WorldWideScience

Sample records for network analysis based

  1. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  2. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  3. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  4. Analysis of friendship network from MMORPG based data

    OpenAIRE

    Črnigoj, Dean

    2016-01-01

    This work analyzes friendship network from a Massively Multiplayer Online Role-Playing Game (MMORPG). The network is based on data from a private server that was active from 2007 until 2011. The work conducts a standard analysis of the network and then divides players according to different groups based on their activity. Work checks how friendship network can be correlated to the clan (a self-organized group of players who often form a league and play on the same side in a match) network. Ma...

  5. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  6. DNA sequence analysis using hierarchical ART-based classification networks

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, C.; Hruska, S.I. [Florida State Univ., Tallahassee, FL (United States); Katholi, C.R.; Unnasch, T.R. [Univ. of Alabama, Birmingham, AL (United States)

    1994-12-31

    Adaptive resonance theory (ART) describes a class of artificial neural network architectures that act as classification tools which self-organize, work in real-time, and require no retraining to classify novel sequences. We have adapted ART networks to provide support to scientists attempting to categorize tandem repeat DNA fragments from Onchocerca volvulus. In this approach, sequences of DNA fragments are presented to multiple ART-based networks which are linked together into two (or more) tiers; the first provides coarse sequence classification while the sub- sequent tiers refine the classifications as needed. The overall rating of the resulting classification of fragments is measured using statistical techniques based on those introduced to validate results from traditional phylogenetic analysis. Tests of the Hierarchical ART-based Classification Network, or HABclass network, indicate its value as a fast, easy-to-use classification tool which adapts to new data without retraining on previously classified data.

  7. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  8. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Science.gov (United States)

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  9. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Castet

    Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also

  10. Cluster Analysis Based on Bipartite Network

    Directory of Open Access Journals (Sweden)

    Dawei Zhang

    2014-01-01

    Full Text Available Clustering data has a wide range of applications and has attracted considerable attention in data mining and artificial intelligence. However it is difficult to find a set of clusters that best fits natural partitions without any class information. In this paper, a method for detecting the optimal cluster number is proposed. The optimal cluster number can be obtained by the proposal, while partitioning the data into clusters by FCM (Fuzzy c-means algorithm. It overcomes the drawback of FCM algorithm which needs to define the cluster number c in advance. The method works by converting the fuzzy cluster result into a weighted bipartite network and then the optimal cluster number can be detected by the improved bipartite modularity. The experimental results on artificial and real data sets show the validity of the proposed method.

  11. Using Granular-Evidence-Based Adaptive Networks for Sensitivity Analysis

    OpenAIRE

    Vališevskis, A.

    2002-01-01

    This paper considers the possibility of using adaptive networks for sensitivity analysis. Adaptive network that processes fuzzy granules is described. The adaptive network training algorithm can be used for sensitivity analysis of decision making models. Furthermore, a case study concerning sensitivity analysis is described, which shows in what way the adaptive network can be used for sensitivity analysis.

  12. Locality Based Analysis of Network Flows

    Science.gov (United States)

    2004-07-21

    University Noise localities • We have been characterizing modest subnets in support of the traffic generation that will be used in the DARPA DQ system...University Software Engineering Institute © 2004 by Carnegie Mellon University Crud and Noise • In January, we observed a /16 for a week, and the whole...some examples of locality on a variety of scales for a variety of representations. • It is our hope that the general notions of locality, and clustering will provide a basis for reducing the complexity of analysis.

  13. Dynamic network-based epistasis analysis: Boolean examples

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2011-12-01

    Full Text Available In this review we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the topologies of gene interactions infered. This has been acknowledged in several previous papers and reviews, but here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson (herein, classical epistasis, defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus. Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct gene interaction topologies are hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our review complements previous accounts, not

  14. A graph-based system for network-vulnerability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, L.P.; Phillips, C.

    1998-06-01

    This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.

  15. Architecture Analysis of an FPGA-Based Hopfield Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Angelo de Abreu de Sousa

    2014-01-01

    Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.

  16. Timescale analysis of rule-based biochemical reaction networks.

    Science.gov (United States)

    Klinke, David J; Finley, Stacey D

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of interleukin-12 (IL-12) signaling in naïve CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo-equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  17. A graph-based network-vulnerability analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, L.P.; Phillips, C. [Sandia National Labs., Albuquerque, NM (United States); Gaylor, T. [3M, Austin, TX (United States). Visual Systems Div.

    1998-01-01

    This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.

  18. A graph-based network-vulnerability analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, L.P.; Phillips, C.; Gaylor, T.

    1998-05-03

    This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.

  19. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2016-01-01

    Full Text Available With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA based on gene coexpression network (GCN increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.

  20. Analysis of regulatory networks constructed based on gene ...

    Indian Academy of Sciences (India)

    Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the incidence mechanism of pituitary ...

  1. Analysis of regulatory networks constructed based on gene ...

    Indian Academy of Sciences (India)

    2013-12-09

    Dec 9, 2013 ... Abstract. Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the ...

  2. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  3. Core and peripheral connectivity based cluster analysis over PPI network.

    Science.gov (United States)

    Ahmed, Hasin A; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2015-12-01

    A number of methods have been proposed in the literature of protein-protein interaction (PPI) network analysis for detection of clusters in the network. Clusters are identified by these methods using various graph theoretic criteria. Most of these methods have been found time consuming due to involvement of preprocessing and post processing tasks. In addition, they do not achieve high precision and recall consistently and simultaneously. Moreover, the existing methods do not employ the idea of core-periphery structural pattern of protein complexes effectively to extract clusters. In this paper, we introduce a clustering method named CPCA based on a recent observation by researchers that a protein complex in a PPI network is arranged as a relatively dense core region and additional proteins weakly connected to the core. CPCA uses two connectivity criterion functions to identify core and peripheral regions of the cluster. To locate initial node of a cluster we introduce a measure called DNQ (Degree based Neighborhood Qualification) index that evaluates tendency of the node to be part of a cluster. CPCA performs well when compared with well-known counterparts. Along with protein complex gold standards, a co-localization dataset has also been used for validation of the results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  5. Smoking-based selection and influence in gender-segregated friendship networks : a social network analysis of adolescent smoking

    NARCIS (Netherlands)

    Mercken, Liesbeth; Snijders, Tom A. B.; Steglich, Christian; Vertiainen, Erkki; Vartiainen, E.; De Vries, H.

    Aims The main goal of this study was to examine differences between adolescent male and female friendship networks regarding smoking-based selection and influence processes using newly developed social network analysis methods that allow the current state of continuously changing friendship networks

  6. Agent-Based Simulation Analysis for Network Formation

    OpenAIRE

    神原, 李佳; 林田, 智弘; 西﨑, 一郎; 片桐, 英樹

    2009-01-01

    In the mathematical models for network formation by Bala and Goyal(2000), it is shown that a star network is the strict Nash equilibrium. However, the result of the experiments in a laboratory using human subjects by Berninghaus et al.(2007) basing on the model of Bala and Goyal indicates that players reach a strict Nash equilibrium and deviate it. In this paper, an agent-based simulation model in which artificial adaptive agents have mechanisms of decision making and learning based on nueral...

  7. Structure analysis of growing network based on partial differential equations

    Directory of Open Access Journals (Sweden)

    Junbo JIA

    2016-04-01

    Full Text Available The topological structure is one of the most important contents in the complex network research. Therein the node degree and the degree distribution are the most basic characteristic quantities to describe topological structure. In order to calculate the degree distribution, first of all, the node degree is considered as a continuous variable. Then, according to the Markov Property of growing network, the cumulative distribution function's evolution equation with time can be obtained. Finally, the partial differential equation (PDE model can be established through distortion processing. Taking the growing network with preferential and random attachment mechanism as an example, the PDE model is obtained. The analytic expression of degree distribution is obtained when this model is solved. Besides, the degree function over time is the same as the characteristic line of PDE. At last, the model is simulated. This PDE method of changing the degree distribution calculation into problem of solving PDE makes the structure analysis more accurate.

  8. Analysis and application of intelligence network based on FTTH

    Science.gov (United States)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.

  9. Numerical analysis of modeling based on improved Elman neural network.

    Science.gov (United States)

    Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza

    2014-01-01

    A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.

  10. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  11. Temperature-based Instanton Analysis: Identifying Vulnerability in Transmission Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kersulis, Jonas [Univ. of Michigan, Ann Arbor, MI (United States); Hiskens, Ian [Univ. of Michigan, Ann Arbor, MI (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bienstock, Daniel [Columbia Univ., New York, NY (United States)

    2015-04-08

    A time-coupled instanton method for characterizing transmission network vulnerability to wind generation fluctuation is presented. To extend prior instanton work to multiple-time-step analysis, line constraints are specified in terms of temperature rather than current. An optimization formulation is developed to express the minimum wind forecast deviation such that at least one line is driven to its thermal limit. Results are shown for an IEEE RTS-96 system with several wind-farms.

  12. Using Network Analysis to Understand Knowledge Mobilization in a Community-based Organization

    OpenAIRE

    Gainforth, Heather L.; Latimer-Cheung, Amy E.; Moore, Spencer; Athanasopoulos, Peter; Martin Ginis, Kathleen A.

    2014-01-01

    Background Knowledge mobilization (KM) has been described as putting research in the hands of research users. Network analysis is an empirical approach that has potential for examining the complex process of knowledge mobilization within community-based organizations (CBOs). Yet, conducting a network analysis in a CBO presents challenges. Purpose The purpose of this paper is to demonstrate the value and feasibility of using network analysis as a method for understanding knowledge mob...

  13. Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements.

    Science.gov (United States)

    Kapucu, Fikret E; Välkki, Inkeri; Mikkonen, Jarno E; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M A; Hyttinen, Jari A K

    2016-01-01

    Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the

  14. Design and Simulation Analysis for Integrated Vehicle Chassis-Network Control System Based on CAN Network

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-01-01

    Full Text Available Due to the different functions of the system used in the vehicle chassis control, the hierarchical control strategy also leads to many kinds of the network topology structure. According to the hierarchical control principle, this research puts forward the integrated control strategy of the chassis based on supervision mechanism. The purpose is to consider how the integrated control architecture affects the control performance of the system after the intervention of CAN network. Based on the principle of hierarchical control and fuzzy control, a fuzzy controller is designed, which is used to monitor and coordinate the ESP, AFS, and ARS. And the IVC system is constructed with the upper supervisory controller and three subcontrol systems on the Simulink platform. The network topology structure of IVC is proposed, and the IVC communication matrix based on CAN network communication is designed. With the common sensors and the subcontrollers as the CAN network independent nodes, the network induced delay and packet loss rate on the system control performance are studied by simulation. The results show that the simulation method can be used for designing the communication network of the vehicle.

  15. Using Network Analysis to Understand Knowledge Mobilization in a Community-based Organization.

    Science.gov (United States)

    Gainforth, Heather L; Latimer-Cheung, Amy E; Moore, Spencer; Athanasopoulos, Peter; Martin Ginis, Kathleen A

    2015-06-01

    Knowledge mobilization (KM) has been described as putting research in the hands of research users. Network analysis is an empirical approach that has potential for examining the complex process of knowledge mobilization within community-based organizations (CBOs). Yet, conducting a network analysis in a CBO presents challenges. The purpose of this paper is to demonstrate the value and feasibility of using network analysis as a method for understanding knowledge mobilization within a CBO by (1) presenting challenges and solutions to conducting a network analysis in a CBO, (2) examining the feasibility of our methodology, and (3) demonstrating the utility of this methodology through an example of a network analysis conducted in a CBO engaging in knowledge mobilization activities. The final method used by the partnership team to conduct our network analysis of a CBO is described. An example of network analysis results of a CBO engaging in knowledge mobilization is presented. In total, 81 participants completed the network survey. All of the feasibility benchmarks set by the CBO were met. Results of the network analysis are highlighted and discussed as a means of identifying (1) prominent and influential individuals in the knowledge mobilization process and (2) areas for improvement in future knowledge mobilization initiatives. Findings demonstrate that network analysis can be feasibly used to provide a rich description of a CBO engaging in knowledge mobilization activities.

  16. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  17. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  18. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  19. Network-based analysis of software change propagation.

    Science.gov (United States)

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  20. A user exposure based approach for non-structural road network vulnerability analysis.

    Directory of Open Access Journals (Sweden)

    Lei Jin

    Full Text Available Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i the rationality of non-structural road network vulnerability, (ii the metrics for negative consequences accounting for variant road conditions, and (iii the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for "emotionally hurt" of topological road network.

  1. Graph theoretical analysis and application of fMRI-based brain network in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Xue-na

    2012-08-01

    Full Text Available Alzheimer's disease (AD, a progressive neurodegenerative disease, is clinically characterized by impaired memory and many other cognitive functions. However, the pathophysiological mechanisms underlying the disease are not thoroughly understood. In recent years, using functional magnetic resonance imaging (fMRI as well as advanced graph theory based network analysis approach, several studies of patients with AD suggested abnormal topological organization in both global and regional properties of functional brain networks, specifically, as demonstrated by a loss of small-world network characteristics. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis. In this paper we introduce the essential concepts of complex brain networks theory, and review recent advances of the study on human functional brain networks in AD, especially focusing on the graph theoretical analysis of small-world network based on fMRI. We also propound the existent problems and research orientation.

  2. A SAT-Based Analysis of a Calculus for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Wu, Xi; Nielson, Hanne Riis; Zhu, Huibiao

    2015-01-01

    In viewing the common unreliability problem in wireless communications, the CWQ calculus (a Calculus for Wireless sensor networks from Quality perspective) was recently proposed for modeling and reasoning about WSNs(Wireless Sensor Networks) and their applications from a quality perspective...... of the whole network. Finally, we give a real-world case study with the scenario of refueling a car to demonstrate the applicability of the extended calculus and the SAT-based analysis....

  3. Network-based analysis of the sphingolipid metabolism in hypertension

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, Allan; Jeppesen, Jørgen

    2015-01-01

    networks in blood pressure regulation. As expected, almost no genetic main effects were detected. In contrast, two-gene interactions established the entire sphingolipid metabolic and related genetic network to be highly involved in the regulation of blood pressure. The pattern of interaction clearly...... revealed that epistasis does not necessarily reflects the topology of the metabolic pathways i.e., the flow of metabolites. Rather, the enzymes and proteins are integrated in complex cellular substructures where communication flows between the components of the networks, which may be composite in structure...

  4. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  5. Evaluation of maritime emergency rescue capability based on network analysis

    Science.gov (United States)

    Haixiang, Pang; Yijia, Ma; Tianyu, Mao; Shengjing, Liu; Yajie, Zhang

    2017-12-01

    Maritime emergency rescue operations are complex and random, it leads to the complexity of the evaluation of maritime emergency rescue capability. In this paper, we considered the relationship between the evaluation indexes of maritime emergency rescue capability, used Analytic Network Process to determine the weight of each index, took into account the feedback relationship between indicators to determine the index weight, improved the scientific and reliability of the model, and combined with fuzzy comprehensive evaluation to evaluate the rescue capability. According to the evaluation results which combined with the index weight, maritime sector can propose a targeted improvement measures to effectively improve maritime emergency rescue capability.

  6. Smoking-based selection and influence in gender-segregated friendship networks: a social network analysis of adolescent smoking.

    Science.gov (United States)

    Mercken, Liesbeth; Snijders, Tom A B; Steglich, Christian; Vertiainen, Erkki; de Vries, Hein

    2010-07-01

    The main goal of this study was to examine differences between adolescent male and female friendship networks regarding smoking-based selection and influence processes using newly developed social network analysis methods that allow the current state of continuously changing friendship networks to act as a dynamic constraint for changes in smoking behaviour, while allowing current smoking behaviour to be simultaneously a dynamic constraint for changes in friendship networks. Longitudinal design with four measurements. Nine junior high schools in Finland. A total of 1163 adolescents (mean age = 13.6 years) who participated in the control group of the ESFA (European Smoking prevention Framework Approach) study, including 605 males and 558 females. Smoking behaviour of adolescents, parents, siblings and friendship ties. Smoking-based selection of friends was found in male as well as female networks. However, support for influence among friends was found only in female networks. Furthermore, females and males were both influenced by parental smoking behaviour. In Finnish adolescents, both male and female smokers tend to select other smokers as friends but it appears that only females are influenced to smoke by their peer group. This suggests that prevention campaigns targeting resisting peer pressure may be more effective in adolescent girls than boys.

  7. Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis.

    Directory of Open Access Journals (Sweden)

    Ketki D Verkhedkar

    Full Text Available BACKGROUND: Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. CONCLUSIONS: We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a

  8. Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis.

    Science.gov (United States)

    Verkhedkar, Ketki D; Raman, Karthik; Chandra, Nagasuma R; Vishveshwara, Saraswathi

    2007-09-12

    Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking

  9. Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.

    Science.gov (United States)

    Wan, Peng; Jian, Jigui

    2018-02-15

    This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Heading in the right direction: thermodynamics-based network analysis and pathway engineering.

    Science.gov (United States)

    Ataman, Meric; Hatzimanikatis, Vassily

    2015-12-01

    Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A Neural Network Based Workstation for Automated Cell Proliferation Analysis

    Science.gov (United States)

    2001-10-25

    proliferation analysis, of cytological microscope images. The software of the system assists the expert biotechnologist during cell proliferation and...work was supported by the Programa de Apoyo a Proyectos de Desarrollo e Investigacíon en Informática REDII 2000. We thank Blanca Itzel Taboada for

  12. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  13. Clock Synchronization in Wireless Sensor Networks: Analysis and Design of Error Precision Based on Lossy Networked Control Perspective

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2015-01-01

    Full Text Available Motivated by the importance of the clock synchronization in wireless sensor networks (WSNs, due to the packet loss, the synchronization error variance is a random variable and may exceed the designed boundary of the synchronization variance. Based on the clock synchronization state space model, this paper establishes the model of synchronization error variance analysis and design issues. In the analysis issue, assuming sensor nodes exchange clock information in the network with packet loss, we find a minimum clock information packet arrival rate in order to guarantee the synchronization precision at synchronization node. In the design issue, assuming sensor node freely schedules whether to send the clock information, we look for an optimal clock information exchange rate between synchronization node and reference node which offers the optimal tradeoff between energy consumption and synchronization precision at synchronization node. Finally, simulations further verify the validity of clock synchronization analysis and design from the perspective of synchronization error variance.

  14. Multi-index algorithm of identifying important nodes in complex networks based on linear discriminant analysis

    Science.gov (United States)

    Hu, Fang; Liu, Yuhua

    2015-02-01

    The evaluation of node importance has great significance to complex network, so it is important to seek and protect important nodes to ensure the security and stability of the entire network. At present, most evaluation algorithms of node importance adopt the single-index methods, which are incomplete and limited, and cannot fully reflect the complex situation of network. In this paper, after synthesizing multi-index factors of node importance, including eigenvector centrality, betweenness centrality, closeness centrality, degree centrality, mutual-information, etc., the authors are proposing a new multi-index evaluation algorithm of identifying important nodes in complex networks based on linear discriminant analysis (LDA). In order to verify the validity of this algorithm, a series of simulation experiments have been done. Through comprehensive analysis, the simulation results show that the new algorithm is more rational, effective, integral and accurate.

  15. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    Science.gov (United States)

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  16. Glycosylation Network Analysis Toolbox: a MATLAB-based environment for systems glycobiology

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2013-01-01

    Summary: Systems glycobiology studies the interaction of various pathways that regulate glycan biosynthesis and function. Software tools for the construction and analysis of such pathways are not yet available. We present GNAT, a platform-independent, user-extensible MATLAB-based toolbox that provides an integrated computational environment to construct, manipulate and simulate glycans and their networks. It enables integration of XML-based glycan structure data into SBML (Systems Biology Markup Language) files that describe glycosylation reaction networks. Curation and manipulation of networks is facilitated using class definitions and glycomics database query tools. High quality visualization of networks and their steady-state and dynamic simulation are also supported. Availability: The software package including source code, help documentation and demonstrations are available at http://sourceforge.net/projects/gnatmatlab/files/. Contact: neel@buffalo.edu or gangliu@buffalo.edu PMID:23230149

  17. Vicus: Exploiting local structures to improve network-based analysis of biological data.

    Science.gov (United States)

    Wang, Bo; Huang, Lin; Zhu, Yuke; Kundaje, Anshul; Batzoglou, Serafim; Goldenberg, Anna

    2017-10-01

    Biological networks entail important topological features and patterns critical to understanding interactions within complicated biological systems. Despite a great progress in understanding their structure, much more can be done to improve our inference and network analysis. Spectral methods play a key role in many network-based applications. Fundamental to spectral methods is the Laplacian, a matrix that captures the global structure of the network. Unfortunately, the Laplacian does not take into account intricacies of the network's local structure and is sensitive to noise in the network. These two properties are fundamental to biological networks and cannot be ignored. We propose an alternative matrix Vicus. The Vicus matrix captures the local neighborhood structure of the network and thus is more effective at modeling biological interactions. We demonstrate the advantages of Vicus in the context of spectral methods by extensive empirical benchmarking on tasks such as single cell dimensionality reduction, protein module discovery and ranking genes for cancer subtyping. Our experiments show that using Vicus, spectral methods result in more accurate and robust performance in all of these tasks.

  18. FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale

    Directory of Open Access Journals (Sweden)

    V. Jyothsna

    2016-09-01

    Full Text Available Due to the sensitivity of the information required to detect network intrusions efficiently, collecting huge amounts of network transactions is inevitable and the volume and details of network transactions available in recent years have been high. The meta-heuristic anomaly based assessment is vital in an exploratory analysis of intrusion related network transaction data. In order to forecast and deliver predictions about intrusion possibility from the available details of the attributes involved in network transaction. In this regard, a meta-heuristic assessment model called the feature correlation analysis and association impact scale is explored to estimate the degree of intrusion scope threshold from the optimal features of network transaction data available for training. With the motivation gained from the model called “network intrusion detection by feature association impact scale” that was explored in our earlier work, a novel and improved meta-heuristic assessment strategy for intrusion prediction is derived. In this strategy, linear canonical correlation for feature optimization is used and feature association impact scale is explored from the selected optimal features. The experimental result indicates that the feature correlation has a significant impact towards minimizing the computational and time complexity of measuring the feature association impact scale.

  19. Analysis of co-occurrence toponyms in web pages based on complex networks

    Science.gov (United States)

    Zhong, Xiang; Liu, Jiajun; Gao, Yong; Wu, Lun

    2017-01-01

    A large number of geographical toponyms exist in web pages and other documents, providing abundant geographical resources for GIS. It is very common for toponyms to co-occur in the same documents. To investigate these relations associated with geographic entities, a novel complex network model for co-occurrence toponyms is proposed. Then, 12 toponym co-occurrence networks are constructed from the toponym sets extracted from the People's Daily Paper documents of 2010. It is found that two toponyms have a high co-occurrence probability if they are at the same administrative level or if they possess a part-whole relationship. By applying complex network analysis methods to toponym co-occurrence networks, we find the following characteristics. (1) The navigation vertices of the co-occurrence networks can be found by degree centrality analysis. (2) The networks express strong cluster characteristics, and it takes only several steps to reach one vertex from another one, implying that the networks are small-world graphs. (3) The degree distribution satisfies the power law with an exponent of 1.7, so the networks are free-scale. (4) The networks are disassortative and have similar assortative modes, with assortative exponents of approximately 0.18 and assortative indexes less than 0. (5) The frequency of toponym co-occurrence is weakly negatively correlated with geographic distance, but more strongly negatively correlated with administrative hierarchical distance. Considering the toponym frequencies and co-occurrence relationships, a novel method based on link analysis is presented to extract the core toponyms from web pages. This method is suitable and effective for geographical information retrieval.

  20. Using Discrete Loss Functions and Weighted Kappa for Classification: An Illustration Based on Bayesian Network Analysis

    Science.gov (United States)

    Zwick, Rebecca; Lenaburg, Lubella

    2009-01-01

    In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…

  1. Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information

    Directory of Open Access Journals (Sweden)

    Tao You

    2015-06-01

    Full Text Available Analyzing social systems, particularly financial markets, using a complex network approach has become one of the most popular fields within econophysics. A similar trend is currently appearing within the econometrics and finance communities, as well. In this study, we present a state-of-the-artmethod for analyzing the structure and risk within stockmarkets, treating them as complex networks using model-free, nonlinear dependency measures based on information theory. This study is the first network analysis of the stockmarket in Shanghai using a nonlinear network methodology. Further, it is often assumed that markets outside the United States and Western Europe are inherently riskier. We find that the Chinese stock market is not structurally risky, contradicting this popular opinion. We use partial mutual information to create filtered networks representing the Shanghai stock exchange, comparing them to networks based on Pearson’s correlation. Consequently, we discuss the structure and characteristics of both the presented methods and the Shanghai stock exchange. This paper provides an insight into the cutting edge methodology designed for analyzing complex financial networks, as well as analyzing the structure of the market in Shanghai and, as such, is of interest to both researchers and financial analysts.

  2. Is Congenital Amusia a Disconnection Syndrome? A Study Combining Tract- and Network-Based Analysis.

    Science.gov (United States)

    Wang, Jieqiong; Zhang, Caicai; Wan, Shibiao; Peng, Gang

    2017-01-01

    Previous studies on congenital amusia mainly focused on the impaired fronto-temporal pathway. It is possible that neural pathways of amusia patients on a larger scale are affected. In this study, we investigated changes in structural connections by applying both tract-based and network-based analysis to DTI data of 12 subjects with congenital amusia and 20 demographic-matched normal controls. TBSS (tract-based spatial statistics) was used to detect microstructural changes. The results showed that amusics had higher diffusivity indices in the corpus callosum, the right inferior/superior longitudinal fasciculus, and the right inferior frontal-occipital fasciculus (IFOF). The axial diffusivity values of the right IFOF were negatively correlated with musical scores in the amusia group. Network-based analysis showed that the efficiency of the brain network was reduced in amusics. The impairments of WM tracts were also found to be correlated with reduced network efficiency in amusics. This suggests that impaired WM tracts may lead to the reduced network efficiency seen in amusics. Our findings suggest that congenital amusia is a disconnection syndrome.

  3. Is Congenital Amusia a Disconnection Syndrome? A Study Combining Tract- and Network-Based Analysis

    Directory of Open Access Journals (Sweden)

    Jieqiong Wang

    2017-09-01

    Full Text Available Previous studies on congenital amusia mainly focused on the impaired fronto-temporal pathway. It is possible that neural pathways of amusia patients on a larger scale are affected. In this study, we investigated changes in structural connections by applying both tract-based and network-based analysis to DTI data of 12 subjects with congenital amusia and 20 demographic-matched normal controls. TBSS (tract-based spatial statistics was used to detect microstructural changes. The results showed that amusics had higher diffusivity indices in the corpus callosum, the right inferior/superior longitudinal fasciculus, and the right inferior frontal-occipital fasciculus (IFOF. The axial diffusivity values of the right IFOF were negatively correlated with musical scores in the amusia group. Network-based analysis showed that the efficiency of the brain network was reduced in amusics. The impairments of WM tracts were also found to be correlated with reduced network efficiency in amusics. This suggests that impaired WM tracts may lead to the reduced network efficiency seen in amusics. Our findings suggest that congenital amusia is a disconnection syndrome.

  4. Tutorials on Agent-based Modelling with NetLogo and Network Analysis with Pajek

    Science.gov (United States)

    Berryman, Matthew J.; Angus, Simon D.

    Complex adaptive systems typically contain multiple, heterogeneous agents, with non-trivial interactions. They tend to produce emergent (larger-scale) phenomena. Agent-based modelling allows one to readily capture the behaviour of a group of heterogeneous agents (such as people, animals, et cetera), with diverse behaviour and important interactions, so it is a natural fit to modelling complex systems. Many complex systems (and agent-based models thereof) can be thought of as containing networks, either explicitly or implicitly. Therefore for complex systems research it is important to have a good understanding of network analysis techniques. This chapter is aimed at beginners to complex systems modelling and network analysis, using NetLogo (Section 10.1) and Pajek (Section 10.2) respectively. It is also aimed at more advanced complex systems modellers who want an introduction to these platforms.

  5. Analysing the Correlation between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education

    Science.gov (United States)

    Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav

    2016-01-01

    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…

  6. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Joshi Anagha

    2009-05-01

    Full Text Available Abstract Background A myriad of methods to reverse-engineer transcriptional regulatory networks have been developed in recent years. Direct methods directly reconstruct a network of pairwise regulatory interactions while module-based methods predict a set of regulators for modules of coexpressed genes treated as a single unit. To date, there has been no systematic comparison of the relative strengths and weaknesses of both types of methods. Results We have compared a recently developed module-based algorithm, LeMoNe (Learning Module Networks, to a mutual information based direct algorithm, CLR (Context Likelihood of Relatedness, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks. Conclusion Our results indicate that module-based and direct methods retrieve largely distinct parts of the underlying transcriptional regulatory networks. The choice of algorithm should therefore be based on the particular biological problem of interest and not on global metrics which cannot be

  7. World Cities of Scientific Knowledge: Systems, Networks and Potential Dynamics. An Analysis Based on Bibliometric Indicators

    DEFF Research Database (Denmark)

    Matthiessen, Christian Wichmann; Schwarz, Annette Winkel; Find, Søren

    2010-01-01

    This paper is based on identification of the pattern of the upper level of the world city network of knowledge as published in a series of earlier papers. It is our aim to update the findings and relate to the general world city discussion. The structure of the world cities of knowledge network has...... changed over the past decade in favour of south-east Asian and south European cities and in disfavour of the traditional centres of North America and north-western Europe. The analysis is based on bibliometric data on the world’s 100 largest cities measured in terms of research output. The level...

  8. World Cities of Scientific Knowledge: Systems, Networks and Potential Dynamics. An Analysis Based on Bibliometric Indicators

    DEFF Research Database (Denmark)

    Matthiessen, Christian Wichmann; Schwarz, Annette Winkel; Find, Søren

    2010-01-01

    This paper is based on identification of the pattern of the upper level of the world city network of knowledge as published in a series of papers.It is our aim to update the findings and relate to the general world city discussion. The structure of the world cities of knowledge network has changed...... over the last decade in favour of south east Asian and south European cities and in disfavour of the traditional centres of North America and north-western Europe. The analysis is based on bibliometric data on the world’s 100 largest cities measured in terms of research output. Then level of co...

  9. System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks

    Directory of Open Access Journals (Sweden)

    Mingzhi Liao

    2014-01-01

    Full Text Available Liuwei-dihuang (LWDH is widely used in traditional Chinese medicine (TCM, but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM.

  10. Vulnerability analysis for airport networks based on fuzzy soft sets: From the structural and functional perspective

    Directory of Open Access Journals (Sweden)

    Li Shanmei

    2015-06-01

    Full Text Available Recently, much attention has been paid to the reliability and vulnerability of critical infrastructure. In air traffic systems, the vulnerability analysis for airport networks can be used to guide air traffic administrations in their prioritization of the maintenance and repair of airports, as well as to avoid unnecessary disturbances in the planning of flight schedules. In this paper, the evaluation methods of airport importance and network efficiency are established. Firstly, the evaluation indices of airport importance are proposed from both the topological and functional perspectives. The topological characteristics come from the structure of airport network and the functional features stem from the traffic flow distribution taking place inside the network. Secondly, an integrated evaluation method based on fuzzy soft set theory is proposed to identify the key airports, which can fuse together importance indices over different time intervals. Thirdly, an airport network efficiency method is established for the purpose of assessing the accuracy of the evaluation method. Finally, empirical studies using real traffic data of US and China’s airport networks show that the evaluation method proposed in this paper is the most accurate. The vulnerability of US and China’s airport networks is compared. The similarities and differences between airport geography distribution and airport importance distribution are discussed here and the dynamics of airport importance is studied as well.

  11. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Science.gov (United States)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  12. IP Network Failure Identification Based on the Detailed Analysis of OSPF LSA Flooding

    Science.gov (United States)

    Hei, Yuichiro; Ogishi, Tomohiko; Ano, Shigehiro; Hasegawa, Toru

    It is important to monitor routing protocols to ensure IP networks and their operations can maintain sufficient level of stability and reliability because IP routing is an essential part of such networks. In this paper, we focus on Open Shortest Path First (OSPF), a widely deployed intra-domain routing protocol. Routers running OSPF advertise their link states on Link State Advertisements (LSAs) as soon as they detect changes in their link states. In IP network operations, it is important for operators to ascertain the location and type of a failure in order to deal with failures adequately. We therefore studied IP network failure identification based on the monitoring of OSPF LSAs. There are three issues to consider in regard to identifying network failures by monitoring LSAs. The first is that multiple LSAs are flooded by a single failure. The second is the LSA delay, and the third is that multiple failures may occur simultaneously. In this paper, we propose a method of network failure identification based on a detailed analysis of OSPF LSA flooding that takes into account the above three issues.

  13. Dynamic network connectivity analysis to identify the epileptogenic zones based on stereo-electroencephalography

    Directory of Open Access Journals (Sweden)

    Junwei Mao

    2016-10-01

    Full Text Available ObjectivesAccurate localization of the epileptogenic zones (EZs is essential for the successful surgical treatment of the refractory focal epilepsy. The aim of the present study is to investigate whether a dynamic network connectivity analysis based on stereo-electroencephalography (SEEG signals is effective in localizing the EZs.MethodsSEEG data were recorded from seven patients underwent presurgical evaluation for the treatment of refractory focal epilepsy, and the subsequent resective surgery gave the patients good outcome. The time-variant multivariate autoregressive model was constructed by Kalman filter and the time-variant partial directed coherence was computed, which was then used to construct the dynamic directed network of the epileptic brain. Three graph measures, in-degree, out-degree and betweenness centrality, were used to analyze the characteristics of the dynamic network and to find the important nodes in it. ResultsIn all seven patients, the indicative EZs localized by in-degree and betweenness centrality were highly consistent to the clinical diagnosed EZs. However, the out-degree did not indicate significant difference between nodes in the network.ConclusionsIn this work, the method based on ictal SEEG signals and effective connectivity analysis localized the EZs accurately. It suggested that in-degree and betweenness centrality may be better network characteristics to localize the EZs than out-degree.

  14. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory

    Science.gov (United States)

    Wang, Na; Li, Dong; Wang, Qiwen

    2012-12-01

    The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government

  15. Risk Assessment of Distribution Network Based on Random set Theory and Sensitivity Analysis

    Science.gov (United States)

    Zhang, Sh; Bai, C. X.; Liang, J.; Jiao, L.; Hou, Z.; Liu, B. Zh

    2017-05-01

    Considering the complexity and uncertainty of operating information in distribution network, this paper introduces the use of random set for risk assessment. The proposed method is based on the operating conditions defined in the random set framework to obtain the upper and lower cumulative probability functions of risk indices. Moreover, the sensitivity of risk indices can effectually reflect information about system reliability and operating conditions, and by use of these information the bottlenecks that suppress system reliability can be found. The analysis about a typical radial distribution network shows that the proposed method is reasonable and effective.

  16. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks

    OpenAIRE

    Jun Won Kim; Bung-Nyun Kim; Johanna Inhyang Kim; Young Sik Lee; Kyung Joon Min; Hyun-Jin Kim; Jaewon Lee

    2015-01-01

    Introduction Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. Met...

  17. You Never Walk Alone: Recommending Academic Events Based on Social Network Analysis

    Science.gov (United States)

    Klamma, Ralf; Cuong, Pham Manh; Cao, Yiwei

    Combining Social Network Analysis and recommender systems is a challenging research field. In scientific communities, recommender systems have been applied to provide useful tools for papers, books as well as expert finding. However, academic events (conferences, workshops, international symposiums etc.) are an important driven forces to move forwards cooperation among research communities. We realize a SNA based approach for academic events recommendation problem. Scientific communities analysis and visualization are performed to provide an insight into the communities of event series. A prototype is implemented based on the data from DBLP and EventSeer.net, and the result is observed in order to prove the approach.

  18. Autoblocker: a system for detecting and blocking of network scanning based on analysis of netflow data

    Energy Technology Data Exchange (ETDEWEB)

    Bobyshev, A.; Lamore, D.; Demar, P.; /Fermilab

    2004-12-01

    In a large campus network, such at Fermilab, with tens of thousands of nodes, scanning initiated from either outside of or within the campus network raises security concerns. This scanning may have very serious impact on network performance, and even disrupt normal operation of many services. In this paper we introduce a system for detecting and automatic blocking excessive traffic of different kinds of scanning, DoS attacks, virus infected computers. The system, called AutoBlocker, is a distributed computing system based on quasi-real time analysis of network flow data collected from the border router and core switches. AutoBlocker also has an interface to accept alerts from IDS systems (e.g. BRO, SNORT) that are based on other technologies. The system has multiple configurable alert levels for the detection of anomalous behavior and configurable trigger criteria for automated blocking of scans at the core or border routers. It has been in use at Fermilab for about 2 years, and has become a very valuable tool to curtail scan activity within the Fermilab campus network.

  19. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  20. Network-based analysis reveals functional connectivity related to internet addiction tendency

    Directory of Open Access Journals (Sweden)

    Tanya eWen

    2016-02-01

    Full Text Available IntroductionPreoccupation and compulsive use of the internet can have negative psychological effects, such that it is increasingly being recognized as a mental disorder. The present study employed network-based statistics to explore how whole-brain functional connections at rest is related to the extent of individual’s level of internet addiction, indexed by a self-rated questionnaire. We identified two topologically significant networks, one with connections that are positively correlated with internet addiction tendency, and one with connections negatively correlated with internet addiction tendency. The two networks are interconnected mostly at frontal regions, which might reflect alterations in the frontal region for different aspects of cognitive control (i.e., for control of internet usage and gaming skills. Next, we categorized the brain into several large regional subgroupings, and found that the majority of proportions of connections in the two networks correspond to the cerebellar model of addiction which encompasses the four-circuit model. Lastly, we observed that the brain regions with the most inter-regional connections associated with internet addiction tendency replicate those often seen in addiction literature, and is corroborated by our meta-analysis of internet addiction studies. This research provides a better understanding of large-scale networks involved in internet addiction tendency and shows that pre-clinical levels of internet addiction are associated with similar regions and connections as clinical cases of addiction.

  1. Malware Classification Based on the Behavior Analysis and Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Pan Zhi-Peng

    2016-01-01

    Full Text Available With the development of the Internet, malwares have also been expanded on the network systems rapidly. In order to deal with the diversity and amount of the variants, a number of automated behavior analysis tools have emerged as the time requires. Yet these tools produce detailed behavior reports of the malwares, it still needs to specify its category and judge its criticality manually. In this paper, we propose an automated malware classification approach based on the behavior analysis. We firstly perform dynamic analyses to obtain the detailed behavior profiles of the malwares, which are then used to abstract the main features of the malwares and serve as the inputs of the Back Propagation (BP Neural Network model.The experimental results demonstrate that our classification technique is able to classify the malware variants effectively and detect malware accurately.

  2. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  3. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    Science.gov (United States)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  4. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.

    Science.gov (United States)

    Pantazis, Yannis; Katsoulakis, Markos A; Vlachos, Dionisios G

    2013-10-22

    Stochastic modeling and simulation provide powerful predictive methods for the intrinsic understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an essential mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference method can have an overwhelming computational cost in models with a high-dimensional parameter space. We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a large number of parameters. The proposed approach is based on Information Theory methods and relies on the quantification of information loss due to parameter perturbations between time-series distributions. For this reason, we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is referred to as "pathwise". The pathwise sensitivity analysis method is realized by employing the rigorously-derived Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden parameter dependencies and sensitivities in reaction networks. As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the structure of the FIM can allow to efficiently address

  5. Research progress of multimodal MRI and complex network analysis based on graph theory in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Ming-jin MEI

    2017-01-01

    Full Text Available Parkinson's disease (PD is a common progressive neurodegenerative disease and is mainly caused by dopamine neuron degeneration in the substantia nigra pars compacta of the human brain. It has become "the third killer" after tumor and cardio-cerebrovascular disease in middle-aged and elderly people at present. In recent years, the development of multimodal MRI [including structural MRI (sMRI, functional MRI (fMRI, diffusion tension imaging (DTI, etc.] and the introduction of complex network analysis based on graph theory provide a new and effective method for researchers to explore the changes of brain structure and function in PD patients. The article mainly reviews the research progress of structural and functional brain networks in PD patients that are established based on multimodal MRI and complex network analysis based on graph theory, so as to provide new imaging markers for the early diagnosis of PD. DOI: 10.3969/j.issn.1672-6731.2017.01.004

  6. Efficient identification of critical residues based only on protein structure by network analysis.

    Directory of Open Access Journals (Sweden)

    Michael P Cusack

    Full Text Available Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.

  7. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  8. Analysis of molecular expression patterns and integration with other knowledge bases using probabilistic Bayesian network models

    Energy Technology Data Exchange (ETDEWEB)

    Moler, Edward J.; Mian, I.S.

    2000-03-01

    How can molecular expression experiments be interpreted with greater than ten to the fourth measurements per chip? How can one get the most quantitative information possible from the experimental data with good confidence? These are important questions whose solutions require an interdisciplinary combination of molecular and cellular biology, computer science, statistics, and complex systems analysis. The explosion of data from microarray techniques present the problem of interpreting the experiments. The availability of large-scale knowledge bases provide the opportunity to maximize the information extracted from these experiments. We have developed new methods of discovering biological function, metabolic pathways, and regulatory networks from these data and knowledge bases. These techniques are applicable to analyses for biomedical engineering, clinical, and fundamental cell and molecular biology studies. Our approach uses probabilistic, computational methods that give quantitative interpretations of data in a biological context. We have selected Bayesian statistical models with graphical network representations as a framework for our methods. As a first step, we use a nave Bayesian classifier to identify statistically significant patterns in gene expression data. We have developed methods which allow us to (a) characterize which genes or experiments distinguish each class from the others, (b) cross-index the resulting classes with other databases to assess biological meaning of the classes, and (c) display a gross overview of cellular dynamics. We have developed a number of visualization tools to convey the results. We report here our methods of classification and our first attempts at integrating the data and other knowledge bases together with new visualization tools. We demonstrate the utility of these methods and tools by analysis of a series of yeast cDNA microarray data and to a set of cancerous/normal sample data from colon cancer patients. We discuss

  9. Power Transformer Differential Protection Based on Neural Network Principal Component Analysis, Harmonic Restraint and Park's Plots

    Directory of Open Access Journals (Sweden)

    Manoj Tripathy

    2012-01-01

    Full Text Available This paper describes a new approach for power transformer differential protection which is based on the wave-shape recognition technique. An algorithm based on neural network principal component analysis (NNPCA with back-propagation learning is proposed for digital differential protection of power transformer. The principal component analysis is used to preprocess the data from power system in order to eliminate redundant information and enhance hidden pattern of differential current to discriminate between internal faults from inrush and overexcitation conditions. This algorithm has been developed by considering optimal number of neurons in hidden layer and optimal number of neurons at output layer. The proposed algorithm makes use of ratio of voltage to frequency and amplitude of differential current for transformer operating condition detection. This paper presents a comparative study of power transformer differential protection algorithms based on harmonic restraint method, NNPCA, feed forward back propagation neural network (FFBPNN, space vector analysis of the differential signal, and their time characteristic shapes in Park’s plane. The algorithms are compared as to their speed of response, computational burden, and the capability to distinguish between a magnetizing inrush and power transformer internal fault. The mathematical basis for each algorithm is briefly described. All the algorithms are evaluated using simulation performed with PSCAD/EMTDC and MATLAB.

  10. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...

  11. Simulation and stability analysis of neural network based control scheme for switched linear systems.

    Science.gov (United States)

    Singh, H P; Sukavanam, N

    2012-01-01

    This paper proposes a new adaptive neural network based control scheme for switched linear systems with parametric uncertainty and external disturbance. A key feature of this scheme is that the prior information of the possible upper bound of the uncertainty is not required. A feedforward neural network is employed to learn this upper bound. The adaptive learning algorithm is derived from Lyapunov stability analysis so that the system response under arbitrary switching laws is guaranteed uniformly ultimately bounded. A comparative simulation study with robust controller given in [Zhang L, Lu Y, Chen Y, Mastorakis NE. Robust uniformly ultimate boundedness control for uncertain switched linear systems. Computers and Mathematics with Applications 2008; 56: 1709-14] is presented. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Multidimensional Analysis of Linguistic Networks

    Science.gov (United States)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  13. Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network.

    Science.gov (United States)

    Rifai Chai; Tran, Yvonne; Naik, Ganesh R; Nguyen, Tuan N; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T

    2016-08-01

    This paper presents an electroencephalography (EEG) based-classification of between pre- and post-mental load tasks for mental fatigue detection from 65 healthy participants. During the data collection, eye closed and eye open tasks were collected before and after conducting the mental load tasks. For the computational intelligence, the system uses the combination of principal component analysis (PCA) as the dimension reduction method of the original 26 channels of EEG data, power spectral density (PSD) as feature extractor and Bayesian neural network (BNN) as classifier. After applying the PCA, the dimension of the data is reduced from 26 EEG channels in 6 principal components (PCs) with above 90% of information retained. Based on this reduced dimension of 6 PCs of data, during eyes open, the classification pre-task (alert) vs. post-task (fatigue) using Bayesian neural network resulted in sensitivity of 76.8 %, specificity of 75.1% and accuracy of 76% Also based on data from the 6 PCs, during eye closed, the classification between pre- and post-task resulted in a sensitivity of 76.1%, specificity of 74.5% and accuracy of 75.3%. Further, the classification results of using only 6 PCs data are comparable to the result using the original 26 EEG channels. This finding will help in reducing the computational complexity of data analysis based on 26 channels of EEG for mental fatigue detection.

  14. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  15. Network analysis of genes regulated in renal diseases: implications for a molecular-based classification

    Directory of Open Access Journals (Sweden)

    Jagadish HV

    2009-09-01

    Full Text Available Abstract Background Chronic renal diseases are currently classified based on morphological similarities such as whether they produce predominantly inflammatory or non-inflammatory responses. However, such classifications do not reliably predict the course of the disease and its response to therapy. In contrast, recent studies in diseases such as breast cancer suggest that a classification which includes molecular information could lead to more accurate diagnoses and prediction of treatment response. This article describes how we extracted gene expression profiles from biopsies of patients with chronic renal diseases, and used network visualizations and associated quantitative measures to rapidly analyze similarities and differences between the diseases. Results The analysis revealed three main regularities: (1 Many genes associated with a single disease, and fewer genes associated with many diseases. (2 Unexpected combinations of renal diseases that share relatively large numbers of genes. (3 Uniform concordance in the regulation of all genes in the network. Conclusion The overall results suggest the need to define a molecular-based classification of renal diseases, in addition to hypotheses for the unexpected patterns of shared genes and the uniformity in gene concordance. Furthermore, the results demonstrate the utility of network analyses to rapidly understand complex relationships between diseases and regulated genes.

  16. Network Based Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate Symptom Genes

    Directory of Open Access Journals (Sweden)

    Xing Li

    2014-01-01

    Full Text Available Background. Symptoms and signs (symptoms in brief are the essential clinical manifestations for individualized diagnosis and treatment in traditional Chinese medicine (TCM. To gain insights into the molecular mechanism of symptoms, we develop a computational approach to identify the candidate genes of symptoms. Methods. This paper presents a network-based approach for the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated symptoms. The method first calculates the similarities between symptoms and diseases based on the symptom-disease relationships retrieved from the PubMed bibliographic database. Then the disease-gene associations and protein-protein interactions are utilized to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated symptoms. Results. The proposed method gets reliable gene rank list with AUC (area under curve 0.616 in classification. Some novel genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the benchmark data set, but have been reported in recent published literatures. Conclusions. Our study demonstrated that by integrating phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes of symptoms.

  17. Comparison of Artificial Neural Networks and GIS Based Solar Analysis for Solar Potential Estimation

    Science.gov (United States)

    Konakoǧlu, Berkant; Usta, Ziya; Cömert, Çetin; Gökalp, Ertan

    2016-04-01

    Nowadays, estimation of solar potential plays an important role in planning process for sustainable cities. The use of solar panels, which produces electricity directly from the sun, has become popular in accordance with developing technologies. Since the use of solar panels enables the users to decrease costs and increase yields, the use of solar panels will be more popular in the future. Production of electricity is not convenient for all circumstances. Shading effects, massive clouds and rainy weather are some factors that directly affect the production of electricity from solar energy. Hence, before the installation of solar panels, it is crucial to conduct spatial analysis and estimate the solar potential of the place that the solar panel will be installed. There are several approaches to determine the solar potential. Examination of the applications in the literature reveals that the applications conducted for determining the solar potential are divided into two main categories. Solar potential is estimated either by using artificial neural network approach in which statistical parameters such as the duration of sun shine, number of clear days, solar radiation etc. are used, or by spatial analysis conducted in GIS approaches in which spatial parameters such as, latitude, longitude, slope, aspect etc. are used. In the literature, there are several studies that use both approaches but the literature lacks of a study related to the comparison of these approaches. In this study, Karadeniz Technical University campus has been selected as study area. Monthly average values of the number of clear sky days, air temperature, atmospheric pressure, relative humidity, sunshine duration and solar radiation parameters obtained for the years between 2005 and 2015 will be used to perform artificial neural network analysis to estimate the solar potential of the study area. The solar potential will also be estimated by using GIS-based solar analysis modules. The results of

  18. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    Science.gov (United States)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  19. Analysis of Video Signal Transmission Through DWDM Network Based on a Quality Check Algorithm

    Directory of Open Access Journals (Sweden)

    A. Markovic

    2013-04-01

    Full Text Available This paper provides an analysis of the multiplexed video signal transmission through the Dense Wavelength Division Multiplexing (DWDM network based on a quality check algorithm, which determines where the interruption of the transmission quality starts. On the basis of this algorithm, simulations of transmission for specific values of fiber parameters ​​ are executed. The analysis of the results shows how the BER and Q-factor change depends on the length of the fiber, i.e. on the number of amplifiers, and what kind of an effect the number of multiplexed channels and the flow rate per channel have on a transmited signals. Analysis of DWDM systems is performed in the software package OptiSystem 7.0, which is designed for systems with flow rates of 2.5 Gb/s and 10 Gb/s per channel.

  20. Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network.

    Directory of Open Access Journals (Sweden)

    Ruijin Du

    Full Text Available We study the overall topological structure properties of global oil trade network, such as degree, strength, cumulative distribution, information entropy and weight clustering. The structural evolution of the network is investigated as well. We find the global oil import and export networks do not show typical scale-free distribution, but display disassortative property. Furthermore, based on the monthly data of oil import values during 2005.01-2014.12, by applying random matrix theory, we investigate the complex spatiotemporal dynamic from the country level and fitness evolution of the global oil market from a demand-side analysis. Abundant information about global oil market can be obtained from deviating eigenvalues. The result shows that the oil market has experienced five different periods, which is consistent with the evolution of country clusters. Moreover, we find the changing trend of fitness function agrees with that of gross domestic product (GDP, and suggest that the fitness evolution of oil market can be predicted by forecasting GDP values. To conclude, some suggestions are provided according to the results.

  1. Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model

    Science.gov (United States)

    Fu, Li Fang; Meng, Jun; Liu, Ying

    2015-12-01

    Performance evaluation of supply chain (SC) is a vital topic in SC management and inherently complex problems with multilayered internal linkages and activities of multiple entities. Recently, various Network Data Envelopment Analysis (NDEA) models, which opened the “black box” of conventional DEA, were developed and applied to evaluate the complex SC with a multilayer network structure. However, most of them are input or output oriented models which cannot take into consideration the nonproportional changes of inputs and outputs simultaneously. This paper extends the Slack-based measure (SBM) model to a nonradial, nonoriented network model named as U-NSBM with the presence of undesirable outputs in the SC. A numerical example is presented to demonstrate the applicability of the model in quantifying the efficiency and ranking the supply chain performance. By comparing with the CCR and U-SBM models, it is shown that the proposed model has higher distinguishing ability and gives feasible solution in the presence of undesirable outputs. Meanwhile, it provides more insights for decision makers about the source of inefficiency as well as the guidance to improve the SC performance.

  2. Analysis of network-wide transit passenger flows based on principal component analysis

    NARCIS (Netherlands)

    Luo, D.; Cats, O.; van Lint, J.W.C.

    2017-01-01

    Transit networks are complex systems in which the passenger flow dynamics are difficult to capture and understand. While there is a growing ability to monitor and record travelers' behavior in the past decade, knowledge on network-wide passenger flows, which are essentially high-dimensional

  3. EWIDS: an extended wireless IDS for metropolitan wireless networks based on kinematical analysis

    OpenAIRE

    Pirmez, Luci; Vianna, Nilson Rocha; Correia, Reinaldo de Barros; Carmo, Luiz Fernando Rust da Costa; Farias, Cláudio Miceli de; Salmon, Hélio Mendes

    2011-01-01

    Wireless metropolitan area networks (WMANs) are well known to subject users or applications and to a vast gamma of security risks, hindering security critical distributed applications from employing this type of network as a communication infrastructure. Most existing approaches for addressing WMAN security issues use cryptography-based mechanisms or ad-hoc adapted versions of traditional Intrusion Detection Systems (IDS) for wired networks. While the first approach may lead to unfeasib...

  4. Empirical analysis of web-based user-object bipartite networks

    Science.gov (United States)

    Shang, Ming-Sheng; Lü, Linyuan; Zhang, Yi-Cheng; Zhou, Tao

    2010-05-01

    Understanding the structure and evolution of web-based user-object networks is a significant task since they play a crucial role in e-commerce nowadays. This letter reports the empirical analysis on two large-scale web sites, audioscrobbler.com and del.icio.us, where users are connected with music groups and bookmarks, respectively. The degree distributions and degree-degree correlations for both users and objects are reported. We propose a new index, named collaborative similarity, to quantify the diversity of tastes based on the collaborative selection. Accordingly, the correlation between degree and selection diversity is investigated. We report some novel phenomena well characterizing the selection mechanism of web users and outline the relevance of these phenomena to the information recommendation problem.

  5. [Methodological novelties applied to the anthropology of food: agent-based models and social networks analysis].

    Science.gov (United States)

    Díaz Córdova, Diego

    2016-01-01

    The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.

  6. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].

    Science.gov (United States)

    Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei

    2015-02-01

    To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.

  8. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    Science.gov (United States)

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their

  9. [Selection of peer educators for sex education program-based on data from social network analysis among college freshmen students].

    Science.gov (United States)

    Yang, Y; Deng, H; Yang, F; Li, Y L

    2016-12-10

    Objective: Through combining the results from social network analysis and willingness of the key actors, peer educators for sex education among freshmen to select peer educators for sex education. Methods: Self-developed questionnaires were used to collect information on related demographics, egocentric social networks and whole class-based unit-network. Descriptive analysis was applied. UCINET 6 was used to conduct social network analysis and to draw the whole networking graphs. Results: Classmates appeared as the most important behavior intimate social network (95.8% claimed they could potentially borrow money from them, and 96.6% often went out with them) and were the most important members who could share privacy information with (91.6%) and consulting for private health information on (89.1%), among freshmen students in college. Finally, 17 freshmen were selected to have become peer educators, with 10 of them as the committee members in the class. Conclusion: Classmates formed the most important social network among freshmen students in college. Social network analysis could be used to help identify the suitable peer educators.

  10. A Network-Based Data Envelope Analysis Model in a Dynamic Balanced Score Card

    Directory of Open Access Journals (Sweden)

    Mojtaba Akbarian

    2015-01-01

    Full Text Available Performance assessment during the time and along with strategies is the most important requirements of top managers. To assess the performance, a balanced score card (BSC along with strategic goals and a data envelopment analysis (DEA are used as powerful qualitative and quantitative tools, respectively. By integrating these two models, their strengths are used and their weaknesses are removed. In this paper, an integrated framework of the BSC and DEA models is proposed for measuring the efficiency during the time and along with strategies based on the time delay of the lag key performance indicators (KPIs of the BSC model. The causal relationships during the time among perspectives of the BSC model are drawn as dynamic BSC at first. Then, after identifying the network-DEA structure, a new objective function for measuring the efficiency of nine subsidiary refineries of the National Iranian Oil Refining and Distribution Company (NIORDC during the time and along with strategies is developed.

  11. Secrecy Performance Analysis of Cognitive Sensor Radio Networks with an EH-Based Eavesdropper.

    Science.gov (United States)

    Sun, Aiwei; Liang, Tao; Li, Bolun

    2017-05-04

    Security and privacy are crucial for cognitive sensor radio networks (CSRNs) due to the possible eavesdropping between secondary sensors and the secondary fusion center. Motivated by this observation, we investigate the physical layer security performance of CSRNs with an external energy harvesting (EH)-based eavesdropper. Considering the underlay working paradigm of CSRNs, the transmit power of the secondary sensor node must be adjusted to guarantee the quality-of-service ( Q o S ) of the primary user. Hence, two different interference power constraint scenarios are studied in this paper. To give an intuitive insight into the secrecy performance of the considered wiretap scenarios, we have derived the closed-form analytical expressions of secrecy outage probability for both of the considered cases. Monte Carlo simulation results are also performed to verify the theoretical analysis derived, and show the effect of various parameters on the system performance.

  12. Mining author relationship in scholarly networks based on tripartite citation analysis.

    Directory of Open Access Journals (Sweden)

    Feifei Wang

    Full Text Available Following scholars in Scientometrics as examples, we develop five author relationship networks, namely, co-authorship, author co-citation (AC, author bibliographic coupling (ABC, author direct citation (ADC, and author keyword coupling (AKC. The time frame of data sets is divided into two periods: before 2011 (i.e., T1 and after 2011 (i.e., T2. Through quadratic assignment procedure analysis, we found that some authors have ABC or AC relationships (i.e., potential communication relationship, PCR but do not have actual collaborations or direct citations (i.e., actual communication relationship, ACR among them. In addition, we noticed that PCR and AKC are highly correlated and that the old PCR and the new ACR are correlated and consistent. Such facts indicate that PCR tends to produce academic exchanges based on similar themes, and ABC bears more advantages in predicting potential relations. Based on tripartite citation analysis, including AC, ABC, and ADC, we also present an author-relation mining process. Such process can be used to detect deep and potential author relationships. We analyze the prediction capacity by comparing between the T1 and T2 periods, which demonstrate that relation mining can be complementary in identifying authors based on similar themes and discovering more potential collaborations and academic communities.

  13. Mining author relationship in scholarly networks based on tripartite citation analysis.

    Science.gov (United States)

    Wang, Feifei; Wang, Xiaohan; Yang, Siluo

    2017-01-01

    Following scholars in Scientometrics as examples, we develop five author relationship networks, namely, co-authorship, author co-citation (AC), author bibliographic coupling (ABC), author direct citation (ADC), and author keyword coupling (AKC). The time frame of data sets is divided into two periods: before 2011 (i.e., T1) and after 2011 (i.e., T2). Through quadratic assignment procedure analysis, we found that some authors have ABC or AC relationships (i.e., potential communication relationship, PCR) but do not have actual collaborations or direct citations (i.e., actual communication relationship, ACR) among them. In addition, we noticed that PCR and AKC are highly correlated and that the old PCR and the new ACR are correlated and consistent. Such facts indicate that PCR tends to produce academic exchanges based on similar themes, and ABC bears more advantages in predicting potential relations. Based on tripartite citation analysis, including AC, ABC, and ADC, we also present an author-relation mining process. Such process can be used to detect deep and potential author relationships. We analyze the prediction capacity by comparing between the T1 and T2 periods, which demonstrate that relation mining can be complementary in identifying authors based on similar themes and discovering more potential collaborations and academic communities.

  14. Systematic comparison of C3 and C4 plants based on metabolic network analysis.

    Science.gov (United States)

    Wang, Chuanli; Guo, Longyun; Li, Yixue; Wang, Zhuo

    2012-01-01

    The C4 photosynthetic cycle supercharges photosynthesis by concentrating CO2 around ribulose-1,5-bisphosphate carboxylase and significantly reduces the oxygenation reaction. Therefore engineering C4 feature into C3 plants has been suggested as a feasible way to increase photosynthesis and yield of C3 plants, such as rice, wheat, and potato. To identify the possible transition from C3 to C4 plants, the systematic comparison of C3 and C4 metabolism is necessary. We compared C3 and C4 metabolic networks using the improved constraint-based models for Arabidopsis and maize. By graph theory, we found the C3 network exhibit more dense topology structure than C4. The simulation of enzyme knockouts demonstrated that both C3 and C4 networks are very robust, especially when optimizing CO2 fixation. Moreover, C4 plant has better robustness no matter the objective function is biomass synthesis or CO2 fixation. In addition, all the essential reactions in C3 network are also essential for C4, while there are some other reactions specifically essential for C4, which validated that the basic metabolism of C4 plant is similar to C3, but C4 is more complex. We also identified more correlated reaction sets in C4, and demonstrated C4 plants have better modularity with complex mechanism coordinates the reactions and pathways than that of C3 plants. We also found the increase of both biomass production and CO2 fixation with light intensity and CO2 concentration in C4 is faster than that in C3, which reflected more efficient use of light and CO2 in C4 plant. Finally, we explored the contribution of different C4 subtypes to biomass production by setting specific constraints. All results are consistent with the actual situation, which indicate that Flux Balance Analysis is a powerful method to study plant metabolism at systems level. We demonstrated that in contrast to C3, C4 plants have less dense topology, higher robustness, better modularity, and higher CO2 and radiation use efficiency

  15. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data, existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper, we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Cox's proportional hazard model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or functional relations identified highly consistent signature genes across the three datasets, and because of the better generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox models regularized by L(2 or L(1. This study focused on analyzing the death and recurrence outcomes in the treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after 12 months of the treatment in the ovarian cancer patients who are

  16. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods

    Directory of Open Access Journals (Sweden)

    Quan Zou

    2015-01-01

    Full Text Available MicroRNAs constitute an important class of noncoding, single-stranded, ~22 nucleotide long RNA molecules encoded by endogenous genes. They play an important role in regulating gene transcription and the regulation of normal development. MicroRNAs can be associated with disease; however, only a few microRNA-disease associations have been confirmed by traditional experimental approaches. We introduce two methods to predict microRNA-disease association. The first method, KATZ, focuses on integrating the social network analysis method with machine learning and is based on networks derived from known microRNA-disease associations, disease-disease associations, and microRNA-microRNA associations. The other method, CATAPULT, is a supervised machine learning method. We applied the two methods to 242 known microRNA-disease associations and evaluated their performance using leave-one-out cross-validation and 3-fold cross-validation. Experiments proved that our methods outperformed the state-of-the-art methods.

  17. Sub-Synchronous Interaction Analysis between DFIG Based Wind Farm and Series Compensated Network

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Kang, Shaoli

    2016-01-01

    This paper analyzes the sub-synchronous interaction (SSI) phenomenon between the doubly fed induction generator (DFIG) based wind farm (WF) and the series capacitor compensated network. The possible types of SSI in the DFIG based WF are studied. The factors influencing the SSI of DFIG based WF...

  18. The role of interpersonal communication in the process of knowledge mobilization within a community-based organization: a network analysis.

    Science.gov (United States)

    Gainforth, Heather L; Latimer-Cheung, Amy E; Athanasopoulos, Peter; Moore, Spencer; Ginis, Kathleen A Martin

    2014-05-22

    Diffusion of innovations theory has been widely used to explain knowledge mobilization of research findings. This theory posits that individuals who are more interpersonally connected within an organization may be more likely to adopt an innovation (e.g., research evidence) than individuals who are less interconnected. Research examining this tenet of diffusion of innovations theory in the knowledge mobilization literature is limited. The purpose of the present study was to use network analysis to examine the role of interpersonal communication in the adoption and mobilization of the physical activity guidelines for people with spinal cord injury (SCI) among staff in a community-based organization (CBO). The study used a cross-sectional, whole-network design. In total, 56 staff completed the network survey. Adoption of the guidelines was assessed using Rogers' innovation-decision process and interpersonal communication was assessed using an online network instrument. The patterns of densities observed within the network were indicative of a core-periphery structure revealing that interpersonal communication was greater within the core than between the core and periphery and within the periphery. Membership in the core, as opposed to membership in the periphery, was associated with greater knowledge of the evidence-based physical activity resources available and engagement in physical activity promotion behaviours (ps mobilization and highlight how the network structure could be improved for further dissemination efforts. diffusion of innovations; network analysis; community-based organization; knowledge mobilization; knowledge translation, interpersonal communication.

  19. Network Analysis and Application Control Software based on Client-Server Architecture

    OpenAIRE

    Mohan, Ramya

    2013-01-01

    This paper outlines a comprehensive model to increase system efficiency, preserve network bandwidth, monitor incoming and outgoing packets, ensure the security of confidential files and reduce power wastage in an organization. This model illustrates the use and potential application of a Network Analysis Tool (NAT) in a multi-computer set-up of any scale. The model is designed to run in the background and not hamper any currently executing applications, while using minimum system resources. I...

  20. Understanding structure of urban traffic network based on spatial-temporal correlation analysis

    Science.gov (United States)

    Yang, Yanfang; Jia, Limin; Qin, Yong; Han, Shixiu; Dong, Honghui

    2017-08-01

    Understanding the structural characteristics of urban traffic network comprehensively can provide references for improving road utilization rate and alleviating traffic congestion. This paper focuses on the spatial-temporal correlations between different pairs of traffic series and proposes a complex network-based method of constructing the urban traffic network. In the network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding spatial-temporal correlation. Further, a modified PageRank algorithm, named the geographical weight-based PageRank algorithm (GWPA), is proposed to analyze the spatial distribution of important segments in the road network. Finally, experiments are conducted by using three kinds of traffic series collected from the urban road network in Beijing. Experimental results show that the urban traffic networks constructed by three traffic variables all indicate both small-world and scale-free characteristics. Compared with the results of PageRank algorithm, GWPA is proved to be valid in evaluating the importance of segments and identifying the important segments with small degree.

  1. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  2. Entropy Based Analysis of DNS Query Traffic in the Campus Network

    Directory of Open Access Journals (Sweden)

    Dennis Arturo Ludeña Romaña

    2008-10-01

    Full Text Available We carried out the entropy based study on the DNS query traffic from the campus network in a university through January 1st, 2006 to March 31st, 2007. The results are summarized, as follows: (1 The source IP addresses- and query keyword-based entropies change symmetrically in the DNS query traffic from the outside of the campus network when detecting the spam bot activity on the campus network. On the other hand (2, the source IP addresses- and query keywordbased entropies change similarly each other when detecting big DNS query traffic caused by prescanning or distributed denial of service (DDoS attack from the campus network. Therefore, we can detect the spam bot and/or DDoS attack bot by only watching DNS query access traffic.

  3. Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model

    Science.gov (United States)

    Hou, Rui; Wu, Jiawen; Du, Helen S.

    2017-03-01

    To explain the competition phenomenon and results between QQ and MSN (China) in the Chinese instant messaging software market, this paper developed a new population competition model based on customer social network. The simulation results show that the firm whose product with greater network externality effect will gain more market share than its rival when the same marketing strategy is used. The firm with the advantage of time, derived from the initial scale effect will become more competitive than its rival when facing a group of common penguin customers within a social network, verifying the winner-take-all phenomenon in this case.

  4. Impaired brain network architecture in newly diagnosed Parkinson's disease based on graph theoretical analysis.

    Science.gov (United States)

    Fang, Jinping; Chen, Huimin; Cao, Zhentang; Jiang, Ying; Ma, Lingyan; Ma, Huizi; Feng, Tao

    2017-09-14

    Resting state functional magnetic resonance imaging (rs-fMRI) has been applied to investigate topographic structure in Parkinson's disease (PD). Alteration of topographic architecture has been inconsistent in PD AIM: To investigate the network profile of PD using graph theoretical analysis. Twenty six newly diagnosed PD and 19 age- and gender- matched healthy controls (HC) were included in our analysis. Small-world profile and topographic profiles (nodal degree, global efficiency, local efficiency, cluster coefficient, shortest path length, betweenness centrality) were measured and compared between groups, with age and gender as covariates. We also performed correlation analysis between topographic features with motor severity measured by UPDRS III. Small-world property was present in PD. Nodal degree, global efficiency, local efficiency and characteristic path length consistently revealed disruptive sensorimotor network, and visual network to a less degree in PD. By contrast, default mode network (DMN) and cerebellum in PD showed higher nodal degree, global efficiency and local efficiency, and lower characteristic path length. Global and local efficiency in the midbrain was higher in PD excluding substantia nigra. PD group also exhibited lower cluster coefficient in the subcortical motor network (thalamus and caudate nucleus). No significant correlation was found between topographic properties and motor severity. PD exhibited disruptive sensorimotor and visual networks in early disease stage. DMN, a certain areas in the cerebellum and midbrain may compensate for disruptive sensorimotor and visual network in PD. Disruptive network architecture may be an early alteration of PD pathophysiology but may not serve as a valid biomarker yet. Copyright © 2017. Published by Elsevier B.V.

  5. New Power Quality Analysis Method Based on Chaos Synchronization and Extension Neural Network

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2014-10-01

    Full Text Available A hybrid method comprising a chaos synchronization (CS-based detection scheme and an Extension Neural Network (ENN classification algorithm is proposed for power quality monitoring and analysis. The new method can detect minor changes in signals of the power systems. Likewise, prominent characteristics of system signal disturbance can be extracted by this technique. In the proposed approach, the CS-based detection method is used to extract three fundamental characteristics of the power system signal and an ENN-based clustering scheme is then applied to detect the state of the signal, i.e., normal, voltage sag, voltage swell, interruption or harmonics. The validity of the proposed method is demonstrated by means of simulations given the use of three different chaotic systems, namely Lorenz, New Lorenz and Sprott. The simulation results show that the proposed method achieves a high detection accuracy irrespective of the chaotic system used or the presence of noise. The proposed method not only achieves higher detection accuracy than existing methods, but also has low computational cost, an improved robustness toward noise, and improved scalability. As a result, it provides an ideal solution for the future development of hand-held power quality analyzers and real-time detection devices.

  6. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    Science.gov (United States)

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  7. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks

    Directory of Open Access Journals (Sweden)

    Xuerong Cui

    2015-11-01

    Full Text Available Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR environments.

  8. A Comparative Experimental Design and Performance Analysis of Snort-Based Intrusion Detection System in Practical Computer Networks

    Directory of Open Access Journals (Sweden)

    Imdadul Karim

    2017-02-01

    Full Text Available As one of the most reliable technologies, network intrusion detection system (NIDS allows the monitoring of incoming and outgoing traffic to identify unauthorised usage and mishandling of attackers in computer network systems. To this extent, this paper investigates the experimental performance of Snort-based NIDS (S-NIDS in a practical network with the latest technology in various network scenarios including high data speed and/or heavy traffic and/or large packet size. An effective testbed is designed based on Snort using different muti-core processors, e.g., i5 and i7, with different operating systems, e.g., Windows 7, Windows Server and Linux. Furthermore, considering an enterprise network consisting of multiple virtual local area networks (VLANs, a centralised parallel S-NIDS (CPS-NIDS is proposed with the support of a centralised database server to deal with high data speed and heavy traffic. Experimental evaluation is carried out for each network configuration to evaluate the performance of the S-NIDS in different network scenarios as well as validating the effectiveness of the proposed CPS-NIDS. In particular, by analysing packet analysis efficiency, an improved performance of up to 10% is shown to be achieved with Linux over other operating systems, while up to 8% of improved performance can be achieved with i7 over i5 processors.

  9. FPGA Based Real-time Network Traffic Analysis using Traffic Dispersion Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Khan, F; Gokhale, M; Chuah, C N

    2010-03-26

    The problem of Network Traffic Classification (NTC) has attracted significant amount of interest in the research community, offering a wide range of solutions at various levels. The core challenge is in addressing high amounts of traffic diversity found in today's networks. The problem becomes more challenging if a quick detection is required as in the case of identifying malicious network behavior or new applications like peer-to-peer traffic that have potential to quickly throttle the network bandwidth or cause significant damage. Recently, Traffic Dispersion Graphs (TDGs) have been introduced as a viable candidate for NTC. The TDGs work by forming a network wide communication graphs that embed characteristic patterns of underlying network applications. However, these patterns need to be quickly evaluated for mounting real-time response against them. This paper addresses these concerns and presents a novel solution for real-time analysis of Traffic Dispersion Metrics (TDMs) in the TDGs. We evaluate the dispersion metrics of interest and present a dedicated solution on an FPGA for their analysis. We also present analytical measures and empirically evaluate operating effectiveness of our design. The mapped design on Virtex-5 device can process 7.4 million packets/second for a TDG comprising of 10k flows at very high accuracies of over 96%.

  10. Sub-Synchronous Interaction Analysis between DFIG Based Wind Farm and Series Compensated Network

    OpenAIRE

    Wang, Yun; Wu, Qiuwei; Kang, Shaoli

    2016-01-01

    This paper analyzes the sub-synchronous interaction (SSI) phenomenon between the doubly fed induction generator (DFIG) based wind farm (WF) and the series capacitor compensated network. The possible types of SSI in the DFIG based WF are studied. The factors influencing the SSI of DFIG based WF are investigated. The large signal stability and small signal stability of the DFIG based WF with different series compensation (SC) level and wind speed are simulated and compared.

  11. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    Science.gov (United States)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-09-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.

  12. Designing Dietary Recommendations Using System Level Interactomics Analysis and Network-Based Inference

    Directory of Open Access Journals (Sweden)

    Tingting Zheng

    2017-09-01

    Full Text Available Background: A range of computational methods that rely on the analysis of genome-wide expression datasets have been developed and successfully used for drug repositioning. The success of these methods is based on the hypothesis that introducing a factor (in this case, a drug molecule that could reverse the disease gene expression signature will lead to a therapeutic effect. However, it has also been shown that globally reversing the disease expression signature is not a prerequisite for drug activity. On the other hand, the basic idea of significant anti-correlation in expression profiles could have great value for establishing diet-disease associations and could provide new insights into the role of dietary interventions in disease.Methods: We performed an integrated analysis of publicly available gene expression profiles for foods, diseases and drugs, by calculating pairwise similarity scores for diet and disease gene expression signatures and characterizing their topological features in protein-protein interaction networks.Results: We identified 485 diet-disease pairs where diet could positively influence disease development and 472 pairs where specific diets should be avoided in a disease state. Multiple evidence suggests that orange, whey and coconut fat could be beneficial for psoriasis, lung adenocarcinoma and macular degeneration, respectively. On the other hand, fructose-rich diet should be restricted in patients with chronic intermittent hypoxia and ovarian cancer. Since humans normally do not consume foods in isolation, we also applied different algorithms to predict synergism; as a result, 58 food pairs were predicted. Interestingly, the diets identified as anti-correlated with diseases showed a topological proximity to the disease proteins similar to that of the corresponding drugs.Conclusions: In conclusion, we provide a computational framework for establishing diet-disease associations and additional information on the role of

  13. Construction and analysis of the protein-protein interaction networks based on gene expression profiles of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hindol Rakshit

    Full Text Available BACKGROUND: Parkinson's Disease (PD is one of the most prevailing neurodegenerative diseases. Improving diagnoses and treatments of this disease is essential, as currently there exists no cure for this disease. Microarray and proteomics data have revealed abnormal expression of several genes and proteins responsible for PD. Nevertheless, few studies have been reported involving PD-specific protein-protein interactions. RESULTS: Microarray based gene expression data and protein-protein interaction (PPI databases were combined to construct the PPI networks of differentially expressed (DE genes in post mortem brain tissue samples of patients with Parkinson's disease. Samples were collected from the substantia nigra and the frontal cerebral cortex. From the microarray data, two sets of DE genes were selected by 2-tailed t-tests and Significance Analysis of Microarrays (SAM, run separately to construct two Query-Query PPI (QQPPI networks. Several topological properties of these networks were studied. Nodes with High Connectivity (hubs and High Betweenness Low Connectivity (bottlenecks were identified to be the most significant nodes of the networks. Three and four-cliques were identified in the QQPPI networks. These cliques contain most of the topologically significant nodes of the networks which form core functional modules consisting of tightly knitted sub-networks. Hitherto unreported 37 PD disease markers were identified based on their topological significance in the networks. Of these 37 markers, eight were significantly involved in the core functional modules and showed significant change in co-expression levels. Four (ARRB2, STX1A, TFRC and MARCKS out of the 37 markers were found to be associated with several neurotransmitters including dopamine. CONCLUSION: This study represents a novel investigation of the PPI networks for PD, a complex disease. 37 proteins identified in our study can be considered as PD network biomarkers. These network

  14. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.

    Science.gov (United States)

    Bae, Tae-Suk; Grejner-Brzezinska, Dorota; Mader, Gerald; Dennis, Michael

    2015-10-26

    New guidelines and procedures for real-time (RT) network-based solutions are required in order to support Global Navigation Satellite System (GNSS) derived heights. Two kinds of experiments were carried out to analyze the performance of the network-based real-time kinematic (RTK) solutions. New test marks were installed in different surrounding environments, and the existing GPS benchmarks were used for analyzing the effect of different factors, such as baseline lengths, antenna types, on the final accuracy and reliability of the height estimation. The RT solutions are categorized into three groups: single-base RTK, multiple-epoch network RTK (mRTN), and single-epoch network RTK (sRTN). The RTK solution can be biased up to 9 mm depending on the surrounding environment, but there was no notable bias for a longer reference base station (about 30 km) In addition, the occupation time for the network RTK was investigated in various cases. There is no explicit bias in the solution for different durations, but smoother results were obtained for longer durations. Further investigation is needed into the effect of changing the occupation time between solutions and into the possibility of using single-epoch solutions in precise determination of heights by GNSS.

  15. Complementing ODE-Based System Analysis Using Boolean Networks Derived from an Euler-Like Transformation.

    Directory of Open Access Journals (Sweden)

    Claudia Stötzel

    Full Text Available In this paper, we present a systematic transition scheme for a large class of ordinary differential equations (ODEs into Boolean networks. Our transition scheme can be applied to any system of ODEs whose right hand sides can be written as sums and products of monotone functions. It performs an Euler-like step which uses the signs of the right hand sides to obtain the Boolean update functions for every variable of the corresponding discrete model. The discrete model can, on one hand, be considered as another representation of the biological system or, alternatively, it can be used to further the analysis of the original ODE model. Since the generic transformation method does not guarantee any property conservation, a subsequent validation step is required. Depending on the purpose of the model this step can be based on experimental data or ODE simulations and characteristics. Analysis of the resulting Boolean model, both on its own and in comparison with the ODE model, then allows to investigate system properties not accessible in a purely continuous setting. The method is exemplarily applied to a previously published model of the bovine estrous cycle, which leads to new insights regarding the regulation among the components, and also indicates strongly that the system is tailored to generate stable oscillations.

  16. Soil infiltration based on bp neural network and grey relational analysis

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2013-02-01

    Full Text Available Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

  17. Neural network-based survey analysis of risk management practices in new product development

    DEFF Research Database (Denmark)

    Kampianakis, Andreas N.; Oehmen, Josef

    2017-01-01

    The current study investigates the applicability of Artificial Neural Networks (ANNs) to analyse survey data on the effectiveness of risk management practices in product development (PD) projects, and its ability to forecast project outcomes. Moreover, this study presents the relations between risk...... Neural Networks. Dataset used is a filtered survey of 291 product development programs. Answers of this survey are used as training input and target output, in pattern recognition two-layer feed forward networks, using various transfer functions. Using this method, relations among 6 project practices...... and 13 outcome metrics were revealed. Results of this analysis are compared with existent results made through statistical analysis in prior work of one of the authors. Future investigation is needed in order to tackle the lack of data and create an easy to use platform for industrial use....

  18. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Science.gov (United States)

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  19. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network.

    Science.gov (United States)

    Hur, Junguk; Xiang, Zuoshuang; Feldman, Eva L; He, Yongqun

    2011-08-26

    Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were identified. The asserted

  20. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Directory of Open Access Journals (Sweden)

    Xiang Zuoshuang

    2011-08-01

    Full Text Available Abstract Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH annotation in the vaccine field. Vaccine Ontology (VO is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91% and precision (99% from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella

  1. Detection of lung injury with conventional and neural network-based analysis of continuous data.

    Science.gov (United States)

    Räsänen, J; León, M A

    1998-08-01

    To test if analysis of pressure and flow waveform patterns with an artificial intelligence neural network could distinguish between normal and injured lungs. Acute lung injury was induced in ten healthy anesthetized, mechanically ventilated dogs with repeated injections of oleic acid, until arterial blood oxyhemoglobin saturation reached 85% breathing room air. Airway pressure, esophageal pressure, airway flow, and arterial and mixed venous saturation signals were stored at 2 min intervals. Hemodynamic and blood gas data were collected every 10 min. Back-propagation neural networks were trained with normalized airway pressure and flow waveforms from normal and fully injured lungs. The networks scored lung injury on a continuous scale from +1 (normal) to -1 (injured). Network scores unequivocally distinguished between normal and fully injured lungs and suggested a gradual transition from normal to injury pattern. However, the response of the network was slow compared to compliance, resistance and venous admixture. Normal and fully injured lungs display distinct flow and pressure waveform patterns which are independent of changes in calculated pulmonary mechanics variables. These patterns can be recognized by a neural network. Further research is needed to determine the full potential of automated pattern recognition for lung monitoring.

  2. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  3. Graph-based network analysis of resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2010-06-01

    Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  4. Altered white matter connectivity and network organization in polymicrogyria revealed by individual gyral topology-based analysis.

    Science.gov (United States)

    Im, Kiho; Paldino, Michael J; Poduri, Annapurna; Sporns, Olaf; Grant, P Ellen

    2014-02-01

    Polymicrogyria (PMG) is a cortical malformation characterized by multiple small gyri and altered cortical lamination, which may be associated with disrupted white matter connectivity. However, little is known about the topological patterns of white matter networks in PMG. We examined structural connectivity and network topology using individual primary gyral pattern-based nodes in PMG patients, overcoming the limitations of an atlas-based approach. Structural networks were constructed from structural and diffusion magnetic resonance images in 25 typically developing and 14 PMG subjects. The connectivity analysis for different fiber groups divided based on gyral topology revealed severely reduced connectivity between neighboring primary gyri (short U-fibers) in PMG, which was highly correlated with the regional involvement and extent of abnormal gyral folding. The patients also showed significantly reduced connectivity between distant gyri (long association fibers) and between the two cortical hemispheres. In relation to these results, gyral node-based graph theoretical analysis revealed significantly altered topological organization of the network (lower clustering and higher modularity) and disrupted network hub architecture in cortical association areas involved in cognitive and language functions in PMG patients. Furthermore, the network segregation in PMG patients decreased with the extent of PMG and the degree of language impairment. Our approach provides the first detailed findings and interpretations on altered cortical network topology in PMG related to abnormal cortical structure and brain function, and shows the potential for an individualized method to characterize network properties and alterations in connections that are associated with malformations of cortical development. © 2013 Elsevier Inc. All rights reserved.

  5. Analyzing psychotherapy process as intersubjective sensemaking: an approach based on discourse analysis and neural networks.

    Science.gov (United States)

    Nitti, Mariangela; Ciavolino, Enrico; Salvatore, Sergio; Gennaro, Alessandro

    2010-09-01

    The authors propose a method for analyzing the psychotherapy process: discourse flow analysis (DFA). DFA is a technique representing the verbal interaction between therapist and patient as a discourse network, aimed at measuring the therapist-patient discourse ability to generate new meanings through time. DFA assumes that the main function of psychotherapy is to produce semiotic novelty. DFA is applied to the verbatim transcript of the psychotherapy. It defines the main meanings active within the therapeutic discourse by means of the combined use of text analysis and statistical techniques. Subsequently, it represents the dynamic interconnections among these meanings in terms of a "discursive network." The dynamic and structural indexes of the discursive network have been shown to provide a valid representation of the patient-therapist communicative flow as well as an estimation of its clinical quality. Finally, a neural network is designed specifically to identify patterns of functioning of the discursive network and to verify the clinical validity of these patterns in terms of their association with specific phases of the psychotherapy process. An application of the DFA to a case of psychotherapy is provided to illustrate the method and the kinds of results it produces.

  6. Stability analysis and compensation of network-induced delays in communication-based power system control: A survey.

    Science.gov (United States)

    Liu, Shichao; Liu, Peter Xiaoping; Wang, Xiaoyu

    2017-01-01

    This survey is to summarize and compare existing and recently emerging approaches for the analysis and compensation of the effects of network-induced delays on the stability and performance of communication-based power control systems. Several important communication-based power control systems are briefly introduced. The deterministic and stochastic methodologies of analyzing the impacts of network-induced delays on the stability of the communication-based power control systems are summarized and compared. A variety of control approaches are reviewed and compared for mitigating the effects of network-induced delays, depending on several design requirements, such as model dependence and design difficulty. The summary and comparison of these control approaches in this survey provide researchers and utilities valuable guidance for designing advanced communication-based power control systems in the future. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Using smart mobile devices in social-network-based health education practice: a learning behavior analysis.

    Science.gov (United States)

    Wu, Ting-Ting

    2014-06-01

    Virtual communities provide numerous resources, immediate feedback, and information sharing, enabling people to rapidly acquire information and knowledge and supporting diverse applications that facilitate interpersonal interactions, communication, and sharing. Moreover, incorporating highly mobile and convenient devices into practice-based courses can be advantageous in learning situations. Therefore, in this study, a tablet PC and Google+ were introduced to a health education practice course to elucidate satisfaction of learning module and conditions and analyze the sequence and frequency of learning behaviors during the social-network-based learning process. According to the analytical results, social networks can improve interaction among peers and between educators and students, particularly when these networks are used to search for data, post articles, engage in discussions, and communicate. In addition, most nursing students and nursing educators expressed a positive attitude and satisfaction toward these innovative teaching methods, and looked forward to continuing the use of this learning approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Near infrared spectroscopy quantitative analysis model based on incremental neural network with partial least squares].

    Science.gov (United States)

    Cao, Hui; Li, Da-Hang; Liu, Ling; Zhou, Yan

    2014-10-01

    This paper proposes an near infrared spectroscopy quantitative analysis model based on incremental neural network with partial least squares. The proposed model adopts the typical three-layer back-propagation neural network (BPNN), and the absorbance of different wavelengths and the component concentration are the inputs and the outputs, respectively. Partial least square (PLS) regression is performed on the history training samples firstly, and the obtained history loading matrices of the in- dependent variables and the dependent variables are used for determining the initial weights of the input layer and the output lay- er, respectively. The number of the hidden layer nodes is set as the number of the principal components of the independent varia- bles. After a set of new training samples is collected, PLS regression is performed on the combination dataset consisting of the new samples and the history loading matrices to calculate the new loading matrices. The history loading matrices and the new loading matrices are fused to obtain the new initial weights of the input layer and the output layer of the proposed model. Then the new samples are used for training the proposed mode to realize the incremental update. The proposed model is compared with PLS, BPNN, the BPNN based on PLS (PLS-BPNN) and the recursive PLS (RPLS) by using the spectra data of flue gas of nat- ural gas combustion. For the concentration prediction of the carbon dioxide in the flue gas, the root mean square error of predic- tion (RMSEP) of the proposed model are reduced by 27.27%, 58.12%, 19.24% and 14.26% than those of PLS, BPNN, PLS- BPNN and RPLS, respectively. For the concentration prediction of the carbon monoxide in the flue gas, the RMSEP of the pro- posed model are reduced by 20.65%, 24.69%, 18.54% and 19.42% than those of PLS, BPNN, PLS-BPNN and RPLS, re- spectively. For the concentration prediction of the methane in the flue gas, the RMSEP of the proposed model are reduced by 27

  9. Exploring the Peer Interaction Effects on Learning Achievement in a Social Learning Platform Based on Social Network Analysis

    Science.gov (United States)

    Lin, Yu-Tzu; Chen, Ming-Puu; Chang, Chia-Hu; Chang, Pu-Chen

    2017-01-01

    The benefits of social learning have been recognized by existing research. To explore knowledge distribution in social learning and its effects on learning achievement, we developed a social learning platform and explored students' behaviors of peer interactions by the proposed algorithms based on social network analysis. An empirical study was…

  10. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD Symptoms on Friend-Based Student Networks.

    Directory of Open Access Journals (Sweden)

    Jun Won Kim

    Full Text Available Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships. Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students.A total of 562 sixth-graders from two elementary schools (300 males provided the names of their best friends (maximum 10 names. Their teachers rated each student's ADHD symptoms using an ADHD rating scale.The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters.Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  11. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks.

    Science.gov (United States)

    Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon

    2015-01-01

    Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student's ADHD symptoms using an ADHD rating scale. The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  12. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    Science.gov (United States)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  13. Deciphering genomic alterations in colorectal cancer through transcriptional subtype-based network analysis.

    Directory of Open Access Journals (Sweden)

    Jing Zhu

    Full Text Available Both transcriptional subtype and signaling network analyses have proved useful in cancer genomics research. However, these two approaches are usually applied in isolation in existing studies. We reason that deciphering genomic alterations based on cancer transcriptional subtypes may help reveal subtype-specific driver networks and provide insights for the development of personalized therapeutic strategies. In this study, we defined transcriptional subtypes for colorectal cancer (CRC and identified driver networks/pathways for each subtype. Applying consensus clustering to a patient cohort with 1173 samples identified three transcriptional subtypes, which were validated in an independent cohort with 485 samples. The three subtypes were characterized by different transcriptional programs related to normal adult colon, early colon embryonic development, and epithelial mesenchymal transition, respectively. They also showed statistically different clinical outcomes. For each subtype, we mapped somatic mutation and copy number variation data onto an integrated signaling network and identified subtype-specific driver networks using a random walk-based strategy. We found that genomic alterations in the Wnt signaling pathway were common among all three subtypes; however, unique combinations of pathway alterations including Wnt, VEGF and Notch drove distinct molecular and clinical phenotypes in different CRC subtypes. Our results provide a coherent and integrated picture of human CRC that links genomic alterations to molecular and clinical consequences, and which provides insights for the development of personalized therapeutic strategies for different CRC subtypes.

  14. Delay Analysis of Networked Control Systems Based on 100 M Switched Ethernet

    Science.gov (United States)

    2014-01-01

    For the delay may degrade the performance of networked control systems, networked control systems based on 100 M switched Ethernet are proposed in this paper. According to the working principle of Ethernet switch, the formulas of the upper bound delay of the single-level switched Ethernet and the multiple-level switched Ethernet are deduced by the timing diagram method, and the values of the upper bound delay are also given. The key factors that influence the upper bound delay of switched Ethernet are analyzed; then, the characteristics of the upper bound delay are presented, which show that the delay induced by the single-level 100 M switched Ethernet has little effect on the performance of control systems, while the delay induced by the multiple-level 100 M switched Ethernet may meet the time requirements of all classes of control systems if the numbers of levels and the numbers of nodes connecting to switches are set properly. Finally, the performance of networked control systems is simulated by TrueTime, and the results further show the feasibility and superiority of 100 M switched Ethernet based networked control systems without modification of the network protocols. PMID:25003152

  15. Wind Turbine Fault Detection based on Artificial Neural Network Analysis of SCADA Data

    DEFF Research Database (Denmark)

    Herp, Jürgen; S. Nadimi, Esmaeil

    2015-01-01

    Slowly developing faults in wind turbine can, when not detected and fixed on time, cause severe damage and downtime. We are proposing a fault detection method based on Artificial Neural Networks (ANN) and the recordings from Supervisory Control and Data Acquisition (SCADA) systems installed in wind...

  16. EFIE Based Multimode Equivalent Network for the Analysis of Phased Arrays Integrated with FSS.

    NARCIS (Netherlands)

    Monni, S.; Gerini, G.; Neto, A.

    2002-01-01

    This contribution presents the evolution of the work on Frequency Selective Surfaces (FSS) that is being performed at TNO-FEL. In particular the extension of the previously developed Multimode Equivalent Network approach to cope with patch based structures is presented. In order to derive the

  17. Analysis And Augmentation Of Timing Advance Based Geolocation In Lte Cellular Networks

    Science.gov (United States)

    2016-12-01

    of Sight ODTOA Observed Time-Difference-of-Arrival OFDM Orthogonal Frequency-Division Multiplexing OFDMA Orthogonal Frequency-Division Multiple ...Access PCell Primary Serving Cell PDCCH Physical Downlink Control Channel PDCP Packet Data Convergence Protocol PDF Probability Density Function PMF...primarily responsible for managing user mobility in various time division multiple access-based cellular networks. Specifically, this is accomplished via

  18. A point-based angular analysis model for identifying attributes of spaces at nodes in street networks

    Science.gov (United States)

    Jeong, Sang Kyu; Ban, Yong Un

    2016-05-01

    The effects of the axial map as the key representation of the original space syntax have been questioned by some researchers because of the map's discontinuity. To address this concern, angular segment analysis (ASA) was introduced. ASA calculates spatial depths by considering the turning angles of path segments in a street network. However, ASA cannot calculate the attributes of nodes connected to path segments in the network because it analyzes spaces by linear representation, as in the original space syntax. Because the attributes of the two ends (nodes) of a given path segment (link) are not equal to each other, and because they can affect pedestrian and vehicle movement and land use in a street network, the identification of the attributes at nodes (points) would be helpful in the detailed analysis of spaces in the network consisting of nodes and the segments connecting them. Accordingly, this study aims to develop an extended analysis model that can calculate the attributes of spaces at the nodes, including terminuses, bends, and junctions, in the network. To achieve this end, in this study we developed algorithms for a point-based angular analysis (PAA) to find the attributes of spaces at nodes (points), in contrast to ASA, which analyzes spaces using linear representations. As a result, this methodology can obtain distinct values for the attributes of two nodes at the ends of a path segment, through the calculation of spatial depths weighted by considering the turning angles and distances (lengths) along consecutive nodes for a route in the network. Through our methodology, it was identified that spatial configurations of street network affect the social and symbolic centralities of nodes in the network.

  19. Analysis of the blocking probability in optical networks based on the enhanced OSPF

    Science.gov (United States)

    Xu, Buwei; Zhang, Chunlei; Zhang, Jingjing; Hu, Weisheng

    2005-02-01

    Open Shortest Path First (OSPF) protocol is used for the routing and topology discovery in the optical networks. In the next generation optical network, enhanced OSPF is extended to support opaque LSA. In optical networks, each OXC disseminates the resource information of the optical links that bundled between the adjacent neighbors. Recently proposed enhanced OSPF protocol is promising to reduce the blocking probability of the data plane at the cost the usage of the control channel bandwidth in the control plane. This article has a full analysis of the bandwidth usage due to the optical LSA updates. We also discuss the blocking probability with the enhanced OSPF, some key results on the performance of the enhance OSPF are also given in this article. Finally, we propose a method to balance the tradeoff of the flooding information and the blocking probability.

  20. Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network

    Directory of Open Access Journals (Sweden)

    Ying Yan

    2013-01-01

    Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.

  1. Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis.

    Science.gov (United States)

    Ramírez Ávila, Gonzalo Marcelo; Gapelyuk, Andrej; Marwan, Norbert; Walther, Thomas; Stepan, Holger; Kurths, Jürgen; Wessel, Niels

    2013-08-28

    We analyse cardiovascular time series with the aim of performing early prediction of preeclampsia (PE), a pregnancy-specific disorder causing maternal and foetal morbidity and mortality. The analysis is made using a novel approach, namely the ε-recurrence networks applied to a phase space constructed by means of the time series of the variabilities of the heart rate and the blood pressure (systolic and diastolic). All the possible coupling structures among these variables are considered for the analysis. Network measures such as average path length, mean coreness, global clustering coefficient and scale-local transitivity dimension are computed and constitute the parameters for the subsequent quadratic discriminant analysis. This allows us to predict PE with a sensitivity of 91.7 per cent and a specificity of 68.1 per cent, thus validating the use of this method for classifying healthy and preeclamptic patients.

  2. Software and package applicating for network meta-analysis: A usage-based comparative study.

    Science.gov (United States)

    Xu, Chang; Niu, Yuming; Wu, Junyi; Gu, Huiyun; Zhang, Chao

    2017-12-21

    To compare and analyze the characteristics and functions of software applications for network meta-analysis (NMA). PubMed, EMbase, The Cochrane Library, the official websites of Bayesian inference Using Gibbs Sampling (BUGS), Stata and R, and Google were searched to collect the software and packages for performing NMA; software and packages published up to March 2016 were included. After collecting the software, packages, and their user guides, we used the software and packages to calculate a typical example. All characteristics, functions, and computed results were compared and analyzed. Ten types of software were included, including programming and non-programming software. They were developed mainly based on Bayesian or frequentist theory. Most types of software have the characteristics of easy operation, easy mastery, exact calculation, or excellent graphing. However, there was no single software that performed accurate calculations with superior graphing; this could only be achieved through the combination of two or more types of software. This study suggests that the user should choose the appropriate software according to personal programming basis, operational habits, and financial ability. Then, the choice of the combination of BUGS and R (or Stata) software to perform the NMA is considered. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  3. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    Science.gov (United States)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  4. Risk analysis of urban gas pipeline network based on improved bow-tie model

    Science.gov (United States)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  5. Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network

    Science.gov (United States)

    Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song

    2013-11-01

    The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.

  6. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  7. Analysis of neural interaction in motor cortex during reach-to-grasp task based on Dynamic Bayesian Networks.

    Science.gov (United States)

    Sang, Dong; Lv, Bin; He, Huiguang; He, Jiping; Wang, Feiyue

    2010-01-01

    In this work, we took the analysis of neural interaction based on the data recorded from the motor cortex of a monkey, when it was trained to complete multi-targets reach-to-grasp tasks. As a recently proved effective tool, Dynamic Bayesian Network (DBN) was applied to model and infer interactions of dependence between neurons. In the results, the gained networks of neural interactions, which correspond to different tasks with different directions and orientations, indicated that the target information was not encoded in simple ways by neuronal networks. We also explored the difference of neural interactions between delayed period and peri-movement period during reach-to-grasp task. We found that the motor control process always led to relatively more complex neural interaction networks than the plan thinking process.

  8. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  9. Performance Analysis of a Cluster-Based MAC Protocol for Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jesús Alonso-Zárate

    2010-01-01

    Full Text Available An analytical model to evaluate the non-saturated performance of the Distributed Queuing Medium Access Control Protocol for Ad Hoc Networks (DQMANs in single-hop networks is presented in this paper. DQMAN is comprised of a spontaneous, temporary, and dynamic clustering mechanism integrated with a near-optimum distributed queuing Medium Access Control (MAC protocol. Clustering is executed in a distributed manner using a mechanism inspired by the Distributed Coordination Function (DCF of the IEEE 802.11. Once a station seizes the channel, it becomes the temporary clusterhead of a spontaneous cluster and it coordinates the peer-to-peer communications between the clustermembers. Within each cluster, a near-optimum distributed queuing MAC protocol is executed. The theoretical performance analysis of DQMAN in single-hop networks under non-saturation conditions is presented in this paper. The approach integrates the analysis of the clustering mechanism into the MAC layer model. Up to the knowledge of the authors, this approach is novel in the literature. In addition, the performance of an ad hoc network using DQMAN is compared to that obtained when using the DCF of the IEEE 802.11, as a benchmark reference.

  10. CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions

    Directory of Open Access Journals (Sweden)

    Zhang Aidong

    2008-01-01

    Full Text Available Abstract Background Quantitative characterization of the topological characteristics of protein-protein interaction (PPI networks can enable the elucidation of biological functional modules. Here, we present a novel clustering methodology for PPI networks wherein the biological and topological influence of each protein on other proteins is modeled using the probability distribution that the series of interactions necessary to link a pair of distant proteins in the network occur within a time constant (the occurrence probability. Results CASCADE selects representative nodes for each cluster and iteratively refines clusters based on a combination of the occurrence probability and graph topology between every protein pair. The CASCADE approach is compared to nine competing approaches. The clusters obtained by each technique are compared for enrichment of biological function. CASCADE generates larger clusters and the clusters identified have p-values for biological function that are approximately 1000-fold better than the other methods on the yeast PPI network dataset. An important strength of CASCADE is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches which have an average discard rate of 45% on the yeast protein-protein interaction network. Conclusion CASCADE is effective at detecting biologically relevant clusters of interactions.

  11. Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph

    OpenAIRE

    Jae-wook Jang; Jiyoung Woo; Aziz Mohaisen; Jaesung Yun; Huy Kang Kim

    2015-01-01

    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a ...

  12. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.

    Science.gov (United States)

    Manzano, Sara; Poveda-Reyes, Sara; Ferrer, Gloria Gallego; Ochoa, Ignacio; Hamdy Doweidar, Mohamed

    2014-10-01

    Interpenetrated polymer networks (IPNs), composed by two independent polymeric networks that spatially interpenetrate, are considered as valuable systems to control permeability and mechanical properties of hydrogels for biomedical applications. Specifically, poly(ethyl acrylate) (PEA)-poly(2-hydroxyethyl acrylate) (PHEA) IPNs have been explored as good hydrogels for mimicking articular cartilage. These lattices are proposed as matrix implants in cartilage damaged areas to avoid the discontinuity in flow uptake preventing its deterioration. The permeability of these implants is a key parameter that influences their success, by affecting oxygen and nutrient transport and removing cellular waste products to healthy cartilage. Experimental try-and-error approaches are mostly used to optimize the composition of such structures. However, computational simulation may offer a more exhaustive tool to test and screen out biomaterials mimicking cartilage, avoiding expensive and time-consuming experimental tests. An accurate and efficient prediction of material's permeability and internal directionality and magnitude of the fluid flow could be highly useful when optimizing biomaterials design processes. Here we present a 3D computational model based on Sussman-Bathe hyperelastic material behaviour. A fluid structure analysis is performed with ADINA software, considering these materials as two phases composites where the solid part is saturated by the fluid. The model is able to simulate the behaviour of three non-biodegradable hydrogel compositions, where percentages of PEA and PHEA are varied. Specifically, the aim of this study is (i) to verify the validity of the Sussman-Bathe material model to simulate the response of the PEA-PHEA biomaterials; (ii) to predict the fluid flux and the permeability of the proposed IPN hydrogels and (iii) to study the material domains where the passage of nutrients and cellular waste products is reduced leading to an inadequate flux

  13. Topological analysis of telecommunications networks

    Directory of Open Access Journals (Sweden)

    Milojko V. Jevtović

    2011-01-01

    Full Text Available A topological analysis of the structure of telecommunications networks is a very interesting topic in the network research, but also a key issue in their design and planning. Satisfying multiple criteria in terms of locations of switching nodes as well as their connectivity with respect to the requests for capacity, transmission speed, reliability, availability and cost are the main research objectives. There are three ways of presenting the topology of telecommunications networks: table, matrix or graph method. The table method is suitable for a network of a relatively small number of nodes in relation to the number of links. The matrix method involves the formation of a connection matrix in which its columns present source traffic nodes and its rows are the switching systems that belong to the destination. The method of the topology graph means that the network nodes are connected via directional or unidirectional links. We can thus easily analyze the structural parameters of telecommunications networks. This paper presents the mathematical analysis of the star-, ring-, fully connected loop- and grid (matrix-shaped topology as well as the topology based on the shortest path tree. For each of these topologies, the expressions for determining the number of branches, the middle level of reliability, the medium length and the average length of the link are given in tables. For the fully connected loop network with five nodes the values of all topological parameters are calculated. Based on the topological parameters, the relationships that represent integral and distributed indicators of reliability are given in this work as well as the values of the particular network. The main objectives of the topology optimization of telecommunications networks are: achieving the minimum complexity, maximum capacity, the shortest path message transfer, the maximum speed of communication and maximum economy. The performance of telecommunications networks is

  14. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  15. The analysis of split graphs in social networks based on the K-Cardinality assignment problem

    OpenAIRE

    Belik, Ivan

    2014-01-01

    In terms of social networks, split graphs correspond to the variety of interpersonal and intergroup relations. In this paper we analyse the interaction between the cliques (socially strong and trusty groups) and the independent sets (fragmented and non-connected groups of people) as the basic components of any split graph. Based on the Semi-Lagrangean relaxation for the k-cardinality assignment problem, we show the way of minimizing the socially risky interactions between the cliques and the ...

  16. The analysis of split graphs in social networks based on the K-Cardinality assignment problem

    OpenAIRE

    Belik, Ivan

    2014-01-01

    In terms of social networks, split graphs correspond to the variety of interpersonal and intergroup relations. In this paper we analyse the interaction between the cliques (socially strong and trusty groups) and the independent sets (fragmented and non-connected groups of people) as the basic components of any split graph. Based on the Semi-Lagrangean relaxation for the kcardinality assignment problem, we show the way of minimizing the socially risky interactions between the cl...

  17. Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach

    Science.gov (United States)

    Aguilar, José G.; Magri, Luca; Juniper, Matthew P.

    2017-07-01

    Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.

  18. Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis.

    Science.gov (United States)

    Noma, Hisashi; Nagashima, Kengo; Maruo, Kazushi; Gosho, Masahiko; Furukawa, Toshi A

    2017-12-18

    In network meta-analyses that synthesize direct and indirect comparison evidence concerning multiple treatments, multivariate random effects models have been routinely used for addressing between-studies heterogeneities. Although their standard inference methods depend on large sample approximations (eg, restricted maximum likelihood estimation) for the number of trials synthesized, the numbers of trials are often moderate or small. In these situations, standard estimators cannot be expected to behave in accordance with asymptotic theory; in particular, confidence intervals cannot be assumed to exhibit their nominal coverage probabilities (also, the type I error probabilities of the corresponding tests cannot be retained). The invalidity issue may seriously influence the overall conclusions of network meta-analyses. In this article, we develop several improved inference methods for network meta-analyses to resolve these problems. We first introduce 2 efficient likelihood-based inference methods, the likelihood ratio test-based and efficient score test-based methods, in a general framework of network meta-analysis. Then, to improve the small-sample inferences, we developed improved higher-order asymptotic methods using Bartlett-type corrections and bootstrap adjustment methods. The proposed methods adopt Monte Carlo approaches using parametric bootstraps to effectively circumvent complicated analytical calculations of case-by-case analyses and to permit flexible application to various statistical models network meta-analyses. These methods can also be straightforwardly applied to multivariate meta-regression analyses and to tests for the evaluation of inconsistency. In numerical evaluations via simulations, the proposed methods generally performed well compared with the ordinary restricted maximum likelihood-based inference method. Applications to 2 network meta-analysis datasets are provided. Copyright © 2017 John Wiley & Sons, Ltd.

  19. WLPVG approach to the analysis of EEG-based functional brain network under manual acupuncture.

    Science.gov (United States)

    Pei, Xin; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao

    2014-10-01

    Functional brain network, one of the main methods for brain functional studies, can provide the connectivity information among brain regions. In this research, EEG-based functional brain network is built and analyzed through a new wavelet limited penetrable visibility graph (WLPVG) approach. This approach first decompose EEG into δ, θ, α, β sub-bands, then extracting nonlinear features from single channel signal, in addition forming a functional brain network for each sub-band. Manual acupuncture (MA) as a stimulation to the human nerve system, may evoke varied modulating effects in brain activities. To investigating whether and how this happens, WLPVG approach is used to analyze the EEGs of 15 healthy subjects with MA at acupoint ST36 on the right leg. It is found that MA can influence the complexity of EEG sub-bands in different ways and lead the functional brain networks to obtain higher efficiency and stronger small-world property compared with pre-acupuncture control state.

  20. Comprehensive Transportation Logistics Network Level Layout Based on Principal Component Factor and Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Zhang Jingrong

    2017-01-01

    Full Text Available Comprehensive Transportation Logistics Network (CTLN acts as a crucial prop and fundamental carrier for regional economic and social development. Firstly, an index system for evaluating the development of regional Comprehensive Transportation Logistics (CTL nodes is established; then regional CTLN nodes are ranked according to their importance by the method of Principal Component Analysis(PCA, and main factors affecting the development of regional CTL nodes are analyzed by applying factor analysis, and regional CTL nodes are classified according to their feature similarities by applying cluster analysis; and then level structure of constructing regional CTLN is proposed. Finally, combined with geographic locations of different nodes, level layout model of CTLN of the whole region is obtained. Taking Henan province this region as an instance, level layout model of hub-and-spoke CTLN taking Zhengzhou at its core is proposed after analysis, providing a reference basis for constructing CTLN in whole province scientifically and reasonably.

  1. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  2. Analysis of multiuser mixed RF/FSO relay networks for performance improvements in Cloud Computing-Based Radio Access Networks (CC-RANs)

    Science.gov (United States)

    Alimi, Isiaka A.; Monteiro, Paulo P.; Teixeira, António L.

    2017-11-01

    The key paths toward the fifth generation (5G) network requirements are towards centralized processing and small-cell densification systems that are implemented on the cloud computing-based radio access networks (CC-RANs). The increasing recognitions of the CC-RANs can be attributed to their valuable features regarding system performance optimization and cost-effectiveness. Nevertheless, realization of the stringent requirements of the fronthaul that connects the network elements is highly demanding. In this paper, considering the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay networks as feasible technologies for the alleviation of the stringent requirements in the CC-RANs. In this study, we use the end-to-end (e2e) outage probability, average symbol error probability (ASEP), and ergodic channel capacity as the performance metrics in our analysis. Simulation results show the suitability of deployment of mixed RF/FSO schemes in the real-life scenarios.

  3. Performance Analysis of AODV Routing Protocol for Wireless Sensor Network based Smart Metering

    Science.gov (United States)

    >Hasan Farooq, Low Tang Jung,

    2013-06-01

    Today no one can deny the need for Smart Grid and it is being considered as of utmost importance to upgrade outdated electric infrastructure to cope with the ever increasing electric load demand. Wireless Sensor Network (WSN) is considered a promising candidate for internetworking of smart meters with the gateway using mesh topology. This paper investigates the performance of AODV routing protocol for WSN based smart metering deployment. Three case studies are presented to analyze its performance based on four metrics of (i) Packet Delivery Ratio, (ii) Average Energy Consumption of Nodes (iii) Average End-End Delay and (iv) Normalized Routing Load.

  4. Social network analysis

    NARCIS (Netherlands)

    de Nooy, W.; Crothers, C.

    2009-01-01

    Social network analysis (SNA) focuses on the structure of ties within a set of social actors, e.g., persons, groups, organizations, and nations, or the products of human activity or cognition such as web sites, semantic concepts, and so on. It is linked to structuralism in sociology stressing the

  5. COMPUTATIONAL ANALYSIS BASED ON ARTIFICIAL NEURAL NETWORKS FOR AIDING IN DIAGNOSING OSTEOARTHRITIS OF THE LUMBAR SPINE.

    Science.gov (United States)

    Veronezi, Carlos Cassiano Denipotti; de Azevedo Simões, Priscyla Waleska Targino; Dos Santos, Robson Luiz; da Rocha, Edroaldo Lummertz; Meláo, Suelen; de Mattos, Merisandra Côrtes; Cechinel, Cristian

    2011-01-01

    To ascertain the advantages of applying artificial neural networks to recognize patterns on lumbar spine radiographies in order to aid in the process of diagnosing primary osteoarthritis. This was a cross-sectional descriptive analytical study with a quantitative approach and an emphasis on diagnosis. The training set was composed of images collected between January and July 2009 from patients who had undergone lateral-view digital radiographies of the lumbar spine, which were provided by a radiology clinic located in the municipality of Criciúma (SC). Out of the total of 260 images gathered, those with distortions, those presenting pathological conditions that altered the architecture of the lumbar spine and those with patterns that were difficult to characterize were discarded, resulting in 206 images. The image data base (n = 206) was then subdivided, resulting in 68 radiographies for the training stage, 68 images for tests and 70 for validation. A hybrid neural network based on Kohonen self-organizing maps and on Multilayer Perceptron networks was used. After 90 cycles, the validation was carried out on the best results, achieving accuracy of 62.85%, sensitivity of 65.71% and specificity of 60%. Even though the effectiveness shown was moderate, this study is still innovative. The values show that the technique used has a promising future, pointing towards further studies on image and cycle processing methodology with a larger quantity of radiographies.

  6. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    Science.gov (United States)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  7. Pattern recognition and analysis of short duration disturbance based on neural network

    Science.gov (United States)

    Wang, Huaying

    2008-10-01

    For quantitative detection of distortions of voltage waveform, a novel approach based on wavelet transform (WT) to detect and locate the power quality (PQ) disturbances is proposed. Due to expansion of power electronics devices, the wide diffusion of nonlinear and time-variant loads has caused massive serious PQ problems in power system. The signal containing noise is de-noised by WT, and then become input node to the wavelet neural network. The standard genetic algorithm is utilized to complete the network structure, and then the fundamental component of the signal is estimated to extract the mixed information. Therefore the disturbance signal is acquired by subtracting the fundamental component. In processing of disturbances signal, the principle of singularity detection using WT modulus maxima is presented with dyadic WT approach for the detection and localization of the PQ. The simulation results demonstrate that the proposed method is effective.

  8. A Method of DTM Construction Based on Quadrangular Irregular Networks and Related Error Analysis.

    Science.gov (United States)

    Kang, Mengjun; Wang, Mingjun; Du, Qingyun

    2015-01-01

    A new method of DTM construction based on quadrangular irregular networks (QINs) that considers all the original data points and has a topological matrix is presented. A numerical test and a real-world example are used to comparatively analyse the accuracy of QINs against classical interpolation methods and other DTM representation methods, including SPLINE, KRIGING and triangulated irregular networks (TINs). The numerical test finds that the QIN method is the second-most accurate of the four methods. In the real-world example, DTMs are constructed using QINs and the three classical interpolation methods. The results indicate that the QIN method is the most accurate method tested. The difference in accuracy rank seems to be caused by the locations of the data points sampled. Although the QIN method has drawbacks, it is an alternative method for DTM construction.

  9. A Method of DTM Construction Based on Quadrangular Irregular Networks and Related Error Analysis.

    Directory of Open Access Journals (Sweden)

    Mengjun Kang

    Full Text Available A new method of DTM construction based on quadrangular irregular networks (QINs that considers all the original data points and has a topological matrix is presented. A numerical test and a real-world example are used to comparatively analyse the accuracy of QINs against classical interpolation methods and other DTM representation methods, including SPLINE, KRIGING and triangulated irregular networks (TINs. The numerical test finds that the QIN method is the second-most accurate of the four methods. In the real-world example, DTMs are constructed using QINs and the three classical interpolation methods. The results indicate that the QIN method is the most accurate method tested. The difference in accuracy rank seems to be caused by the locations of the data points sampled. Although the QIN method has drawbacks, it is an alternative method for DTM construction.

  10. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    Science.gov (United States)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  11. Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph

    Directory of Open Access Journals (Sweden)

    Jae-wook Jang

    2015-01-01

    Full Text Available As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that “influence-based” graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.

  12. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  13. A neural network construction method for surrogate modeling of physics-based analysis

    Science.gov (United States)

    Sung, Woong Je

    connection as a zero-weight connection, the potential contribution to training error reduction of any present or absent connection can readily be evaluated using the BP algorithm. Instead of being broken, the connections that contribute less remain frozen with constant weight values optimized to that point but they are excluded from further weight optimization until reselected. In this way, a selective weight optimization is executed only for the dynamically maintained pool of high gradient connections. By searching the rapidly changing weights and concentrating optimization resources on them, the learning process is accelerated without either a significant increase in computational cost or a need for re-training. This results in a more task-adapted network connection structure. Combined with another important criterion for the division of a neuron which adds a new computational unit to a network, a highly fitted network can be grown out of the minimal random structure. This particular learning strategy can belong to a more broad class of the variable connectivity learning scheme and the devised algorithm has been named Optimal Brain Growth (OBG). The OBG algorithm has been tested on two canonical problems; a regression analysis using the Complicated Interaction Regression Function and a classification of the Two-Spiral Problem. A comparative study with conventional Multilayer Perceptrons (MLPs) consisting of single- and double-hidden layers shows that OBG is less sensitive to random initial conditions and generalizes better with only a minimal increase in computational time. This partially proves that a variable connectivity learning scheme has great potential to enhance computational efficiency and reduce efforts to select proper network architecture. To investigate the applicability of the OBG to more practical surrogate modeling tasks, the geometry-to-pressure mapping of a particular class of airfoils in the transonic flow regime has been sought using both the

  14. AUTOMATED SENTIMENT ANALYSYS EVALUATION OF SOCIAL NETWORK USERS BASED ON FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Elena E. Luneva

    2015-01-01

    Full Text Available In the article the method of automated sentiment analysisevaluation of social network users is represented. The advantage of suggested method consists in ability taking into accountuser’s authority as well as the fact of several messages from one user. As input data for the sentiment analysis with respect to a certain topic is its relevant messages. Automated analysisof these messages is obtained with application of fuzzy logicalgorithms. Particularly when in messages contains fuzzyhedges. The paper presents experimental data showing the steps of calculation of the resulting sentiment evaluation ofmessages on a certain topic.

  15. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    Science.gov (United States)

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  16. Finding meaning in social media: content-based social network analysis of QuitNet to identify new opportunities for health promotion.

    Science.gov (United States)

    Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor

    2013-01-01

    Unhealthy behaviors increase individual health risks and are a socioeconomic burden. Harnessing social influence is perceived as fundamental for interventions to influence health-related behaviors. However, the mechanisms through which social influence occurs are poorly understood. Online social networks provide the opportunity to understand these mechanisms as they digitally archive communication between members. In this paper, we present a methodology for content-based social network analysis, combining qualitative coding, automated text analysis, and formal network analysis such that network structure is determined by the content of messages exchanged between members. We apply this approach to characterize the communication between members of QuitNet, an online social network for smoking cessation. Results indicate that the method identifies meaningful theme-based social sub-networks. Modeling social network data using this method can provide us with theme-specific insights such as the identities of opinion leaders and sub-community clusters. Implications for design of targeted social interventions are discussed.

  17. Performance analysis of Wald-statistic based network detection methods for radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Rao, Nageswara S [ORNL; Wu, Qishi [University of Memphis; Barry, M. L.. [New Jersey Institute of Technology; Grieme, M. [New Jersey Institute of Technology; Brooks, Richard R [ORNL; Cordone, G. [Clemson University

    2016-01-01

    There have been increasingly large deployments of radiation detection networks that require computationally fast algorithms to produce prompt results over ad-hoc sub-networks of mobile devices, such as smart-phones. These algorithms are in sharp contrast to complex network algorithms that necessitate all measurements to be sent to powerful central servers. In this work, at individual sensors, we employ Wald-statistic based detection algorithms which are computationally very fast, and are implemented as one of three Z-tests and four chi-square tests. At fusion center, we apply the K-out-of-N fusion to combine the sensors hard decisions. We characterize the performance of detection methods by deriving analytical expressions for the distributions of underlying test statistics, and by analyzing the fusion performances in terms of K, N, and the false-alarm rates of individual detectors. We experimentally validate our methods using measurements from indoor and outdoor characterization tests of the Intelligence Radiation Sensors Systems (IRSS) program. In particular, utilizing the outdoor measurements, we construct two important real-life scenarios, boundary surveillance and portal monitoring, and present the results of our algorithms.

  18. A pathway-based network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng

    2016-02-01

    Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.

  19. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis.

    Science.gov (United States)

    Gan, Yanxiong; Zheng, Shichao; Baak, Jan P A; Zhao, Silei; Zheng, Yongfeng; Luo, Nini; Liao, Wan; Fu, Chaomei

    2015-11-01

    Curcumin, the medically active component from Curcuma longa (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein-protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  20. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis

    Directory of Open Access Journals (Sweden)

    Yanxiong Gan

    2015-11-01

    Full Text Available Curcumin, the medically active component from Curcuma longa (Turmeric, is widely used to treat inflammatory diseases. Protein interaction network (PIN analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein–protein interactions (PPIs were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO enrichment analysis based on molecular complex detection (MCODE. A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  1. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries

    Science.gov (United States)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.

    2014-05-01

    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  2. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis

    Directory of Open Access Journals (Sweden)

    G. Olivito

    2017-01-01

    In the present study, the network-based statistics (NBS approach was used to assess differences in functional connectivity between specific cerebellar and cerebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes.

  3. Asymptotic Delay Analysis for Cross-Layer Delay-Based Routing in Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Philippe Jacquet

    2007-01-01

    Full Text Available This paper addresses the problem of the evaluation of the delay distribution via analytical means in IEEE 802.11 wireless ad hoc networks. We show that the asymptotic delay distribution can be expressed as a power law. Based on the latter result, we present a cross-layer delay estimation protocol and we derive new delay-distribution-based routing algorithms, which are well adapted to the QoS requirements of real-time multimedia applications. In fact, multimedia services are not sensitive to average delays, but rather to the asymptotic delay distributions. Indeed, video streaming applications drop frames when they are received beyond a delay threshold, determined by the buffer size. Although delay-distribution-based routing is an NP-hard problem, we show that it can be solved in polynomial time when the delay threshold is large, because of the asymptotic power law distribution of the link delays.

  4. Investigation on Law and Economics Based on Complex Network and Time Series Analysis.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing.

  5. Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Directory of Open Access Journals (Sweden)

    Mario Sansone

    2013-01-01

    Full Text Available Computer systems for Electrocardiogram (ECG analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units or in prompt detection of dangerous events (e.g., ventricular fibrillation. Together with clinical applications (arrhythmia detection and heart rate variability analysis, ECG is currently being investigated in biometrics (human identification, an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

  6. Investigation on Law and Economics Based on Complex Network and Time Series Analysis.

    Science.gov (United States)

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing.

  7. Seasonal Influenza Vaccination amongst Medical Students: A Social Network Analysis Based on a Cross-Sectional Study

    National Research Council Canada - National Science Library

    Edge, Rhiannon; Heath, Joseph; Rowlingson, Barry; Keegan, Thomas J; Isba, Rachel

    2015-01-01

    .... We used a social network analysis approach to look at vaccination distribution within the network of the Lancaster Medical School students and combined these data with the students' beliefs about vaccination behaviours...

  8. Seasonal Influenza Vaccination amongst Medical Students: A Social Network Analysis Based on a Cross-Sectional Study: e0140085

    National Research Council Canada - National Science Library

    Rhiannon Edge; Joseph Heath; Barry Rowlingson; Thomas J Keegan; Rachel Isba

    2015-01-01

    .... Methods We used a social network analysis approach to look at vaccination distribution within the network of the Lancaster Medical School students and combined these data with the students' beliefs...

  9. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  10. ELEMENTS ANALYSIS OF INDICATORS FOR FIRMS IN NEW NETWORK BASED ECONOMY

    Directory of Open Access Journals (Sweden)

    Ioan I., GÂF-DEAC

    2014-11-01

    Full Text Available Network - as a comprehensive structure - can be considered "unconventional formula" and intercessory actions to reduce transaction costs between operators of composition. Elements of analytical indicators for the business at the new economy concerns: network company related new economy; potential network; internal resources of knowledge; networked learning facilities; external sources of knowledge; network relationships; new intellectual capital; complementarities of knowledge; network global indicators and indicators for corporate networking. In this context, the aim is conceptual preoccupations for commitment guarantee for the establishment in the scientific, economic and managerial Romania's competitive advantage in absolute terms compared to relativity concerns only obtain comparative advantages.

  11. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  12. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    Science.gov (United States)

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  13. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed

    2012-10-01

    In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.

  14. Analysis of Stiffened Penstock External Pressure Stability Based on Immune Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Wensheng Dong

    2014-01-01

    Full Text Available The critical external pressure stability calculation of stiffened penstock in the hydroelectric power station is very important work for penstock design. At present, different assumptions and boundary simplification are adopted by different calculation methods which sometimes cause huge differences too. In this paper, we present an immune based artificial neural network model via the model and stability theory of elastic ring, we study effects of some factors (such as pipe diameter, pipe wall thickness, sectional size of stiffening ring, and spacing between stiffening rings on penstock critical external pressure during huge thin-wall procedure of penstock. The results reveal that the variation of diameter and wall thickness can lead to sharp variation of penstock external pressure bearing capacity and then give the change interval of it. This paper presents an optimizing design method to optimize sectional size and spacing of stiffening rings and to determine penstock bearing capacity coordinate with the bearing capacity of stiffening rings and penstock external pressure stability coordinate with its strength safety. As a practical example, the simulation results illustrate that the method presented in this paper is available and can efficiently overcome inherent defects of BP neural network.

  15. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  16. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  17. FoodMicrobionet: A database for the visualisation and exploration of food bacterial communities based on network analysis.

    Science.gov (United States)

    Parente, Eugenio; Cocolin, Luca; De Filippis, Francesca; Zotta, Teresa; Ferrocino, Ilario; O'Sullivan, Orla; Neviani, Erasmo; De Angelis, Maria; Cotter, Paul D; Ercolini, Danilo

    2016-02-16

    Amplicon targeted high-throughput sequencing has become a popular tool for the culture-independent analysis of microbial communities. Although the data obtained with this approach are portable and the number of sequences available in public databases is increasing, no tool has been developed yet for the analysis and presentation of data obtained in different studies. This work describes an approach for the development of a database for the rapid exploration and analysis of data on food microbial communities. Data from seventeen studies investigating the structure of bacterial communities in dairy, meat, sourdough and fermented vegetable products, obtained by 16S rRNA gene targeted high-throughput sequencing, were collated and analysed using Gephi, a network analysis software. The resulting database, which we named FoodMicrobionet, was used to analyse nodes and network properties and to build an interactive web-based visualisation. The latter allows the visual exploration of the relationships between Operational Taxonomic Units (OTUs) and samples and the identification of core- and sample-specific bacterial communities. It also provides additional search tools and hyperlinks for the rapid selection of food groups and OTUs and for rapid access to external resources (NCBI taxonomy, digital versions of the original articles). Microbial interaction network analysis was carried out using CoNet on datasets extracted from FoodMicrobionet: the complexity of interaction networks was much lower than that found for other bacterial communities (human microbiome, soil and other environments). This may reflect both a bias in the dataset (which was dominated by fermented foods and starter cultures) and the lower complexity of food bacterial communities. Although some technical challenges exist, and are discussed here, the net result is a valuable tool for the exploration of food bacterial communities by the scientific community and food industry. Copyright © 2015. Published by

  18. METHODOLOGY OF MATHEMATICAL ANALYSIS IN POWER NETWORK

    OpenAIRE

    Jerzy Szkutnik; Mariusz Kawecki

    2008-01-01

    Power distribution network analysis is taken into account. Based on correlation coefficient authors establish methodology of mathematical analysis useful in finding substations bear responsibility for power stoppage. Also methodology of risk assessment will be carried out.

  19. An extended multivariate autoregressive framework for EEG-based information flow analysis of a brain network.

    Science.gov (United States)

    Hettiarachchi, Imali T; Mohamed, Shady; Nyhof, Luke; Nahavandi, Saeid

    2013-01-01

    Recently effective connectivity studies have gained significant attention among the neuroscience community as Electroencephalography (EEG) data with a high time resolution can give us a wider understanding of the information flow within the brain. Among other tools used in effective connectivity analysis Granger Causality (GC) has found a prominent place. The GC analysis, based on strictly causal multivariate autoregressive (MVAR) models does not account for the instantaneous interactions among the sources. If instantaneous interactions are present, GC based on strictly causal MVAR will lead to erroneous conclusions on the underlying information flow. Thus, the work presented in this paper applies an extended MVAR (eMVAR) model that accounts for the zero lag interactions. We propose a constrained adaptive Kalman filter (CAKF) approach for the eMVAR model identification and demonstrate that this approach performs better than the short time windowing-based adaptive estimation when applied to information flow analysis.

  20. Analysis of lifetime of wireless sensor network with base station moving on different paths

    Science.gov (United States)

    Singh, Ashutosh Kumar; Purohit, N.; Varma, S.

    2014-05-01

    Energy saving is the top most requirement of the wireless sensor network (WSN) for making it a cost effective technology. In this direction, minimisation of the distance between the communicating nodes should be an obvious choice, as it consumes the biggest chunk of the node energy. But the stationary nature of nodes (including the base station) in the standard WSN does not allow it; thus, the provision of a moving base station has been recently introduced. A few schemes with moving base station have already been developed but they suffer from several drawbacks, for example, the path over which the base station can move has not been considered which is highly unfeasible. An efficient and implementable moving strategy is needed to be developed, which is the primary goal of the present work. The fuzzy logic inference mechanism has been developed and the performance of the same is illustrated in terms of WSN lifetime. Lifetime of a WSN depends on many factors, for example, residual energy of nodes, distance between communicating nodes and base station, etc. Ability of fuzzy logic theory to address more than one factor simultaneously gives it an upper edge over other alternatives. The present work explores the possibilities of building either a circular shaped or a cross-shaped path in the deployment area. A relative study of the movement of base station on these paths has been presented. Simulation results show that the cross path always give better performance than circular path and the lifetime improves with increase in the length of the predefined path.

  1. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user......-friendliness demands which such a simulator must meet, development of the "spectral window representation" for representation of the optical signals and finding an effective way of handling the optical signals in the computer memory. One important issue more is the rules for the determination of the order in which...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  2. An AHP-Based Weighted Analysis of Network Knowledge Management Platforms for Elementary School Students

    Science.gov (United States)

    Lee, Chung-Ping; Lou, Shi-Jer; Shih, Ru-Chu; Tseng, Kuo-Hung

    2011-01-01

    This study uses the analytical hierarchy process (AHP) to quantify important knowledge management behaviors and to analyze the weight scores of elementary school students' behaviors in knowledge transfer, sharing, and creation. Based on the analysis of Expert Choice and tests for validity and reliability, this study identified the weight scores of…

  3. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  4. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  5. Positioning of Tacrolimus for the Treatment of Diabetic Nephropathy Based on Computational Network Analysis.

    Science.gov (United States)

    Aschauer, Constantin; Perco, Paul; Heinzel, Andreas; Sunzenauer, Judith; Oberbauer, Rainer

    2017-01-01

    To evaluate tacrolimus as therapeutic option for diabetic nephropathy (DN) based on molecular profile and network-based molecular model comparisons. We generated molecular models representing pathophysiological mechanisms of DN and tacrolimus mechanism of action (MoA) based on literature derived data and transcriptomics datasets. Shared enriched molecular pathways were identified based on both model datasets. A newly generated transcriptomics dataset studying the effect of tacrolimus on mesangial cells in vitro was added to identify mechanisms in DN pathophysiology. We searched for features in interference between the DN molecular model and the tacrolimus MoA molecular model already holding annotation evidence as diagnostic or prognostic biomarker in the context of DN. Thirty nine molecular features were shared between the DN molecular model, holding 252 molecular features and the tacrolimus MoA molecular model, holding 209 molecular features, with six additional molecular features affected by tacrolimus in mesangial cells. Significantly affected molecular pathways by both molecular model sets included cytokine-cytokine receptor interactions, adherens junctions, TGF-beta signaling, MAPK signaling, and calcium signaling. Molecular features involved in inflammation and immune response contributing to DN progression were significantly downregulated by tacrolimus (e.g. the tumor necrosis factor alpha (TNF), interleukin 4, or interleukin 10). On the other hand, pro-fibrotic stimuli being detrimental to renal function were induced by tacrolimus like the transforming growth factor beta 1 (TGFB1), endothelin 1 (EDN1), or type IV collagen alpha 1 (COL4A1). Patients with DN and elevated TNF levels might benefit from tacrolimus treatment regarding maintaining GFR and reducing inflammation. TGFB1 and EDN1 are proposed as monitoring markers to assess degree of renal damage. Next to this stratification approach, the use of drug combinations consisting of tacrolimus in addition

  6. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    Full Text Available Abstract Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2 regulated by RUNX1 and STAT3 is correlated to the pathological stage

  7. Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma.

    Science.gov (United States)

    Dong, L; Chen, C Y; Ning, B; Xu, D L; Gao, J H; Wang, L L; Yan, S Y; Cheng, S

    2015-08-14

    Although many studies have been carried out on monoclonal gammopathy of unknown significances (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM), their classification and underlying pathogenesis are far from elucidated. To discover the relationships among MGUS, SMM, and MM at the transcriptome level, differentially expressed genes in MGUS, SMM, and MM were identified by the rank product method, and then co-expression networks were constructed by integrating the data. Finally, a pathway-network was constructed based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and the relationships between the pathways were identified. The results indicated that there were 55, 78, and 138 pathways involved in the myeloma tumor developmental stages of MGUS, SMM, and MM, respectively. The biological processes identified therein were found to have a close relationship with the immune system. Processes and pathways related to the abnormal activity of DNA and RNA were also present in SMM and MM. Six common pathways were found in the whole process of myeloma tumor development. Nine pathways were shown to participate in the progression of MGUS to SMM, and prostate cancer was the sole pathway that was involved only in MGUS and MM. Pathway-network analysis might provide a new indicator for the developmental stage diagnosis of myeloma tumors.

  8. A State-Based Sensitivity Analysis for Distinguishing the Global Importance of Predictor Variables in Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ehsan Ardjmand

    2016-01-01

    Full Text Available Artificial neural networks (ANNs are powerful empirical approaches used to model databases with a high degree of accuracy. Despite their recognition as universal approximators, many practitioners are skeptical about adopting their routine usage due to lack of model transparency. To improve the clarity of model prediction and correct the apparent lack of comprehension, researchers have utilized a variety of methodologies to extract the underlying variable relationships within ANNs, such as sensitivity analysis (SA. The theoretical basis of local SA (that predictors are independent and inputs other than variable of interest remain “fixed” at predefined values is challenged in global SA, where, in addition to altering the attribute of interest, the remaining predictors are varied concurrently across their respective ranges. Here, a regression-based global methodology, state-based sensitivity analysis (SBSA, is proposed for measuring the importance of predictor variables upon a modeled response within ANNs. SBSA was applied to network models of a synthetic database having a defined structure and exhibiting multicollinearity. SBSA achieved the most accurate portrayal of predictor-response relationships (compared to local SA and Connected Weights Analysis, closely approximating the actual variability of the modeled system. From this, it is anticipated that skepticisms concerning the delineation of predictor influences and their uncertainty domains upon a modeled output within ANNs will be curtailed.

  9. Extracting Hierarchical Structure of Web Video Groups Based on Sentiment-Aware Signed Network Analysis

    OpenAIRE

    Harakawa, Ryosuke; Ogawa, Takahiro; Haseyama, Miki

    2017-01-01

    Sentiment in multimedia contents has an influence on their topics, since multimedia contents are tools for social media users to convey their sentiment. Performance of applications such as retrieval and recommendation will be improved if sentiment in multimedia contents can be estimated; however, there have been few works in which such applications were realized by utilizing sentiment analysis. In this paper, a novel method for extracting the hierarchical structure of Web video groups based o...

  10. Performance Analysis of Public Transport Systems in Nanjing Based on Network Topology

    Science.gov (United States)

    Li, Ping; Zhu, Zhen-Tao; Zhou, Jing; Ding, Jin-Yuan; Wang, Hong-Wei; Wei, Shan-Sen

    The urban public transport network (UPTN) in Nanjing is characterized by a complex network with topological pedestals. The empirical data indicates that it is a small-world network. Under malicious attack to the high connectivity nodes of the network, the average path-length will increase 2.5 times, the reliability and traffic capacity of the UPTN will greatly decline, and the travel expenditure will distinctively increase. The topological significance of stations and routes are redefined to help assess the small-world property of UPTNs, so as to improve city transportation. It is also found that if the urban rail transit, such as metro, is introduced to the UPTN, then the topological diameter of the network is reduced, and its structure is optimized.

  11. Evolutionary Game Analysis of Competitive Information Dissemination on Social Networks: An Agent-Based Computational Approach

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2015-01-01

    Full Text Available Social networks are formed by individuals, in which personalities, utility functions, and interaction rules are made as close to reality as possible. Taking the competitive product-related information as a case, we proposed a game-theoretic model for competitive information dissemination in social networks. The model is presented to explain how human factors impact competitive information dissemination which is described as the dynamic of a coordination game and players’ payoff is defined by a utility function. Then we design a computational system that integrates the agent, the evolutionary game, and the social network. The approach can help to visualize the evolution of % of competitive information adoption and diffusion, grasp the dynamic evolution features in information adoption game over time, and explore microlevel interactions among users in different network structure under various scenarios. We discuss several scenarios to analyze the influence of several factors on the dissemination of competitive information, ranging from personality of individuals to structure of networks.

  12. Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Zineddin, Bachar; Li, Yurong; Du, Min; Xiao, Liang; Liu, Xiaohui; Young, Terry

    2014-05-01

    Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time.

  13. Geographical origin of Plasmodium vivax in the Republic of Korea: haplotype network analysis based on the parasite's mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Iwagami Moritoshi

    2010-06-01

    Full Text Available Abstract Background The Republic of Korea (South Korea is one of the countries where vivax malaria had been successfully eradicated by the late 1970s. However, re-emergence of vivax malaria in South Korea was reported in 1993. Several epidemiological studies and some genetic studies using antigenic molecules of Plasmodium vivax in the country have been reported, but the evolutionary history of P. vivax has not been fully understood. In this study, the origin of the South Korean P. vivax population was estimated by molecular phylogeographic analysis. Methods A haplotype network analysis based on P. vivax mitochondrial (mt DNA sequences was conducted on 11 P. vivax isolates from South Korea and another 282 P. vivax isolates collected worldwide. Results The network analysis of P. vivax mtDNA sequences showed that the coexistence of two different groups (A and B in South Korea. Groups A and B were identical or close to two different populations in southern China. Conclusions Although the direct introduction of the two P. vivax populations in South Korea were thought to have been from North Korea, the results of this analysis suggest the genealogical origin to be the two different populations in southern China.

  14. Clock Synchronization in Wireless Sensor Networks: A New Model and Analysis Approach Based on Networked Control Perspective

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2014-01-01

    Full Text Available Motivated by the importance of the clock synchronization in wireless sensor networks (WSNs, this paper proposes a new research approach and model approach, which quantitatively analyzes clock synchronization from the perspective of modern control theory. Two kinds of control strategies are used as examples to analyze the effect of the control strategy on clock synchronization from different perspectives, namely, the single-step optimal control and the LQG global optimal control. The proposed method establishes a state space model for clock relationship, thus making dimension extension and parameter identification easier, and is robust to changes under the condition of node failures and new nodes. And through the design of different control strategies and performance index functions, the method can satisfy various requirements of the synchronization precision, convergence speed, energy consumption and the computational complexity, and so on. Finally, the simulations show that the synchronization accuracy of the proposed method is higher than that of the existing protocol, and the former convergence speed of the synchronization error is faster.

  15. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  16. Positioning Accuracy Analysis of GPS/BDS/GLONASS Network RTK Based on DREAMNET

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2016-09-01

    Full Text Available With BDS being continually providing service in the Asia-Pacific Region, GLONASS being fully operational with 24 satellites in orbit again and GPS modernization, multi-GNSS network RTK will become the development trend of network RTK in the future. The data of multi-GNSS will be process by data reserving, editing and managing system of network RTK (DREAMNET, which developed independently by this research group, to analyze and compare the positioning accuracy between different combinations of global navigation satellite system. According to the experiment, the positioning accuracy of GPS/BDS/GLONASS network RTK and GPS/BDS network RTK is highest, GPS and BDS only second. Besides, with the increasing of the cut-off elevation, the availability of single GPS network RTK significantly reduces. However with 40°cut-off elevations, positioning service with the accuracy of 0.005m in horizontal, 0.025m in vertical will be provided by GPS/BDS/GLONASS network RTK in 99.84% time of a day. Finally, the statistics of positioning accuracy for 15days show that the accuracy of 0.01m in horizontal, 0.025m in vertical could be reached in six situations, which including BDS and BDS/GLONASS network RTK. Besides, the accuracy of 0.006m in horizontal, 0.015m in vertical could be reached by GPS/BDS/GLONASS network RTK, proving that the positioning accuracy and stability of DREAMNET can meet the needs of surveying and mapping.

  17. The Impact of Provider Networks on the Co-Prescriptions of Interacting Drugs: A Claims-Based Analysis.

    Science.gov (United States)

    Ong, Mei-Sing; Olson, Karen L; Chadwick, Laura; Liu, Chunfu; Mandl, Kenneth D

    2017-03-01

    Multiple provider prescribing of interacting drugs is a preventable cause of morbidity and mortality, and fragmented care is a major contributing factor. We applied social network analysis to examine the impact of provider patient-sharing networks on the risk of multiple provider prescribing of interacting drugs. We performed a retrospective analysis of commercial healthcare claims (years 2008-2011), including all non-elderly adult beneficiaries (n = 88,494) and their constellation of care providers. Patient-sharing networks were derived based on shared patients, and care constellation cohesion was quantified using care density, defined as the ratio between the total number of patients shared by provider pairs and the total number of provider pairs within the care constellation around each patient. In our study, 2% (n = 1796) of patients were co-prescribed interacting drugs by multiple providers. Multiple provider prescribing of interacting drugs was associated with care density (odds ratio per unit increase in the natural logarithm of the value for care density 0.78; 95% confidence interval 0.74-0.83; p < 0.0001). The effect of care density was more pronounced with increasing constellation size: when constellation size exceeded ten providers, the risk of multiple provider prescribing of interacting drugs decreased by nearly 37% with each unit increase in the natural logarithm of care density (p < 0.0001). Other predictors included increasing age of patients, increasing number of providers, and greater morbidity. Improved care cohesion may mitigate unsafe prescribing practices, especially in larger care constellations. There is further potential to leverage network analytics to implement large-scale surveillance applications for monitoring prescribing safety.

  18. Genome-wide analysis of alternative splicing events in Hordeum vulgare: Highlighting retention of intron-based splicing and its possible function through network analysis.

    Science.gov (United States)

    Panahi, Bahman; Mohammadi, Seyed Abolghasem; Ebrahimi Khaksefidi, Reyhaneh; Fallah Mehrabadi, Jalil; Ebrahimie, Esmaeil

    2015-11-30

    In this study, using homology mapping of assembled expressed sequence tags against the genomic data, we identified alternative splicing events in barley. Results demonstrated that intron retention is frequently associated with specific abiotic stresses. Network analysis resulted in discovery of some specific sub-networks between miRNAs and transcription factors in genes with high number of alternative splicing, such as cross talk between SPL2, SPL10 and SPL11 regulated by miR156 and miR157 families. To confirm the alternative splicing events, elongation factor protein (MLOC_3412) was selected followed by experimental verification of the predicted splice variants by Semi quantitative Reverse Transcription PCR (qRT-PCR). Our novel integrative approach opens a new avenue for functional annotation of alternative splicing through regulatory-based network discovery. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Simulation Based: Study and Analysis of Routing Protocol in Vehicular Ad-hoc Network Environment

    OpenAIRE

    Khairnar, Mrs. Vaishali D.; Pradhan, Dr. S. N.

    2014-01-01

    A Vehicular Ad hoc Network (VANET) consists of vehicles which communicate with each other and exchange data via wireless communication links available between the vehicles which are in communication ranges of vehicles to improve the road safety in city. The communication between vehicles is used to provide road safety, comfort and entertainment. The performance of communication depends on how better routing takes place in the network. Routing data between the source and destination vehicle de...

  20. Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies.

    Science.gov (United States)

    Moni, Mohammad Ali; Liò, Pietro

    2014-10-24

    Infections are often associated to comorbidity that increases the risk of medical conditions which can lead to further morbidity and mortality. SARS is a threat which is similar to MERS virus, but the comorbidity is the key aspect to underline their different impacts. One UK doctor says "I'd rather have HIV than diabetes" as life expectancy among diabetes patients is lower than that of HIV. However, HIV has a comorbidity impact on the diabetes. We present a quantitative framework to compare and explore comorbidity between diseases. By using neighbourhood based benchmark and topological methods, we have built comorbidity relationships network based on the OMIM and our identified significant genes. Then based on the gene expression, PPI and signalling pathways data, we investigate the comorbidity association of these 2 infective pathologies with other 7 diseases (heart failure, kidney disorder, breast cancer, neurodegenerative disorders, bone diseases, Type 1 and Type 2 diabetes). Phenotypic association is measured by calculating both the Relative Risk as the quantified measures of comorbidity tendency of two disease pairs and the ϕ-correlation to measure the robustness of the comorbidity associations. The differential gene expression profiling strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response and statistically dysregulates a large number of genes, pathways and PPIs subnetworks in different pathologies such as chronic heart failure (21 genes), breast cancer (16 genes) and bone diseases (11 genes). HIV-1 induces comorbidities relationship with many other diseases, particularly strong correlation with the neurological, cancer, metabolic and immunological diseases. Similar comorbidities risk is observed from the clinical information. Moreover, SARS and HIV infections dysregulate 4 genes (ANXA3, GNS, HIST1H1C, RASA3) and 3 genes (HBA1, TFRC, GHITM) respectively that affect the ageing process. It is notable

  1. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Chen, Liangzhe [ORNL; Duan, Sisi [ORNL; Chinthavali, Supriya [ORNL; Shankar, Mallikarjun (Arjun) [ORNL; Prakash, B. Aditya [Virginia Tech, Blacksburg, VA

    2016-01-01

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here a novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.

  2. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    Directory of Open Access Journals (Sweden)

    Wan Li

    Full Text Available The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial. Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  3. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  4. Credit Risk Assessment Model Based Using Principal component Analysis And Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hamdy Abeer

    2016-01-01

    Full Text Available Credit risk assessment for bank customers has gained increasing attention in recent years. Several models for credit scoring have been proposed in the literature for this purpose. The accuracy of the model is crucial for any financial institution’s profitability. This paper provided a high accuracy credit scoring model that could be utilized with small and large datasets utilizing a principal component analysis (PCA based breakdown to the significance of the attributes commonly used in the credit scoring models. The proposed credit scoring model applied PCA to acquire the main attributes of the credit scoring data then an ANN classifier to determine the credit worthiness of an individual applicant. The performance of the proposed model was compared to other models in terms of accuracy and training time. Results, based on German dataset showed that the proposed model is superior to others and computationally cheaper. Thus it can be a potential candidate for future credit scoring systems.

  5. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  6. Analysis and design of a new network architecture based on SOTDMA in mobile service and its application

    Science.gov (United States)

    Chen, Wei; Ren, Xiaoming; Liu, Ruheng

    2004-03-01

    Self-organized time division multiple access ( SOTDMA) is an advanced wireless communication technology used in quick automatic networking. Also self-organized network is an equity network, which is provided with selforganized characteristics. First, the paper analyses the technology and characteristics of self-organized network and puts forward network architecture with self-organized model for different environments. Then it discusses the message transport protocol of SOTDMA, further gives a clear description of the functions for each layer in the network architecture. Second, the paper studies the access algorithms of SOTDMA, providing a full flow for the realization of this algorithm. Finally, the paper induces the practical application of this technology, and raises an integrated principle diagram of wireless user terminal networking based on SOTDMA.

  7. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  8. NEAT: an efficient network enrichment analysis test.

    Science.gov (United States)

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-09-05

    Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).

  9. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis.

    Science.gov (United States)

    Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can

    2016-02-08

    Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.

  10. A hybrid predictive model for acoustic noise in urban areas based on time series analysis and artificial neural network

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Tepedino, Carmine

    2017-06-01

    The dangerous effect of noise on human health is well known. Both the auditory and non-auditory effects are largely documented in literature, and represent an important hazard in human activities. Particular care is devoted to road traffic noise, since it is growing according to the growth of residential, industrial and commercial areas. For these reasons, it is important to develop effective models able to predict the noise in a certain area. In this paper, a hybrid predictive model is presented. The model is based on the mixing of two different approach: the Time Series Analysis (TSA) and the Artificial Neural Network (ANN). The TSA model is based on the evaluation of trend and seasonality in the data, while the ANN model is based on the capacity of the network to "learn" the behavior of the data. The mixed approach will consist in the evaluation of noise levels by means of TSA and, once the differences (residuals) between TSA estimations and observed data have been calculated, in the training of a ANN on the residuals. This hybrid model will exploit interesting features and results, with a significant variation related to the number of steps forward in the prediction. It will be shown that the best results, in terms of prediction, are achieved predicting one step ahead in the future. Anyway, a 7 days prediction can be performed, with a slightly greater error, but offering a larger range of prediction, with respect to the single day ahead predictive model.

  11. Network based statistical analysis detects changes induced by continuous theta-burst stimulation on brain activity at rest.

    Science.gov (United States)

    Mastropasqua, Chiara; Bozzali, Marco; Ponzo, Viviana; Giulietti, Giovanni; Caltagirone, Carlo; Cercignani, Mara; Koch, Giacomo

    2014-01-01

    We combined continuous theta-burst stimulation (cTBS) and resting state (RS)-fMRI approaches to investigate changes in functional connectivity (FC) induced by right dorsolateral prefrontal cortex (DLPFC)-cTBS at rest in a group of healthy subjects. Seed-based fMRI analysis revealed a specific pattern of correlation between the right prefrontal cortex and several brain regions: based on these results, we defined a 29-node network to assess changes in each network connection before and after, respectively, DLPFC-cTBS and sham sessions. A decrease of correlation between the right prefrontal cortex and right parietal cortex (Brodmann areas 46 and 40, respectively) was detected after cTBS, while no significant result was found when analyzing sham-session data. To our knowledge, this is the first study that demonstrates within-subject changes in FC induced by cTBS applied on prefrontal area. The possibility to induce selective changes in a specific region without interfering with functionally correlated area could have several implications for the study of functional properties of the brain, and for the emerging therapeutic strategies based on transcranial stimulation.

  12. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  13. Network meta-analysis, electrical networks and graph theory.

    Science.gov (United States)

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Water Inrush Analysis of the Longmen Mountain Tunnel Based on a 3D Simulation of the Discrete Fracture Network

    Directory of Open Access Journals (Sweden)

    Xiong Ziming

    2017-12-01

    Full Text Available The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.

  15. Water Inrush Analysis of the Longmen Mountain Tunnel Based on a 3D Simulation of the Discrete Fracture Network

    Science.gov (United States)

    Xiong, Ziming; Wang, Mingyang; Shi, ShaoShuai; Xia, YuanPu; Lu, Hao; Bu, Lin

    2017-12-01

    The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.

  16. A study and analysis of recommendation systems for location-based social network (LBSN with big data

    Directory of Open Access Journals (Sweden)

    Murale Narayanan

    2016-03-01

    Full Text Available Recommender systems play an important role in our day-to-day life. A recommender system automatically suggests an item to a user that he/she might be interested in. Small-scale datasets are used to provide recommendations based on location, but in real time, the volume of data is large. We have selected Foursquare dataset to study the need for big data in recommendation systems for location-based social network (LBSN. A few quality parameters like parallel processing and multimodal interface have been selected to study the need for big data in recommender systems. This paper provides a study and analysis of quality parameters of recommendation systems for LBSN with big data.

  17. The Social Relations in Bed and Breakfast industry in Parintins Amazon: a perspective based on social network analysis

    Directory of Open Access Journals (Sweden)

    Paulo Augusto Ramalho De Souza

    2014-04-01

    Full Text Available Tourist activity is of key importance for the economy of the municipalities of the Amazon such as Parintins. Due to the importance of the different sectors of tourism this study sought to describe the methodology by means of Social Network Analysis of the interactions between agents Owners Association Project Bed and Breakfast - ACAMPIN. To this end, we conducted an exploratory study with application of questionnaires to 15 owners of Bed and Breakfast's associated ACAMPIN. The methodology of analysis technique was used for analysis of social networks through software with Ucinet NetDraw 6,232 and 2,089. The analysis identified the centrality of some agents of the network as the owner identified by the acronym CC14 adn power brokering agent CC12 which can confer the same strategically relevant role in the transmission and retention of important information for the development of the network of Bed & Breakfast site. Finally, the research identified the importance of deepening in other measures of social network analysis can describe other dimensions not addressed in this research or even inference agents external to the B & B network in the city of Parintins in Amazon that can impact the transit of information within the network.

  18. Knowledge-based network participation in destination and event marketing: A hospitality scenario analysis perspective

    NARCIS (Netherlands)

    F.M. Go; Ad Breukel

    2009-01-01

    This paper examines how enterprises may decide to bring about effective network collaboration even though present mediation forms have proven inadequate. One of the main problems of these enterprises is that they lack a clear picture of the potential future ‘‘modular business’’. The Dutch

  19. End-to-End Availability Analysis of IMS-Based Networks

    DEFF Research Database (Denmark)

    Kamyod, Chayapol; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2013-01-01

    Generation Networks (NGNs). In this paper, an end-to-end availability model is proposed and evaluated using a combination of Reliability Block Diagrams (RBD) and a proposed five-state Markov model. The overall availability for intra- and inter domain communication in IMS is analyzed, and the state...

  20. Climate dynamics: a network-based approach for the analysis of global precipitation.

    Directory of Open Access Journals (Sweden)

    Stefania Scarsoglio

    Full Text Available Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010. The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that

  1. The role of interpersonal communication in the process of knowledge mobilization within a community-based organization: a network analysis

    National Research Council Canada - National Science Library

    Gainforth, Heather L; Latimer-Cheung, Amy E; Athanasopoulos, Peter; Moore, Spencer; Ginis, Kathleen A Martin

    2014-01-01

    .... The purpose of the present study was to use network analysis to examine the role of interpersonal communication in the adoption and mobilization of the physical activity guidelines for people with spinal cord injury (SCI...

  2. Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network.

    Science.gov (United States)

    Binder, M; Kittler, H; Seeber, A; Steiner, A; Pehamberger, H; Wolff, K

    1998-06-01

    Epiluminescence microscopy (ELM) is a non-invasive technique for in vivo examination which can provide additional criteria for the clinical diagnosis of pigmented skin lesions (PSLs). In the present study we attempt to determine whether PSLs can be automatically diagnosed by an integrated computerized system. This system should recognize the PSL, automatically extract features and use these features in training an artificial neural network, which should--if sufficiently trained--be capable of recognizing and classifying a new PSL without human aid. One hundred and twenty images of randomly selected histologically proven PSLs (33 common naevi, 48 dysplastic naevi and 39 malignant melanomas) were used in this study. The images were digitally obtained and the morphological features of the PSLs were extracted electronically without human assistance. The numerical data were then divided into learning and testing cases and linked to an artificial neural network for training and for further classification of lesions that the system had not been trained on. Our results show that the computerized system was able to automatically identify 95% of the PSLs presented. The sensitivity and specificity of the computerized system were 90% and 74% respectively. In contrast, when differentiating between individual types of lesions, the system performed at true positive rates of only 38% for malignant melanoma, 62% for dysplastic naevi and 33% for common naevi. Our data indicate that (1) ELM images of PSLs provide an excellent source for digital image analysis; (2) the vast majority of PSLs can be correctly identified by a relatively simple (and thus not "intelligent") application of digital image analysis; (3) automatic feature extraction based mainly on ABCD rules provides reliable data on the distinction between benign and malignant PSLs; and (4) there is evidence that artificial neural networks can be trained to adequately discriminate between benign and malignant PSLs.

  3. A Novel C2C E-Commerce Recommender System Based on Link Prediction: Applying Social Network Analysis

    OpenAIRE

    Bahabadi, Mohammad Dehghan; Golpayegani, Alireza Hashemi; Esmaeili, Leila

    2014-01-01

    Social network analysis emerged as an important research topic in sociology decades ago, and it has also attracted scientists from various fields of study like psychology, anthropology, geography and economics. In recent years, a significant number of researches has been conducted on using social network analysis to design e-commerce recommender systems. Most of the current recommender systems are designed for B2C e-commerce websites. This paper focuses on building a recommendation algorithm ...

  4. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms.

    Science.gov (United States)

    Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi

    2017-05-01

    We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp+) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp+ in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp+ or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp+ group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp+. In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp+. Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Robust Text Classifier Based on Denoising Deep Neural Network in the Analysis of Big Data

    Directory of Open Access Journals (Sweden)

    Wulamu Aziguli

    2017-01-01

    Full Text Available Text classification has always been an interesting issue in the research area of natural language processing (NLP. While entering the era of big data, a good text classifier is critical to achieving NLP for scientific big data analytics. With the ever-increasing size of text data, it has posed important challenges in developing effective algorithm for text classification. Given the success of deep neural network (DNN in analyzing big data, this article proposes a novel text classifier using DNN, in an effort to improve the computational performance of addressing big text data with hybrid outliers. Specifically, through the use of denoising autoencoder (DAE and restricted Boltzmann machine (RBM, our proposed method, named denoising deep neural network (DDNN, is able to achieve significant improvement with better performance of antinoise and feature extraction, compared to the traditional text classification algorithms. The simulations on benchmark datasets verify the effectiveness and robustness of our proposed text classifier.

  6. Bayesian Markov Random Field analysis for protein function prediction based on network data.

    Science.gov (United States)

    Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F

    2010-02-24

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.

  7. A new measure based on degree distribution that links information theory and network graph analysis.

    Science.gov (United States)

    Hadley, Michael W; McGranaghan, Matt F; Willey, Aaron; Liew, Chun Wai; Reynolds, Elaine R

    2012-06-24

    Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system's capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties.

  8. A new measure based on degree distribution that links information theory and network graph analysis

    Science.gov (United States)

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  9. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  10. Data Analysis Algorithm Suitable for Structural Health Monitoring Based on Dust Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project will attempt to develop a data analysis system for structural health monitoring on space structures. The data analysis software will be a key...

  11. Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data.

    Science.gov (United States)

    Sun, Hokeun; Wang, Shuang

    2013-05-30

    The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Chelgani, S. Chehreh; Jorjani, E.; Mesroghli, Sh.; Bagherieh, A.H. [Department of Mining Engineering, Research and Science Campus, Islamic Azad University, Poonak, Hesarak Tehran (Iran); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)

    2008-01-15

    The effects of proximate and ultimate analysis, maceral content, and coal rank (R{sub max}) for a wide range of Kentucky coal samples from calorific value of 4320 to 14960 (BTU/lb) (10.05 to 34.80 MJ/kg) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression and artificial neural network methods (ANN). The stepwise least square mathematical method shows that the relationship between (a) Moisture, ash, volatile matter, and total sulfur; (b) ln (total sulfur), hydrogen, ash, ln ((oxygen + nitrogen)/carbon) and moisture; (c) ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} input sets with HGI in linear condition can achieve the correlation coefficients (R{sup 2}) of 0.77, 0.75, and 0.81, respectively. The ANN, which adequately recognized the characteristics of the coal samples, can predict HGI with correlation coefficients of 0.89, 0.89 and 0.95 respectively in testing process. It was determined that ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} can be used as the best predictor for the estimation of HGI on multivariable regression (R{sup 2} = 0.81) and also artificial neural network methods (R{sup 2} = 0.95). The ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the hardgrove grindability index prediction. (author)

  13. Functional brain networks in healthy subjects under acupuncture stimulation: An EEG study based on nonlinear synchronization likelihood analysis

    Science.gov (United States)

    Yu, Haitao; Liu, Jing; Cai, Lihui; Wang, Jiang; Cao, Yibin; Hao, Chongqing

    2017-02-01

    Electroencephalogram (EEG) signal evoked by acupuncture stimulation at "Zusanli" acupoint is analyzed to investigate the modulatory effect of manual acupuncture on the functional brain activity. Power spectral density of EEG signal is first calculated based on the autoregressive Burg method. It is shown that the EEG power is significantly increased during and after acupuncture in delta and theta bands, but decreased in alpha band. Furthermore, synchronization likelihood is used to estimate the nonlinear correlation between each pairwise EEG signals. By applying a threshold to resulting synchronization matrices, functional networks for each band are reconstructed and further quantitatively analyzed to study the impact of acupuncture on network structure. Graph theoretical analysis demonstrates that the functional connectivity of the brain undergoes obvious change under different conditions: pre-acupuncture, acupuncture, and post-acupuncture. The minimum path length is largely decreased and the clustering coefficient keeps increasing during and after acupuncture in delta and theta bands. It is indicated that acupuncture can significantly modulate the functional activity of the brain, and facilitate the information transmission within different brain areas. The obtained results may facilitate our understanding of the long-lasting effect of acupuncture on the brain function.

  14. Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Fanzi Zeng

    2016-02-01

    Full Text Available In this paper, we consider an energy harvesting cognitive radio network (CRN, where both of primary user (PU and secondary user (SU are operating in time slotted mode, and the SU powered exclusively by the energy harvested from the radio signal of the PU. The SU can only perform either energy harvesting or data transmission due to the hardware limitation. In this case, the entire time-slot is segmented into two non-overlapping fractions. During the first sub-timeslot, the SU can harvest energy from the ambient radio signal when the PU is transmitting. In order to obtain more revenue, the PU leases a portion of its time to SU, while the SU can transmit its own data by using the harvested energy. According to convex optimization, we get the optimal leasing time to maximize the SU’s throughput while guaranteeing the quality of service (QoS of PU. To evaluate the performance of our proposed spectrum leasing scheme, we compare the utility of PU and the energy efficiency ratio of the entire networks in our framework with the conventional strategies respectively. The numerical simulation results prove the superiority of our proposed spectrum leasing scheme.

  15. Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks.

    Science.gov (United States)

    Zeng, Fanzi; Xu, Jisheng

    2016-02-27

    In this paper, we consider an energy harvesting cognitive radio network (CRN), where both of primary user (PU) and secondary user (SU) are operating in time slotted mode, and the SU powered exclusively by the energy harvested from the radio signal of the PU. The SU can only perform either energy harvesting or data transmission due to the hardware limitation. In this case, the entire time-slot is segmented into two non-overlapping fractions. During the first sub-timeslot, the SU can harvest energy from the ambient radio signal when the PU is transmitting. In order to obtain more revenue, the PU leases a portion of its time to SU, while the SU can transmit its own data by using the harvested energy. According to convex optimization, we get the optimal leasing time to maximize the SU's throughput while guaranteeing the quality of service (QoS) of PU. To evaluate the performance of our proposed spectrum leasing scheme, we compare the utility of PU and the energy efficiency ratio of the entire networks in our framework with the conventional strategies respectively. The numerical simulation results prove the superiority of our proposed spectrum leasing scheme.

  16. Predictive structural dynamic network analysis.

    Science.gov (United States)

    Chen, Rong; Herskovits, Edward H

    2015-04-30

    Classifying individuals based on magnetic resonance data is an important task in neuroscience. Existing brain network-based methods to classify subjects analyze data from a cross-sectional study and these methods cannot classify subjects based on longitudinal data. We propose a network-based predictive modeling method to classify subjects based on longitudinal magnetic resonance data. Our method generates a dynamic Bayesian network model for each group which represents complex spatiotemporal interactions among brain regions, and then calculates a score representing that subject's deviation from expected network patterns. This network-derived score, along with other candidate predictors, are used to construct predictive models. We validated the proposed method based on simulated data and the Alzheimer's Disease Neuroimaging Initiative study. For the Alzheimer's Disease Neuroimaging Initiative study, we built a predictive model based on the baseline biomarker characterizing the baseline state and the network-based score which was constructed based on the state transition probability matrix. We found that this combined model achieved 0.86 accuracy, 0.85 sensitivity, and 0.87 specificity. For the Alzheimer's Disease Neuroimaging Initiative study, the model based on the baseline biomarkers achieved 0.77 accuracy. The accuracy of our model is significantly better than the model based on the baseline biomarkers (p-value=0.002). We have presented a method to classify subjects based on structural dynamic network model based scores. This method is of great importance to distinguish subjects based on structural network dynamics and the understanding of the network architecture of brain processes and disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tourism Destinations Network Analysis, Social Network Analysis Approach

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available The tourism industry is becoming one of the world's largest economical sources, and is expected to become the world's first industry by 2020. Previous studies have focused on several aspects of this industry including sociology, geography, tourism management and development, but have paid less attention to analytical and quantitative approaches. This study introduces some network analysis techniques and measures aiming at studying the structural characteristics of tourism networks. More specifically, it presents a methodology to analyze tourism destinations network. We apply the methodology to analyze mazandaran’s Tourism destination network, one of the most famous tourism areas of Iran.

  18. Introduction to Social Network Analysis

    Science.gov (United States)

    Zaphiris, Panayiotis; Ang, Chee Siang

    Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.

  19. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    Science.gov (United States)

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  20. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  1. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R.W.T.; Von Hellermann, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J. [Royal Inst. of Tech., Stockholm (Sweden)

    1994-07-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.

  2. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  3. Performance analysis of time triggered communication bus based on network calculus

    Science.gov (United States)

    Sun, Jiandong; Ma, Lianchuan; Cao, Yuan; Mu, Jiancheng

    2017-03-01

    The time triggered mechanism is the activity of incentive system in the scheduled time. Each node of the time-triggered communication bus knows when the data information can be transmitted, so the behavior of communication nodes is determined and predictable. This feature is very suitable for appling in the industry field of high safety requirement. According to EN50159 standard for railway signal system security related communication, this paper analyzes the reliability of the physical layer of communication bus, and uses the network calculus method to establish the arrival curve model and service curve model which quantitatively calculate the time delay characteristic of time trigger bus to determine the number of retransmissions of data communications. The time-triggered communication bus is proved that it can meet the security requirements of the railway signal transmission system.

  4. Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy.

    Science.gov (United States)

    Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang

    2013-05-15

    In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Performance Analysis of Different Backoff Algorithms for WBAN-Based Emerging Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pervez Khan

    2017-03-01

    Full Text Available The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA procedure of IEEE 802.15.6 Medium Access Control (MAC protocols for the Wireless Body Area Network (WBAN use an Alternative Binary Exponential Backoff (ABEB procedure. The backoff algorithm plays an important role to avoid collision in wireless networks. The Binary Exponential Backoff (BEB algorithm used in different standards does not obtain the optimum performance due to enormous Contention Window (CW gaps induced from packet collisions. Therefore, The IEEE 802.15.6 CSMA/CA has developed the ABEB procedure to avoid the large CW gaps upon each collision. However, the ABEB algorithm may lead to a high collision rate (as the CW size is incremented on every alternative collision and poor utilization of the channel due to the gap between the subsequent CW. To minimize the gap between subsequent CW sizes, we adopted the Prioritized Fibonacci Backoff (PFB procedure. This procedure leads to a smooth and gradual increase in the CW size, after each collision, which eventually decreases the waiting time, and the contending node can access the channel promptly with little delay; while ABEB leads to irregular and fluctuated CW values, which eventually increase collision and waiting time before a re-transmission attempt. We analytically approach this problem by employing a Markov chain to design the PFB scheme for the CSMA/CA procedure of the IEEE 80.15.6 standard. The performance of the PFB algorithm is compared against the ABEB function of WBAN CSMA/CA. The results show that the PFB procedure adopted for IEEE 802.15.6 CSMA/CA outperforms the ABEB procedure.

  6. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  7. The evolution analysis of listed companies co-holding non-listed financial companies based on two-mode heterogeneous networks

    Science.gov (United States)

    An, Pengli; Li, Huajiao; Zhou, Jinsheng; Chen, Fan

    2017-10-01

    Complex network theory is a widely used tool in the empirical research of financial markets. Two-mode and multi-mode networks are new trends and represent new directions in that they can more accurately simulate relationships between entities. In this paper, we use data for Chinese listed companies holding non-listed financial companies over a ten-year period to construct two networks: a two-mode primitive network in which listed companies and non-listed financial companies are considered actors and events, respectively, and a one-mode network that is constructed based on the decreasing-mode method in which listed companies are considered nodes. We analyze the evolution of the listed company co-holding network from several perspectives, including that of the whole network, of information control ability, of implicit relationships, of community division and of small-world characteristics. The results of the analysis indicate that (1) China's developing stock market affects the share-holding condition of listed companies holding non-listed financial companies; (2) the information control ability of co-holding networks is focused on a few listed companies and the implicit relationship of investment preference between listed companies is determined by the co-holding behavior; (3) the community division of the co-holding network is increasingly obvious, as determined by the investment preferences among listed companies; and (4) the small-world characteristics of the co-holding network are increasingly obvious, resulting in reduced communication costs. In this paper, we conduct an evolution analysis and develop an understanding of the factors that influence the listed companies co-holding network. This study will help illuminate research on evolution analysis.

  8. Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation.

    Science.gov (United States)

    Ofaim, Shany; Ofek-Lalzar, Maya; Sela, Noa; Jinag, Jiandong; Kashi, Yechezkel; Minz, Dror; Freilich, Shiri

    2017-01-01

    Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants - wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities

  9. Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation

    Directory of Open Access Journals (Sweden)

    Shany Ofaim

    2017-08-01

    Full Text Available Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions. This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants – wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil, corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial

  10. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  11. Cost Effectiveness Analysis of Converting a Classroom Course to a Network Based Instruction Module

    National Research Council Canada - National Science Library

    green, Samantha

    1997-01-01

    ...) classes into NBL modules. This thesis performs a cost effectiveness analysis on converting the two modules and discusses the intangible costs and benefits associated with converting traditional classroom courses...

  12. Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices

    Directory of Open Access Journals (Sweden)

    Fuchun Ren

    2015-01-01

    Full Text Available Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS small-world network and Barabási and Albert (BA scale-free network, respectively. Then, to achieve an effective and robust system and provide guidance in countering the cascading failure, a modified CML model with recovery strategy factor is proposed. Numerical simulations are put forward based on small-world CML and scale-free CML. The simulation results reveal that appropriate recovery strategies would significantly improve the resilience of networks.

  13. Delay Analysis of Car-to-Car Reliable Data Delivery Strategies Based on Data Mulling with Network Coding

    Science.gov (United States)

    Park, Joon-Sang; Lee, Uichin; Oh, Soon Young; Gerla, Mario; Lun, Desmond Siumen; Ro, Won Woo; Park, Joonseok

    Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.

  14. Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices

    OpenAIRE

    Fuchun Ren; Tingdi Zhao; Hongli Wang

    2015-01-01

    Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML) based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS) small-world network and Barabási and Albert (BA) scale-free network, respectively. Then, to achieve an...

  15. Outage Analysis of low-latency cooperative wireless networks with threshold-based protocol over composite fading

    OpenAIRE

    Zdravkovic, Nemanja

    2017-01-01

    This paper studies a low-latency decode-and-forward cooperative wireless network subject to composite fading. Assuming temporally correlated channel between cooperating nodes and maximal ratio combining at the destination, outage probability(OP)performance is investigated and novel OP expressions are derived when nodes apply a threshold-based protocol for internode communication. The effects of network dimension, multipath fading and shadowing severity parameters, ...

  16. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  17. Similarity Analysis of EEG Data Based on Self Organizing Map Neural Network

    Directory of Open Access Journals (Sweden)

    Ibrahim Salem Jahan

    2014-01-01

    Full Text Available The Electroencephalography (EEG is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use the EEG signals to control an external device via Brain Computer Interface (BCI by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in the range from 0.5~Hz to 60~Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Organizing Map Neural Network as a final classifiers. The experiment results show that our model is able to detect up to 96% finger movements correctly.

  18. Model for Building a Distribution Network Based on the Multivariate Analysis of the Industrial and Logistical Potential of Regions

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Kirillov

    2015-12-01

    Full Text Available The international integration of the Russian economy is connected to the need of the realization of the competitive advantages of the geopolitical position of Russia, the industrial potential of regions, the logistic infrastructure of transport corridors. This article discusses the design model of the supply chain (distribution network based on the multivariate analysis and the methodology of the substantiation of its configuration based on the cost factors and the level of the logistics infrastructure development. For solving the problem of placing one or more logistics centers in the service area, a two-stage algorithm is used. At the first stage, the decisions on the reasonability of the choice of one or another version of the development are made with А. В. Кириллов, В. Е. Целин 345 ЭКОНОМИКА РЕГИОНА №4 (2015 the use of the “Make or Buy” standard model. The criterion of decision making is the guaranteed overcoming of the threshold of “indifference” taking into account the statistical characteristics of costs for options of “buy” and “make” depending on the volume of consumption of goods or services. At the second stage, the Ardalan’s heuristic method is used for the evaluation of the choice of placing one or more logistics centers in the service area. The model parameters are based on the assessment of the development prospects of the region and its investment potential (existence and composition of employment, production, natural resources, financial and consumer opportunities, institutional, innovation, infrastructure capacity. Furthermore, such criteria as a regional financial appeal, professionally trained specialists, the competitive advantages of the promoted company and others are analyzed. An additional criterion is the development of the priority matrix, which considers such factors as difficulties of customs registration and certification, a level of regional transport

  19. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh Bonthala

    Full Text Available Bambara groundnut (Vigna subterranea (L. Verdc. is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01 under the sub-optimal (23°C and very sub-optimal (18°C temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.

  20. New idea for treatment strategies for Barcelona Clinic Liver Cancer stages based on a network meta-analysis.

    Science.gov (United States)

    Li, Kun; Wang, Hai-Tao; He, Yu-Kun; Guo, Tao

    2017-05-01

    Currently, the Barcelona Clinic Liver Cancer staging (BCLC) system still remains controversies in the management of hepatocellular carcinoma. We are trying to determine the best therapeutic strategy for each BCLC stage through a network meta-analysis and provide a new treatment idea. We conducted a systematic literature search of the PubMed, EMBASE, and Cochrane Library databases and extracted data from randomized controlled trials (RCTs) that compared various strategies. Network meta-analyses were conducted in ADDIS by evaluating different overall survival of each stage. Cumulative probability was used to rank the included strategies. A node-splitting model assessed whether direct and indirect evidence on a specific node was in agreement. Of the 24 included RCTs, 3667 patients were included. Based on the probability P values, the results showed that TACE plus surgical resection (SR) was the first choice for BCLC Stage A (P = .38 and P = .52 for 3- and 5-year OS, respectively). The application of SR was the best strategy for BCLC Stage B (P = .51 and P = .95 for 1- and 3-year OS, respectively). For Stage C, whole net connections could not be established in this research, but combined therapy seemed to produce better results based on 3 separated net connections (P = .92, P = .80, and P = .69 for 1-year OS). The updated therapy strategies discussed in this study are recommended. More importantly, we deemed that the recommended strategy for each patient may be subject to adjustment due to individual clinical factors. The applicable scope of each strategy should also be evaluated before application.

  1. Broadband network on-line data acquisition system with web based interface for control and basic analysis

    Science.gov (United States)

    Polkowski, Marcin; Grad, Marek

    2016-04-01

    Passive seismic experiment "13BB Star" is operated since mid 2013 in northern Poland and consists of 13 broadband seismic stations. One of the elements of this experiment is dedicated on-line data acquisition system comprised of both client (station) side and server side modules with web based interface that allows monitoring of network status and provides tools for preliminary data analysis. Station side is controlled by ARM Linux board that is programmed to maintain 3G/EDGE internet connection, receive data from digitizer, send data do central server among with additional auxiliary parameters like temperatures, voltages and electric current measurements. Station side is controlled by set of easy to install PHP scripts. Data is transmitted securely over SSH protocol to central server. Central server is a dedicated Linux based machine. Its duty is receiving and processing all data from all stations including auxiliary parameters. Server side software is written in PHP and Python. Additionally, it allows remote station configuration and provides web based interface for user friendly interaction. All collected data can be displayed for each day and station. It also allows manual creation of event oriented plots with different filtering abilities and provides numerous status and statistic information. Our solution is very flexible and easy to modify. In this presentation we would like to share our solution and experience. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  2. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1999-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  3. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  4. Golden Ratio Genetic Algorithm Based Approach for Modelling and Analysis of the Capacity Expansion of Urban Road Traffic Network

    Directory of Open Access Journals (Sweden)

    Lun Zhang

    2015-01-01

    Full Text Available This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN. Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers’ route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity.

  5. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  6. Analysis of traffic state variation patterns for urban road network based on spectral clustering

    National Research Council Canada - National Science Library

    Yang, Senyan; Wu, Jianping; Qi, Geqi; Tian, Kun

    2017-01-01

    ... on section-based traffic speed dataset. The proposed method transforms traditional clustering problems into graph partition problems, which is suitable for the clustering problems with multiple attributes by dimension reduction...

  7. Performance Analysis of Particle Swarm Optimization Based Routing Algorithm in Optical Burst Switching Networks

    Science.gov (United States)

    Hou, Rui; Yu, Junle

    2011-12-01

    Optical burst switching (OBS) has been regarded as the next generation optical switching technology. In this paper, the routing problem based on particle swarm optimization (PSO) algorithm in OBS has been studies and analyzed. Simulation results indicate that, the PSO based routing algorithm will optimal than the conversional shortest path first algorithm in space cost and calculation cost. Conclusions have certain theoretical significances for the improvement of OBS routing protocols.

  8. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  9. Social Network Analysis with sna

    Directory of Open Access Journals (Sweden)

    Carter T. Butts

    2007-12-01

    Full Text Available Modern social network analysis---the analysis of relational data arising from social systems---is a computationally intensive area of research. Here, we provide an overview of a software package which provides support for a range of network analytic functionality within the R statistical computing environment. General categories of currently supported functionality are described, and brief examples of package syntax and usage are shown.

  10. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents

    Science.gov (United States)

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua

    2017-01-01

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications. PMID:29099793

  11. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents.

    Science.gov (United States)

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua; Bekkering, Ernst; Xiong, Naixue

    2017-11-03

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications.

  12. Seasonal Influenza Vaccination amongst Medical Students: A Social Network Analysis Based on a Cross-Sectional Study.

    Science.gov (United States)

    Edge, Rhiannon; Heath, Joseph; Rowlingson, Barry; Keegan, Thomas J; Isba, Rachel

    2015-01-01

    The Chief Medical Officer for England recommends that healthcare workers have a seasonal influenza vaccination in an attempt to protect both patients and NHS staff. Despite this, many healthcare workers do not have a seasonal influenza vaccination. Social network analysis is a well-established research approach that looks at individuals in the context of their social connections. We examine the effects of social networks on influenza vaccination decision and disease dynamics. We used a social network analysis approach to look at vaccination distribution within the network of the Lancaster Medical School students and combined these data with the students' beliefs about vaccination behaviours. We then developed a model which simulated influenza outbreaks to study the effects of preferentially vaccinating individuals within this network. Of the 253 eligible students, 217 (86%) provided relational data, and 65% of responders had received a seasonal influenza vaccination. Students who were vaccinated were more likely to think other medical students were vaccinated. However, there was no clustering of vaccinated individuals within the medical student social network. The influenza simulation model demonstrated that vaccination of well-connected individuals may have a disproportional effect on disease dynamics. This medical student population exhibited vaccination coverage levels similar to those seen in other healthcare groups but below recommendations. However, in this population, a lack of vaccination clustering might provide natural protection from influenza outbreaks. An individual student's perception of the vaccination coverage amongst their peers appears to correlate with their own decision to vaccinate, but the directionality of this relationship is not clear. When looking at the spread of disease within a population it is important to include social structures alongside vaccination data. Social networks influence disease epidemiology and vaccination campaigns

  13. Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR and Incremental Feature Selection (IFS methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.

  14. From Agent-based models to network analysis (and return): the policy-making perspective.

    OpenAIRE

    Fontana, Magda; Terna, Pietro

    2015-01-01

    An important perspective use of Agent-based models (ABMs) is that of being employed as tools to support decision systems in policy-making, in the complex systems framework. Such models can be usefully employed at two different levels: to help in deciding (policy-maker level) and to empower the capabilities of people in evaluating the effectiveness of policies (citizen level). Consequently, the class of ABMs for policymaking needs to be both quite simple in its structure and highly sophisticat...

  15. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  16. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  17. Matrix method for analysis of network accuracy based on the beam dynamic theory

    Energy Technology Data Exchange (ETDEWEB)

    Pupkov, Y.A.; Levashov, Y.I. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-01-01

    Starting the development of the alignment system, surveyors have faced several questions in respect to the degree of accuracy, the length of the region of relative accuracy, the optimal smoothing curve not resulting in the orbit distortion, and the scheme of measurements and appropriate instruments. Aiming to give answers to these questions, matrix method was practically applied for VEPP-4 alignment system. By the analysis of elements of the matrix A, the particular elements to be aligned with higher accuracy and the places where special attention should be paid to the positioning of the vacuum chamber and other equipment were able to be determined. The matrix of the orbit distortion A enabled to perform an analysis of the sensitivity of the magnet system to certain Fourier frequencies in a distribution of the quad displacements. The spectral sensitivity of magnet system for harmonics was much reduced when the matrix A was replaced by A-I. It was found that the surveyor can determine the orbit distortion and reduce the number of elements requiring alignment by applying the matrix method in the realignment process. (M.N.)

  18. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  19. Associations within school-based same-sex friendship networks of children's physical activity and sedentary behaviours: a cross-sectional social network analysis.

    Science.gov (United States)

    Salway, Ruth E; Sebire, Simon J; Solomon-Moore, Emma; Thompson, Janice L; Jago, Russell

    2018-02-21

    Physical activity in children is associated with better physical and mental health but many children do not meet physical activity guidelines. Friendship groups are potentially an important influence on children's physical activity and sedentary time. This paper examines the association between children of physical activity and sedentary time in school-based same-sex friendship networks, for both moderate-to-vigorous intensity physical activity (MVPA) and sedentary time. Moreover, considering the methodological challenges of conducting and interpreting these analyses, we provide examples of how to analyse these data and interpret results to encourage further work in the area. Accelerometer data for 1223 children, aged 8-9 years, were collected in 2015-2016 and analysed in 2017. Mean accelerometer minutes of MVPA and sedentary time were calculated. Children named up to four school friends and same-sex school-based friendship networks were constructed. Network models, which include correlation between friends, were fitted by sex. Both MVPA and sedentary time were found to be associated via the friendship networks, for both boys and girls. The network autocorrelation was 0.21 (95% CI: 0.15 to 0.26) for boys' MVPA, and 0.14 (95% CI: 0.07 to 0.21) for sedentary time. Network autocorrelation between girls was weaker, with 0.13 (95% CI: 0.06 to 0.19) for MVPA and 0.11 (95% CI: 0.05 to 0.17) for sedentary time. Physical activity and sedentary time of boys and girls are associated with the physical activity and sedentary time respectively of others within same-sex friendship networks, and these associations are comparable to other known factors. In this study, the correlation between friends was stronger for boys than girls, and stronger for MVPA than for sedentary time. These findings suggest that friendship networks play a part in understanding children's physical activity and sedentary time and could play a valuable role in developing effective interventions.

  20. Time-to-event analysis with artificial neural networks: an integrated analytical and rule-based study for breast cancer.

    Science.gov (United States)

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Hane Aung, M S; Chabaud, Sylvie; Bachelot, Thomas; Perol, David; Gargi, Thérèse; Bourdès, Valérie; Bonnevay, Stéphane; Négrier, Sylvie

    2008-01-01

    This paper presents an analysis of censored survival data for breast cancer specific mortality and disease-free survival. There are three stages to the process, namely time-to-event modelling, risk stratification by predicted outcome and model interpretation using rule extraction. Model selection was carried out using the benchmark linear model, Cox regression but risk staging was derived with Cox regression and with Partial Logistic Regression Artificial Neural Networks regularised with Automatic Relevance Determination (PLANN-ARD). This analysis compares the two approaches showing the benefit of using the neural network framework especially for patients at high risk. The neural network model also has results in a smooth model of the hazard without the need for limiting assumptions of proportionality. The model predictions were verified using out-of-sample testing with the mortality model also compared with two other prognostic models called TNG and the NPI rule model. Further verification was carried out by comparing marginal estimates of the predicted and actual cumulative hazards. It was also observed that doctors seem to treat mortality and disease-free models as equivalent, so a further analysis was performed to observe if this was the case. The analysis was extended with automatic rule generation using Orthogonal Search Rule Extraction (OSRE). This methodology translates analytical risk scores into the language of the clinical domain, enabling direct validation of the operation of the Cox or neural network model. This paper extends the existing OSRE methodology to data sets that include continuous-valued variables.

  1. Fuzzy-logic-based network for complex systems risk assessment: application to ship performance analysis.

    Science.gov (United States)

    Abou, Seraphin C

    2012-03-01

    In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Combining topological analysis matrices-based active learning on networked data classification

    Science.gov (United States)

    He, Xiaoqi; Liu, Yangguang; Jin, Xiaogang

    2010-12-01

    Active learning is an important technique to improve the learned model using unlabeled data, when labeled data is difficult to obtain, and unlabeled data is available in large quantity and easy to collect. Several instance querying strategies have been suggested recently. These works show that empirical risk minimization (ERM) can find the next instance to label effectively, but the computation time consumption is large. This paper introduces a new approach to select the best instance with less time consumption. In the case where the data is graphical in nature, we can implement the graph topological analysis to rapidly select instances that are likely to be good candidates for labeling. This paper describes an approach of using degree of a node metric to identify the best instance next to label. We experiment on Zachary's Karate Club dataset and 20 newsgroups dataset with four binary classification tasks, the results show that the strategy of degree of a node has similar performance to ERM with less time consumption.

  3. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  4. Risk Analysis for Cascade Reservoirs Collapse Based on Bayesian Networks under the Combined Action of Flood and Landslide Surge

    Directory of Open Access Journals (Sweden)

    Ping Li

    2016-01-01

    Full Text Available A method based on a Bayesian network (BN combined with stochastic Monte Carlo (MC simulation is used in this research to calculate the probability and analyze the risk of a single reservoir dam overtopping and two reservoirs collapsing under the combined action of flood and landslide surge. Two adjacent cascade reservoirs on the Dadu River are selected for risk calculation and analysis. The results show that the conditional probability of a dam overtopping due to flooding in a single reservoir is relatively small; the conditional probability of a dam overtopping due to landslide surge in a single reservoir is relatively large; a combination of flooding and landslide surge greatly increases the risk of the dam overtopping. The conditional probability that the dam in (downstream Changheba reservoir overtops as a result of a dam-break flood from (upstream Houziyan reservoir is greater than 0.8 when the water in Changheba reservoir is at its normal level. Under the combined action of flooding and landslide surges, the joint probability that the two cascade reservoirs collapse in a variety of typical situations is very small.

  5. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics.

    Science.gov (United States)

    Jung, Haejoon; Lee, In-Ho

    2018-01-12

    As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  6. A Real-time Spectrum Handoff Algorithm for VoIP based Cognitive Radio Networks: Design and Performance Analysis

    Science.gov (United States)

    Chakraborty, Tamal; Saha Misra, Iti

    2016-03-01

    Secondary Users (SUs) in a Cognitive Radio Network (CRN) face unpredictable interruptions in transmission due to the random arrival of Primary Users (PUs), leading to spectrum handoff or dropping instances. An efficient spectrum handoff algorithm, thus, becomes one of the indispensable components in CRN, especially for real-time communication like Voice over IP (VoIP). In this regard, this paper investigates the effects of spectrum handoff on the Quality of Service (QoS) for VoIP traffic in CRN, and proposes a real-time spectrum handoff algorithm in two phases. The first phase (VAST-VoIP based Adaptive Sensing and Transmission) adaptively varies the channel sensing and transmission durations to perform intelligent dropping decisions. The second phase (ProReact-Proactive and Reactive Handoff) deploys efficient channel selection mechanisms during spectrum handoff for resuming communication. Extensive performance analysis in analytical and simulation models confirms a decrease in spectrum handoff delay for VoIP SUs by more than 40% and 60%, compared to existing proactive and reactive algorithms, respectively and ensures a minimum 10% reduction in call-dropping probability with respect to the previous works in this domain. The effective SU transmission duration is also maximized under the proposed algorithm, thereby making it suitable for successful VoIP communication.

  7. Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems

    OpenAIRE

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED B...

  8. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social...... and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...

  9. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  10. Ensemble approach to the analysis of weighted networks

    Science.gov (United States)

    Ahnert, S. E.; Garlaschelli, D.; Fink, T. M. A.; Caldarelli, G.

    2007-07-01

    We present an approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks, such as the average degree of the nearest neighbors, the clustering coefficient, the “betweenness,” the distance between two nodes, and the diameter of a network. All these measures are well established for unweighted networks but have hitherto proven difficult to define for weighted networks. Our approach is based on the translation of a weighted network into an ensemble of edges. Further introducing this approach we demonstrate its advantages by applying the clustering coefficient constructed in this way to two real-world weighted networks.

  11. Network value and optimum analysis on the mode of networked marketing in TV media

    Directory of Open Access Journals (Sweden)

    Xiao Dongpo

    2012-12-01

    Full Text Available Purpose: With the development of the networked marketing in TV media, it is important to do the research on network value and optimum analysis in this field.Design/methodology/approach: According to the research on the mode of networked marketing in TV media and Correlation theory, the essence of media marketing is creating, spreading and transferring values. The Participants of marketing value activities are in network, and value activities proceed in networked form. Network capability is important to TV media marketing activities.Findings: This article raises the direction of research of analysis and optimization about network based on the mode of networked marketing in TV media by studying TV media marketing Development Mechanism , network analysis and network value structure.

  12. [Mechanism study on preventive and curative effects of buyang huanwu decoction in Qi deficiency and blood stasis diseases based on network analysis].

    Science.gov (United States)

    Ding, Fan; Zhang, Qian-ru; Hu, Yuan-jia; Wang, Yi-tao

    2014-11-01

    In this study, researchers adopted the network analysis method to study Buyang Huanwu decoction at three levels, namely chemical ingredients, targets and diseases, and discovered the potential effect of Buyang Huanwu decoction in cancer treatment. Besides, they analyzed the "target-target" network of Buyang Huanwu decoction based on diseases, calculated four network indexes, namely node centrality, closeness centrality, betweenness centrality and eigenvector centrality for a comprehensive evaluation on the importance and significance of each target in the network. Afterwards, key targets of Buyang Huanwu decoction were excavated to obtain two important targets--COX-2 and PPAR-gamma, which may be important targets involved in the qi deficiency and blood stasis diseases. Meanwhile, the two targets were the basis to build the core network of "chemical component-target-disease" of Buyang Huanwu decoction, which provided reference for further studies on the effect of Buyang Huanwu decoction in treating qi deficiency and blood stasis diseases. According to the study, the network analysis method was helpful to excavate potential targets Buyang Huanwu decoction in treating qi deficiency and blood stasis diseases, and could provide methodological reference for revealing the mechanism of Buyang Huanwu decoction at multiple levels, with a guiding significance for interpreting mechanisms of traditional Chinese medicinal formulae and developing new drugs.

  13. Energy Analysis of Contention Tree-Based Access Protocols in Dense Machine-to-Machine Area Networks

    Directory of Open Access Journals (Sweden)

    Francisco Vázquez-Gallego

    2015-01-01

    Full Text Available Machine-to-Machine (M2M area networks aim at connecting an M2M gateway with a large number of energy-constrained devices that must operate autonomously for years. Therefore, attaining high energy efficiency is essential in the deployment of M2M networks. In this paper, we consider a dense M2M area network composed of hundreds or thousands of devices that periodically transmit data upon request from a gateway or coordinator. We theoretically analyse the devices’ energy consumption using two Medium Access Control (MAC protocols which are based on a tree-splitting algorithm to resolve collisions among devices: the Contention Tree Algorithm (CTA and the Distributed Queuing (DQ access. We have carried out computer-based simulations to validate the accuracy of the theoretical models and to compare the energy performance using DQ, CTA, and Frame Slotted-ALOHA (FSA in M2M area networks with devices in compliance with the IEEE 802.15.4 physical layer. Results show that the performance of DQ is totally independent of the number of contending devices, and it can reduce the energy consumed per device in more than 35% with respect to CTA and in more than 80% with respect to FSA.

  14. Tensor Fusion Network for Multimodal Sentiment Analysis

    OpenAIRE

    Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe

    2017-01-01

    Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...

  15. The Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats.

    Directory of Open Access Journals (Sweden)

    Cathrin Rohleder

    2016-07-01

    Full Text Available Prepulse inhibition (PPI is a neuropsychological process during which a weak sensory stimulus (prepulse attenuates the motor response (startle reaction to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: i startle mediation, ii PPI mediation and iii modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood.We therefore combined [18F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e. associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing.Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.

  16. NEAT : an efficient network enrichment analysis test

    NARCIS (Netherlands)

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-01-01

    BACKGROUND: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be

  17. Naturally-Emerging Technology-Based Leadership Roles in Three Independent Schools: A Social Network-Based Case Study Using Fuzzy Set Qualitative Comparative Analysis

    Science.gov (United States)

    Velastegui, Pamela J.

    2013-01-01

    This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…

  18. A Fast Reactive Power Optimization in Distribution Network Based on Large Random Matrix Theory and Data Analysis

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2016-05-01

    Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.

  19. Analysis of Layered Social Networks

    Science.gov (United States)

    2006-09-01

    xiii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv I. Introduction ...Islamiya JP Joint Publication JTC Joint Targeting Cycle KPP Key Player Problem MCDM Multi-Criteria Decision Making MP Mathematical Programming MST...ANALYSIS OF LAYERED SOCIAL NETWORKS I. Introduction “To know them means to eliminate them” - Colonel Mathieu in the movie, Battle of Algiers

  20. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  1. Measurement based analysis of active and reactive power losses in a distribution network with wind farms and CHPs

    DEFF Research Database (Denmark)

    Lund, Torsten

    2007-01-01

    The paper presents an investigation of the active and reactive power losses in a distribution network with wind turbines and combined heat and power plants. The investigation is based on 15 min average power measurements and load flow calculations in the power system simulation tool Power......Factory®. Based on the measurements and simulations, a regressive model for calculation and allocation of active and reactive power losses has been derived. The influence of the covariance between load and production on the system losses is investigated separately....

  2. An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning.

    Science.gov (United States)

    Lu, Junfeng; Zhang, Han; Hameed, N U Farrukh; Zhang, Jie; Yuan, Shiwen; Qiu, Tianming; Shen, Dinggang; Wu, Jinsong

    2017-10-23

    As a noninvasive and "task-free" technique, resting-state functional magnetic resonance imaging (rs-fMRI) has been gradually applied to pre-surgical functional mapping. Independent component analysis (ICA)-based mapping has shown advantage, as no a priori information is required. We developed an automated method for identifying language network in brain tumor subjects using ICA on rs-fMRI. In addition to standard processing strategies, we applied a discriminability-index-based component identification algorithm to identify language networks in three different groups. The results from the training group were validated in an independent group of healthy human subjects. For the testing group, ICA and seed-based correlation were separately computed and the detected language networks were assessed by intra-operative stimulation mapping to verify reliability of application in the clinical setting. Individualized language network mapping could be automatically achieved for all subjects from the two healthy groups except one (19/20, success rate = 95.0%). In the testing group (brain tumor patients), the sensitivity of the language mapping result was 60.9%, which increased to 87.0% (superior to that of conventional seed-based correlation [47.8%]) after extending to a radius of 1 cm. We established an automatic and practical component identification method for rs-fMRI-based pre-surgical mapping and successfully applied it to brain tumor patients.

  3. Investigation of dynamic resource allocation based on transmission performance analysis and service classification in wavelength-division-multiplexing optical networks

    Science.gov (United States)

    Tang, Yong; Sun, Xiaohan; Rao, Min; Li, Lei; Wang, Chen; Zhang, Mingde

    2002-11-01

    In wavelength-routed optical networks, the transmission performance of the optical lightpaths available may not always satisfy the service requirements due to the quality degradation of signals induced by crosstalk, polarized mode dispersion (PMD), nonlinear effects, etc. Based on the integrated consideration of signal transmission impairments and service classification, a novel model on dynamic resource allocation in optical networks is presented in this paper. The model classifies the service requirements with different priorities and provides differentiated QoS in the optical domain. By adopting a multi-path RWA algorithm, called DMC-OVWP, the lightpath candidates are found out for each connection request of the services. Afterwards, by analyzing the transmission qualities of the lightpath candidates, an appropriate lightpath matched the request priority are picked out and set up.

  4. Azimuthal pion fluctuation in ultra relativistic nuclear collisions and centrality dependence—a study with chaos based complex network analysis

    Science.gov (United States)

    Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak

    2017-07-01

    Various works on multiplicity fluctuation have investigated the dynamics of particle production process and eventually have tried to reveal a signature of phase transition in ultra-relativistic nuclear collisions. Analysis of fluctuations of spatial patterns has been conducted in terms of conventional approach. However, analysis with fractal dynamics on the scaling behavior of the void has not been explored yet. In this work we have attempted to analyze pion fluctuation in terms of the scaling behavior of the void probability distribution in azimuthal space in ultra-relativistic nuclear collisions in the light of complex networks. A radically different and rigorous method viz. Visibility Graph was applied on the data of 32S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The analysis reveals strong scaling behavior of void probability distributions in azimuthal space and a strong centrality dependence.

  5. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  6. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    Science.gov (United States)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  7. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI.

    Science.gov (United States)

    Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening

    2006-01-01

    In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.

  8. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  9. Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network

    Directory of Open Access Journals (Sweden)

    Misun Ahn

    2017-12-01

    Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.

  10. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  11. Network analysis of eight industrial symbiosis systems

    Science.gov (United States)

    Zhang, Yan; Zheng, Hongmei; Shi, Han; Yu, Xiangyi; Liu, Gengyuan; Su, Meirong; Li, Yating; Chai, Yingying

    2016-06-01

    Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the internal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centralization) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).

  12. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.

    Science.gov (United States)

    Banks, Victoria A; Stanton, Neville A

    2016-11-01

    To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.

  13. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  14. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  15. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  16. Attack Methodology Analysis: Emerging Trends in Computer-Based Attack Methodologies and Their Applicability to Control System Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston

    2005-06-01

    Threat characterization is a key component in evaluating the threat faced by control systems. Without a thorough understanding of the threat faced by critical infrastructure networks, adequate resources cannot be allocated or directed effectively to the defense of these systems. Traditional methods of threat analysis focus on identifying the capabilities and motivations of a specific attacker, assessing the value the adversary would place on targeted systems, and deploying defenses according to the threat posed by the potential adversary. Too many effective exploits and tools exist and are easily accessible to anyone with access to an Internet connection, minimal technical skills, and a significantly reduced motivational threshold to be able to narrow the field of potential adversaries effectively. Understanding how hackers evaluate new IT security research and incorporate significant new ideas into their own tools provides a means of anticipating how IT systems are most likely to be attacked in the future. This research, Attack Methodology Analysis (AMA), could supply pertinent information on how to detect and stop new types of attacks. Since the exploit methodologies and attack vectors developed in the general Information Technology (IT) arena can be converted for use against control system environments, assessing areas in which cutting edge exploit development and remediation techniques are occurring can provide significance intelligence for control system network exploitation, defense, and a means of assessing threat without identifying specific capabilities of individual opponents. Attack Methodology Analysis begins with the study of what exploit technology and attack methodologies are being developed in the Information Technology (IT) security research community within the black and white hat community. Once a solid understanding of the cutting edge security research is established, emerging trends in attack methodology can be identified and the gap between

  17. Multifractal analysis of mobile social networks

    Science.gov (United States)

    Zheng, Wei; Zhang, Zifeng; Deng, Yufan

    2017-09-01

    As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.

  18. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    for traffic classification, which can be used for nearly real-time processing of big amounts of data using affordable CPU and memory resources. Other questions are related to methods for real-time estimation of the application Quality of Service (QoS) level based on the results obtained by the traffic......Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models...... classifier. This thesis is focused on topics connected with traffic classification and analysis, while the work on methods for QoS assessment is limited to defining the connections with the traffic classification and proposing a general algorithm. We introduced the already known methods for traffic...

  19. Analysis of the Network of Protected Areas in China Based on a Geographic Perspective: Current Status, Issues and Integration

    Directory of Open Access Journals (Sweden)

    Mengtian Cao

    2015-11-01

    Full Text Available With the continued growth of protected areas (PAs in China in terms of the number, coverage and varieties of protected objects, how to efficiently manage the protected areas to ensure both resource protection and environmental protection has become a crucial research question. By applying a geographic perspective in an analysis of the development and evolution of protected areas in China, this paper presents the results of an analysis focused on the status and the types of current approaches to the management of natural protected areas to reveal the problems that exist in their management and to further explore an integration strategy for the protected area network. It proposes that the future management of protected areas should prioritize their legal status, the sustainable livelihood of individuals living in close proximity to them, and the establishment of a unified database to achieve grid and information management of the protected areas.

  20. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...... results indicate that this approach provides good results on the semantic network analyzed in this paper....

  1. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  2. Trimming of mammalian transcriptional networks using network component analysis

    Directory of Open Access Journals (Sweden)

    Liao James C

    2010-10-01

    Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm

  3. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  4. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    Directory of Open Access Journals (Sweden)

    Chemin Lin

    2016-01-01

    Full Text Available Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS. We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM imaging results to identify consistent gray matter (GM difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015 and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS.

  5. Phylodynamic analysis of a viral infection network

    Directory of Open Access Journals (Sweden)

    Teiichiro eShiino

    2012-07-01

    Full Text Available Viral infections by sexual and droplet transmission routes typically spread through a complex host-to-host contact network. Clarifying the transmission network and epidemiological parameters affecting the variations and dynamics of a specific pathogen is a major issue in the control of infectious diseases. However, conventional methods such as interview and/or classical phylogenetic analysis of viral gene sequences have inherent limitations and often fail to detect infectious clusters and transmission connections. Recent improvements in computational environments now permit the analysis of large datasets. In addition, novel analytical methods have been developed that serve to infer the evolutionary dynamics of virus genetic diversity using sample date information and sequence data. This type of framework, termed phylodynamics, helps connect some of the missing links on viral transmission networks, which are often hard to detect by conventional methods of epidemiology. With sufficient number of sequences available, one can use this new inference method to estimate theoretical epidemiological parameters such as temporal distributions of the primary infection, fluctuation of the pathogen population size, basic reproductive number, and the mean time span of disease infectiousness. Transmission networks estimated by this framework often have the properties of a scale-free network, which are characteristic of infectious and social communication processes. Network analysis based on phylodynamics has alluded to various suggestions concerning the infection dynamics associated with a given community and/or risk behavior. In this review, I will summarize the current methods available for identifying the transmission network using phylogeny, and present an argument on the possibilities of applying the scale-free properties to these existing frameworks.

  6. A Cascade-Based Emergency Model for Water Distribution Network

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2015-01-01

    Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.

  7. The study on the core personality trait words of Chinese medical university students based on social network analysis.

    Science.gov (United States)

    Wu, Ying; Xue, Yunzhen; Xue, Zhanling

    2017-09-01

    The medical university students in China whose school work is relatively heavy and educational system is long are a special professional group. Many students have psychological problems more or less. So, to understand their personality characteristics will provide a scientific basis for the intervention of psychological health.We selected top 30 personality trait words according to the order of frequency. Additionally, some methods such as social network analysis (SNA) and visualization technology of mapping knowledge domain were used in this study.Among these core personality trait words Family conscious had the 3 highest centralities and possessed the largest core status and influence. From the analysis of core-peripheral structure, we can see polarized core-perpheral structure was quite obvious. From the analysis of K-plex, there were in total 588 "K-2"K-plexs. From the analysis of Principal Components, we selected the 11 principal components.This study of personality not only can prevent disease, but also provide a scientific basis for students' psychological healthy education. In addition, we have adopted SNA to pay more attention to the relationship between personality trait words and the connection among personality dimensions. This study may provide the new ideas and methods for the research of personality structure.

  8. Discriminating micropathogen lineages and their reticulate evolution through graph theory-based network analysis: the case of Trypanosoma cruzi, the agent of Chagas disease.

    Science.gov (United States)

    Arnaud-Haond, Sophie; Moalic, Yann; Barnabé, Christian; Ayala, Francisco José; Tibayrenc, Michel

    2014-01-01

    Micropathogens (viruses, bacteria, fungi, parasitic protozoa) share a common trait, which is partial clonality, with wide variance in the respective influence of clonality and sexual recombination on the dynamics and evolution of taxa. The discrimination of distinct lineages and the reconstruction of their phylogenetic history are key information to infer their biomedical properties. However, the phylogenetic picture is often clouded by occasional events of recombination across divergent lineages, limiting the relevance of classical phylogenetic analysis and dichotomic trees. We have applied a network analysis based on graph theory to illustrate the relationships among genotypes of Trypanosoma cruzi, the parasitic protozoan responsible for Chagas disease, to identify major lineages and to unravel their past history of divergence and possible recombination events. At the scale of T. cruzi subspecific diversity, graph theory-based networks applied to 22 isoenzyme loci (262 distinct Multi-Locus-Enzyme-Electrophoresis -MLEE) and 19 microsatellite loci (66 Multi-Locus-Genotypes -MLG) fully confirms the high clustering of genotypes into major lineages or "near-clades". The release of the dichotomic constraint associated with phylogenetic reconstruction usually applied to Multilocus data allows identifying putative hybrids and their parental lineages. Reticulate topology suggests a slightly different history for some of the main "near-clades", and a possibly more complex origin for the putative hybrids than hitherto proposed. Finally the sub-network of the near-clade T. cruzi I (28 MLG) shows a clustering subdivision into three differentiated lesser near-clades ("Russian doll pattern"), which confirms the hypothesis recently proposed by other investigators. The present study broadens and clarifies the hypotheses previously obtained from classical markers on the same sets of data, which demonstrates the added value of this approach. This underlines the potential of graph

  9. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  10. Prostate cancer identification: quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model.

    Science.gov (United States)

    Zhao, Kai; Wang, ChengYan; Hu, Juan; Yang, XueDong; Wang, He; Li, FeiYu; Zhang, XiaoDong; Zhang, Jue; Wang, XiaoYing

    2015-07-01

    Computer-aided diagnosis (CAD) systems have been proposed to assist radiologists in making diagnostic decisions by providing helpful information. As one of the most important sequences in prostate magnetic resonance imaging (MRI), image features from T2-weighted images (T2WI) were extracted and evaluated for the diagnostic performances by using CAD. We extracted 12 quantitative image features from prostate T2-weighted MR images. The importance of each feature in cancer identification was compared in the peripheral zone (PZ) and central gland (CG), respectively. The performance of the computer-aided diagnosis system supported by an artificial neural network was tested. With computer-aided analysis of T2-weighted images, many characteristic features with different diagnostic capabilities can be extracted. We discovered most of the features (10/12) had significant difference (Pimages can reach high accuracy and specificity while maintaining acceptable sensitivity. The outcome is convictive and helpful in medical diagnosis.

  11. Identification of significant pathways in gastric cancer based on protein-protein interaction networks and cluster analysis

    Directory of Open Access Journals (Sweden)

    Kongwang Hu

    2012-01-01

    Full Text Available Gastric cancer is one of the most common and lethal cancers worldwide. However, despite its clinical importance, the regulatory mechanisms involved in the aggressiveness of this cancer are still poorly understood. A better understanding of the biology, genetics and molecular mechanisms of gastric cancer would be useful in developing novel targeted approaches for treating this disease. In this study we used protein-protein interaction networks and cluster analysis to comprehensively investigate the cellular pathways involved in gastric cancer. A primary immunodeficiency pathway, focal adhesion, ECM-receptor interactions and the metabolism of xenobiotics by cytochrome P450 were identified as four important pathways associated with the progression of gastric cancer. The genes in these pathways, e.g., ZAP70, IGLL1, CD79A, COL6A3, COL3A1, COL1A1, CYP2C18 and CYP2C9, may be considered as potential therapeutic targets for gastric cancer.

  12. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis.

    Science.gov (United States)

    Lana, Raquel Martins; Gomes, Marcelo Ferreira da Costa; Lima, Tiago França Melo de; Honório, Nildimar Alves; Codeço, Cláudia Torres

    2017-11-01

    Human mobility, presence and passive transportation of Aedes aegypti mosquito, and environmental characteristics are a group of factors which contribute to the success of dengue spread and establishment. To understand this process, we assess data from dengue national and municipal basins regarding population and demographics, transportation network, human mobility, and Ae. aegypti monitoring for the Brazilian state of Acre since the first recorded dengue case in the year 2000 to the year 2015. During this period, several changes in Acre's transport infrastructure and urbanization have been started. To reconstruct the process of dengue introduction in Acre, we propose an analytic framework based on concepts used in malaria literature, namely vulnerability and receptivity, to inform risk assessments in dengue-free regions as well as network theory concepts for disease invasion and propagation. We calculate the probability of dengue importation to Acre from other Brazilian states, the evolution of dengue spread between Acrean municipalities and dengue establishment in the state. Our findings suggest that the landscape changes associated with human mobility have created favorable conditions for the establishment of dengue virus transmission in Acre. The revitalization of its major roads, as well as the increased accessibility by air to and within the state, have increased dengue vulnerability. Unplanned urbanization and population growth, as observed in Acre during the period of study, contribute to ideal conditions for Ae. aegypti mosquito establishment, increase the difficulty in mosquito control and consequently its local receptivity.

  13. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis.

    Directory of Open Access Journals (Sweden)

    Raquel Martins Lana

    2017-11-01

    Full Text Available Human mobility, presence and passive transportation of Aedes aegypti mosquito, and environmental characteristics are a group of factors which contribute to the success of dengue spread and establishment. To understand this process, we assess data from dengue national and municipal basins regarding population and demographics, transportation network, human mobility, and Ae. aegypti monitoring for the Brazilian state of Acre since the first recorded dengue case in the year 2000 to the year 2015. During this period, several changes in Acre's transport infrastructure and urbanization have been started. To reconstruct the process of dengue introduction in Acre, we propose an analytic framework based on concepts used in malaria literature, namely vulnerability and receptivity, to inform risk assessments in dengue-free regions as well as network theory concepts for disease invasion and propagation. We calculate the probability of dengue importation to Acre from other Brazilian states, the evolution of dengue spread between Acrean municipalities and dengue establishment in the state. Our findings suggest that the landscape changes associated with human mobility have created favorable conditions for the establishment of dengue virus transmission in Acre. The revitalization of its major roads, as well as the increased accessibility by air to and within the state, have increased dengue vulnerability. Unplanned urbanization and population growth, as observed in Acre during the period of study, contribute to ideal conditions for Ae. aegypti mosquito establishment, increase the difficulty in mosquito control and consequently its local receptivity.

  14. Unraveling protein networks with power graph analysis.

    Science.gov (United States)

    Royer, Loïc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael

    2008-07-11

    Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks.

  15. Signed Link Analysis in Social Media Networks

    OpenAIRE

    Beigi, Ghazaleh; Tang, Jiliang; Liu, Huan

    2016-01-01

    Numerous real-world relations can be represented by signed networks with positive links (e.g., trust) and negative links (e.g., distrust). Link analysis plays a crucial role in understanding the link formation and can advance various tasks in social network analysis such as link prediction. The majority of existing works on link analysis have focused on unsigned social networks. The existence of negative links determines that properties and principles of signed networks are substantially dist...

  16. Social network analysis in medical education

    OpenAIRE

    Isba, Rachel; Woolf, Katherine; Hanneman, Robert

    2016-01-01

    Content\\ud Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis.\\ud \\ud Social Network Analysis\\ud Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individual...

  17. Location-Based Services in Vehicular Networks

    Science.gov (United States)

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  18. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  19. A QSAR study of some cyclobutenediones as CCR1 antagonists by artificial neural networks based on principal component analysis.

    Science.gov (United States)

    Shahlaei, M; Fassihi, A; Saghaie, L; Arkan, E; Pourhossein, A

    2011-01-01

    A quantitative structure activity relationship (QSAR) model based on artificial neural networks (ANN) was developed to study the activities of 29 derivatives of 3-amino-4-(2-(2-(4-benzylpiperazin-1-yl)-2-oxoethoxy) phenylamino) cyclobutenedione as C-C chemokine receptor type 1(CCR1) inhibitors. A feed-forward ANN with error back-propagation learning algorithm was used for model building which was achieved by optimizing initial learning rate, learning momentum, epoch and the number of hidden neurons. Good results were obtained with a Root Mean Square Error (RMSE) and correlation coefficients (R(2)) of 0.189 and 0.906 for the training and 0.103 and 0.932 prediction sets, respectively. The results reflect a nonlinear relationship between the Principal components obtained from calculated molecular descriptors and the inhibitory activities of the investigated molecules.

  20. A QSAR Study of Some Cyclobutenediones as CCR1 Antagonists by Artificial Neural Networks Based on Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    E Arkan

    2011-12-01

    Full Text Available Background and the purpose of the study: A quantitative structure activity relationship (QSAR model based on artificial neural networks (ANN was developed to study the activities of 29 derivatives of 3-amino-4-(2-(2-(4-benzylpiperazin-1-yl-2-oxoethoxy phenylamino cyclobutenedione as C-C chemokine receptor type 1(CCR1 inhibitors. Methods: A feed-forward ANN with error back-propagation learning algorithm was used for model building which was achieved by optimizing initial learning rate, learning momentum, epoch and the number of hidden neurons. Results: Good results were obtained with a Root Mean Square Error (RMSE and correlation coefficients (R2 of 0.189 and 0.906 for the training and 0.103 and 0.932 prediction sets, respectively. Conclusion: The results reflect a nonlinear relationship between the Principal components obtained from calculated molecular descriptors and the inhibitory activities of the investigated molecules.

  1. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

    Science.gov (United States)

    Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

    2017-06-01

    As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Directory of Open Access Journals (Sweden)

    Hue-Yu Wang

    Full Text Available BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS was compared with an artificial neural network (ANN in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C, pH level (5.5 to 7.5, sodium chloride level (0.25% to 6.25% and sodium nitrite level (0 to 200 ppm on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE, root mean square error (RMSE, standard error of prediction percentage (SEP, bias factor (Bf, accuracy factor (Af, and absolute fraction of variance (R (2. Graphical plots were also used for model comparison. CONCLUSIONS: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  3. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Science.gov (United States)

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  4. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  5. Comparative analysis of quantitative efficiency evaluation methods for transportation networks.

    Science.gov (United States)

    He, Yuxin; Qin, Jin; Hong, Jian

    2017-01-01

    An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.

  6. Community detection based on network communicability

    Science.gov (United States)

    Estrada, Ernesto

    2011-03-01

    We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.

  7. Community detection based on network communicability.

    Science.gov (United States)

    Estrada, Ernesto

    2011-03-01

    We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.

  8. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF and blood reveals new candidate genes for multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nahid Safari-Alighiarloo

    2016-12-01

    Full Text Available Background The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS, entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein–protein interaction (PPI and transcriptomes data to construct and analyze PPI networks for MS disease. Methods Gene expression profiles in paired cerebrospinal fluid (CSF and peripheral blood mononuclear cells (PBMCs samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control and PBMCs (relapse vs. remission separately integrated with PPI data to construct the Query-Query PPI (QQPPI networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. Results The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. Discussion This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.

  9. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  10. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  11. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  12. NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration.

    Science.gov (United States)

    Xia, Jianguo; Benner, Maia J; Hancock, Robert E W

    2014-07-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required--identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Heidari

    2014-01-01

    Full Text Available The static pull-in instability of beam-type microelectromechanical systems (MEMS is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

  14. Analysis of pull-in instability of geometrically nonlinear microbeam using radial basis artificial neural network based on couple stress theory.

    Science.gov (United States)

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

  15. Social Network Analysis of a Supply Network Structural Investigation of the South Korean Automotive Industry

    OpenAIRE

    Kim, Jin-Baek

    2015-01-01

    Part 3: Knowledge Based Production Management; International audience; In this paper, we analyzed the structure of the South Korean automotive industry using social network analysis (SNA) metrics. Based on the data collected from 275 companies, a social network model of the supply network was constructed. Centrality measures in the SNA field were used to interpret the result and identify key companies. The results show that SNA metrics can be useful to understand the structure of a supply net...

  16. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury.

    Directory of Open Access Journals (Sweden)

    Manoj Bhasin

    Full Text Available Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC and medial smooth muscle cells (SMC from canine vein grafts, 2 hours (H to 30 days (D following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1 signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1, a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.

  17. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    Science.gov (United States)

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Methodologies and techniques for analysis of network flow data

    Energy Technology Data Exchange (ETDEWEB)

    Bobyshev, A.; Grigoriev, M.; /Fermilab

    2004-12-01

    Network flow data gathered at the border routers and core switches is used at Fermilab for statistical analysis of traffic patterns, passive network monitoring, and estimation of network performance characteristics. Flow data is also a critical tool in the investigation of computer security incidents. Development and enhancement of flow based tools is an on-going effort. This paper describes the most recent developments in flow analysis at Fermilab.

  19. INDIA’S ELECTRICITY DEMAND FORECAST USING REGRESSION ANALYSIS AND ARTIFICIAL NEURAL NETWORKS BASED ON PRINCIPAL COMPONENTS

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2012-07-01

    Full Text Available Power System planning starts with Electric load (demand forecasting. Accurate electricity load forecasting is one of the most important challenges in managing supply and demand of the electricity, since the electricity demand is volatile in nature; it cannot be stored and has to be consumed instantly. The aim of this study deals with electricity consumption in India, to forecast future projection of demand for a period of 19 years from 2012 to 2030. The eleven input variables used are Amount of CO2 emission, Population, Per capita GDP, Per capita gross national income, Gross Domestic savings, Industry, Consumer price index, Wholesale price index, Imports, Exports and Per capita power consumption. A new methodology based on Artificial Neural Networks (ANNs using principal components is also used. Data of 29 years used for training and data of 10 years used for testing the ANNs. Comparison made with multiple linear regression (based on original data and the principal components and ANNs with original data as input variables. The results show that the use of ANNs with principal components (PC is more effective.

  20. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...mathematical literature on sheaves that describes how to draw global ( network -wide) inferences from them. Wireless network , local homology, sheaf...topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  1. Centrality measures in temporal networks with time series analysis

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  2. Analysis of cascading failure in gene networks

    Directory of Open Access Journals (Sweden)

    Shudong eWang

    2012-12-01

    Full Text Available It is an important subject to research the functional mechanism of cancer-related genes make in formation and development of cancers. The modern methodology of data analysis plays a very important role for deducing the relationship between cancers and cancer-related genes and analyzing functional mechanism of genome. In this research, we construct mutual information networks using gene expression profiles of glioblast and renal in normal condition and cancer conditions. We investigate the relationship between structure and robustness in gene networks of the two tissues using a cascading failure model based on betweenness centrality. Define some important parameters such as the percentage of failure nodes of the network, the average size-ratio of cascading failure and the cumulative probability of size-ratio of cascading failure to measure the robustness of the networks. By comparing control group and experiment groups, we find that the networks of experiment groups are more robust than that of control group. The gene that can cause large scale failure is called structural key gene (SKG. Some of them have been confirmed to be closely related to the formation and development of glioma and renal cancer respectively. Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these studies provide little information about the detailed roles of identified cancer genes.

  3. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  4. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  5. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    The availability of location information in mobile devices, e.g., through built-in GPS receivers in smart phones, has motivated the investigation of the usefulness of location based network optimizations. Since the quality of input information is important for network optimizations, a main focus...... of this work is to evaluate how location based network optimizations are affected by varying quality of input information such as location information and user movements. The first contribution in this thesis concerns cooperative network-based localization systems. The investigations focus on assessing...... the achievable accuracy of future localization system in mobile settings, as well as quantifying the impact of having a realistic model of the required measurement exchanges. Secondly, this work has considered different large scale and small scale location based network optimizations, namely centralized relay...

  6. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  7. Convective drying of regular mint leaves: analysis based on fitting empirical correlations, response surface methodology and neural networks

    Directory of Open Access Journals (Sweden)

    Ariany Binda Silva Costa

    2014-04-01

    Full Text Available In the present work, an analysis of drying of peppermint (Menta x villosa H. leaves has been made using empirical correlations, response surface models and a neural network model. The main goal was to apply different modeling approaches to predict moisture content and drying rates in the drying of leaves, and obtaining an overview on the subject. Experiments were carried out in a convective horizontal flow dryer in which samples were placed parallel to the air stream under operating conditions of air temperatures from 36 to 64°C, air velocities from 1.0 to 2.0 m s-1 and sample loads from 18 to 42 g, corresponding to sample heights of 1.4, 1.7 and 3.5 cm respectively. A complete 33 experimental design was used. Results have shown that the three methodologies employed in this work were complementary in the sense that they simultaneously provided a better understanding of leaves drying.

  8. Sample Entropy Analysis of EEG Signals via Artificial Neural Networks to Model Patients’ Consciousness Level Based on Anesthesiologists Experience

    Directory of Open Access Journals (Sweden)

    George J. A. Jiang

    2015-01-01

    Full Text Available Electroencephalogram (EEG signals, as it can express the human brain’s activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA. Bispectral (BIS index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD method and analyzed using sample entropy (SampEn analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN model through using expert assessment of consciousness level (EACL which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.

  9. Analysis and Planning of Ecological Networks Based on Kernel Density Estimations for the Beijing-Tianjin-Hebei Region in Northern China

    Directory of Open Access Journals (Sweden)

    Pengshan Li

    2016-10-01

    Full Text Available With the continued social and economic development of northern China, landscape fragmentation has placed increasing pressure on the ecological system of the Beijing-Tianjin-Hebei (BTH region. To maintain the integrity of ecological processes under the influence of human activities, we must maintain effective connections between habitats and limit the impact of ecological isolation. In this paper, landscape elements were identified based on a kernel density estimation, including forests, grasslands, orchards and wetlands. The spatial configuration of ecological networks was analysed by the integrated density index, and a natural breaks classification was performed for the landscape type data and the results of the landscape spatial distribution analysis. The results showed that forest and grassland are the primary constituents of the core areas and act as buffer zones for the region’s ecological network. Rivers, as linear patches, and orchards, as stepping stones, form the main body of the ecological corridors, and isolated elements are distributed mainly in the plain area. Orchards have transition effects. Wetlands act as connections between different landscapes in the region. Based on these results, we make suggestions for the protection and planning of ecological networks. This study can also provide guidance for the coordinated development of the BTH region.

  10. Sensor Network Information Analytical Methods: Analysis of Similarities and Differences

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2014-04-01

    Full Text Available In the Sensor Network information engineering literature, few references focus on the definition and design of Sensor Network information analytical methods. Among those that do are Munson, et al. and the ISO standards on functional size analysis. To avoid inconsistent vocabulary and potentially incorrect interpretation of data, Sensor Network information analytical methods must be better designed, including definitions, analysis principles, analysis rules, and base units. This paper analyzes the similarities and differences across three different views of analytical methods, and uses a process proposed for the design of Sensor Network information analytical methods to analyze two examples of such methods selected from the literature.

  11. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  12. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  13. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  14. Social network analysis and dual rover communications

    Science.gov (United States)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  15. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  16. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  17. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  18. Evaluating a Multivariate Directional Connectivity Measure for Use in Electroencephalogram (EEG) Network Analysis Using a Conductance-Based Neuron Network Model

    Science.gov (United States)

    2015-03-01

    Translational Neuroscience Branch at the US Army Research Laboratory. Research was sponsored by the US Army Research Laboratory, and Urban was supported under...10.1152/jn.00844.2013 Sun Y, Zhang H, Feng T, Qiu Y, Zhu Y, Tong S. Early cortical connective network relating to audiovisual stimulation by partial

  19. Applications of Social Network Analysis

    Science.gov (United States)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  20. Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks

    Directory of Open Access Journals (Sweden)

    Laidig Daniel

    2016-09-01

    Full Text Available We examine the usefulness of event-based sampling approaches for reducing communication in inertial-sensor-based analysis of human motion. To this end we consider realtime measurement of the knee joint angle during walking, employing a recently developed sensor fusion algorithm. We simulate the effects of different event-based sampling methods on a large set of experimental data with ground truth obtained from an external motion capture system. This results in a reduced wireless communication load at the cost of a slightly increased error in the calculated angles. The proposed methods are compared in terms of best balance of these two aspects. We show that the transmitted data can be reduced by 66% while maintaining the same level of accuracy.

  1. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  2. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  3. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  4. Dynamics of subway networks based on vehicles operation timetable

    Science.gov (United States)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  5. Design Criteria For Networked Image Analysis System

    Science.gov (United States)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  6. Statistical Analysis of Bus Networks in India

    CERN Document Server

    Chatterjee, Atanu; Ramadurai, Gitakrishnan

    2015-01-01

    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \\textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe tha...

  7. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  8. Prioritizing Disease Candidate Proteins in Cardiomyopathy-Specific Protein-Protein Interaction Networks Based on “Guilt by Association” Analysis

    Science.gov (United States)

    He, Weiming; Li, Weiguo; Qu, Xiaoli; Liang, Binhua; Gao, Qianping; Feng, Chenchen; Jia, Xu; Lv, Yana; Zhang, Siya; Li, Xia

    2013-01-01

    The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial). Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on “guilt by association” analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on “guilt by association” analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way. PMID:23940716

  9. Dynamics of hate based Internet user networks

    Science.gov (United States)

    Sobkowicz, P.; Sobkowicz, A.

    2010-02-01

    We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.

  10. Durer-pentagon-based complex network

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2016-04-01

    Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.

  11. Assessing a Sport/Cultural Events Network: An Application of Social Network Analysis

    OpenAIRE

    Ziakas, V; Costa, CA

    2009-01-01

    The purpose of this study was to assess the complexity of a sport/cultural events network. To that intent, a social network analysis was conducted in a small community in the US. The study had three main objectives: (1) Examine relationships among organisations involved in planning and implementing sport and cultural events based on their communication, exchange of resources, and assistance; (2) Identify the most important actors within the events network and their relationships; (3) Investig...

  12. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  13. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    Science.gov (United States)

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Network analysis of unstructured EHR data for clinical research.

    Science.gov (United States)

    Bauer-Mehren, Anna; Lependu, Paea; Iyer, Srinivasan V; Harpaz, Rave; Leeper, Nicholas J; Shah, Nigam H

    2013-01-01

    In biomedical research, network analysis provides a conceptual framework for interpreting data from high-throughput experiments. For example, protein-protein interaction networks have been successfully used to identify candidate disease genes. Recently, advances in clinical text processing and the increasing availability of clinical data have enabled analogous analyses on data from electronic medical records. We constructed networks of diseases, drugs, medical devices and procedures using concepts recognized in clinical notes from the Stanford clinical data warehouse. We demonstrate the use of the resulting networks for clinical research informatics in two ways-cohort construction and outcomes analysis-by examining the safety of cilostazol in peripheral artery disease patients as a use case. We show that the network-based approaches can be used for constructing patient cohorts as well as for analyzing differences in outcomes by comparing with standard methods, and discuss the advantages offered by network-based approaches.

  15. Satellite image analysis using neural networks

    Science.gov (United States)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  16. Network analysis of swine shipments in Ontario, Canada, to support disease spread modelling and risk-based disease management.

    Science.gov (United States)

    Dorjee, S; Revie, C W; Poljak, Z; McNab, W B; Sanchez, J

    2013-10-01

    Understanding contact networks are important for modelling and managing the spread and control of communicable diseases in populations. This study characterizes the swine shipment network of a multi-site production system in southwestern Ontario, Canada. Data were extracted from a company's database listing swine shipments among 251 swine farms, including 20 sow, 69 nursery and 162 finishing farms, for the 2-year period of 2006 to 2007. Several network metrics were generated. The number of shipments per week between pairs of farms ranged from 1 to 6. The medians (and ranges) of out-degree were: sow 6 (1-21), nursery 8 (0-25), and finishing 0 (0-4), over the entire 2-year study period. Corresponding estimates for in-degree of nursery and finishing farms were 3 (0-9) and 3 (0-12) respectively. Outgoing and incoming infection chains (OIC and IIC), were also measured. The medians (ranges) of the monthly OIC and IIC were 0 (0-8) and 0 (0-6), respectively, with very similar measures observed for 2-week intervals. Nursery farms exhibited high measures of centrality. This indicates that they pose greater risks of disease spread in the network. Therefore, they should be given a high priority for disease prevention and control measures affecting all age groups alike. The network demonstrated scale-free and small-world topologies as observed in other livestock shipment studies. This heterogeneity in contacts among farm types and network topologies should be incorporated in simulation models to improve their validity. In conclusion, this study provided useful epidemiological information and parameters for the control and modelling of disease spread among swine farms, for the first time from Ontario, Canada. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...

  18. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  19. Differentiating malignant from benign breast tumors on acoustic radiation force impulse imaging using fuzzy-based neural networks with principle component analysis

    Science.gov (United States)

    Liu, Hsiao-Chuan; Chou, Yi-Hong; Tiu, Chui-Mei; Hsieh, Chi-Wen; Liu, Brent; Shung, K. Kirk

    2017-03-01

    Many modalities have been developed as screening tools for breast cancer. A new screening method called acoustic radiation force impulse (ARFI) imaging was created for distinguishing breast lesions based on localized tissue displacement. This displacement was quantitated by virtual touch tissue imaging (VTI). However, VTIs sometimes express reverse results to intensity information in clinical observation. In the study, a fuzzy-based neural network with principle component analysis (PCA) was proposed to differentiate texture patterns of malignant breast from benign tumors. Eighty VTIs were randomly retrospected. Thirty four patients were determined as BI-RADS category 2 or 3, and the rest of them were determined as BI-RADS category 4 or 5 by two leading radiologists. Morphological method and Boolean algebra were performed as the image preprocessing to acquire region of interests (ROIs) on VTIs. Twenty four quantitative parameters deriving from first-order statistics (FOS), fractal dimension and gray level co-occurrence matrix (GLCM) were utilized to analyze the texture pattern of breast tumors on VTIs. PCA was employed to reduce the dimension of features. Fuzzy-based neural network as a classifier to differentiate malignant from benign breast tumors. Independent samples test was used to examine the significance of the difference between benign and malignant breast tumors. The area Az under the receiver operator characteristic (ROC) curve, sensitivity, specificity and accuracy were calculated to evaluate the performance of the system. Most all of texture parameters present significant difference between malignant and benign tumors with p-value of less than 0.05 except the average of fractal dimension. For all features classified by fuzzy-based neural network, the sensitivity, specificity, accuracy and Az were 95.7%, 97.1%, 95% and 0.964, respectively. However, the sensitivity, specificity, accuracy and Az can be increased to 100%, 97.1%, 98.8% and 0.985, respectively

  20. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  1. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  2. Water Pipeline Network Analysis Using Simultaneous Loop Flow ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... solving for the unknown in water network analysis. It is based on a loop iterative computation. Newton-Raphson method is a better technique for solving the network problems; however, the method adopted here computes simultaneous flow corrections for all loops, hence, the best since the computational.

  3. Transport network extensions for accessibility analysis in geographic information systems

    NARCIS (Netherlands)

    Jong, Tom de; Tillema, T.

    2005-01-01

    In many developed countries high quality digital transport networks are available for GIS based analysis. Partly this is due to the requirements of route planning software for internet and car navigation systems. Properties of these networks consist among others of road quality attributes,

  4. Network-based automation for SMEs

    DEFF Research Database (Denmark)

    Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka

    2017-01-01

    could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... automation solutions. The empirical data collection involved application of a combination of comparative case study method with action research elements. This article provides an outlook over the challenges in implementing technological improvements and the way how it could be resolved in collaboration......, this paper develops and discusses a set of guidelines for systematic productivity improvement within an innovative collaboration in regards to automation processes in SMEs....

  5. Computerized analysis of interstitial lung diseases on chest radiographs based on lung texture, geometric-pattern features, and artificial neural networks

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Nakamura, Katsumi; Ashizawa, Kazuto; MacMahon, Heber; Doi, Kunio

    2002-05-01

    For computerized detection of interstitial lung disease on chest radiographs, we developed three different methods: texture analysis based on the Fourier transform, geometric- pattern feature analysis, and artificial neural network (ANN) analysis of image data. With these computer-aided diagnostic methods, quantitative measures can be obtained. To improve the diagnostic accuracy, we investigated combined classification schemes by using the results obtained with the three methods for distinction between normal and abnormal chest radiographs with interstitial opacities. The sensitivities of texture analysis, geometric analysis, and ANN analysis were 88.0+/- 1.6%, 91.0+/- 2.6%, and 87.5+/- 1.9%, respectively, at a specificity of 90.0%, whereas the sensitivity of a combined classification scheme with the logical OR operation was improved to 97.1%+/- 1.5% at the same specificity of 90.0%. The combined scheme can achieve higher accuracy than the individual methods for distinction between normal and abnormal cases with interstitial opacities.

  6. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  7. Determining Appropriate Seasonal Dislocation Sites of Fire Brigades in the Šibenik-Knin County Based on Road Network Analysis

    Directory of Open Access Journals (Sweden)

    Doroteja Držaić

    2015-07-01

    Full Text Available The majority of wildfires in the Republic of Croatia occur in coastal and island areas, so the Šibenik-Knin County was studied in this research. This research was based upon spatial and temporal analyses of past fires in the Šibenik-Knin County using GIS tools in order to identify potential locations for seasonal dislocation of fire stations. The research resulted in cartographic visualization of areas within reach of existing fire brigades within the standard intervention time and potential locations for seasonal dislocation of fire stations. The results obtained using spatial GIS analysis can be used as a basis for future spatial planning and seasonal dislocation of fire stations in the Šibenik-Knin County, as well as a basis for determining dislocation of fire stations in other Croatian counties.

  8. Enabling application-level performance guarantees in network-based systems on chip by applying dataflow analysis

    NARCIS (Netherlands)

    Hansson, A.; Hansson, A.; Wiggers, M.H.; Moonen, A.; Goossens, K.; Bekooij, Marco Jan Gerrit; Bekooij, M.

    2009-01-01

    A growing number of applications, often with real-time requirements, are integrated on the same system on chip (SoC), in the form of hardware and software intellectual property (IP). To facilitate real-time applications, networks on chip (NoC) guarantee bounds on latency and throughput. These

  9. Multilevel Bloom Filters for P2P Flows Identification Based on Cluster Analysis in Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    Xia-an Bi

    2015-01-01

    Full Text Available With the development of wireless mesh networks and distributed computing, lots of new P2P services have been deployed and enrich the Internet contents and applications. The rapid growth of P2P flows brings great pressure to the regular network operation. So the effective flow identification and management of P2P applications become increasingly urgent. In this paper, we build a multilevel bloom filters data structure to identify the P2P flows through researches on the locality characteristics of P2P flows. Different level structure stores different numbers of P2P flow rules. According to the characteristics values of the P2P flows, we adjust the parameters of the data structure of bloom filters. The searching steps of the scheme traverse from the first level to the last level. Compared with the traditional algorithms, our method solves the drawbacks of previous schemes. The simulation results demonstrate that our algorithm effectively enhances the performance of P2P flows identification. Then we deploy our flow identification algorithm in the traffic monitoring sensors which belong to the network traffic monitoring system at the export link in the campus network. In the real environment, the experiment results demonstrate that our algorithm has a fast speed and high accuracy to identify the P2P flows; therefore, it is suitable for actual deployment.

  10. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Jaeh Yeok; Lee, Jong Soo [Yonsei University, Seoul (Korea, Republic of); Lee, Seung Uk [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2016-03-15

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  11. Gene network analysis: from heart development to cardiac therapy.

    Science.gov (United States)

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  12. Network repair based on community structure

    Science.gov (United States)

    Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian

    2017-06-01

    Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.

  13. Topic-based Social Influence Measurement for Social Networks

    Directory of Open Access Journals (Sweden)

    Asso Hamzehei

    2017-11-01

    Full Text Available Social science studies have acknowledged that the social influence of individuals is not identical. Social networks structure and shared text can reveal immense information about users, their interests, and topic-based influence. Although some studies have considered measuring user influence, less has been on measuring and estimating topic-based user influence. In this paper, we propose an approach that incorporates network structure, user-generated content for topic-based influence measurement, and user’s interactions in the network. We perform experimental analysis on Twitter data and show that our proposed approach can effectively measure topic-based user influence.

  14. Community Based Networks and 5G

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2016-01-01

    is hinged on a research aimed at understanding how and why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out inductively using Grounded Theory. Six cases were investigated.Two Community Based Network Mobilization models were identified......The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....

  15. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  16. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    Science.gov (United States)

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network (i.e., OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  17. Measuring Road Network Vulnerability with Sensitivity Analysis

    Science.gov (United States)

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  18. Constructing an Intelligent Patent Network Analysis Method

    OpenAIRE

    Chao-Chan Wu; Ching-Bang Yao

    2012-01-01

    Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks...

  19. Efficacy of home-based non-pharmacological interventions for treating depression: a systematic review and network meta-analysis of randomised controlled trials

    Science.gov (United States)

    Sukhato, Kanokporn; Lotrakul, Manote; Dellow, Alan; Ittasakul, Pichai; Thakkinstian, Ammarin; Anothaisintawee, Thunyarat

    2017-01-01

    Objectives To systematically review and compare the efficacy of all available home-based non-pharmacological treatments of depression. Design Systematic review and network meta-analysis of randomised controlled trials. Data sources Medline, Scopus and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases were searched since inceptions to 7 August 2016. Eligibility criteria Randomised controlled trials comparing the efficacy of home-based non-pharmacological interventions with usual care of patients with depression were included in the review. Main outcomes Depression symptom scores and disease remission rates at the end of treatment. Results Seventeen studies were included in the review. Home-based non-pharmacological interventions were categorised as (1) home-based psychological intervention, (2) home-based exercise intervention, (3) combined home-based psychological intervention with exercise intervention and (4) complementary medicine. Complementary medicine approaches were excluded from the meta-analysis due to heterogeneity. The standardised mean differences of post-treatment depression symptom scores between usual care groups and home-based psychological intervention, home-based exercise intervention and combined home-based psychological intervention with exercise intervention were −0.57 (95% CI −0.84 to −0.31), −1.03 (95% CI −2.89 to 0.82) and −0.78 (95% CI −1.09 to −0.47), respectively. These results suggest that only home-based psychological intervention and combined home-based psychological intervention with exercise intervention could significantly decrease depression scores. Compared with usual care groups, the disease remission rate was also significantly higher for home-based psychological intervention (pooled risk ratio=1.53; 95% CI 1.19 to 1.98) and combined home-based psychological intervention with exercise intervention (pooled risk ratio=3.47; 95% CI 2.11 to 5

  20. Cointegration-based financial networks study in Chinese stock market

    Science.gov (United States)

    Tu, Chengyi

    2014-05-01

    We propose a method based on cointegration instead of correlation to construct financial complex network in Chinese stock market. The network is obtained starting from the matrix of p-value calculated by Engle-Granger cointegration test between all pairs of stocks. Then some tools for filtering information in complex network are implemented to prune the complete graph described by the above matrix, such as setting a level of statistical significance as a threshold and Planar Maximally Filtered Graph. We also calculate Partial Correlation Planar Graph of these stocks to compare the above networks. Last, we analyze these directed, weighted and non-symmetric networks by using standard methods of network analysis, including degree centrality, PageRank, HITS, local clustering coefficient, K-shell and strongly and weakly connected components. The results shed a new light on the underlying mechanisms and driving forces in a financial market and deepen our understanding of financial complex network.

  1. Network capacity with probit-based stochastic user equilibrium problem.

    Science.gov (United States)

    Lu, Lili; Wang, Jian; Zheng, Pengjun; Wang, Wei

    2017-01-01

    Among different stochastic user equilibrium (SUE) traffic assignment models, the Logit-based stochastic user equilibrium (SUE) is extensively investigated by researchers. It is constantly formulated as the low-level problem to describe the drivers' route choice behavior in bi-level problems such as network design, toll optimization et al. The Probit-based SUE model receives far less attention compared with Logit-based model albeit the assignment result is more consistent with drivers' behavior. It is well-known that due to the identical and irrelevant alternative (IIA) assumption, the Logit-based SUE model is incapable to deal with route overlapping problem and cannot account for perception variance with respect to trips. This paper aims to explore the network capacity with Probit-based traffic assignment model and investigate the differences of it is with Logit-based SUE traffic assignment models. The network capacity is formulated as a bi-level programming where the up-level program is to maximize the network capacity through optimizing input parameters (O-D multiplies and signal splits) while the low-level program is the Logit-based or Probit-based SUE problem formulated to model the drivers' route choice. A heuristic algorithm based on sensitivity analysis of SUE problem is detailed presented to solve the proposed bi-level program. Three numerical example networks are used to discuss the differences of network capacity between Logit-based SUE constraint and Probit-based SUE constraint. This study finds that while the network capacity show different results between Probit-based SUE and Logit-based SUE constraints, the variation pattern of network capacity with respect to increased level of travelers' information for general network under the two type of SUE problems is the same, and with certain level of travelers' information, both of them can achieve the same maximum network capacity.

  2. Automatic classification of sources of volcanic tremors at the Klyuchevskoy volcanic group (Kamchatka) based on the seismic network covariance matrix analysis

    Science.gov (United States)

    Soubestre, Jean; Shapiro, Nikolai M.; Seydoux, Léonard; de Rosny, Julien; Droznin, Dimitry V.; Droznina, Svetlana Ya.; Senyukov, Sergey L.; Gordeev, Evgeny I.

    2017-04-01

    Volcanic tremors may be caused by magma moving through narrow fractures, by fragmentation and pulsation of pressurized fluids within the volcano, or by escape of pressurized steam and gases from fumaroles. They present an important attribute of the volcanic unrest and their detection and characterization is used in volcano monitoring systems. The tremors might be generated within different parts of volcanoes and might characterize different types of volcanic activity. The main goal of the present study is to develop a method of automatic classification of different types (sources) of tremors based on analysis of continuous records of a network of seismographs. The proposed method is based on the analysis of eigenvalues and eigenvectors of the seismic array covariance matrix. First, we followed an approach developed by Seydoux et al. (2016) and analyzed the width of the covariance matrix eigenvalues distribution to detect time periods with strong volcanic tremors. In a next step, we analyzed the frequency-dependent eigenvectors of the covariance matrix. The eigenvectors corresponding to strongest eigenvalues can be used as fingerprints of dominating seismic sources during the period over which the covariance matrix was calculated. We applied the method to the data recorded by the permanent seismic monitoring network composed of 19 stations operated in the vicinity of the Klyuchevskoy group of volcanoes (KVG) located in Kamchatka, Russia. The KVG is composed of 13 stratovolcanoes with 3 of them (Klyuchevskoy, Bezymianny, and Tolbachik) being very active during last decades. In addition, two other active volcanoes, Shiveluch and Kizimen, are located immediately north and south of KVG. This exceptional concentration of active volcanoes provides us with a multiplicity of seismic tremor sources required to validate the method. We used 4.5 years of vertical component records by 19 stations and computed network covariance matrices from day-long windows. We then analyzed

  3. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  4. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  5. Privacy Breach Analysis in Social Networks

    Science.gov (United States)

    Nagle, Frank

    This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.

  6. Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis

    Directory of Open Access Journals (Sweden)

    Wang Shan

    2012-08-01

    Full Text Available Abstract Background Identification of the novel genes relevant to plant cell-wall (PCW synthesis represents a highly important and challenging problem. Although substantial efforts have been invested into studying this problem, the vast majority of the PCW related genes remain unknown. Results Here we present a computational study focused on identification of the novel PCW genes in Arabidopsis based on the co-expression analyses of transcriptomic data collected under 351 conditions, using a bi-clustering technique. Our analysis identified 217 highly co-expressed gene clusters (modules under some experimental conditions, each containing at least one gene annotated as PCW related according to the Purdue Cell Wall Gene Families database. These co-expression modules cover 349 known/annotated PCW genes and 2,438 new candidates. For each candidate gene, we annotated the specific PCW synthesis stages in which it is involved and predicted the detailed function. In addition, for the co-expressed genes in each module, we predicted and analyzed their cis regulatory motifs in the promoters using our motif discovery pipeline, providing strong evidence that the genes in each co-expression module are transcriptionally co-regulated. From the all co-expression modules, we infer that 108 modules are related to four major PCW synthesis components, using three complementary methods. Conclusions We believe our approach and data presented here will be useful for further identification and characterization of PCW genes. All the predicted PCW genes, co-expression modules, motifs and their annotations are available at a web-based database: http://csbl.bmb.uga.edu/publications/materials/shanwang/CWRPdb/index.html.

  7. Towards the integration of social network analysis in an inter-organizational networks perspective

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Waldstrøm, Christian

    This conceptual paper deals with the issue of studying inter-organizational networks while applying social network analysis (SNA). SNA is a widely recognized technique in network research, particularly within intra-organizational settings, while there seems to be a significant gap in the inter......-organizational setting. Based on a literature review of both SNA as a methodology and/or theory and the field of inter-organizational networks, the aim is to gain an overview in order to provide a clear setting for SNA in inter-organizational research....

  8. Memristor-based neural networks

    Science.gov (United States)

    Thomas, Andy

    2013-03-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.

  9. Functional Interaction Network Construction and Analysis for Disease Discovery.

    Science.gov (United States)

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  10. Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states.

    Science.gov (United States)

    Clemens, B; Puskás, S; Besenyei, M; Spisák, T; Opposits, G; Hollódy, K; Fogarasi, A; Fekete, I; Emri, M

    2013-10-01

    The neuronal mechanisms of enduring seizure propensity and seizure precipitation in juvenile myoclonic epilepsy (JME) are not known. We investigated these issues, within the framework of the "network concept" of epilepsy. Design1: 19, unmedicated JME patients were compared with nineteen, age-, and sex-matched normal control persons (NC). A total of 120s, artifact-free, paroxysm-free, eyes-closed, resting state EEG background activity was analyzed for each person. Design2: interictal and immediate preictal periods of the JME patients were compared in order to explore interictal-preictal network differences. For both comparison designs, statistically significant differences of EEG functional connectivity (EEGfC), nodal and global graph parameters were evaluated. Design1: maximum abnormalities were: increased delta, theta, alpha1 EEGfC and decreased alpha2 and beta EEGfC in the JME group as compared to the NC group, mainly among cortical areas that are involved in sensory-motor integration. Nodal degree and efficiency of three, medial, basal frontal nodes were greater in JME than in NC, in the alpha1 band. Design2: preictal delta EEGfC showed further increase in the above-mentioned areas, as compared to the interictal state. Increased EEGfC indicates a hypercoupled state among the specified cortical areas. This interictal abnormality further increases in the preictal state. Nodal graph statistics indicates abnormal neuronal dynamics in the cortical area that is the ictal onset zone in JME. Interictal and preictal neuronal dysfunction has been described in terms of network dynamics and topography in JME patients. Forthcoming investigations of seizure precipitation and therapeutic drug effects are encouraged on this basis. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Error performance analysis in downlink cellular networks with interference management

    KAUST Repository

    Afify, Laila H.

    2015-05-01

    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly abstract many important wireless communication system aspects (e.g., modulation techniques, signal recovery techniques). Recently, a novel stochastic geometry model, based on the Equivalent-in-Distribution (EiD) approach, succeeded to capture the aforementioned communication system aspects and extend the analysis to averaged error performance, however, on the expense of increasing the modeling complexity. Inspired by the EiD approach, the analysis developed in [1] takes into consideration the key system parameters, while providing a simple tractable analysis. In this paper, we extend this framework to study the effect of different interference management techniques in downlink cellular network. The accuracy of the proposed analysis is verified via Monte Carlo simulations.

  12. PANET: a GPU-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in large-scale biological networks.

    Science.gov (United States)

    Trinh, Hung-Cuong; Le, Duc-Hau; Kwon, Yung-Keun

    2014-01-01

    It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.

  13. Reaction network analysis in biochemical signaling pathways

    OpenAIRE

    Martinez-Forero, I. (Iván); Pelaez, A. (Antonio); Villoslada, P. (Pablo)

    2010-01-01

    The aim of this thesis is to improve the understanding of signaling pathways through a theoretical study of chemical reaction networks. The equilibirum solution to the equations derived from chemical networks will be analytically resolved using tools from algebraic geometry. The chapters are organized as follows: 1. An introduction to chemical dynamics in biological systems with a special emphasis on steady state analysis 2. Complete description of the chemical reaction network theor...

  14. Analysis of brain fMRI time-series using HRF knowledge-based correlation classifier on unsupervised self-organizing neural network map

    Science.gov (United States)

    Erberich, Stephan G.; Bluml, Stefan; Nelson, Marvin D.

    2003-05-01

    Brain imaging and particular functional MRI (fMRI), which acquires brain volumes in time, reveals new understanding of the functional/structural relation in neuroscience. During fMRI imaging physiological state changes occur in the brain regions activated from the task paradigm which the subject performs in the scanner. These state changes can be depicted in the small veins of the activated region due to the blood oxygen level dependent (BOLD) effect. For each brain voxel in the fMRI experiment one accumulates a time series vector which has to be analyzed for similarity to the original task paradigm vector and its characteristic hemodynamic response function (HRF). Various analysis methods have been discussed for fMRI analysis, model-based statistical or unsupervised data-driven techniques. The purpose of this paper is to introduce a new method which combines two different approaches. We use an unsupervised self-organizing map (SOM) neural network to reduce the time series vector space by non-linear pattern recognition into a 2D table of representative time series wave-forms. Using a-priori knowledge of the HRF, either derived from a theoretical wave-form model or estimated from a brain region of interest (ROI), one can use correlation analysis between the time series patterns of the SOM table and the HRF to depict regions of activation specific to the HRF. An optional second SOM training with a reduce number of neurons of the best-matching time series to the HRF classification refines the second neural network pattern table. The learned time series pattern of each neuron and the corresponding brain voxels are superimposed onto the subject's brain image for visual investigation.

  15. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy.

    Science.gov (United States)

    Song, Chao; Zhang, Jian; Liu, Yan; Pan, Hao; Qi, Han-Ping; Cao, Yong-Gang; Zhao, Jian-Mei; Li, Shang; Guo, Jing; Sun, Hong-Li; Li, Chun-Quan

    2016-03-08

    Cardiac hypertrophy (CH) could increase cardiac after-load and lead to heart failure. Recent studies have suggested that long non-coding RNA (lncRNA) played a crucial role in the process of the cardiac hypertrophy, such as Mhrt, TERMINATOR. Some studies have further found a new interacting mechanism, competitive endogenous RNA (ceRNA), of which lncRNA could interact with micro-RNAs (miRNA) and indirectly interact with mRNAs through competing interactions. However, the mechanism of ceRNA regulated by lncRNA in the CH remained unclear. In our study, we generated a global triple network containing mRNA, miRNA and lncRNA, and extracted a CH related lncRNA-mRNA network (CHLMN) through integrating the data from starbase, miRanda database and gene expression profile. Based on the ceRNA mechanism, we analyzed the characters of CHLMN and found that 3 lncRNAs (SLC26A4-AS1, RP11-344E13.3 and MAGI1-IT1) were high related to CH. We further performed cluster module analysis and random walk with restart for the CHLMN, finally 14 lncRNAs had been discovered as the potential CH related disease genes. Our results showed that lncRNA played an important role in the CH and could shed new light to the understanding underlying mechanisms of the CH.

  16. "Us and them": a social network analysis of physicians' professional networks and their attitudes towards EBM.

    Science.gov (United States)

    Mascia, Daniele; Cicchetti, Americo; Damiani, Gianfranco

    2013-10-22

    Extant research suggests that there is a strong social component to Evidence-Based Medicine (EBM) adoption since professional networks amongst physicians are strongly associated with their attitudes towards EBM. Despite this evidence, it is still unknown whether individual attitudes to use scientific evidence in clinical decision-making influence the position that physicians hold in their professional network. This paper explores how physicians' attitudes towards EBM is related to the network position they occupy within healthcare organizations. Data pertain to a sample of Italian physicians, whose professional network relationships, demographics and work-profile characteristics were collected. A social network analysis was performed to capture the structural importance of physicians in the collaboration network by the means of a core-periphery analysis and the computation of network centrality indicators. Then, regression analysis was used to test the association between the network position of individual clinicians and their attitudes towards EBM. Findings documented that the overall network structure is made up of a dense cohesive core of physicians and of less connected clinicians who occupy the periphery. A negative association between the physicians' attitudes towards EBM and the coreness they exhibited in the professional network was also found. Network centrality indicators confirmed these results documenting a negative association between physicians' propensity to use EBM and their structural importance in the professional network. Attitudes that physicians show towards EBM are related to the part (core or periphery) of the professional networks to which they belong as well as to their structural importance. By identifying virtuous attitudes and behaviors of professionals within their organizations, policymakers and executives may avoid marginalization and stimulate integration and continuity of care, both within and across the boundaries of healthcare

  17. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  18. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  19. An Integrative Analysis of Preeclampsia Based on the Construction of an Extended Composite Network Featuring Protein-Protein Physical Interactions and Transcriptional Relationships.

    Directory of Open Access Journals (Sweden)

    Daniel Vaiman

    Full Text Available Preeclampsia (PE is a pregnancy disorder defined by hypertension and proteinuria. This disease remains a major cause of maternal and fetal morbidity and mortality. Defective placentation is generally described as being at the root of the disease. The characterization of the transcriptome signature of the preeclamptic placenta has allowed to identify differentially expressed genes (DEGs. However, we still lack a detailed knowledge on how these DEGs impact the function of the placenta. The tools of network biology offer a methodology to explore complex diseases at a systems level. In this study we performed a cross-platform meta-analysis of seven publically available gene expression datasets comparing non-pathological and preeclamptic placentas. Using the rank product algorithm we identified a total of 369 DEGs consistently modified in PE. The DEGs were used as seeds to build both an extended physical protein-protein interactions network and a transcription factors regulatory network. Topological and clustering analysis was conducted to analyze the connectivity properties of the networks. Finally both networks were merged into a composite network which presents an integrated view of the regulatory pathways involved in preeclampsia and the crosstalk between them. This network is a useful tool to explore the relationship between the DEGs and enable hypothesis generation for functional experimentation.

  20. Social network analysis in medical education.

    Science.gov (United States)

    Isba, Rachel; Woolf, Katherine; Hanneman, Robert

    2017-01-01

    Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis. Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individuals, but also how individual relationships build up into wider social structures that influence outcomes at a group level. Recent increases in computational power have increased the accessibility of social network analysis methods for application to medical education research. Social network analysis has been used to explore team-working, social influences on attitudes and behaviours, the influence of social position on individual success, and the relationship between social cohesion and power. This makes social network analysis theories and methods relevant to understanding the social processes underlying academic performance, workplace learning and policy-making and implementation in medical education contexts. Social network analysis is underused in medical education, yet it is a method that could yield significant insights that would improve experiences and outcomes for medical trainees and educators, and ultimately for patients. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  1. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  2. Social Network Analysis and Critical Realism

    DEFF Research Database (Denmark)

    Buch-Hansen, Hubert

    2014-01-01

    Social network analysis ( SNA) is an increasingly popular approach that provides researchers with highly developed tools to map and analyze complexes of social relations. Although a number of network scholars have explicated the assumptions that underpin SNA, the approach has yet to be discussed ...

  3. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics

    Directory of Open Access Journals (Sweden)

    Jinhui eWang

    2015-06-01

    Full Text Available Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i an open-source, Matlab-based, cross-platform (Windows and UNIX OS package with a graphical user interface; (ii allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website (http://www.nitrc.org/projects/gretna/.

  4. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics.

    Science.gov (United States)

    Wang, Jinhui; Wang, Xindi; Xia, Mingrui; Liao, Xuhong; Evans, Alan; He, Yong

    2015-01-01

    Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.

  5. Complex Network Analysis of Pakistan Railways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2014-01-01

    Full Text Available We study the structural properties of Pakistan railway network (PRN, where railway stations are considered as nodes while edges are represented by trains directly linking two stations. The network displays small world properties and is assortative in nature. Based on betweenness and closeness centralities of the nodes, the most important cities are identified with respect to connectivity as this could help in identifying the potential congestion points in the network.

  6. The network researchers' network: A social network analysis of the IMP Group 1985-2006

    DEFF Research Database (Denmark)

    Henneberg, Stephan C. M.; Ziang, Zhizhong; Naudé, Peter

    ). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...... components in some detail. The egonets of three of the original 'founding fathers' are examined in detail, and we draw comparisons as to how their publishing strategies vary. Finally, the paper draws some more general conclusions as to the insights that SNA can bring to those working within business...

  7. Cilia-based transport networks

    Science.gov (United States)

    Bodenschatz, Eberhard

    Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks. I shall also show results on how to assemble artificial cilia and cilia carpets. Supported by the BMBF MaxSynBio.

  8. Bioinspired evolutionary algorithm based for improving network coverage in wireless sensor networks.

    Science.gov (United States)

    Abbasi, Mohammadjavad; Bin Abd Latiff, Muhammad Shafie; Chizari, Hassan

    2014-01-01

    Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.

  9. Performance Analysis of Inter-Domain Handoff Scheme Based on Virtual Layer in PMIPv6 Networks for IP-Based Internet of Things.

    Science.gov (United States)

    Cho, Chulhee; Choi, Jae-Young; Jeong, Jongpil; Chung, Tai-Myoung

    2017-01-01

    Lately, we see that Internet of things (IoT) is introduced in medical services for global connection among patients, sensors, and all nearby things. The principal purpose of this global connection is to provide context awareness for the purpose of bringing convenience to a patient's life and more effectively implementing clinical processes. In health care, monitoring of biosignals of a patient has to be continuously performed while the patient moves inside and outside the hospital. Also, to monitor the accurate location and biosignals of the patient, appropriate mobility management is necessary to maintain connection between the patient and the hospital network. In this paper, a binding update scheme on PMIPv6, which reduces signal traffic during location updates by Virtual LMA (VLMA) on the top original Local Mobility Anchor (LMA) Domain, is proposed to reduce the total cost. If a Mobile Node (MN) moves to a Mobile Access Gateway (MAG)-located boundary of an adjacent LMA domain, the MN changes itself into a virtual mode, and this movement will be assumed to be a part of the VLMA domain. In the proposed scheme, MAGs eliminate global binding updates for MNs between LMA domains and significantly reduce the packet loss and latency by eliminating the handoff between LMAs. In conclusion, the performance analysis results show that the proposed scheme improves performance significantly versus PMIPv6 and HMIPv6 in terms of the binding update rate per user and average handoff latency.

  10. Performance Analysis of Inter-Domain Handoff Scheme Based on Virtual Layer in PMIPv6 Networks for IP-Based Internet of Things.

    Directory of Open Access Journals (Sweden)

    Chulhee Cho

    Full Text Available Lately, we see that Internet of things (IoT is introduced in medical services for global connection among patients, sensors, and all nearby things. The principal purpose of this global connection is to provide context awareness for the purpose of bringing convenience to a patient's life and more effectively implementing clinical processes. In health care, monitoring of biosignals of a patient has to be continuously performed while the patient moves inside and outside the hospital. Also, to monitor the accurate location and biosignals of the patient, appropriate mobility management is necessary to maintain connection between the patient and the hospital network. In this paper, a binding update scheme on PMIPv6, which reduces signal traffic during location updates by Virtual LMA (VLMA on the top original Local Mobility Anchor (LMA Domain, is proposed to reduce the total cost. If a Mobile Node (MN moves to a Mobile Access Gateway (MAG-located boundary of an adjacent LMA domain, the MN changes itself into a virtual mode, and this movement will be assumed to be a part of the VLMA domain. In the proposed scheme, MAGs eliminate global binding updates for MNs between LMA domains and significantly reduce the packet loss and latency by eliminating the handoff between LMAs. In conclusion, the performance analysis results show that the proposed scheme improves performance significantly versus PMIPv6 and HMIPv6 in terms of the binding update rate per user and average handoff latency.

  11. A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.

    Science.gov (United States)

    Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

    2014-12-01

    This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. © 2014 Society for Risk Analysis.

  12. Mental health network governance: comparative analysis across Canadian regions

    Science.gov (United States)

    Wiktorowicz, Mary E; Fleury, Marie-Josée; Adair, Carol E; Lesage, Alain; Goldner, Elliot; Peters, Suzanne

    2010-01-01

    Objective Modes of governance were compared in ten local mental health networks in diverse contexts (rural/urban and regionalized/non-regionalized) to clarify the governance processes that foster inter-organizational collaboration and the conditions that support them. Methods Case studies of ten local mental health networks were developed using qualitative methods of document review, semi-structured interviews and focus groups that incorporated provincial policy, network and organizational levels of analysis. Results Mental health net