly inexpensive computing capacity, which if using with powerful software, can enhance immensely the engineers capabilities. This paper focuses on the possibilities which opened in piping stress analysis by the widespread distribution of personal computers, on the necessary changes in the software and on the limitations of using personal computers for engineering design and analysis. Reliability and quality assurance aspects of using personal computers for nuclear applications are also mentioned. The paper resumes with personal views of the author and experiences gained during interactive graphic piping software development for personal computers. (orig./GL)

  7. Social Network Analysis: a practical measurement and evaluation of Trust in a classroom environment

    OpenAIRE

    Giandini, Roxana Silvia; Kuz, Antonieta

    2012-01-01

    A social network is formed by a set of actors and the relationships established by them. SNA leads to distinct goals and perspectives of social network analysis and computer science. This paper introduces the study of social networks and their relationship with trust. We study the methods of detection and description of structural properties. This covers the concepts, methods and data analysis techniques of social networks analysis. After that, we introduce the concept of trust and its relati...

  8. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  9. An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking

    Directory of Open Access Journals (Sweden)

    Hyunhun Cho

    2015-05-01

    Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.

  10. Topology and computational performance of attractor neural networks

    International Nuclear Information System (INIS)

    McGraw, Patrick N.; Menzinger, Michael

    2003-01-01

    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The random configuration is the most efficient for storage and retrieval of patterns by the network as a whole. However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of these findings for brain function and social dynamics are suggestive

  11. A probabilistic computational framework for bridge network optimal maintenance scheduling

    International Nuclear Information System (INIS)

    Bocchini, Paolo; Frangopol, Dan M.

    2011-01-01

    This paper presents a probabilistic computational framework for the Pareto optimization of the preventive maintenance applications to bridges of a highway transportation network. The bridge characteristics are represented by their uncertain reliability index profiles. The in/out of service states of the bridges are simulated taking into account their correlation structure. Multi-objective Genetic Algorithms have been chosen as numerical tool for the solution of the optimization problem. The design variables of the optimization are the preventive maintenance schedules of all the bridges of the network. The two conflicting objectives are the minimization of the total present maintenance cost and the maximization of the network performance indicator. The final result is the Pareto front of optimal solutions among which the managers should chose, depending on engineering and economical factors. A numerical example illustrates the application of the proposed approach.

  12. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    Virginia 22203 Air Force Research Laboratory Air Force Materiel Command 1 Final Performance Report: AFOSR T.C. Henderson , V.J. Mathews, and D...AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The people who worked on this project include: Thomas C. Henderson , John Mathews, Jingru Zhou, Daimei Zhij, Ahmad Zoubi, Sabita Nahata, Dan Adams

  13. NATbox: a network analysis toolbox in R.

    Science.gov (United States)

    Chavan, Shweta S; Bauer, Michael A; Scutari, Marco; Nagarajan, Radhakrishnan

    2009-10-08

    There has been recent interest in capturing the functional relationships (FRs) from high-throughput assays using suitable computational techniques. FRs elucidate the working of genes in concert as a system as opposed to independent entities hence may provide preliminary insights into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques and its extensions have been used successfully for modelling FRs from expression profiles. Such techniques are especially useful in discovering undocumented FRs, investigating non-canonical signalling mechanisms and cross-talk between pathways. The objective of the present study is to develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in the form of acyclic networks from gene expression profiles and their subsequent analysis. NATbox is a menu-driven open-source GUI implemented in the R statistical language for modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute missing observations in the given data (ii) model FRs and network structure from gene expression profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its topological properties using network analysis metrics, (iv) retrieve FRs of interest from published literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL across high-dimensional data by parallelizing the bootstrap routines. NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene expression profiles. By incorporating readily available functions from existing R-packages, it minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic of open-source environments

  14. Power Consumption Evaluation of Distributed Computing Network Considering Traffic Locality

    Science.gov (United States)

    Ogawa, Yukio; Hasegawa, Go; Murata, Masayuki

    When computing resources are consolidated in a few huge data centers, a massive amount of data is transferred to each data center over a wide area network (WAN). This results in increased power consumption in the WAN. A distributed computing network (DCN), such as a content delivery network, can reduce the traffic from/to the data center, thereby decreasing the power consumed in the WAN. In this paper, we focus on the energy-saving aspect of the DCN and evaluate its effectiveness, especially considering traffic locality, i.e., the amount of traffic related to the geographical vicinity. We first formulate the problem of optimizing the DCN power consumption and describe the DCN in detail. Then, numerical evaluations show that, when there is strong traffic locality and the router has ideal energy proportionality, the system's power consumption is reduced to about 50% of the power consumed in the case where a DCN is not used; moreover, this advantage becomes even larger (up to about 30%) when the data center is located farthest from the center of the network topology.

  15. Convolutional networks for fast, energy-efficient neuromorphic computing.

    Science.gov (United States)

    Esser, Steven K; Merolla, Paul A; Arthur, John V; Cassidy, Andrew S; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J; McKinstry, Jeffrey L; Melano, Timothy; Barch, Davis R; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D; Modha, Dharmendra S

    2016-10-11

    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.

  16. Convolutional networks for fast, energy-efficient neuromorphic computing

    Science.gov (United States)

    Esser, Steven K.; Merolla, Paul A.; Arthur, John V.; Cassidy, Andrew S.; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J.; McKinstry, Jeffrey L.; Melano, Timothy; Barch, Davis R.; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D.; Modha, Dharmendra S.

    2016-01-01

    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer. PMID:27651489

  17. Why do Reservoir Computing Networks Predict Chaotic Systems so Well?

    Science.gov (United States)

    Lu, Zhixin; Pathak, Jaideep; Girvan, Michelle; Hunt, Brian; Ott, Edward

    Recently a new type of artificial neural network, which is called a reservoir computing network (RCN), has been employed to predict the evolution of chaotic dynamical systems from measured data and without a priori knowledge of the governing equations of the system. The quality of these predictions has been found to be spectacularly good. Here, we present a dynamical-system-based theory for how RCN works. Basically a RCN is thought of as consisting of three parts, a randomly chosen input layer, a randomly chosen recurrent network (the reservoir), and an output layer. The advantage of the RCN framework is that training is done only on the linear output layer, making it computationally feasible for the reservoir dimensionality to be large. In this presentation, we address the underlying dynamical mechanisms of RCN function by employing the concepts of generalized synchronization and conditional Lyapunov exponents. Using this framework, we propose conditions on reservoir dynamics necessary for good prediction performance. By looking at the RCN from this dynamical systems point of view, we gain a deeper understanding of its surprising computational power, as well as insights on how to design a RCN. Supported by Army Research Office Grant Number W911NF1210101.

  18. Automatic data-acquisition and communications computer network for fusion experiments

    International Nuclear Information System (INIS)

    Kemper, C.O.

    1981-01-01

    A network of more than twenty computers serves the data acquisition, archiving, and analysis requirements of the ISX, EBT, and beam-line test facilities at the Fusion Division of Oak Ridge National Laboratory. The network includes PDP-8, PDP-12, PDP-11, PDP-10, and Interdata 8-32 processors, and is unified by a variety of high-speed serial and parallel communications channels. While some processors are dedicated to experimental data acquisition, and others are dedicated to later analysis and theoretical work, many processors perform a combination of acquisition, real-time analysis and display, and archiving and communications functions. A network software system has been developed which runs in each processor and automatically transports data files from point of acquisition to point or points of analysis, display, and storage, providing conversion and formatting functions are required

  19. Improving Family Forest Knowledge Transfer through Social Network Analysis

    Science.gov (United States)

    Gorczyca, Erika L.; Lyons, Patrick W.; Leahy, Jessica E.; Johnson, Teresa R.; Straub, Crista L.

    2012-01-01

    To better engage Maine's family forest landowners our study used social network analysis: a computational social science method for identifying stakeholders, evaluating models of engagement, and targeting areas for enhanced partnerships. Interviews with researchers associated with a research center were conducted to identify how social network…

  20. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  1. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  2. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    Directory of Open Access Journals (Sweden)

    Qian Li

    Full Text Available BACKGROUND: Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. METHODOLOGY: We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671 between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. CONCLUSIONS: This article proposes a network-based multi-target computational estimation

  3. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    Science.gov (United States)

    Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-03-22

    Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by

  4. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  5. A Newly Developed Method for Computing Reliability Measures in a Water Supply Network

    Directory of Open Access Journals (Sweden)

    Jacek Malinowski

    2016-01-01

    Full Text Available A reliability model of a water supply network has beens examined. Its main features are: a topology that can be decomposed by the so-called state factorization into a (relativelysmall number of derivative networks, each having a series-parallel structure (1, binary-state components (either operative or failed with given flow capacities (2, a multi-state character of the whole network and its sub-networks - a network state is defined as the maximal flow between a source (sources and a sink (sinks (3, all capacities (component, network, and sub-network have integer values (4. As the network operates, its state changes due to component failures, repairs, and replacements. A newly developed method of computing the inter-state transition intensities has been presented. It is based on the so-called state factorization and series-parallel aggregation. The analysis of these intensities shows that the failure-repair process of the considered system is an asymptotically homogenous Markov process. It is also demonstrated how certain reliability parameters useful for the network maintenance planning can be determined on the basis of the asymptotic intensities. For better understanding of the presented method, an illustrative example is given. (original abstract

  6. An improved algorithm for connectivity analysis of distribution networks

    International Nuclear Information System (INIS)

    Kansal, M.L.; Devi, Sunita

    2007-01-01

    In the present paper, an efficient algorithm for connectivity analysis of moderately sized distribution networks has been suggested. Algorithm is based on generation of all possible minimal system cutsets. The algorithm is efficient as it identifies only the necessary and sufficient conditions of system failure conditions in n-out-of-n type of distribution networks. The proposed algorithm is demonstrated with the help of saturated and unsaturated distribution networks. The computational efficiency of the algorithm is justified by comparing the computational efforts with the previously suggested appended spanning tree (AST) algorithm. The proposed technique has the added advantage as it can be utilized for generation of system inequalities which is useful in reliability estimation of capacitated networks

  7. Stochastic sensitivity analysis and Langevin simulation for neural network learning

    International Nuclear Information System (INIS)

    Koda, Masato

    1997-01-01

    A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method

  8. Simulated, Emulated, and Physical Investigative Analysis (SEPIA) of networked systems.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, David P.; Van Leeuwen, Brian P.; McDonald, Michael James; Onunkwo, Uzoma A.; Tarman, Thomas David; Urias, Vincent E.

    2009-09-01

    This report describes recent progress made in developing and utilizing hybrid Simulated, Emulated, and Physical Investigative Analysis (SEPIA) environments. Many organizations require advanced tools to analyze their information system's security, reliability, and resilience against cyber attack. Today's security analysis utilize real systems such as computers, network routers and other network equipment, computer emulations (e.g., virtual machines) and simulation models separately to analyze interplay between threats and safeguards. In contrast, this work developed new methods to combine these three approaches to provide integrated hybrid SEPIA environments. Our SEPIA environments enable an analyst to rapidly configure hybrid environments to pass network traffic and perform, from the outside, like real networks. This provides higher fidelity representations of key network nodes while still leveraging the scalability and cost advantages of simulation tools. The result is to rapidly produce large yet relatively low-cost multi-fidelity SEPIA networks of computers and routers that let analysts quickly investigate threats and test protection approaches.

  9. Parallel Computation of Unsteady Flows on a Network of Workstations

    Science.gov (United States)

    1997-01-01

    Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.

  10. Computer-Based Linguistic Analysis.

    Science.gov (United States)

    Wright, James R.

    Noam Chomsky's transformational-generative grammar model may effectively be translated into an equivalent computer model. Phrase-structure rules and transformations are tested as to their validity and ordering by the computer via the process of random lexical substitution. Errors appearing in the grammar are detected and rectified, and formal…

  11. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  12. Using new edges for anomaly detection in computer networks

    Science.gov (United States)

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  13. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yang Dan

    2008-12-01

    Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  14. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  15. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  16. NEPTUNIX 2: Operating on computers network - Catalogued procedures

    International Nuclear Information System (INIS)

    Roux, Pierre.

    1982-06-01

    NEPTUNIX 2 is a package which carries out the simulation of complex processes described by numerous non linear algebro-differential equations. Main features are: non linear or time dependent parameters, implicit form, stiff systems, dynamic change of equations leading to discontinuities on some variables. Thus the mathematical model is built with an equations set F(x,x',1,t), where t is the independent variable, x' the derivative of x and 1 an ''algebrized'' logical variable. The NEPTUNIX 2 package is divided into two successive major steps: a non numerical step and a numerical step. The numerical step, using results from a picture of the model translated in FORTRAN language, in a form fitted for the executive computer, carries out the simulmations; in this way, NEPTUNIX 2 numerical step is portable. On the opposite, the non numerical step must be executed on a series 370 IBM computer or on a compatible computer. The present manual describes NEPTUNIX 2 operating procedures when the two steps are executed on the same computer and also when the numerical step is executed on an other computer connected or not on the same computing network [fr

  17. Application of microarray analysis on computer cluster and cloud platforms.

    Science.gov (United States)

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  18. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  19. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  20. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  1. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  2. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  3. Open Problems in Network-aware Data Management in Exa-scale Computing and Terabit Networking Era

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Byna, Surendra

    2011-12-06

    Accessing and managing large amounts of data is a great challenge in collaborative computing environments where resources and users are geographically distributed. Recent advances in network technology led to next-generation high-performance networks, allowing high-bandwidth connectivity. Efficient use of the network infrastructure is necessary in order to address the increasing data and compute requirements of large-scale applications. We discuss several open problems, evaluate emerging trends, and articulate our perspectives in network-aware data management.

  4. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  5. Investigating the computer analysis of eddy current NDT data

    International Nuclear Information System (INIS)

    Brown, R.L.

    1979-01-01

    The objective of this activity was to investigate and develop techniques for computer analysis of eddy current nondestructive testing (NDT) data. A single frequency commercial eddy current tester and a precision mechanical scanner were interfaced with a PDP-11/34 computer to obtain and analyze eddy current data from samples of 316 stainless steel tubing containing known discontinuities. Among the data analysis techniques investigated were: correlation, Fast Fourier Transforms (FFT), clustering, and Adaptive Learning Networks (ALN). The results were considered encouraging. ALN, for example, correctly identified 88% of the defects and non-defects from a group of 153 signal indications

  6. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  7. Transportation Research & Analysis Computing Center

    Data.gov (United States)

    Federal Laboratory Consortium — The technical objectives of the TRACC project included the establishment of a high performance computing center for use by USDOT research teams, including those from...

  8. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  9. Line-plane broadcasting in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.

    2010-06-08

    Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.

  10. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  11. Extraction of drainage networks from large terrain datasets using high throughput computing

    Science.gov (United States)

    Gong, Jianya; Xie, Jibo

    2009-02-01

    Advanced digital photogrammetry and remote sensing technology produces large terrain datasets (LTD). How to process and use these LTD has become a big challenge for GIS users. Extracting drainage networks, which are basic for hydrological applications, from LTD is one of the typical applications of digital terrain analysis (DTA) in geographical information applications. Existing serial drainage algorithms cannot deal with large data volumes in a timely fashion, and few GIS platforms can process LTD beyond the GB size. High throughput computing (HTC), a distributed parallel computing mode, is proposed to improve the efficiency of drainage networks extraction from LTD. Drainage network extraction using HTC involves two key issues: (1) how to decompose the large DEM datasets into independent computing units and (2) how to merge the separate outputs into a final result. A new decomposition method is presented in which the large datasets are partitioned into independent computing units using natural watershed boundaries instead of using regular 1-dimensional (strip-wise) and 2-dimensional (block-wise) decomposition. Because the distribution of drainage networks is strongly related to watershed boundaries, the new decomposition method is more effective and natural. The method to extract natural watershed boundaries was improved by using multi-scale DEMs instead of single-scale DEMs. A HTC environment is employed to test the proposed methods with real datasets.

  12. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  13. Systems approach to modeling the Token Bucket algorithm in computer networks

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  14. Computational Intelligence in Intelligent Data Analysis

    CERN Document Server

    Nürnberger, Andreas

    2013-01-01

    Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intell...

  15. An efficient network for interconnecting remote monitoring instruments and computers

    International Nuclear Information System (INIS)

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-01-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs

  16. COMPUTER METHODS OF GENETIC ANALYSIS.

    Directory of Open Access Journals (Sweden)

    A. L. Osipov

    2017-02-01

    Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.

  17. Reducing Computational Overhead of Network Coding with Intrinsic Information Conveying

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Pedersen, Morten V.

    is RLNC (Random Linear Network Coding) and the goal is to reduce the amount of coding operations both at the coding and decoding node, and at the same time remove the need for dedicated signaling messages. In a traditional RLNC system, coding operation takes up significant computational resources and adds...... the coding operations must be performed in a particular way, which we introduce. Finally we evaluate the suggested system and find that the amount of coding can be significantly reduced both at nodes that recode and decode.......This paper investigated the possibility of intrinsic information conveying in network coding systems. The information is embedded into the coding vector by constructing the vector based on a set of predefined rules. This information can subsequently be retrieved by any receiver. The starting point...

  18. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  19. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  20. Development of small scale cluster computer for numerical analysis

    Science.gov (United States)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  1. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  2. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  3. Sensitivity analysis of linear programming problem through a recurrent neural network

    Science.gov (United States)

    Das, Raja

    2017-11-01

    In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.

  4. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  5. Noise Analysis studies with neural networks

    International Nuclear Information System (INIS)

    Seker, S.; Ciftcioglu, O.

    1996-01-01

    Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)

  6. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  7. Major component analysis of dynamic networks of physiologic organ interactions

    International Nuclear Information System (INIS)

    Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P

    2015-01-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)

  8. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  9. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    Science.gov (United States)

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  10. Energy-efficient computing and networking. Revised selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Hatziargyriou, Nikos; Dimeas, Aris [Ethnikon Metsovion Polytechneion, Athens (Greece); Weidlich, Anke (eds.) [SAP Research Center, Karlsruhe (Germany); Tomtsi, Thomai

    2011-07-01

    This book constitutes the postproceedings of the First International Conference on Energy-Efficient Computing and Networking, E-Energy, held in Passau, Germany in April 2010. The 23 revised papers presented were carefully reviewed and selected for inclusion in the post-proceedings. The papers are organized in topical sections on energy market and algorithms, ICT technology for the energy market, implementation of smart grid and smart home technology, microgrids and energy management, and energy efficiency through distributed energy management and buildings. (orig.)

  11. A virtual network computer's optical storage virtualization scheme

    Science.gov (United States)

    Wang, Jianzong; Hu, Huaixiang; Wan, Jiguang; Wang, Peng

    2008-12-01

    In this paper, we present the architecture and implementation of a virtual network computers' (VNC) optical storage virtualization scheme called VOSV. Its task is to manage the mapping of virtual optical storage to physical optical storage, a technique known as optical storage virtualization. The design of VOSV aims at the optical storage resources of different clients and servers that have high read-sharing patterns. VOSV uses several schemes such as a two-level Cache mechanism, a VNC server embedded module and the iSCSI protocols to improve the performance. The results measured on the prototype are encouraging, and indicating that VOSV provides the high I/O performance.

  12. Analysis of multigrid methods on massively parallel computers: Architectural implications

    Science.gov (United States)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  13. A computational framework for the automated construction of glycosylation reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  14. A computational framework for the automated construction of glycosylation reaction networks.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS data. The features described above are illustrated using three case studies that examine: i O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii automated N-linked glycosylation pathway construction; and iii the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme

  15. Application of a distributed network in computational fluid dynamic simulations

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish

    1994-01-01

    A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.

  16. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  17. Stability and Hopf Bifurcation in a Delayed SEIRS Worm Model in Computer Network

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2013-01-01

    Full Text Available A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.

  18. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  19. Efficient computation in networks of spiking neurons: simulations and theory

    International Nuclear Information System (INIS)

    Natschlaeger, T.

    1999-01-01

    One of the most prominent features of biological neural systems is that individual neurons communicate via short electrical pulses, the so called action potentials or spikes. In this thesis we investigate possible mechanisms which can in principle explain how complex computations in spiking neural networks (SNN) can be performed very fast, i.e. within a few 10 milliseconds. Some of these models are based on the assumption that relevant information is encoded by the timing of individual spikes (temporal coding). We will also discuss a model which is based on a population code and still is able to perform fast complex computations. In their natural environment biological neural systems have to process signals with a rich temporal structure. Hence it is an interesting question how neural systems process time series. In this context we explore possible links between biophysical characteristics of single neurons (refractory behavior, connectivity, time course of postsynaptic potentials) and synapses (unreliability, dynamics) on the one hand and possible computations on times series on the other hand. Furthermore we describe a general model of computation that exploits dynamic synapses. This model provides a general framework for understanding how neural systems process time-varying signals. (author)

  20. Information Warfare: Issues Associated with the Defense of DOD Computers and Computer Networks

    National Research Council Canada - National Science Library

    Franklin, Derek

    2002-01-01

    ... that may threaten the critical information pathways of the armed forces An analysis of the history of computer information warfare reveals that there was an embarrassing lack of readiness and defense...

  1. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  2. Development and application of computer network for working out of researches on high energy physics

    International Nuclear Information System (INIS)

    Boos, Eh.G.; Tashimov, M.A.

    2001-01-01

    Computer network of the Physical and Technological Institute of the Ministry and Science and Education of the Republic of Kazakhstan (FTI of MSE RK) jointing a number of the research institutions, leading universities and other enterprises of Almaty city. At the present time more than 350 computers are connected to this network, the velocity of satellite channel is increased up to 192 k bit/s per one reception. The university segments of the network are separated in individual domen. A new software for analysis and proceeding of experimental data are implemented and other measures are carried out as well. However an increasing volume of information exchange between nuclear-physical center demanding the further information network development. So for providing consumers demands in information exchange in the nearest years in the paper the possibility for following measures maintenance are considered: (1) Increase of satellite channel velocity up to 1-2 M bit/s by replace of the existing SDM-100 modem on a rapid one. Now using the Kedr-M station and the CISCO-2501 tracer allowing to provide such velocity; (2) Convert of the Institute local calculation network on the new Fast Ethernet technology permitting to increase the information transmission velocity up to 100 M bit/s at the complete succession of existing Ethernet; (3) The Proxy-server (Firewaal) install at the network support assay, that giving the possibility for discharging of satellite channel and localization of segment of the network, connected with learning on the Internet not in damage to educational process. In the framework of cooperation with DESY German accelerating center with help of the indicated network the data about 2 hundred thousand deep inelastic interactions of electrons with protons measured at ZEUS detector are obtained. Data about 10 thousand of events simulated at the OPAL installation are received as well. Besides the computer network is using for operative information exchange and

  3. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    Science.gov (United States)

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  4. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  5. Detecting Network Communities: An Application to Phylogenetic Analysis

    Science.gov (United States)

    Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.

    2011-01-01

    This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202

  6. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  7. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  8. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  9. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  10. Computing and the electrical transport properties of coupled quantum networks

    Science.gov (United States)

    Cain, Casey Andrew

    In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.

  11. Impact analysis on a massively parallel computer

    International Nuclear Information System (INIS)

    Zacharia, T.; Aramayo, G.A.

    1994-01-01

    Advanced mathematical techniques and computer simulation play a major role in evaluating and enhancing the design of beverage cans, industrial, and transportation containers for improved performance. Numerical models are used to evaluate the impact requirements of containers used by the Department of Energy (DOE) for transporting radioactive materials. Many of these models are highly compute-intensive. An analysis may require several hours of computational time on current supercomputers despite the simplicity of the models being studied. As computer simulations and materials databases grow in complexity, massively parallel computers have become important tools. Massively parallel computational research at the Oak Ridge National Laboratory (ORNL) and its application to the impact analysis of shipping containers is briefly described in this paper

  12. Computed tomography of x-ray images using neural networks

    Science.gov (United States)

    Allred, Lloyd G.; Jones, Martin H.; Sheats, Matthew J.; Davis, Anthony W.

    2000-03-01

    Traditional CT reconstruction is done using the technique of Filtered Backprojection. While this technique is widely employed in industrial and medical applications, it is not generally understood that FB has a fundamental flaw. Gibbs phenomena states any Fourier reconstruction will produce errors in the vicinity of all discontinuities, and that the error will equal 28 percent of the discontinuity. A number of years back, one of the authors proposed a biological perception model whereby biological neural networks perceive 3D images from stereo vision. The perception model proports an internal hard-wired neural network which emulates the external physical process. A process is repeated whereby erroneous unknown internal values are used to generate an emulated signal with is compared to external sensed data, generating an error signal. Feedback from the error signal is then sued to update the erroneous internal values. The process is repeated until the error signal no longer decrease. It was soon realized that the same method could be used to obtain CT from x-rays without having to do Fourier transforms. Neural networks have the additional potential for handling non-linearities and missing data. The technique has been applied to some coral images, collected at the Los Alamos high-energy x-ray facility. The initial images show considerable promise, in some instances showing more detail than the FB images obtained from the same data. Although routine production using this new method would require a massively parallel computer, the method shows promise, especially where refined detail is required.

  13. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  14. IUE Data Analysis Software for Personal Computers

    Science.gov (United States)

    Thompson, R.; Caplinger, J.; Taylor, L.; Lawton , P.

    1996-01-01

    This report summarizes the work performed for the program titled, "IUE Data Analysis Software for Personal Computers" awarded under Astrophysics Data Program NRA 92-OSSA-15. The work performed was completed over a 2-year period starting in April 1994. As a result of the project, 450 IDL routines and eight database tables are now available for distribution for Power Macintosh computers and Personal Computers running Windows 3.1.

  15. Informatic parcellation of the network involved in the computation of subjective value

    Science.gov (United States)

    Rangel, Antonio

    2014-01-01

    Understanding how the brain computes value is a basic question in neuroscience. Although individual studies have driven this progress, meta-analyses provide an opportunity to test hypotheses that require large collections of data. We carry out a meta-analysis of a large set of functional magnetic resonance imaging studies of value computation to address several key questions. First, what is the full set of brain areas that reliably correlate with stimulus values when they need to be computed? Second, is this set of areas organized into dissociable functional networks? Third, is a distinct network of regions involved in the computation of stimulus values at decision and outcome? Finally, are different brain areas involved in the computation of stimulus values for different reward modalities? Our results demonstrate the centrality of ventromedial prefrontal cortex (VMPFC), ventral striatum and posterior cingulate cortex (PCC) in the computation of value across tasks, reward modalities and stages of the decision-making process. We also find evidence of distinct subnetworks of co-activation within VMPFC, one involving central VMPFC and dorsal PCC and another involving more anterior VMPFC, left angular gyrus and ventral PCC. Finally, we identify a posterior-to-anterior gradient of value representations corresponding to concrete-to-abstract rewards. PMID:23887811

  16. Computer aided plant engineering: An analysis and suggestions for computer use

    International Nuclear Information System (INIS)

    Leinemann, K.

    1979-09-01

    To get indications to and boundary conditions for computer use in plant engineering, an analysis of the engineering process was done. The structure of plant engineering is represented by a network of substaks and subsets of data which are to be manipulated. Main tool for integration of CAD-subsystems in plant engineering should be a central database which is described by characteristical requirements and a possible simple conceptual schema. The main features of an interactive system for computer aided plant engineering are shortly illustrated by two examples. The analysis leads to the conclusion, that an interactive graphic system for manipulation of net-like structured data, usable for various subtasks, should be the base for computer aided plant engineering. (orig.) [de

  17. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    Science.gov (United States)

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  18. A new approach in development of data flow control and investigation system for computer networks

    International Nuclear Information System (INIS)

    Frolov, I.; Vaguine, A.; Silin, A.

    1992-01-01

    This paper describes a new approach in development of data flow control and investigation system for computer networks. This approach was developed and applied in the Moscow Radiotechnical Institute for control and investigations of Institute computer network. It allowed us to solve our network current problems successfully. Description of our approach is represented below along with the most interesting results of our work. (author)

  19. Building a Prototype of LHC Analysis Oriented Computing Centers

    Science.gov (United States)

    Bagliesi, G.; Boccali, T.; Della Ricca, G.; Donvito, G.; Paganoni, M.

    2012-12-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  20. Building a Prototype of LHC Analysis Oriented Computing Centers

    International Nuclear Information System (INIS)

    Bagliesi, G; Boccali, T; Della Ricca, G; Donvito, G; Paganoni, M

    2012-01-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  1. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  2. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  3. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  4. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  5. Performability indicators for the traffic analysis of wide area networks

    International Nuclear Information System (INIS)

    Tsopelas, Panagiotis; Platis, Agapios

    2003-01-01

    In connecting computing networks, reliability term is strongly related to the availability of connections of Wide Area networks (WANs) or Local Area networks (LANs). In this paper we will examine the network connections activity of a Greek University in order to provide two sources of information: The Quantity of Information Not Delivered (QIND) and the Information Flow Interruption (IFI). These indicators will provide us with the inference of information from observable characteristics of data flow(s), even when the data is encrypted or otherwise not directly available (traffic), which is lost due to failures or upgrades inside this network. The reliability analysis is obtained by collecting the network failures data (duration and frequency) and traffic (total and average) for a specified period of 1 year. It is assumed that the numerical analysis is based on the fact that the lifetime follows and exponential distribution (here as we are working on discrete time the distribution must be the geometric distribution). Hence a Markov chain model seems suitable for modelling the functioning of this system. An algorithm concentrates the results in a transition probability matrix and calculates the reward functions for the QIND/IFI indicators with the use of the power method. Finally, the application part provides an example of how final results can be used to evaluate the observed network

  6. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  7. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  8. Analysis of FOXO transcriptional networks

    NARCIS (Netherlands)

    van der Vos, K.E.

    2010-01-01

    The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In

  9. Computational methods for corpus annotation and analysis

    CERN Document Server

    Lu, Xiaofei

    2014-01-01

    This book reviews computational tools for lexical, syntactic, semantic, pragmatic and discourse analysis, with instructions on how to obtain, install and use each tool. Covers studies using Natural Language Processing, and offers ideas for better integration.

  10. Applied time series analysis and innovative computing

    CERN Document Server

    Ao, Sio-Iong

    2010-01-01

    This text is a systematic, state-of-the-art introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis. It includes frontier case studies based on recent research.

  11. The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network

    Directory of Open Access Journals (Sweden)

    T. A. Mityushkina

    2012-12-01

    Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.

  12. Network analysis of PTSD symptoms following mass violence.

    Science.gov (United States)

    Sullivan, Connor P; Smith, Andrew J; Lewis, Michael; Jones, Russell T

    2018-01-01

    Network analysis is a useful tool for understanding how symptoms interact with one another to influence psychopathology. However, this analytic strategy has not been fully utilized in the PTSD field. The current study utilized network analysis to examine connectedness and strength among PTSD symptoms (employing both partial correlation and regression network analyses) among a community sample of students exposed to the 2007 Virginia Tech shootings. Respondents (N = 4,639) completed online surveys 3-4 months postshootings, with PTSD symptom severity measured via the Trauma Symptom Questionnaire. Data were analyzed via adaptive least absolute shrinkage and selection operator (LASSO) and relative importance networks, as well as Dijkstra's algorithm to identify the shortest path from each symptom to all other symptoms. Relative importance network analysis revealed that intrusive thoughts had the strongest influence on other symptoms (i.e., had many strong connections [highest outdegree]) while computing Dijkstra's algorithm indicated that anger produced the shortest path to all other symptoms (i.e., the strongest connections to all other symptoms). Findings suggest that anger or intrusion likely play a crucial role in the development and maintenance of PTSD (i.e., are more influential within the network than are other symptoms). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Computational methods in power system analysis

    CERN Document Server

    Idema, Reijer

    2014-01-01

    This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.

  14. A computational description of simple mediation analysis

    Directory of Open Access Journals (Sweden)

    Caron, Pier-Olivier

    2018-04-01

    Full Text Available Simple mediation analysis is an increasingly popular statistical analysis in psychology and in other social sciences. However, there is very few detailed account of the computations within the model. Articles are more often focusing on explaining mediation analysis conceptually rather than mathematically. Thus, the purpose of the current paper is to introduce the computational modelling within simple mediation analysis accompanied with examples with R. Firstly, mediation analysis will be described. Then, the method to simulate data in R (with standardized coefficients will be presented. Finally, the bootstrap method, the Sobel test and the Baron and Kenny test all used to evaluate mediation (i.e., indirect effect will be developed. The R code to implement the computation presented is offered as well as a script to carry a power analysis and a complete example.

  15. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  16. Momentum integral network method for thermal-hydraulic transient analysis

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1983-01-01

    A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion

  17. SNAP: A General Purpose Network Analysis and Graph Mining Library.

    Science.gov (United States)

    Leskovec, Jure; Sosič, Rok

    2016-10-01

    Large networks are becoming a widely used abstraction for studying complex systems in a broad set of disciplines, ranging from social network analysis to molecular biology and neuroscience. Despite an increasing need to analyze and manipulate large networks, only a limited number of tools are available for this task. Here, we describe Stanford Network Analysis Platform (SNAP), a general-purpose, high-performance system that provides easy to use, high-level operations for analysis and manipulation of large networks. We present SNAP functionality, describe its implementational details, and give performance benchmarks. SNAP has been developed for single big-memory machines and it balances the trade-off between maximum performance, compact in-memory graph representation, and the ability to handle dynamic graphs where nodes and edges are being added or removed over time. SNAP can process massive networks with hundreds of millions of nodes and billions of edges. SNAP offers over 140 different graph algorithms that can efficiently manipulate large graphs, calculate structural properties, generate regular and random graphs, and handle attributes and meta-data on nodes and edges. Besides being able to handle large graphs, an additional strength of SNAP is that networks and their attributes are fully dynamic, they can be modified during the computation at low cost. SNAP is provided as an open source library in C++ as well as a module in Python. We also describe the Stanford Large Network Dataset, a set of social and information real-world networks and datasets, which we make publicly available. The collection is a complementary resource to our SNAP software and is widely used for development and benchmarking of graph analytics algorithms.

  18. Using distributed processing on a local area network to increase available computing power

    International Nuclear Information System (INIS)

    Capps, K.S.; Sherry, K.J.

    1996-01-01

    The migration from central computers to desktop computers distributed the total computing horsepower of a system over many different machines. A typical engineering office may have several networked desktop computers that are sometimes idle, especially after work hours and when people are absent. Users would benefit if applications were able to use these networked computers collectively. This paper describes a method of distributing the workload of an application on one desktop system to otherwise idle systems on the network. The authors present this discussion from a developer's viewpoint, because the developer must modify an application before the user can realize any benefit of distributed computing on available systems

  19. DIMACS Workshop on Interconnection Networks and Mapping, and Scheduling Parallel Computations

    CERN Document Server

    Rosenberg, Arnold L; Sotteau, Dominique; NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science; Interconnection networks and mapping and scheduling parallel computations

    1995-01-01

    The interconnection network is one of the most basic components of a massively parallel computer system. Such systems consist of hundreds or thousands of processors interconnected to work cooperatively on computations. One of the central problems in parallel computing is the task of mapping a collection of processes onto the processors and routing network of a parallel machine. Once this mapping is done, it is critical to schedule computations within and communication among processor from universities and laboratories, as well as practitioners involved in the design, implementation, and application of massively parallel systems. Focusing on interconnection networks of parallel architectures of today and of the near future , the book includes topics such as network topologies,network properties, message routing, network embeddings, network emulation, mappings, and efficient scheduling. inputs for a process are available where and when the process is scheduled to be computed. This book contains the refereed pro...

  20. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  1. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....

  2. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...

  3. Distributed computing and nuclear reactor analysis

    International Nuclear Information System (INIS)

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-01-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations

  4. High Energy Physics Computer Networking: Report of the HEPNET Review Committee

    International Nuclear Information System (INIS)

    1988-06-01

    This paper discusses the computer networks available to high energy physics facilities for transmission of data. Topics covered in this paper are: Existing and planned networks and HEPNET requirements

  5. Including Internet insurance as part of a hospital computer network security plan.

    Science.gov (United States)

    Riccardi, Ken

    2002-01-01

    Cyber attacks on a hospital's computer network is a new crime to be reckoned with. Should your hospital consider internet insurance? The author explains this new phenomenon and presents a risk assessment for determining network vulnerabilities.

  6. Computer assisted functional analysis. Computer gestuetzte funktionelle Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H A.E.; Roesler, H

    1982-01-01

    The latest developments in computer-assisted functional analysis (CFA) in nuclear medicine are presented in about 250 papers of the 19th international annual meeting of the Society of Nuclear Medicine (Bern, September 1981). Apart from the mathematical and instrumental aspects of CFA, computerized emission tomography is given particular attention. Advances in nuclear medical diagnosis in the fields of radiopharmaceuticals, cardiology, angiology, neurology, ophthalmology, pulmonology, gastroenterology, nephrology, endocrinology, oncology and osteology are discussed.

  7. Analysis of the atmospheric 7Be radioactivity by neural network

    International Nuclear Information System (INIS)

    Moroz, Z.; Myslek-Laurikainen, B.; Matul, M.; Mikolajewski, S.; Preibisz, Z.; Trzaskowaka, H.; Kownacki, C.

    2002-01-01

    Computational methods of artificial intelligence (neural networks) and modern signal processing (wavelet decomposition were applied for the analysis of atmospheric 7 Be radioactivity data. Measurements were performed each week during 1994-2001 in the sampling station placed at Swider Geophysical Observatory. Raw data as well as those averaged over 4 and 10 weeks were used. Ability of the neural networks for the purpose of representation, interpolation and prediction was tested. The corresponding relative errors are calculated. Next, the time sequences were decomposed using the wavelet method and eight components of different time scales were obtained. Neural networks were applied separately to each of those components. Application of such analysis and their possible extensions useful for the construction of phenomeno-logical models of atmospheric radioactivity are discussed. (author)

  8. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  9. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  10. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  11. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Science.gov (United States)

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  12. Analysis of multimedian problems on time dependent networks

    OpenAIRE

    Salman, F Sibel

    1994-01-01

    Ankara : The Department of Industrial Engineering and the Institute of Enginering and Science of Bilkent Univ., 1994. Thesis (Master's) -- Bilkent University, 1994. Includes bibliographical references leaves 81-85. Time dependency arises in transportation and computer-communication networks due to factors such as time varying demand, traffic intensity, and road conditions. This necessitates a locational decision to be based on an analysis involving a time horizon. In this st...

  13. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  14. Sharing waste management data over a wide area computer network

    International Nuclear Information System (INIS)

    Menke, W.; Friberg, P.

    1992-01-01

    In this paper the authors envision a time when waste management professionals from any institution will be able to access high quality data, regardless of where this data may actually be archived. They will not have to know anything about where the data actually resides or what format it is stored in. They will only have to specify the type of data and the workstation software will handle the rest of the details of finding them and accessing them. A method - now in use at the Lamont-Doherty Geological Observatory of Columbia University and several other institutions - of achieving this vision is described in this paper. Institutions make views of their databases publicly available to users of the wide-area network (e.g. Internet), using database serving software that runs on one of their computers. This software completely automates the process of finding out what kind of data are available and of retrieving them

  15. Computer simulation of the Blumlein pulse forming network

    International Nuclear Information System (INIS)

    Edwards, C.B.

    1981-03-01

    A computer simulation of the Blumlein pulse-forming network is described. The model is able to treat the case of time varying loads, non-zero conductor resistance, and switch closure effects as exhibited by real systems employing non-ohmic loads such as field-emission vacuum diodes in which the impedance is strongly time and voltage dependent. The application of the code to various experimental arrangements is discussed, with particular reference to the prediction of the behaviour of the output circuit of 'ELF', the electron beam generator in operation at the Rutherford Laboratory. The output from the code is compared directly with experimentally obtained voltage waveforms applied to the 'ELF' diode. (author)

  16. Computational optical tomography using 3-D deep convolutional neural networks

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  17. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  18. LightKone Project: Lightweight Computation for Networks at the Edge

    OpenAIRE

    Van Roy, Peter; TEKK Tour Digital Wallonia

    2017-01-01

    LightKone combines two recent advances in distributed computing to enable general-purpose computing on edge networks: * Synchronization-free programming: Large-scale applications can run efficiently on edge networks by using convergent data structures (based on Lasp and Antidote from previous project SyncFree) → tolerates dynamicity and loose coupling of edge networks * Hybrid gossip: Communication can be made highly resilient on edge networks by combining gossip with classical distributed al...

  19. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    OpenAIRE

    Wang, Shuo; Zhang, Xing; Zhang, Yan; Wang, Lin; Yang, Juwo; Wang, Wenbo

    2017-01-01

    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at th...

  20. Reliability analysis using network simulation

    International Nuclear Information System (INIS)

    1984-01-01

    A computer code that uses a dynamic, Monte Carlo modeling approach is Q-GERT (Graphical Evaluation and Review Technique--with Queueing), and the present study has demonstrated the feasibility of using Q-GERT for modeling time-dependent, unconditionally and conditionally linked phenomena that are characterized by arbitrarily selected probability distributions