WorldWideScience

Sample records for network adaptive flight

  1. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  2. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  3. Adaptive dynamical networks

    Science.gov (United States)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  4. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  5. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  6. Adaptive parallel logic networks

    Science.gov (United States)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  7. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  8. Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results

    Science.gov (United States)

    Burken, John J.; Larson, Richard R.

    2009-01-01

    F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.

  9. Affective states and adaptation to parabolic flights

    Science.gov (United States)

    Collado, Aurélie; Langlet, Cécile; Tzanova, Tzvetomira; Hainaut, Jean-Philippe; Monfort, Vincent; Bolmont, Benoît

    2017-05-01

    This exploratory study investigates (i) inter-individual variations of affective states before a parabolic flight (i.e., PF) on the basis of quality of adaptation to physical demands, and (ii) intra-individual variations of affective states during a PF. Mood-states, state-anxiety and salivary cortisol were assessed in two groups with a different quality of adaptation (an Adaptive Group, i.e., AG, and a Maladaptive Group, i.e., MG) before and during a PF. Before PF, MG scored higher on mood states (Anger-Hostility, Fatigue-Inertia) than AG. During the flight, while AG seemed to present ;normal; affective responses to the demanding environment (e.g., increase in salivary cortisol), MG presented increases in mood states such as Confusion-Bewilderment or Tension-Anxiety. The findings suggest that the psychological states of MG could have disturbed their ability to integrate sensory information from an unusual environment, which led to difficulties in coping with the physical demands of PF.

  10. Decentralized clustering over adaptive networks

    OpenAIRE

    Khawatmi, Sahar; Zoubir, Abdelhak M.; Sayed, Ali H.

    2015-01-01

    Cooperation among agents across the network leads to better estimation accuracy. However, in many network applications the agents infer and track different models of interest in an environment where agents do not know beforehand which models are being observed by their neighbors. In this work, we propose an adaptive and distributed clustering technique that allows agents to learn and form clusters from streaming data in a robust manner. Once clusters are formed, cooperation among agents with ...

  11. Adaptive Flight Envelope Estimation and Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with the Georgia Institute of Technology, proposes to develop and demonstrate an innovative flight envelope estimation and...

  12. Smart Adaptive Flight Effective Cue (SAFE-Cue) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As a means to enhance aviation safety, numerous adaptive control techniques have been developed to maintain aircraft stability and safety of flight in the presence...

  13. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  14. Multitask Diffusion Adaptation Over Networks

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2014-08-01

    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with $\\ell_2$-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.

  15. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  16. Using Bayesian belief networks in adaptive management.

    Science.gov (United States)

    J.B. Nyberg; B.G. Marcot; R. Sulyma

    2006-01-01

    Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...

  17. Adaptive and Resilient Flight Control System for a Small Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Gonzalo Garcia

    2013-01-01

    Full Text Available The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.

  18. Adaptive Trajectory Prediction Algorithm for Climbing Flights

    Science.gov (United States)

    Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz

    2012-01-01

    Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.

  19. Adaptive Networks: the Governance for Sustainable Development

    NARCIS (Netherlands)

    S.G. Nooteboom (Sibout)

    2006-01-01

    textabstractIn this book, I reconstruct how policy makers, working together in what I term adaptive networks, have enabled a breakthrough in thinking about sustainable mobility in certain policy circles. I define the conduct of leading actors in these adaptive networks as sustainable change

  20. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...... history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders...... and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure....

  1. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  2. Adaptability in dynamic wireless networks

    NARCIS (Netherlands)

    Iyer, V.G.

    2012-01-01

    Software for networked embedded systems faces several challenges when the deployed network is subject to changing circumstances during operation. Typically, inter-node communication and network connectivity are two crucial aspects that are directly affected by dynamics such as failing wireless links

  3. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  4. Recruitment dynamics in adaptive social networks

    Science.gov (United States)

    Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.

    2013-06-01

    We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).

  5. Adaptive aerostructures : The first decade of flight on uninhabited aerial vehicles

    NARCIS (Netherlands)

    Barrett, R.

    2004-01-01

    Although many subscale aircraft regularly fly with adaptive materials in sensors and small components in secondary subsystems, only a handful have flown with adaptive aerostructures as flight critical, enabling components. This paper reviews several families of adaptive aerostructures which have

  6. Energy-efficient adaptive wireless network design

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Bos, M.

    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse

  7. Adaptive Learning in Weighted Network Games

    NARCIS (Netherlands)

    Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank

    2017-01-01

    This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for

  8. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  9. Using Granular-Evidence-Based Adaptive Networks for Sensitivity Analysis

    OpenAIRE

    Vališevskis, A.

    2002-01-01

    This paper considers the possibility of using adaptive networks for sensitivity analysis. Adaptive network that processes fuzzy granules is described. The adaptive network training algorithm can be used for sensitivity analysis of decision making models. Furthermore, a case study concerning sensitivity analysis is described, which shows in what way the adaptive network can be used for sensitivity analysis.

  10. Use of a neural network to extract a missile flight model for simulation purposes

    Science.gov (United States)

    Pascale, Danny; Volckaert, Guy

    1996-03-01

    A neural network is used to extract the flight model of guided, short to medium range, tripod and shoulder-fired missile systems which is then integrated into a training simulator. The simulator uses injected video to replace the optical sight and is fitted with a multi-axis positioning system which senses the gunner's movement. The movement creates an image shift and affects the input data to the missile control algorithm. Accurate flight dynamics are a key to efficient training, particularly in the case of closed loop guided systems. However, flight model data is not always available, either because it is proprietary, or because it is too complex to embed in a real time simulator. A solution is to reverse engineer the flight model by analyzing the missile's response when submitted to typical input conditions. Training data can be extracted from either recorded video or from a combination of weapon and missile positioning data. The video camera can be located either on the weapon or attached to a through-sight adapter. No knowledge of the missile flight transfer function is used in the process. The data is fed to a three-layer back-propagation type neural network. The network is configured within a standard spreadsheet application and is optimized with the built-in solver functions. The structure of the network, the selected inputs and outputs, as well as training data, output data after training, and output data when embedded in the simulator are presented.

  11. In-Network Adaptation of Video Streams Using Network Processors

    Directory of Open Access Journals (Sweden)

    Mohammad Shorfuzzaman

    2009-01-01

    problem can be addressed, near the network edge, by applying dynamic, in-network adaptation (e.g., transcoding of video streams to meet available connection bandwidth, machine characteristics, and client preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can be used in different types of environments.

  12. Predicting forest insect flight activity: A Bayesian network approach.

    Science.gov (United States)

    Pawson, Stephen M; Marcot, Bruce G; Woodberry, Owen G

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model's predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways.

  13. Fractal transit networks: Self-avoiding walks and Lévy flights

    Science.gov (United States)

    von Ferber, Christian; Holovatch, Yurij

    2013-01-01

    Using the data on the Berlin public transport network, the present study extends previous observations of fractality within public transport routes by showing that also the distribution of inter-station distances along routes displays non-trivial power law behaviour. This indicates that the routes may in part also be described as Lévy-flights. The latter property may result from the fact that the routes are planned to be adapted to the fluctuating demand densities throughout the served area. We also relate this to optimization properties of Lévy flights.

  14. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-02-01

    Full Text Available A robust adaptive neural control scheme based on a back-stepping technique is developed for the longitudinal dynamics of a flexible hypersonic flight vehicle, which is able to ensure the state tracking error being confined in the prescribed bounds, in spite of the existing model uncertainties and actuator constraints. Minimal learning parameter technique–based neural networks are used to estimate the model uncertainties; thus, the amount of online updated parameters is largely lessened, and the prior information of the aerodynamic parameters is dispensable. With the utilization of an assistant compensation system, the problem of actuator constraint is overcome. By combining the prescribed performance function and sliding mode differentiator into the neural back-stepping control design procedure, a composite state tracking error constrained adaptive neural control approach is presented, and a new type of adaptive law is constructed. As compared with other adaptive neural control designs for hypersonic flight vehicle, the proposed composite control scheme exhibits not only low-computation property but also strong robustness. Finally, two comparative simulations are performed to demonstrate the robustness of this neural prescribed performance controller.

  15. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  16. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  17. Adaptive Capacity Management in Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.

    With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low...... of Bluetooth devices is increasing, a larger-scale ad hoc network, scatternet, is formed, as well as the booming of Internet has demanded for large bandwidth and low delay mobile access. This dissertation is to address the capacity management issues in Bluetooth networks. The main goals of the network capacity...... resource constraints in Bluetooth networks and adapt to mobility and frequent changes of the network topology, as well as to bursty traffic of Internet data applications, which are supposedly very common in Bluetooth. Some performance characteristics of these approaches are illustrated by analysis as well...

  18. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  19. Neural network based adaptive output feedback control: Applications and improvements

    Science.gov (United States)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in

  20. How transfer flights shape structure of the airline network

    CERN Document Server

    Ryczkowski, Tomasz; Fronczak, Piotr

    2016-01-01

    In this paper we analyze the gravity model in the world passenger air-transport network. We show that in the standard form the model is inadequate to correctly describe the relationship between passenger flows and typical geo-economic variables that characterize connected countries. We propose a model of transfer flights which allows to exploit these discrepancies to discover hidden subflows in the network. We illustrate its usefulness by retrieving the distance coefficient in the gravity model which is one of the determinants of the globalization process. Finally, we discuss the correctness of the presented approach by comparing the distance coefficient to several well known economical events.

  1. An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Directory of Open Access Journals (Sweden)

    Mao-long Lv

    2016-01-01

    Full Text Available In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known.

  2. Social networks as embedded complex adaptive systems.

    Science.gov (United States)

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  3. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure

    Science.gov (United States)

    Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene

    2011-01-01

    This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.

  4. Parameter-Adaptive Model-Following for In-Flight Simulation.

    Science.gov (United States)

    1987-12-01

    MODEL-FOLLOWING FOR IN-FLIGHT SIMULATION I. Introduction 1.1 Background Flight simulation plays an essential role in the development of modern day...identification algorithms play a crucial role for many problems, not only in adaptive control, but also for adaptive signal processing, and for general...increasingly tight and deco, pled centrol witn ir..c-easin gain. It is obvious then that by propter selectcn of the elements of the Z seihting matrix the

  5. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    Science.gov (United States)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  6. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  7. Optimization Models for Flexible and Adaptive SDN Network Virtualization Layers

    OpenAIRE

    Zerwas, Johannes; Blenk, Andreas; Kellerer, Wolfgang

    2016-01-01

    Network hypervisors provide the network virtualization layer for Software Defined Networking (SDN). They enable virtual network (VN) tenants to bring their SDN controllers to program their logical networks individually according to their demands. In order to make use of the high flexibility of virtual SDN networks and to provide high performance, the deployment of the virtualization layer needs to adapt to changing VN demands. This paper initializes the study of the optimization of dynamic SD...

  8. Generalized synchronization in complex dynamical networks via adaptive couplings

    NARCIS (Netherlands)

    Liu, Hui; Chen, Juan; Lu, Jun-an; Cao, Ming

    2010-01-01

    This paper investigates generalized synchronization of three typical classes of complex dynamical networks: scale-free networks, small-world networks. and interpolating networks. The proposed synchronization strategy is to adjust adaptively a node's coupling strength based oil the node's local

  9. Adaptive training of feedforward neural networks by Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-02-01

    Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).

  10. Public goods games on adaptive coevolutionary networks

    Science.gov (United States)

    Pichler, Elgar; Shapiro, Avi M.

    2017-07-01

    Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, reap public goods benefits, which are shares of the contributions amplified by a synergy factor. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a complex network in which players adapt to their environment in order to increase individual payoffs relative to past payoffs parameterized by greediness. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players' strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.

  11. Speed Adaptation in Urban Road Network Management

    Directory of Open Access Journals (Sweden)

    Raiyn Jamal

    2016-06-01

    Full Text Available Various forecasting schemes have been proposed to manage traffic data, which is collected by videos cameras, sensors, and mobile phone services. However, these are not sufficient for collecting data because of their limited coverage and high costs for installation and maintenance. To overcome the limitations of these tools, we introduce a hybrid scheme based on intelligent transportation system (ITS and global navigation satellite system (GNSS. Applying the GNSS to calculate travel time has proven efficient in terms of accuracy. In this case, GNSS data is managed to reduce traffic congestion and road accidents. This paper introduces a short-time forecasting model based on real-time travel time for urban heterogeneous road networks. Travel time forecasting has been achieved by predicting travel speeds using an optimized exponential moving Average (EMA model. Furthermore for speed adaptation in heterogeneous road networks, it is necessary to introduce asuitable control strategy for longitude, based on the GNSS. GNSS products provide worldwide and real-time services using precise timing information and, positioning technologies.

  12. Smart Adaptive Flight Effective Cue (SAFE-Cue) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aviation safety, numerous adaptive control techniques have been developed to maintain aircraft stability and performance in the presence of failures or...

  13. Wireless Sensor Networks for Developmental and Flight Instrumentation

    Science.gov (United States)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  14. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    Science.gov (United States)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  15. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  16. LTE Adaptation for Mobile Broadband Satellite Networks

    Directory of Open Access Journals (Sweden)

    Bastia Francesco

    2009-01-01

    Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.

  17. Adaptive Mobile Positioning in WCDMA Networks

    Directory of Open Access Journals (Sweden)

    Dong B.

    2005-01-01

    Full Text Available We propose a new technique for mobile tracking in wideband code-division multiple-access (WCDMA systems employing multiple receive antennas. To achieve a high estimation accuracy, the algorithm utilizes the time difference of arrival (TDOA measurements in the forward link pilot channel, the angle of arrival (AOA measurements in the reverse-link pilot channel, as well as the received signal strength. The mobility dynamic is modelled by a first-order autoregressive (AR vector process with an additional discrete state variable as the motion offset, which evolves according to a discrete-time Markov chain. It is assumed that the parameters in this model are unknown and must be jointly estimated by the tracking algorithm. By viewing a nonlinear dynamic system such as a jump-Markov model, we develop an efficient auxiliary particle filtering algorithm to track both the discrete and continuous state variables of this system as well as the associated system parameters. Simulation results are provided to demonstrate the excellent performance of the proposed adaptive mobile positioning algorithm in WCDMA networks.

  18. Fundraising flights: a levy on international air travel for adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Tom; Chambwera, Muyeye

    2011-03-15

    Adapting to climate change will not be cheap: it will cost an estimated tens of billions of dollars each year. But where will the money come from? The UN climate negotiations have set up dedicated funds for the task but domestic politics have resulted in insufficient, variable and unreliable contributions from governments. An innovative adaptation levy on international air travel could help fill the gap. A small charge to individual travellers would raise up to US$10 billion a year. The levy, which follows the 'polluter pays' principle, could be implemented very quickly and at minimal cost and would go a long way to raising sums that could make a significant difference.

  19. An evaluation of unisensory and multisensory adaptive flight-path navigation displays

    Science.gov (United States)

    Moroney, Brian W.

    1999-11-01

    The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added

  20. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  1. Information Theoretic Adaptive Tracking of Epidemics in Complex Networks

    CERN Document Server

    Harrington, Patrick L

    2013-01-01

    Adaptively monitoring the states of nodes in a large complex network is of interest in domains such as national security, public health, and energy grid management. Here, we present an information theoretic adaptive tracking and sampling framework that recursively selects measurements using the feedback from performing inference on a dynamic Bayesian Network. We also present conditions for the existence of a network specific, observation dependent, phase transition in the updated posterior of hidden node states resulting from actively monitoring the network. Since traditional epidemic thresholds are derived using observation independent Markov chains, the threshold of the posterior should more accurately model the true phase transition of a network. The adaptive tracking framework and epidemic threshold should provide insight into modeling the dynamic response of the updated posterior to active intervention and control policies while monitoring modern complex networks.

  2. Adaptive Dynamics, Control, and Extinction in Networked Populations

    Science.gov (United States)

    2015-07-09

    Adaptive Dynamics, Control, and Extinction in Networked Populations Ira B. Schwartz US Naval Research Laboratory Code 6792 Nonlinear System Dynamics...theory of large deviations to stochastic network extinction to predict extinction times. In particular, we use the theory to find the most probable...paths leading to extinction . We then apply the methodology to network models and discover how mean extinction times scale with network parameters in Erdos

  3. ADAPTIVE NETWORK CODING IN WIRELESS COMMUNICATIONS

    DEFF Research Database (Denmark)

    2017-01-01

    A first network node (eNB) is configured to receive (404), from a second network node (UE), channel performance indicator values regarding a serving cell, and estimate (404) a number of network-coded packets based on the received channel performance indicator values, such that the estimated numbe...

  4. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  5. Collaborative Trust Networks in Engineering Design Adaptation

    DEFF Research Database (Denmark)

    Atkinson, Simon Reay; Maier, Anja; Caldwell, Nicholas

    2011-01-01

    ); applying the Change Prediction Method (CPM) tool. It posits the idea of the ‘Networks-in-Being’ with varying individual and collective characteristics. [Social] networks are considered to facilitate information exchange between actors. At the same time, networks failing to provide trusted-information can...... collaboration and decision-making by using the change prediction method as a way of scoping information propagation between actors within a network....... hinder effective communication and collaboration. Different combinations of trust may therefore improve or impair the likelihood of information flow, transfer and subsequent action (cause and effect). This paper investigates how analysing different types of network-structures-in-being can support...

  6. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  7. Adaptive Charging Algorithms for a Network of Electric Vehicles

    OpenAIRE

    Low, Zhi H.; Low, Steven H.

    2017-01-01

    Electric vehicle node controllers in accordance with embodiments of the invention enable adaptive charging. One embodiment includes one or more centralized computing systems; a communications network; a plurality of electric vehicle node controllers, where each electric vehicle node controller in the plurality of node controllers contains: a network interface; a processor; a memory containing: an adaptive charging application; a plurality of electric vehicle node parameters describing chargin...

  8. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K.

    1995-12-31

    With the advent of digital technology and microprocessor-based relays, it is possible to continuously monitor a power network, analyze it in real time, and change the relay settings to those most suitable at that time, thereby achieving improved protection of the network. This approach, known as adaptive relaying, was applied to the Saskatoon distribution network. This paper describes the software modules developed for setting ground fault overcurrent relays in the adaptive relay protection system. The major task in this system was the on-line coordination of relays, as most faults in a distribution system are of the single-phase to ground type and current unbalance due to single-phase loading contributes to the complexity of relay coordination. The modules served for network topology detection, state estimation, fault analysis, and relay setting and coordination. The paper also presents results of a study of the proposed adaptive ground fault protection scheme using a model distribution network.

  9. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  10. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2006-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit observations, as they are read from a database, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  11. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  12. Implementation of an Adaptive Learning System Using a Bayesian Network

    Science.gov (United States)

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  13. Networked Airbourne Communications Using Adaptive Multi Beam Directional Links

    Science.gov (United States)

    2016-03-05

    January 8, 2009. works introduce more sophisticated channel models, and route selection by a method called percolation [7], [8]. For these examples ...Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can

  14. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  15. Compensation for unmatched uncertainty with adaptive RBF network

    African Journals Online (AJOL)

    user

    3 Control Systems Research Group, School of Engineering, Liverpool John Moores University, Liverpool, UK ... Introduction ... new integral sliding surface that includes an additional design matrix with an adaptive RBF neural network. In addition to ... This may be tackled by neural network modeling in on-line mode but the.

  16. Adaptive Data Broadcast in Hybrid Networks

    National Research Council Canada - National Science Library

    Stathatos, Konstantinos; Roussopoulos, Nick; Baras, John S

    1997-01-01

    .... The goal is to build highly scalable systems with small response time. In this paper, we describe a technique that continuously adapts the broadcast content to match the hot-spot of the workload...

  17. Adaptation Methods in Mobile Communication Networks

    National Research Council Canada - National Science Library

    Vladimir Wieser

    2003-01-01

    Adaptation methods are the main tool for transmission rate maximization through the mobile channel and today the great attention is directed to them not only in theoretical domain but in standardization process, too...

  18. Adaptation Methods in Mobile Communication Networks

    National Research Council Canada - National Science Library

    Vladimir Wieser

    2003-01-01

      Adaptation methods are the main tool for transmission rate maximization through the mobile channel and today the great attention is directed to them not only in theoretical domain but in standardization process, too...

  19. Dynamic Virtual LANs for Adaptive Network Security

    National Research Council Canada - National Science Library

    Merani, Diego; Berni, Alessandro; Leonard, Michel

    2004-01-01

    The development of Network-Enabled capabilities in support of undersea research requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards...

  20. Engineering Issues for an Adaptive Defense Network

    National Research Council Canada - National Science Library

    Piszcz, Alan; Orlans, Nicholas; Eyler-Walker, Zachary; Moore, David

    2001-01-01

    .... The primary issue was the capability to detect and defend against DDoS. Experimentation was performed with a packet filtering firewall, a network Quality of Service manager, multiple DDoS tools, and traffic generation tools...

  1. Adaptive Influence Maximization in Dynamic Social Networks

    OpenAIRE

    Tong, Guangmo; Wu, Weili; Tang, Shaojie; Du, Ding-Zhu

    2015-01-01

    For the purpose of propagating information and ideas through a social network, a seeding strategy aims to find a small set of seed users that are able to maximize the spread of the influence, which is termed as influence maximization problem. Despite a large number of works have studied this problem, the existing seeding strategies are limited to the static social networks. In fact, due to the high speed data transmission and the large population of participants, the diffusion processes in re...

  2. Adaptive Capacity Management in Bluetooth Networks

    OpenAIRE

    Son, L.T.

    2004-01-01

    With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low power, and low cost mobile ad hoc solution for the global interconnection of all mobile devices. To implement Bluetooth network as a true mobile ad hoc wireless network operating in short radio range, h...

  3. Connection adaption for control of networked mobile chaotic agents.

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  4. Peculiarities of transformation of adaptation level of the astronaut in conditions of long-lasting flight

    Science.gov (United States)

    Padashulya, H.; Prisnyakova, L.; Prisnyakov, V.

    Prognostication of the development of adverse factors of psychological processes in the personality of the astronaut who time and again feels transformation of internal structure of his personality is one of cardinal problems of the long-lasting flight Adaptation to changing conditions of long-lasting flight is of particular importance because it has an effect on the efficiency of discharged functions and mutual relations in the team The fact of standard psychological changes emerging in the personality being in the state of structural transformations is the precondition for the possibility of prognostication Age-specific gender and temperamental differences in the personality enable to standardize these changes Examination of the process of transformation of adaptation level of the personality in the varied environment depending on the type of temperament and constituents age and gender is chief object of the report In the report it is shown that in the process of transformation of adaptation parameters - attitude to guillemotleft work guillemotright guillemotleft family guillemotright guillemotleft environment guillemotright and guillemotleft ego guillemotright - the changes can go in two directions - in the direction of increase and decline of indexes The trend of increase enables to accumulate them and form potentiality to reduce or increase the level of personality adaptation There is a hypothesis that the dynamics of the process of transformation of adaptation parameter is shown up in the orientation of increase of

  5. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight

    Science.gov (United States)

    Layne, C. S.; Lange, G. W.; Pruett, C. J.; McDonald, P. V.; Merkle, L. A.; Mulavara, A. P.; Smith, S. L.; Kozlovskaya, I. B.; Bloomberg, J. J.

    The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to be compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.

  6. QOS-aware error recovery in wireless body sensor networks using adaptive network coding.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah

    2014-12-29

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  7. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    Science.gov (United States)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  8. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    1School of Information Science & Engineering, Northeastern University, Shenyang,. Liaoning, 110819, People's ... Introduction. Complex networks exist extensively in ecosystems, power grids, food webs and in many other spheres in our daily lives. Over the course of the past 30 years, technological revolu- tions of complex ...

  9. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  10. Adaptive Importance Sampling Simulation of Queueing Networks

    NARCIS (Netherlands)

    de Boer, Pieter-Tjerk; Nicola, V.F.; Rubinstein, N.; Rubinstein, Reuven Y.

    2000-01-01

    In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a

  11. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  12. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Saskatchewan Univ., Saskatoon, SK (Canada)

    1995-12-31

    Adaptive protection was used for designing a protection system for the City of Saskatoon`s distribution network. The software and hardware were developed and the protection system was implemented in the laboratory at the University of Saskatchewan. In the first phase of the project, phase overcurrent relays were coordinated on the basis of three-phase faults. Most faults in distribution networks were single-phase to ground faults. Ground fault currents varied due to different grounding practices, changes in operating conditions and system topology. In the second phase of the project, adaptive capabilities for ground overcurrent and directional ground overcurrent protection were added. Software modules developed for achieving adaptive ground fault protection were described. Results from system studies carried out using the City of Saskatoon`s distribution network were also analyzed. 7 refs., 8 figs.

  13. QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding

    Directory of Open Access Journals (Sweden)

    Mohammad Abdur Razzaque

    2014-12-01

    Full Text Available Wireless body sensor networks (WBSNs for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS, in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  14. A candidate multimodal functional genetic network for thermal adaptation

    Directory of Open Access Journals (Sweden)

    Katharina C. Wollenberg Valero

    2014-09-01

    Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and

  15. Topology detection for adaptive protection of distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Power System Research Group

    1995-12-31

    A general purpose network topology detection technique suitable for use in adaptive relaying applications is presented in this paper. Three test systems were used to check the performance of the proposed technique. Results obtained from the tests are included. The proposed technique was implemented in the laboratory as a part of the implementation of the adaptive protection scheme. The execution times of the topology detection software were monitored and were found to be acceptable.

  16. Scalable Harmonization of Complex Networks With Local Adaptive Controllers

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Herzallah, R.

    2017-01-01

    Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Feedback * Feedforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf

  17. Adaptive thresholds for neural networks with synaptic noise.

    Science.gov (United States)

    Bollé, D; Heylen, R

    2007-08-01

    The inclusion of a macroscopic adaptive threshold is studied for the retrieval dynamics of both layered feedforward and fully connected neural network models with synaptic noise. These two types of architectures require a different method to be solved numerically. In both cases it is shown that, if the threshold is chosen appropriately as a function of the cross-talk noise and of the activity of the stored patterns, adapting itself automatically in the course of the recall process, an autonomous functioning of the network is guaranteed. This self-control mechanism considerably improves the quality of retrieval, in particular the storage capacity, the basins of attraction and the mutual information content.

  18. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  19. Adaptive bridge control strategy for opinion evolution on social networks.

    Science.gov (United States)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global∕local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  20. Shaping embodied neural networks for adaptive goal-directed behavior.

    Directory of Open Access Journals (Sweden)

    Zenas C Chao

    2008-03-01

    Full Text Available The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons, as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat through a sensory-motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of training stimuli with adaptive selection contingent on the animat's behavior. We also found that an individual network had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats themselves.

  1. Social Networking Adapted for Distributed Scientific Collaboration

    Science.gov (United States)

    Karimabadi, Homa

    2012-01-01

    Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and

  2. Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes

    Directory of Open Access Journals (Sweden)

    Cocco Giuseppe

    2010-01-01

    Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.

  3. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    Science.gov (United States)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    results demonstrate astronauts adaptive capabilities and full performance recovery within days after flight.

  4. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis

  5. Emergence of local synchronization in neuronal networks with adaptive couplings.

    Directory of Open Access Journals (Sweden)

    Shilpa Chakravartula

    Full Text Available Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.

  6. Emergence of local synchronization in neuronal networks with adaptive couplings.

    Science.gov (United States)

    Chakravartula, Shilpa; Indic, Premananda; Sundaram, Bala; Killingback, Timothy

    2017-01-01

    Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.

  7. In-network adaptation of SHVC video in software-defined networks

    Science.gov (United States)

    Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos

    2016-04-01

    Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and

  8. Flight Testing of Wireless Networking for Nanosat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here addresses the testing and evaluation of wireless networking technologies for small launch vehicles by leveraging existing nanosat launch...

  9. Compensation for unmatched uncertainty with adaptive RBF network

    African Journals Online (AJOL)

    Robust control for nonlinear uncertain systems has been solved for matched uncertainty but has not been completely solved yet for unmatched uncertainty. This paper developed a new method in which an adaptive radial basis function neural network is used to compensate for the effects of unmatched uncertainty in the ...

  10. Evolving RBF neural networks for adaptive soft-sensor design.

    Science.gov (United States)

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  11. Adaptive dynamic capacity borrowing in road-covering mobile networks

    NARCIS (Netherlands)

    Ule, A.; Boucherie, Richardus J.; Li, W.; Pan, Y.

    2006-01-01

    This paper introduces adaptive dynamic capacity borrowing strategies for wireless networks covering a road. In a F/TDMA-based model, road traffic prediction models are used to characterise the movement of hot spots, such as traffic jams, and subsequently to predict the teletraffic load offered to

  12. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  13. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever...

  14. Adaptive clustering algorithm for community detection in complex networks

    Science.gov (United States)

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality.

  15. Sliding Mode Observer and Control Design with Adaptive Parameter Estimation for a Supersonic Flight Vehicle

    Directory of Open Access Journals (Sweden)

    M. Bahrami

    2010-01-01

    Full Text Available Design and synthesis of a nonlinear generic supersonic flight vehicle longitudinal dynamics control for angle-of-attack, AOA, output tracking in the atmospheric flight is presented based on sliding mode control. A sliding mode observer is invoked to estimate AOA which is difficult to measure in practice. Large parameter uncertainties accommodation envisaged by designing adaptive mechanisms for both the control and observer and high chattering authority due to large deviations of aerodynamic coefficients arising from wind-tunnel measurements are inhibited. The employed method enables the sliding mode control design to exhibit the desired dynamic properties during the entire output-tracking process. Simulations results are presented to demonstrate the performance, robustness, and stability.

  16. A Prediction-Driven Adaptation Approach for Self-Adaptive Sensor Networks

    OpenAIRE

    Paez Anaya, Ivan Dario; Simko, Viliam; Bourcier, Johann; Plouzeau, Noël; Jézéquel, Jean-Marc

    2014-01-01

    International audience; Engineering self-adaptive software in unpredictable environments such as pervasive systems, where network's ability, remaining battery power and environmental conditions may vary over the lifetime of the system is a very challenging task. Many current software engineering approaches leverage run-time architectural models to ease the design of the autonomic control loop of these self-adaptive systems. While these approaches perform well in reacting to various evolutions...

  17. Adaptive relaying for ground fault protection of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M. S.; Sidhu, T. S.; Talukdar, B. K.

    1995-06-01

    In consequence of the increasing complexity of power distribution networks frequent changes in relay settings to achieve effective protection against ground faults is essential. The principal focus of this paper was adaptive relaying which makes use of digital technology and microprocessors to design systems which can provide protection of complex distribution networks under all operating conditions. Specifically, the paper described software modules that were developed to achieve this capability, developed for the City of Saskatoon`s distribution network. The system provides reliable, fast and selective protection of all components of the distribution system by constantly monitoring all the buses and currents in the circuit by substation computers, which are under the control of a central control computer. In addition to adaptive protection, the system can also provide optimal control of feeder loads, transformers, reactors, and capacitors, cold load pick up and reclosing of circuit breakers and reclosers. 2 refs., 8 figs.

  18. Dual adaptive dynamic control of mobile robots using neural networks.

    Science.gov (United States)

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  19. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  20. Dietary and flight energetic adaptations in a salivary gland transcriptome of an insectivorous bat.

    Directory of Open Access Journals (Sweden)

    Carleton J Phillips

    Full Text Available We hypothesized that evolution of salivary gland secretory proteome has been important in adaptation to insectivory, the most common dietary strategy among Chiroptera. A submandibular salivary gland (SMG transcriptome was sequenced for the little brown bat, Myotis lucifugus. The likely secretory proteome of 23 genes included seven (RETNLB, PSAP, CLU, APOE, LCN2, C3, CEL related to M. lucifugus insectivorous diet and metabolism. Six of the secretory proteins probably are endocrine, whereas one (CEL most likely is exocrine. The encoded proteins are associated with lipid hydrolysis, regulation of lipid metabolism, lipid transport, and insulin resistance. They are capable of processing exogenous lipids for flight metabolism while foraging. Salivary carboxyl ester lipase (CEL is thought to hydrolyze insect lipophorins, which probably are absorbed across the gastric mucosa during feeding. The other six proteins are predicted either to maintain these lipids at high blood concentrations or to facilitate transport and uptake by flight muscles. Expression of these seven genes and coordinated secretion from a single organ is novel to this insectivorous bat, and apparently has evolved through instances of gene duplication, gene recruitment, and nucleotide selection. Four of the recruited genes are single-copy in the Myotis genome, whereas three have undergone duplication(s with two of these genes exhibiting evolutionary 'bursts' of duplication resulting in multiple paralogs. Evidence for episodic directional selection was found for six of seven genes, reinforcing the conclusion that the recruited genes have important roles in adaptation to insectivory and the metabolic demands of flight. Intragenic frequencies of mobile- element-like sequences differed from frequencies in the whole M. lucifugus genome. Differences among recruited genes imply separate evolutionary trajectories and that adaptation was not a single, coordinated event.

  1. Network Experiences Lead to the Adaption of a Firm’s Network Competence

    Directory of Open Access Journals (Sweden)

    Bianka Kühne

    2011-12-01

    Full Text Available Networks become increasingly important as external sources of innovation for firms. Through networks firms get incontact with different actors with whom they can exchange information and collaborate. A firm’s ability to be asuccessful network actor depends on its network competence. This term can be defined as having the necessaryknowledge, skills and qualifications for networking as well as using them effectively. In this paper we investigate thelink between a firm’s network competence and the benefits resulting from it in a two‐way direction. First, thenetwork competence of the firm facilitates the adoption of information from other network actors which may leadto innovation success. Second the perceived network benefits shall in their turn influence the network competenceof the firm. Consequently, firms will adapt their network strategy corresponding their experiences. The objective ofthis paper is to investigate the dynamics of networking and its influence on the firm’s network competence. For thisexploratory research 3 Belgian networks are examined. In‐depth interviews are used in combination with semistructuredinterview guides to conduct the research. Our results indicate that some firms perceive benefits fromtheir network efforts, for others it is more a burden. Furthermore, in some of our cases we found that positiveexperiences with clear benefits motivate the firm to enhance its network competence. This is illustrated by the factthat collaborations are more frequently initiated, trust is more easily build, firms are more open to communicateinformation and the confidentiality threshold is overcome.

  2. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    Science.gov (United States)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  3. Digital adaptive model following flight control. [using fighter aircraft mathematical model-following algorithm

    Science.gov (United States)

    Alag, G. S.; Kaufman, H.

    1974-01-01

    Simple mechanical linkages are often unable to cope with the many control problems associated with high performance aircraft maneuvering over a wide flight envelope. One procedure for retaining uniform handling qualities over such an envelope is to implement a digital adaptive controller. Towards such an implementation an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized equations of motion for a typical fighter aircraft. The system is composed of an online weighted least squares identifier, a Kalman state filter, and a single stage real model following control law. The corresponding control gains are readily adjustable in accordance with parameter changes to ensure asymptotic stability if the conditions for perfect model following are satisfied and stability in the sense of boundedness otherwise.

  4. Spontaneous formation of dynamical groups in an adaptive networked system

    Science.gov (United States)

    Li, Menghui; Guan, Shuguang; Lai, C.-H.

    2010-10-01

    In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.

  5. SVC VIDEO STREAM ALLOCATION AND ADAPTATION IN HETEROGENEOUS NETWORK

    Directory of Open Access Journals (Sweden)

    E. A. Pakulova

    2016-07-01

    Full Text Available The paper deals with video data transmission in format H.264/SVC standard with QoS requirements satisfaction. The Sender-Side Path Scheduling (SSPS algorithm and Sender-Side Video Adaptation (SSVA algorithm were developed. SSPS algorithm gives the possibility to allocate video traffic among several interfaces while SSVA algorithm dynamically changes the quality of video sequence in relation to QoS requirements. It was shown that common usage of two developed algorithms enables to aggregate throughput of access networks, increase parameters of Quality of Experience and decrease losses in comparison with Round Robin algorithm. For evaluation of proposed solution, the set-up was made. The trace files with throughput of existing public networks were used in experiments. Based on this information the throughputs of networks were limited and losses for paths were set. The results of research may be used for study and transmission of video data in heterogeneous wireless networks.

  6. Exploring complex networks by means of adaptive walkers.

    Science.gov (United States)

    Prignano, Luce; Moreno, Yamir; Díaz-Guilera, Albert

    2012-12-01

    Finding efficient algorithms to explore large networks with the aim of recovering information about their structure is an open problem. Here, we investigate this challenge by proposing a model in which random walkers with previously assigned home nodes navigate through the network during a fixed amount of time. We consider that the exploration is successful if the walker gets the information gathered back home, otherwise no data are retrieved. Consequently, at each time step, the walkers, with some probability, have the choice to either go backward approaching their home or go farther away. We show that there is an optimal solution to this problem in terms of the average information retrieved and the degree of the home nodes and design an adaptive strategy based on the behavior of the random walker. Finally, we compare different strategies that emerge from the model in the context of network reconstruction. Our results could be useful for the discovery of unknown connections in large-scale networks.

  7. An Adaptive Relocation Strategy for heterogeneous sensor networks

    Directory of Open Access Journals (Sweden)

    Salah Abdel-Mageid

    2011-07-01

    Full Text Available Heterogeneous sensor networks (HSNs have grown to be familiar in recent years due to their capabilities to increase network lifetime and reliability without a significant increase in the cost. Deploying sensor nodes in large-scale applications (i.e., battlefields and environmental monitoring requires decentralized solutions. In this paper, we propose a novel decentralized approach enabling us to consider the heterogeneous characteristics of sensor nodes. In the Adaptive Relocation Strategy, new geometric approaches are designed to perfectly deal with the most heterogeneous sensor characteristics. The simulation results are presented to show that the proposed solution achieves the high coverage performance in few rounds with minimum energy consumption and minimum computations. The performance comparison is also introduced to study how the designed parameters affect the network performance in terms of the network cost, the coverage enhancement, and the total energy consumption measured by the computational complexity and the average moving distance.

  8. Leadership within regional climate change adaptation networks: the case of climate adaptation officers in Northern Hesse, Germany

    NARCIS (Netherlands)

    Stiller, S.J.; Meijerink, S.V.

    2016-01-01

    In the climate adaptation literature, leadership tends to be an understudied factor, although it may be crucial for regional adaptation governance. This article shows how leadership can be usefully conceptualized and operationalized within regional governance networks dealing with climate

  9. Adaptive nonlinear control of missiles using neural networks

    Science.gov (United States)

    McFarland, Michael Bryan

    Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear

  10. Coupled interference based rate adaptation in ad hoc networks

    CSIR Research Space (South Africa)

    Awuor, F

    2011-09-01

    Full Text Available since the channel condition is time variant [5], [6]. Hence CIN considers link adaptation based on SINR performance to derive transmit power that minimizes coupled interference in the network. In [5], an algorithm is proposed where an average value... channel condition variance for proper choice of PHY mode. In [7], rate adaptation scheme is proposed wherein nodes select the power-rate pair to maximize their utility based on the previous measured SINRs. The values of SINR employed by [5],[6] and [7...

  11. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost......Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique...

  12. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow

    National Research Council Canada - National Science Library

    Julian Zubek; Michał Denkiewicz; Juliusz Barański; Przemysław Wróblewski; Joanna Rączaszek-Leonardi; Dariusz Plewczynski

    2017-01-01

    ... network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions...

  13. Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem

    Directory of Open Access Journals (Sweden)

    Jiao-Hong Yi

    2016-01-01

    Full Text Available Probabilistic neural network has successfully solved all kinds of engineering problems in various fields since it is proposed. In probabilistic neural network, Spread has great influence on its performance, and probabilistic neural network will generate bad prediction results if it is improperly selected. It is difficult to select the optimal manually. In this article, a variant of probabilistic neural network with self-adaptive strategy, called self-adaptive probabilistic neural network, is proposed. In self-adaptive probabilistic neural network, Spread can be self-adaptively adjusted and selected and then the best selected Spread is used to guide the self-adaptive probabilistic neural network train and test. In addition, two simplified strategies are incorporated into the proposed self-adaptive probabilistic neural network with the aim of further improving its performance and then two versions of simplified self-adaptive probabilistic neural network (simplified self-adaptive probabilistic neural networks 1 and 2 are proposed. The variants of self-adaptive probabilistic neural networks are further applied to solve the transformer fault diagnosis problem. By comparing them with basic probabilistic neural network, and the traditional back propagation, extreme learning machine, general regression neural network, and self-adaptive extreme learning machine, the results have experimentally proven that self-adaptive probabilistic neural networks have a more accurate prediction and better generalization performance when addressing the transformer fault diagnosis problem.

  14. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  15. Effects of Adaptive Wormhole Routing in Event Builder Networks

    CERN Document Server

    Moser, R; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutiérrez-Mlot, E; Gutleber, J; Jacobs, C; Kim, J C; Klute, M; Lipeles, E; Lopez-Perez, Juan Antonio; Maron, G; Meijers, F; Meschi, E; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Rácz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J; Bauer, G

    2007-01-01

    The data acquisition system of the CMS experiment at the Large Hadron Collider features a two-stage event builder, which combines data from about 500 sources into full events at an aggregate throughput of 100 GByte/s. To meet the requirements, several architectures and interconnect technologies have been quantitatively evaluated. Both Gigabit Ethernet and Myrinet networks will be employed during the first run. Nearly full bi-section throughput can be obtained using a custom software driver for Myrinet based on barrel shifter traffic shaping. This paper discusses the use of Myrinet dual-port network interface cards supporting channel bonding to achieve virtual 5GBit/s links with adaptive routing to alleviate the throughput limitations associated with wormhole routing. Adaptive routing is not expected to be suitable for high-throughput event builder applications in high-energy physics. To corroborate this claim, results from the CMS event builder preseries installation at CERN are presented and the problems of ...

  16. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Naming game with biased assimilation over adaptive networks

    Science.gov (United States)

    Fu, Guiyuan; Zhang, Weidong

    2018-01-01

    The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.

  18. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    Directory of Open Access Journals (Sweden)

    Huawei Wang

    2013-01-01

    Full Text Available Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN have been used to build the aviation operation safety assessment model based on flight delay. The structure and parameters learning of the model have been researched. By using BN model, some airline in China has been selected to assess safety risk of civil aviation. The civil aviation safety risk of BN model has been assessed by GeNIe software. The research results show that flight delay, which increases the safety risk of civil aviation, can be seen as incremental safety risk. The effectiveness and correctness of the model have been tested and verified.

  19. Distrubtion Tolerant Network Technology Flight Validation Report: DINET

    Science.gov (United States)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  20. Distribution Tolerant Network Technology Flight Validation Report: DINET

    Science.gov (United States)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  1. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  2. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    Science.gov (United States)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  3. Organisational adaptation in an activist network: social networks, leadership, and change in al-Muhajiroun.

    Science.gov (United States)

    Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt

    2013-09-01

    Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Supervised Learning in Adaptive DNA Strand Displacement Networks.

    Science.gov (United States)

    Lakin, Matthew R; Stefanovic, Darko

    2016-08-19

    The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems.

  5. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  6. Adaptive comanagement of a marine protected area network in Fiji.

    Science.gov (United States)

    Weeks, Rebecca; Jupiter, Stacy D

    2013-12-01

    Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  7. Sparse gamma rhythms arising through clustering in adapting neuronal networks.

    Directory of Open Access Journals (Sweden)

    Zachary P Kilpatrick

    2011-11-01

    Full Text Available Gamma rhythms (30-100 Hz are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons.

  8. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance

  9. A Bayesian regularized artificial neural network for adaptive optics forecasting

    Science.gov (United States)

    Sun, Zhi; Chen, Ying; Li, Xinyang; Qin, Xiaolin; Wang, Huiyong

    2017-01-01

    Real-time adaptive optics is a technology for enhancing the resolution of ground-based optical telescopes and overcoming the disturbance of atmospheric turbulence. The performance of the system is limited by delay errors induced by the servo system and photoelectrons noise of wavefront sensor. In order to cut these delay errors, this paper proposes a novel model to forecast the future control voltages of the deformable mirror. The predictive model is constructed by a multi-layered back propagation network with Bayesian regularization (BRBP). For the purpose of parallel computation and less disturbance, we adopt a number of sub-BP neural networks to substitute the whole network. The Bayesian regularized network assigns a probability to the network weights, allowing the network to automatically and optimally penalize excessively complex models. The simulation results show that the BRBP introduces smaller mean absolute percentage error (MAPE) and mean square errors (MSE) than other typical algorithms. Meanwhile, real data analysis results show that the BRBP model has strong generalization capability and parallelism.

  10. LAMAN: Load Adaptable MAC for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Realp Marc

    2005-01-01

    Full Text Available In mobile ad hoc radio networks, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency. In this paper, the load adaptable medium access control for ad hoc networks (LAMAN protocol is described. LAMAN is a novel decentralized multipacket MAC protocol designed following a cross-layer approach. Basically, this protocol is a hybrid CDMA-TDMA-based protocol that aims at throughput maximization in multipacket communication environments by efficiently combining contention and conflict-free protocol components. Such combination of components is used to adapt the nodes' access priority to changes on the traffic load while, at the same time, accounting for the multipacket reception (MPR capability of the receivers. A theoretical analysis of the system is developed presenting closed expressions of network throughput and packet delay. By simulations the validity of our analysis is shown and the performances of a LAMAN-based system and an Aloha-CDMA-based one are compared.

  11. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  12. Adaptive Decision-Making Scheme for Cognitive Radio Networks

    KAUST Repository

    Alqerm, Ismail

    2014-05-01

    Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.

  13. Network and adaptive system of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Campbell, James E. Dr. (.; .); Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  14. Assortative and modular networks are shaped by adaptive synchronization processes.

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A; Papo, David; Schaeffer, Satu Elisa; Boccaletti, Stefano

    2012-07-01

    Modular organization and degree-degree correlations are ubiquitous in the connectivity structure of biological, technological, and social interacting systems. So far most studies have concentrated on unveiling both features in real world networks, but a model that succeeds in generating them simultaneously is needed. We consider a network of interacting phase oscillators, and an adaptation mechanism for the coupling that promotes the connection strengths between those elements that are dynamically correlated. We show that, under these circumstances, the dynamical organization of the oscillators shapes the topology of the graph in such a way that modularity and assortativity features emerge spontaneously and simultaneously. In turn, we prove that such an emergent structure is associated with an asymptotic arrangement of the collective dynamical state of the network into cluster synchronization.

  15. Initial moments of adaptation to microgravity of human orientation behavior, in parabolic flight conditions

    Science.gov (United States)

    Tafforin, Carole

    1996-06-01

    The first ethological studies of astronauts' adaptation to microgravity dealt with the behavioral strategies observed during short-term space missions. No attempts had however been made to consider the initial moments of adaptation dynamics, when the subject is first submitted to conditions allowing body orientations in the full three dimensions of space. The present experimental approach was both longitudinal and transversal. It consisted of analysing, during a goal-directed orientation task in parabolic flight, the orientation behavior of 12 subjects with a past experience of 0, 30 or more than 300 parabolas. During each microgravity phase, the subjects were asked to orientate their bodies and touch, with the dominant hand, four coloured targets arranged inside the aircraft. Results showed that for inexperienced subjects, the time between two target contacts was longer than experienced subjects. They often failed to reach all targets in the series during the first parabolas. They showed right-left confusion and a preference for the "up-down" vertical body orientation. Their performance, described by the efficiency of orientation in all three dimensions, improved over time and according to the level of experience. The results are discussed for the spontaneous, preliminary and integrative stages of adaptation, emphasizing new relationships between the body references and those of the surroundings. Such experiences lead the subject to develop a new mental representation of space.

  16. TCP adaptation with network coding and opportunistic data forwarding in multi-hop wireless networks

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-10-01

    Full Text Available Opportunistic data forwarding significantly increases the throughput in multi-hop wireless mesh networks by utilizing the broadcast nature of wireless transmissions and the fluctuation of link qualities. Network coding strengthens the robustness of data transmissions over unreliable wireless links. However, opportunistic data forwarding and network coding are rarely incorporated with TCP because the frequent occurrences of out-of-order packets in opportunistic data forwarding and long decoding delay in network coding overthrow TCP’s congestion control. In this paper, we propose a solution dubbed TCPFender, which supports opportunistic data forwarding and network coding in TCP. Our solution adds an adaptation layer to mask the packet loss caused by wireless link errors and provides early positive feedbacks to trigger a larger congestion window for TCP. This adaptation layer functions over the network layer and reduces the delay of ACKs for each coded packet. The simulation results show that TCPFender significantly outperforms TCP/IP in terms of the network throughput in different topologies of wireless networks.

  17. Traffic Adaptive MAC Protocols in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Farhan Masud

    2017-01-01

    Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.

  18. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  19. Rescue of endemic states in interconnected networks with adaptive coupling

    CERN Document Server

    Vazquez, F; Miguel, M San

    2015-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads only if the two layers are interconnected, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network, the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that finite-size effects are amplified by the rewiring, as the...

  20. ADAPTIVE SERVICE PROVISIONING FOR MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Cynthia Jayapal

    2010-09-01

    Full Text Available Providing efficient and scalable service provisioning in Mobile Ad Hoc Network (MANET is a big research challenge. In adaptive service provisioning mechanism an adaptive election procedure is used to select a coordinator node. The role of a service coordinator is crucial in any distributed directory based service provisioning scheme. The existing coordinator election schemes use either the nodeID or a hash function to choose the coordinator. In these schemes, the leader changes are more frequent due to node mobility. We propose an adaptive scheme that makes use of an eligibility factor that is calculated based on the distance to the zone center, remaining battery power and average speed to elect a core node that change according to the network dynamics. We also retain the node with the second highest priority as a backup node. Our algorithm is compared with the existing solution by simulation and the result shows that the core node selected by us is more stable and hence reduces the number of handoffs. This in turn improves the service delivery performance by increasing the packet delivery ratio and decreasing the delay, the overhead and the forwarding cost.

  1. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers.

    Science.gov (United States)

    Kloxin, Christopher J; Scott, Timothy F; Adzima, Brian J; Bowman, Christopher N

    2010-03-23

    Polymer networks possessing reversible covalent crosslinks constitute a novel material class with the capacity for adapting to an externally applied stimulus. These covalent adaptable networks (CANs) represent a trend in polymer network fabrication towards the rational design of structural materials possessing dynamic characteristics for specialty applications. Herein, we discuss the unique attributes of CANs that must be considered when designing, fabricating, and characterizing these smart materials that respond to either thermal or photochemical stimuli. While there are many reversible reactions which to consider as possible crosslink candidates in CANs, there are very few that are readily and repeatedly reversible. Furthermore, characterization of the mechanical properties of CANs requires special consideration owing to their unique attributes. Ultimately, these attributes are what lead to the advantageous properties displayed by CANs, such as recyclability, healability, tunability, shape changes, and low polymerization stress. Throughout this perspective, we identify several trends and future directions in the emerging field of CANs that demonstrate the progress to date as well as the essential elements that are needed for further advancement.

  2. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  3. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    Science.gov (United States)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  4. Event-driven approach of layered multicast to network adaptation in RED-based IP networks

    Science.gov (United States)

    Nahm, Kitae; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    In this work, we investigate the congestion control problem for layered video multicast in IP networks of active queue management (AQM) using a simple random early detection (RED) queue model. AQM support from networks improves the visual quality of video streaming but makes network adaptation more di+/-cult for existing layered video multicast proticols that use the event-driven timer-based approach. We perform a simplified analysis on the response of the RED algorithm to burst traffic. The analysis shows that the primary problem lies in the weak correlation between the network feedback and the actual network congestion status when the RED queue is driven by burst traffic. Finally, a design guideline of the layered multicast protocol is proposed to overcome this problem.

  5. Physiological Observations and Omics to Develop Personalized Sensormotor Adaptability Countermeasures Using Bed Rest and Space Flight Data

    Science.gov (United States)

    Mulavara, A. P.; Seidler, R. D.; Feiveson, A.; Oddsson, L.; Zanello, S.; Oman, C. M.; Ploutz-Snyder, L.; Peters, B.; Cohen, H. S.; Reschke, M.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the re-adapation phase following a return to an earth-gravitational environment. These alterations may disrupt the ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from space flight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual space flight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures that include: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; 3) genotype markers for genetic polymorphisms in Catechol-O-Methyl Transferase, Dopamine Receptor D2, Brain-derived neurotrophic factor and genetic polymorphism of alpha2-adrenergic receptor that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration space flight and an analog bed rest environment. We will be conducting a retrospective study leveraging data already collected from relevant

  6. Distributed estimation for adaptive sensor selection in wireless sensor networks

    Science.gov (United States)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  7. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    is used for safety and security monitoring purposes. In this paper, we evaluate different access strategies to remote dynamic information and compare between achieving information reliability (mismatch probability) and the associated power consumption. Lastly, based on the models, we propose an adaptive......Accessing information remotely to dynamically changing information elements cannot be avoided and has become a required functionality for various network services. Most applications require up-to-date information which is reliable and accurate. The information reliability in terms of using correct...... information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  8. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  9. The emergence of complexity and restricted pleiotropy in adapting networks

    Directory of Open Access Journals (Sweden)

    Le Nagard Hervé

    2011-11-01

    Full Text Available Abstract Background The emergence of organismal complexity has been a difficult subject for researchers because it is not readily amenable to investigation by experimental approaches. Complexity has a myriad of untested definitions and our understanding of its evolution comes primarily from static snapshots gleaned from organisms ranked on an intuitive scale. Fisher's geometric model of adaptation, which defines complexity as the number of phenotypes an organism exposes to natural selection, provides a theoretical framework to study complexity. Yet investigations of this model reveal phenotypic complexity as costly and therefore unlikely to emerge. Results We have developed a computational approach to study the emergence of complexity by subjecting neural networks to adaptive evolution in environments exacting different levels of demands. We monitored complexity by a variety of metrics. Top down metrics derived from Fisher's geometric model correlated better with the environmental demands than bottom up ones such as network size. Phenotypic complexity was found to increase towards an environment-dependent level through the emergence of restricted pleiotropy. Such pleiotropy, which confined the action of mutations to only a subset of traits, better tuned phenotypes in challenging environments. However, restricted pleiotropy also came at a cost in the form of a higher genetic load, as it required the maintenance by natural selection of more independent traits. Consequently, networks of different sizes converged in complexity when facing similar environment. Conclusions Phenotypic complexity evolved as a function of the demands of the selective pressures, rather than the physical properties of the network architecture, such as functional size. Our results show that complexity may be more predictable, and understandable, if analyzed from the perspective of the integrated task the organism performs, rather than the physical architecture used to

  10. Adaptive and ubiquitous video streaming over Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Malik Mubashir Hassan

    2016-10-01

    Full Text Available In recent years, with the dramatic improvement on scalability of H.264/MPEG-4 standard and growing demand for new multimedia services have spurred the research on scalable video streaming over wireless networks in both industry and academia. Video streaming applications are increasingly being deployed in Wireless Mesh Networks (WMNs. However, robust streaming of video over WMNs poses many challenges due to varying nature of wireless networks. Bit-errors, packet-losses and burst-packet-losses are very common in such type of networks, which severely influence the perceived video quality at receiving end. Therefore, a carefully-designed error recovery scheme must be employed. In this paper, we propose an interactive and ubiquitous video streaming scheme for Scalable Video Coding (SVC based video streaming over WMNs towards heterogeneous receivers. Intelligently taking the benefit of path diversity, the proposed scheme initially calculates the quality of all candidate paths and then based on quality of path it decides adaptively the size and level of error protection for all packets in order to combat the effect of losses on perceived quality of reconstructed video at receiving end. Our experimental results show that the proposed streaming approach can react to varying channel conditions with less degradation in video quality.

  11. Adaptive elastic networks as models of supercooled liquids

    Science.gov (United States)

    Yan, Le; Wyart, Matthieu

    2015-08-01

    The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013), 10.1073/pnas.1300534110], we could explain these behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity. However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and evolve with temperature. We show numerically that our previous results on the relationship between structure and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase space that cost energy and the specific heat.

  12. Adaptive control of call acceptance in WCDMA network

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-10-01

    Full Text Available In this paper, an overview of the algorithms for access control in mobile wireless networks is presented. A review of adaptive control methods of accepting a call in WCDMA networks is discussed, based on the overview of the algorithms used for this purpose, and their comparison. Appropriate comments and conculsions in comparison with the basic characteristics of these algorithms are given. The OVSF codes are explained as well as how the allocation method influences the capacity and probability of blocking.. Introduction We are witnessing a steady increase in the number of demands placed upon modern wireless networks. New applications and an increasing number of users as well as user activities growth in recent years reinforce the need for an efficient use of the spectrum and its proper distribution among different applications and classes of services. Besides humans, the last few years saw different computers, machines, applications, and, in the future, many other devices, RFID applications, and finally networked objects, as a new kind of wireless networks "users". Because of the exceptional rise in the number of users, the demands placed upon modern wireless networks are becoming larger, and spectrum management plays an important role. For these reasons, choosing an appropriate call admission control algorithm is of great importance. Multiple access and resource management in wireless networks Radio resource management of mobile networks is a set of algorithms to manage the use of radio resources with the aim is to maximize the total capacity of wireless systems with equal distribution of resources to users. Management of radio resources in cellular networks is usually located in the base station controller, the base station and the mobile terminal, and is based on decisions made on appropriate measurement and feedback. It is often defined as the maximum volume of traffic load that the system can provide for some of the requirements for the

  13. A Reusable and Adaptable Software Architecture for Embedded Space Flight System: The Core Flight Software System (CFS)

    Science.gov (United States)

    Wilmot, Jonathan

    2005-01-01

    The contents include the following: High availability. Hardware is in harsh environment. Flight processor (constraints) very widely due to power and weight constraints. Software must be remotely modifiable and still operate while changes are being made. Many custom one of kind interfaces for one of a kind missions. Sustaining engineering. Price of failure is high, tens to hundreds of millions of dollars.

  14. From epidemics to information propagation : Striking differences in structurally similar adaptive network models

    NARCIS (Netherlands)

    Trajanovski, S.; Guo, D.; Van Mieghem, P.F.A.

    2015-01-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways:

  15. Time-of-flight discrimination between gamma-rays and neutrons by neural networks

    OpenAIRE

    Serkan AKKOYUN

    2012-01-01

    In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays and these neutrons influence gamma-ray spectra. An obvious method of separating between neutrons and gamma-rays is based on the time-of-flight (tof) technique. This work aims obtaining tof distributions of gamma-rays and neutrons by using feed-forward artificial neural network (ANN). It was shown that, ANN can correctly classify gamma-ray and neutron events. Testing of trained networks on ...

  16. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  17. Understanding Homophily and More-Becomes-More Through Adaptive Temporal-Causal Network Models

    NARCIS (Netherlands)

    Beukel, Sven van den; Goos, Simon; Treur, J.; De la Prieta, F

    2017-01-01

    This study describes the use of adaptive temporal-causal networks to model and simulate the development of mutually interacting opinion states and connections between individuals in social networks. The focus is on adaptive networks combining the homophily principle with the more becomes more

  18. Particle Swarm Optimization for Adaptive Resource Allocation in Communication Networks

    Directory of Open Access Journals (Sweden)

    Gheitanchi Shahin

    2010-01-01

    Full Text Available A generalized model of particle swarm optimization (PSO technique is proposed as a low complexity method for adaptive centralized and distributed resource allocation in communication networks. The proposed model is applied to adaptive multicarrier cooperative communications (MCCC technique which utilizes the subcarriers in deep fade using a relay node in order to improve the bandwidth efficiency. Centralized PSO, based on virtual particles (VPs, is introduced for single layer and cross-layer subcarrier allocation to improve the bit error rate performance in multipath frequency selective fading channels. In the single layer strategy, the subcarriers are allocated based on the channel gains. In the cross-layer strategy, the subcarriers are allocated based on a joint measure of channel gains and distance provided by the physical layer and network layer to mitigate the effect of path loss. The concept of training particles in distributed PSO is proposed and then is applied for relay node selection. The computational complexity and traffic of the proposed techniques are investigated, and it is shown that using PSO for subcarrier allocation has a lower complexity than the techniques in the literature. Significant reduction in the traffic overhead of PSO is demonstrated when using trained particles in distributed optimizations.

  19. Computation emerges from adaptive synchronization of networking neurons.

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    Full Text Available The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.

  20. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.

    Science.gov (United States)

    Park, Heewon; Shimamura, Teppei; Imoto, Seiya; Miyano, Satoru

    2017-10-20

    There is currently much discussion about sample (patient)-specific gene regulatory network identification, since the efficiently constructed sample-specific gene networks lead to effective personalized cancer therapy. Although statistical approaches have been proposed for inferring gene regulatory networks, the methods cannot reveal sample-specific characteristics because the existing methods, such as an L1-type regularization, provide averaged results for all samples. Thus, we cannot reveal sample-specific characteristics in transcriptional regulatory networks. To settle on this issue, the NetworkProfiler was proposed based on the kernel-based L1-type regularization. The NetworkProfiler imposes a weight on each sample based on the Gaussian kernal function for controlling effect of samples on modeling a target sample, where the amount of weight depends on similarity of cancer characteristics between samples. The method, however, cannot perform gene regulatory network identification well for a target sample in a sparse region (i.e., for a target sample, there are only a few samples having a similar characteristic of the target sample, where the characteristic is considered as a modulator in sample-specific gene network construction), since a constant bandwidth in the Gaussian kernel function cannot effectively group samples for modeling a target sample in sparse region. The cancer characteristics, such as an anti-cancer drug sensitivity, are usually nonuniformly distributed, and thus modeling for samples in a sparse region is also a crucial issue. We propose a novel kernel-based L1-type regularization method based on a modified k-nearest neighbor (KNN)-Gaussian kernel function, called an adaptive NetworkProfiler. By using the modified KNN-Gaussian kernel function, our method provides robust results against the distribution of modulators, and properly groups samples according to a cancer characteristic for sample-specific analysis. Furthermore, we propose a sample

  1. ANALYSIS OF THE SPECIAL CASE IN FLIGHT BY MEANS OF THE PROJECT NETWORK

    Directory of Open Access Journals (Sweden)

    Т. Шмельова

    2011-02-01

    Full Text Available Reasons of aviation events the last decade does  not change practically: 70-80% failures and  catastrophes take a place through fault of human factor and only 15-20 % – from the structurally production lacks of aviation technique . For the timely diagnosing of hit of air ship (AS in  supernumerary flight situations,  operatively to render  prognostication of their development and  possibility the proper help the operator of the aviation  ергатичної system the model of  decision-making P-O of AES is developed. Supernumerary situation most rationally, in opinion of authors, to give as the network graph the analysis of which makes basis for the construction of the system of support of making a decision P-O in case of occurring of supernumerary situation on wing. On the basis of analysis of printing sources the most widespread reasons of aviation engine failure and possible consequences  of it are evidently given. Work of crew is described from a  moment an engine failure on flight and to the decision-making about continuation/breaking of flight by the construction of fragment of the network graph. The practical value of the conducted  researches consists in that application of the given method in the system of support of making a  decision aviation operator at an action in special case on wing will enable high-quality and in  number to analyse supernumerary flight situations with the purpose of increase of safety of flights

  2. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    Science.gov (United States)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  3. Institutional networks and adaptive water governance in the Klamath River Basin, USA.

    Science.gov (United States)

    Polycentric networks of formal organizations and informal stakeholder groups, as opposed to centralized institutional hierarchies, can be critically important for strengthening the capacity of governance systems to adapt to unexpected social and biophysical change. Adaptive gover...

  4. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  5. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Science.gov (United States)

    Dececchi, T Alexander; Larsson, Hans C E

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  6. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  7. Catastrophic approach to satellite imagery utilization on network-based flight simulators

    Science.gov (United States)

    Levin, Eugene; Ternovskiy, Igor V.

    2001-11-01

    Presently, there are many technological and industrial efforts for development of virtual flight simulators, usually based on networked technologies. In order to solve the problems of real time availability and realistic quality of simulators, source data images and digital terrain models (DTM) should have some generalized structure, which supposes different imagery resolution and different amount of detail on each level of 3D simulation. One of the central problems is geotruthing of satellite imagery with realistic accuracy requirements with respect to DTM. Traditionally such geotruthing can be achieved by means of geo control points measurements. This process is labor intensive and requires special photogrammetric operator skills. In order to avoid such a process an algorithm of terrain and image models singularity's recognition based on Catastrophe theory is investigated in this paper. This approach does not require training but operates with direct comparison of the analytical manifolds from DTM with those actually extracted from the image. The technology described in this paper, the Catastrophe Approach, and algorithms of satellite imagery treatment may be implemented in a multi-level image pyramid flight simulators. Theoretical approaches and practical realization indicates that the Catastrophe Approach is easy- to-use for a final customer and can be implemented on-line to networked flight simulators.

  8. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  9. Robust adaptive learning of feedforward neural networks via LMI optimizations.

    Science.gov (United States)

    Jing, Xingjian

    2012-07-01

    Feedforward neural networks (FNNs) have been extensively applied to various areas such as control, system identification, function approximation, pattern recognition etc. A novel robust control approach to the learning problems of FNNs is further investigated in this study in order to develop efficient learning algorithms which can be implemented with optimal parameter settings and considering noise effect in the data. To this aim, the learning problem of a FNN is cast into a robust output feedback control problem of a discrete time-varying linear dynamic system. New robust learning algorithms with adaptive learning rate are therefore developed, using linear matrix inequality (LMI) techniques to find the appropriate learning rates and to guarantee the fast and robust convergence. Theoretical analysis and examples are given to illustrate the theoretical results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Scalable Lunar Surface Networks and Adaptive Orbit Access Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative network architecture, protocols, and algorithms are proposed for both lunar surface networks and orbit access networks. Firstly, an overlaying...

  11. Mobilization and Adaptation of a Rural Cradle-to-Career Network

    Science.gov (United States)

    Zuckerman, Sarah J.

    2016-01-01

    This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based…

  12. Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network

    Science.gov (United States)

    Zhu, Darui; Liu, Chongxin; Yan, Bingnan

    2014-01-01

    We introduce a chaos model for a permanent-magnet synchronous motor and construct a coupled chaotic motor in a complex dynamic network using the Newman-Watts small-world network algorithm. We apply adaptive pinning control theory for complex networks to obtain suitable adaptive feedback gain and the number of nodes to be pinned. Nodes of low degree are pinned to realize global asymptotic synchronization in the complex network. The proposed adaptive pinning controller is added to the complex motor network for simulation and verification.

  13. Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights

    Science.gov (United States)

    Riascos, A. P.; Mateos, José L.

    2014-09-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

  14. Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2014-09-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

  15. Modeling multiple time scale firing rate adaptation in a neural network of local field potentials.

    Science.gov (United States)

    Lundstrom, Brian Nils

    2015-02-01

    In response to stimulus changes, the firing rates of many neurons adapt, such that stimulus change is emphasized. Previous work has emphasized that rate adaptation can span a wide range of time scales and produce time scale invariant power law adaptation. However, neuronal rate adaptation is typically modeled using single time scale dynamics, and constructing a conductance-based model with arbitrary adaptation dynamics is nontrivial. Here, a modeling approach is developed in which firing rate adaptation, or spike frequency adaptation, can be understood as a filtering of slow stimulus statistics. Adaptation dynamics are modeled by a stimulus filter, and quantified by measuring the phase leads of the firing rate in response to varying input frequencies. Arbitrary adaptation dynamics are approximated by a set of weighted exponentials with parameters obtained by fitting to a desired filter. With this approach it is straightforward to assess the effect of multiple time scale adaptation dynamics on neural networks. To demonstrate this, single time scale and power law adaptation were added to a network model of local field potentials. Rate adaptation enhanced the slow oscillations of the network and flattened the output power spectrum, dampening intrinsic network frequencies. Thus, rate adaptation may play an important role in network dynamics.

  16. Adaptive Neural Network Nonparametric Identifier With Normalized Learning Laws.

    Science.gov (United States)

    Chairez, Isaac

    2017-05-01

    This paper addresses the design of a normalized convergent learning law for neural networks (NNs) with continuous dynamics. The NN is used here to obtain a nonparametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties is the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on normalized algorithms was used to adjust the weights of the NN. The adaptive algorithm was derived by means of a nonstandard logarithmic Lyapunov function (LLF). Two identifiers were designed using two variations of LLFs leading to a normalized learning law for the first identifier and a variable gain normalized learning law. In the case of the second identifier, the inclusion of normalized learning laws yields to reduce the size of the convergence region obtained as solution of the practical stability analysis. On the other hand, the velocity of convergence for the learning laws depends on the norm of errors in inverse form. This fact avoids the peaking transient behavior in the time evolution of weights that accelerates the convergence of identification error. A numerical example demonstrates the improvements achieved by the algorithm introduced in this paper compared with classical schemes with no-normalized continuous learning methods. A comparison of the identification performance achieved by the no-normalized identifier and the ones developed in this paper shows the benefits of the learning law proposed in this paper.

  17. Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization.

    Science.gov (United States)

    Jin, Xiao-Zheng; Yang, Guang-Hong; Che, Wei-Wei

    2012-09-01

    This paper deals with a class of complex networks with nonideal coupling networks, and addresses the problem of asymptotic synchronization of the complex network through designing adaptive pinning control and coupling adjustment strategies. A more general coupled nonlinearity is considered as perturbations of the network, while a serious faulty network named deteriorated network is also proposed to be further study. For the sake of eliminating these adverse impacts for synchronization, indirect adaptive schemes are designed to construct controllers and adjusters on pinned nodes and nonuniform couplings of un-pinned nodes, respectively. According to Lyapunov stability theory, the proposed adaptive strategies are successful in ensuring the achievement of asymptotic synchronization of the complex network even in the presence of perturbed and deteriorated networks. The proposed schemes are physically implemented by circuitries and tested by simulation on a Chua's circuit network.

  18. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    Science.gov (United States)

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.

  19. Disruption and adaptation of urban transport networks from flooding

    Directory of Open Access Journals (Sweden)

    Pregnolato Maria

    2016-01-01

    Full Text Available Transport infrastructure networks are increasingly vulnerable to disruption from extreme rainfall events due to increasing surface water runoff from urbanization and changes in climate. Impacts from such disruptions typically extend far beyond the flood footprint, because of the interconnection and spatial extent of modern infrastructure. An integrated flood risk assessment couples high resolution information on depth and velocity from the CityCAT urban flood model with empirical analysis of vehicle speeds in different depths of flood water, to perturb a transport accessibility model and determine the impact of a given event on journey times across the urban area. A case study in Newcastle-upon-Tyne (UK shows that even minor flooding associate with a 1 in 10 year event can cause traffic disruptions of nearly half an hour. Two adaptation scenarios are subsequently tested (i hardening (i.e. flood protection a single major junction, (ii introduction of green roofs across all buildings. Both options have benefits in terms of reduced disruption, but for a 1 in 200 year event greening all roofs in the city provided only three times the benefit of protecting one critical road junction, highlighting the importance of understanding network attributes such as capacity and flows.

  20. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior.

    Science.gov (United States)

    Romano, Sebastián A; Pietri, Thomas; Pérez-Schuster, Verónica; Jouary, Adrien; Haudrechy, Mathieu; Sumbre, Germán

    2015-03-04

    Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents "preferred" network states, tuned to behaviorally relevant features, emerging from the circuit's intrinsic non-linear dynamics, adapted for its functional role. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Development of quantum-based adaptive neuro-fuzzy networks.

    Science.gov (United States)

    Kim, Sung-Suk; Kwak, Keun-Chang

    2010-02-01

    In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method. Furthermore, we developed linear-regression QANFN (LR-QANFN) as an incremental model to deal with localized nonlinearities of the system, so that all modeling discrepancies can be compensated. After adopting the construction of the linear regression as the first global model, we refined it through a series of local fuzzy if-then rules in order to capture the remaining localized characteristics. The experimental results revealed that the proposed QANFN and LR-QANFN yielded a better performance in comparison with radial basis function networks and the linguistic model obtained in previous literature for an automobile mile-per-gallon prediction, Boston Housing data, and a coagulant dosing process in a water purification plant.

  2. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.

  3. A review of adaptive change in musculoskeletal impedance during space flight and associated implications for postflight head movement control

    Science.gov (United States)

    McDonald, P. V.; Bloomberg, J. J.; Layne, C. S.

    1997-01-01

    We present a review of converging sources of evidence which suggest that the differences between loading histories experienced in 1-g and weightlessness are sufficient to stimulate adaptation in mechanical impedance of the musculoskeletal system. As a consequence of this adaptive change we argue that we should observe changes in the ability to attenuate force transmission through the musculoskeletal system both during and after space flight. By focusing attention on the relation between human sensorimotor activity and support surfaces, the importance of controlling mechanical energy flow through the musculoskeletal system is demonstrated. The implications of such control are discussed in light of visual-vestibular function in the specific context of head and gaze control during postflight locomotion. Evidence from locomotory biomechanics, visual-vestibular function, ergonomic evaluations of human vibration, and specific investigations of locomotion and head and gaze control after space flight, is considered.

  4. An Adaptive Computational Network Model for Multi-Emotional Social Interaction

    NARCIS (Netherlands)

    Roller, Ramona; Blommestijn, Suzan Q.; Treur, J.

    2017-01-01

    The study reported in this paper investigates an adaptive temporal-causal network-model for emotion contagion. The dynamic network principles of emotion contagion and the adaptive principles of homophily and Hebbian learning were used to simulate the change in multiple emotions and social

  5. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  6. Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters

    Science.gov (United States)

    Yang, Li-xin; Jiang, Jun

    2014-05-01

    This paper investigates the adaptive synchronization in the drive-response fractional-order dynamical networks with uncertain parameters. By means of both the stability theory of fractional-order differential system and the adaptive control technique, a novel adaptive synchronization controller is developed with a more general and simpler analytical expression, which does not contain the parameters of the complex network, and effective adaptive laws of parameters. Furthermore, the very strong and conservative uniformly Lipschitz condition on the node dynamics of complex network is released. To demonstrate the validity of the proposed method, the examples for the synchronization of systems with the chaotic and hyper-chaotic node dynamics are presented.

  7. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will

  8. An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl

    2005-01-01

    The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA...... decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0...

  9. A symmetry perceiving adaptive neural network and facial image recognition.

    Science.gov (United States)

    Sinha, P

    1998-11-30

    The paper deals with the forensic problem of comparing nearly from view and facial images for personal identification. The human recognition process for such problems, is primarily based on both holistic as well as feature-wise symmetry perception aided by subjective analysis for detecting ill-defined features. It has been attempted to approach the modelling of such a process by designing a robust symmetry perceiving adaptive neural network. The pair of images to be compared should be presented to the proposed neural network (NN) as source (input) and target images. The NN learns about the symmetry between the pair of images by analysing examples of associated feature pairs belonging to the source and the target images. In order to prepare a paired example of associated features for training purpose, when we select one particular feature on the source image as a unique pixel, we must associate it with the corresponding feature on the target image also. But, in practice, it is not always possible to fix the latter feature also as a unique pixel due to pictorial ambiguity. The robust or fault tolerant NN takes care of such a situation and allows fixing the associated target feature as a rectangular array of pixels, rather than fixing it as a unique pixel, which is pretty difficult to be done with certainty. From such a pair of sets of associated features, the NN searches out proper locations of the target features from the sets of ambiguous target features by a fuzzy analysis during its learning. If any of target features, searched out by the NN, lies outside the prespecified zone, the training of the NN is unsuccessful. This amounts to non-existence of symmetry between the pair of images and confirms non-identity. In case of a successful training, the NN gets adapted with appropriate symmetry relation between the pair of images and when the source image is input to the trained NN, it responds by outputting a processed source image which is superimposable over the

  10. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms

    Science.gov (United States)

    Berg, Eric; Cherry, Simon R.

    2018-01-01

    Although there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time-of-flight information from the detector signals. In most cases, the timing pick-off for each waveform is computed using leading edge discrimination or constant fraction discrimination, as these were historically easily implemented with analog pulse processing electronics. However, now with the availability of fast waveform digitizers, there is opportunity to make use of more of the timing information contained in the coincident detector waveforms with advanced signal processing techniques. Here we describe the application of deep convolutional neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the pair of digitized detector waveforms for a coincident event. One of the key features of this approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true time-of-flight is determined from the difference in path length between the positron emission and each of the coincident detectors, which can be easily controlled experimentally. The experimental setup used here made use of two photomultiplier tube-based scintillation detectors, and a point source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector waveforms were digitized at 10 GS s‑1 using a bench-top oscilloscope. The results shown here demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% compared to leading edge discrimination (231 ps versus 185 ps), and 23% compared to constant fraction discrimination (242 ps versus 185 ps). By comparing several different CNN architectures, we also showed that CNN depth (number of convolutional and fully connected layers) had the largest impact on timing resolution, while the exact network parameters, such as convolutional

  11. On adaptive control of mobile slotted aloha networks

    Directory of Open Access Journals (Sweden)

    Lim J.-T.

    1995-01-01

    Full Text Available An adaptive control scheme for mobile slotted ALOHA is presented and the effect of capture on the adaptive control scheme is investigated. It is shown that with the proper choice of adaptation parameters the adaptive control scheme can be made independent of the effect of capture.

  12. Adaptation of the oral health version of an instrument for diagnosing the healthcare network?s stage of development

    National Research Council Canada - National Science Library

    Leal, Daniele Lopes; Paiva, Saul Martins; Werneck, Marcos Azeredo Furquim; Oliveira, Ana Cristina Borges de

    2014-01-01

    .... The current study aimed to describe the stages in the adaptation of the oral healthcare version of an instrument to evaluate the stage of development in the healthcare network under the Unified National Health System (SUS...

  13. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays

    Directory of Open Access Journals (Sweden)

    Weiyuan Ma

    2014-12-01

    Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.

  14. Adaptive autonomous Communications Routing Optimizer for Network Efficiency Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing network efficiency for NASA's Space Networking resources is a large, complex, distributed problem, requiring substantial collaboration. We propose the...

  15. [Adaptive process in Vietnamese military pilots during the flights on modern Russian aircraft].

    Science.gov (United States)

    Ushakov, I V; Pham Xuan, Nihn; Bukhtiaiarov, I V; Ushakov, B N

    2013-04-01

    Study on health status of 156 Vietnamese military pilots on Russian modern jet planes (Su-22, Su-27, Su-30, MiG-21B). The results showed that unprofitable factors in working environment (acceleration, radiation, high temperature, humidity, noise) have an impact on the health of pilots during the flight, leading to deterioration of professional health and physiological functions (cardiovascular, respiratory and nervous system) and obesity of pilots after 35 years old. Basing on the studies, we suggested some measures for health protecting, safety of flight and prolonging flight-activity of pilots (training in decompression chamber, vestibular training) and balance in food ration for prevention of professional diseases.

  16. Distributed reinforcement learning for adaptive and robust network intrusion response

    Science.gov (United States)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  17. An Adaptive Amplifier System for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Mónica Lovay

    2012-01-01

    Full Text Available This paper presents an adaptive amplifier that is part of a sensor node in a wireless sensor network. The system presents a target gain that has to be maintained without direct human intervention despite the presence of faults. In addition, its bandwidth must be as large as possible. The system is composed of a software-based built-in self-test scheme implemented in the node that checks all the available gains in the amplifiers, a reconfigurable amplifier, and a genetic algorithm (GA for reconfiguring the node resources that runs on a host computer. We adopt a PSoC device from Cypress for the node implementation. The performance evaluation of the scheme presented is made by adopting four different types of fault models in the amplifier gains. The fault simulation results show that GA finds the target gain with low error, maintains the bandwidth above the minimum tolerable bandwidth, and presents a runtime lower than exhaustive search method.

  18. Adaptive moment closure for parameter inference of biochemical reaction networks.

    Science.gov (United States)

    Schilling, Christian; Bogomolov, Sergiy; Henzinger, Thomas A; Podelski, Andreas; Ruess, Jakob

    2016-11-01

    Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Composite learning from adaptive backstepping neural network control.

    Science.gov (United States)

    Pan, Yongping; Sun, Tairen; Liu, Yiqi; Yu, Haoyong

    2017-11-01

    In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learning technique is proposed to guarantee convergence of NN weights to their ideal values without the PE condition. In the NN composite learning, spatially localized NN approximation is employed to handle functional uncertainties, online historical data together with instantaneous data are exploited to generate prediction errors, and both tracking errors and prediction errors are employed to update NN weights. The influence of NN approximation errors on the control performance is also clearly shown. The distinctive feature of the proposed NN composite learning is that NN parameter convergence is guaranteed without the requirement of the trajectory of NN inputs being recurrent. Illustrative results have verified effectiveness and superiority of the proposed method compared with existing NN learning control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reward and Punishment based Cooperative Adaptive Sampling in Wireless Sensor Networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Energy conservation is one of the main concerns in wireless sensor networks. One of the mechanisms to better manage energy in wireless sensor networks is adaptive sampling, by which instead of using a fixed frequency interval for sensing and data transmission, the wireless sensor network employs a

  1. An All Electronic, Adaptive, Focusing Schlieren System for Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a proposal to develop an electronic, focusing schlieren system for flight research based on electronic cameras and spatial light modulators as dynamic...

  2. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  3. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  4. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  5. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)

    2009-12-28

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  6. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  7. ADAPTIVE DEFLECTION OF WING NOSE FLAP OF COMBAT TRAINING AIRCRAFT AND ITS IMPACT ON FLIGHT RANGE AND DURATION

    Directory of Open Access Journals (Sweden)

    M. V. Kondalov

    2014-01-01

    Full Text Available In this article presented the main result of numerical investigation of ability to improve the aerodynamic perfection of modern combat training aircraft. To determine the aerodynamic characteristic was used the discrete vortex method with closed vortex frames. In the work was presented the algorithm of a deflection of mechanization of a wing for increase of aerodynamic quality of the aircraft. The calculation of flight range and duration was at incremental extension and at realization of adaptive deflection of nose flap for Mach number M < 0.6.

  8. Exploring Educational and Cultural Adaptation through Social Networking Sites

    Science.gov (United States)

    Ryan, Sherry D.; Magro, Michael J.; Sharp, Jason H.

    2011-01-01

    Social networking sites have seen tremendous growth and are widely used around the world. Nevertheless, the use of social networking sites in educational contexts is an under explored area. This paper uses a qualitative methodology, autoethnography, to investigate how social networking sites, specifically Facebook[TM], can help first semester…

  9. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  10. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  11. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  12. Mobilization and Adaptation of a Rural Cradle-to-Career Network

    Directory of Open Access Journals (Sweden)

    Sarah J. Zuckerman

    2016-10-01

    Full Text Available This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based social capital facilitated mobilization. Where networks were absent and where distrust and different values were evident, mobilization faltered. Three network adaptations were discovered: Special rural community organizing strategies, district-level action planning, and a theory of action focused on out-of-school factors. All three were attributable to the composition of mobilized stakeholders and this network’s rural social geography. These findings illuminate the importance of social geography in the development and advancement of rural cradle-to-career networks.

  13. Adaptive Noise Cancellation for speech Employing Fuzzy and Neural Network

    OpenAIRE

    Mohammed Hussein Miry; Ali Hussein Miry; Hussain Kareem Khleaf

    2011-01-01

    Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficient...

  14. Adaptation and Fatigue Model for Neuron Networks and Large Time Asymptotics in a Nonlinear Fragmentation Equation

    National Research Council Canada - National Science Library

    Pakdaman, Khashayar; Perthame, Benoît; Salort, Delphine

    2014-01-01

    Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last...

  15. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    National Research Council Canada - National Science Library

    Ibrahim, A.M; El-Khattam, W; ElMesallamy, M; Talaat, H.A

    2016-01-01

    This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC...

  16. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  17. Adapting water management to climate change: Institutional involvement, inter-institutional networks and barriers in India

    OpenAIRE

    Azhoni, Adani; Holman, Ian P.; Jude, Simon J.

    2017-01-01

    The capacity of a nation to address the hydrological impacts of climate change depends on the institutions through which water is governed. Inter-institutional networks that enable institutions to adapt and the factors that hinder smooth coordination are poorly understood. Using water governance in India as an example of a complex top-down bureaucratic system that requires effective networks between all key institutions, this research unravels the barriers to adaptation by combining quantitat...

  18. Simulation and experimental testbed for adaptive video streaming in ad hoc networks

    OpenAIRE

    Gonzalez-Martinez, Santiago Renan; Castellanos Hernández, Wilder Eduardo; Guzman Castillo, Paola Fernanda; Arce Vila, Pau; Guerri Cebollada, Juan Carlos

    2016-01-01

    This paper presents a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive method for streaming scalable video (H.264/SVC). For effective adaptation a new cross-layer routing protocol is introduced. This protocol provides an efficient algorithm for available bandwidth estimation. With this information, the video source adjusts its bit rate during the video transmission according to the network state. We also propose a...

  19. [Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].

    Science.gov (United States)

    Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei

    2015-02-01

    To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.

  20. Finding Robust Adaptation Gene Regulatory Networks Using Multi-Objective Genetic Algorithm.

    Science.gov (United States)

    Ren, Hai-Peng; Huang, Xiao-Na; Hao, Jia-Xuan

    2016-01-01

    Robust adaptation plays a key role in gene regulatory networks, and it is thought to be an important attribute for the organic or cells to survive in fluctuating conditions. In this paper, a simplified three-node enzyme network is modeled by the Michaelis-Menten rate equations for all possible topologies, and a family of topologies and the corresponding parameter sets of the network with satisfactory adaptation are obtained using the multi-objective genetic algorithm. The proposed approach improves the computation efficiency significantly as compared to the time consuming exhaustive searching method. This approach provides a systemic way for searching the feasible topologies and the corresponding parameter sets to make the gene regulatory networks have robust adaptation. The proposed methodology, owing to its universality and simplicity, can be used to address more complex issues in biological networks.

  1. Network Adaptability from WMD Disruption and Cascading Failures

    Science.gov (United States)

    2016-04-01

    and this will cause a traffic flood which may cause blocking or congestion of services required for rescue operations. After the post-attack period...Transparent Optical Networks (ICTON), Stockholm, Sweden ; June 27, 2011. 4. B. Mukherjee, "Panorama of Optical Network Survivability," Keynote Talk...Design and Modeling Conference, Kista, Sweden , May 22, 2014. 8. B. Mukherjee, “Disaster preparedness for network and information infrastructures

  2. Smart social adaptation prevents catastrophic ecological regime shifts in networks of myopic harvesters

    Science.gov (United States)

    Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen

    2015-04-01

    In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should

  3. Real-Time Adaptive Algorithms for Flight Control Diagnostics and Prognostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this research program is to improve the affordability, survivability, and service life of next generation aircraft through the use of ADAPT...

  4. THE INVARIANT ADAPTATION OF THE AIRCRAFT CONTROL SYSTEM IN EMERGENCY SITUATION DURING THE FLIGHT

    Directory of Open Access Journals (Sweden)

    Svitlana Pavlova

    2016-12-01

    Full Text Available Purpose: The aim of this study is to develop a method for compensating the effects of failures of the aircraft automatic control system during the flight. Methods: This article reviews an approach based on the methods of theory of absolute nonlinear invariance. Results: In this paper, we present the example of a case of compensation of failure of the elevator with using the solution of the equation of the absolute invariance for pitch angle. Synthesis of automatic control device of aircraft orientation angles based on the analysis of the equations of the absolute nonlinear invariance is presented. Discussion: The use of the reconfiguration of the aircraft control system to ensure its survivability in flight is a perspective direction. However, the development of the concept of motion control of the aircraft with the use of the theory of absolute invariance will allow to realize an effective developed aircraft control method that will have advantages compared with the existing methods.

  5. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    Directory of Open Access Journals (Sweden)

    A.M. Ibrahim

    2016-09-01

    Full Text Available This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC. The scheme adapts to system changes; new relays settings are obtained as generation-level or system-topology changes. The developed adaptive scheme is applied on the IEEE 30-bus test system for both single- and multi-DG existence where results are shown and discussed.

  6. Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory

    Directory of Open Access Journals (Sweden)

    Joshua Rodewald

    2016-10-01

    Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.

  7. An Information Theoretic Investigation Of Complex Adaptive Supply Networks With Organizational Topologies

    Science.gov (United States)

    2016-12-22

    trains of organizational elements, just as in neuroscience , one can determine the information flow patterns through the organization . [9] 6 Transfer...many service industries. Organizations have been noted to behave as complex adaptive systems or information supply networks with both formal and...informal structures. Thoroughly understanding supply network structure and behavior are critical to managing such organizations effectively, but their

  8. (A new time of flight) Acoustic flow meter using wide band signals and adaptive beamforming techniques

    Science.gov (United States)

    Murgan, I.; Ioana, C.; Candel, I.; Anghel, A.; Ballester, J. L.; Reeb, B.; Combes, G.

    2016-11-01

    In this paper we present the result of our research concerning the improvement of acoustic time of flight flow metering for water pipes. Current flow meters are based on the estimation of direct time of flight by matched filtering of the received and emitted signals by acoustic transducers. Currently, narrow band signals are used, as well as a single emitter/receptor transducer configuration. Although simple, this configuration presents a series of limitations such as energy losses due to pipe wall/water interface, pressure/flow transients, sensitivity to flow induced vibrations, acoustic beam deformations and shift due to changes in flow velocity and embedded turbulence in the flow. The errors associated with these limitations reduce the overall robustness of existing flow meters, as well as the measured flow rate range and lower accuracy. In order to overcome these limitations, two major innovations were implemented at the signal processing level. The first one concerns the use of wide band signals that optimise the power transfer throughout the acoustic path and also increase the number of velocity/flow readings per second. Using wide band signals having a high duration-bandwidth product increases the precision in terms of time of flight measurements and, in the same time, improves the system robustness. The second contribution consists in the use of a multiple emitter - multiple receivers configuration (for one path) in order to compensate the emitted acoustic beam shift, compensate the time of flight estimation errors and thus increase the flow meter's robustness in case of undesired effects such as the “flow blow” and transient/rapid flow rate/velocity changes. Using a new signal processing algorithm that take advantage of the controlled wide band content coming from multiple receivers, the new flow meters achieves a higher accuracy in terms of flow velocity over a wider velocity range than existing systems. Tests carried out on real scale experimental

  9. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  10. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  11. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2018-01-01

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  12. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  13. Community detection in complex networks via adapted Kuramoto dynamics

    Science.gov (United States)

    Maia, Daniel M. N.; de Oliveira, João E. M.; Quiles, Marcos G.; Macau, Elbert E. N.

    2017-12-01

    Based on the Kuramoto model, a new network model, namely, the generalized Kuramoto model with Fourier term, is introduced for studying community detection in complex networks. In particular, the Fourier term provides a natural phase locking of the trajectories into a pre-defined number of clusters. A mathematical approach is used to study the behavior of the solutions and its properties. Conditions for properly choosing the coupling parameters so that phase locking takes place are presented and a quality function called clustering density is introduced to measure the effectiveness of the communities identification. Illustrations with real and synthetic networks with community structure are presented.

  14. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow.

    Science.gov (United States)

    Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.

  15. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    Science.gov (United States)

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  16. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  17. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis

    Science.gov (United States)

    Tang, Ming; Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.; Huang, Chuan-Hsiang

    2014-10-01

    Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.

  18. Macroscopic description of complex adaptive networks co-evolving with dynamic node states

    CERN Document Server

    Wiedermann, Marc; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-01-01

    In many real-world complex systems, the time-evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here, we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we show that in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability play a crucial role for the sustainability of the system's equilibrium state. We derive a macroscopic description of the system which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network and is applicable to many fields of study, such as epidemic spreading or social modeling.

  19. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network.

    Science.gov (United States)

    de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S

    2014-10-20

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  20. Online Algorithms for Adaptive Optimization in Heterogeneous Delay Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Wissam Chahin

    2013-12-01

    Full Text Available Delay Tolerant Networks (DTNs are an emerging type of networks which do not need a predefined infrastructure. In fact, data forwarding in DTNs relies on the contacts among nodes which may possess different features, radio range, battery consumption and radio interfaces. On the other hand, efficient message delivery under limited resources, e.g., battery or storage, requires to optimize forwarding policies. We tackle optimal forwarding control for a DTN composed of nodes of different types, forming a so-called heterogeneous network. Using our model, we characterize the optimal policies and provide a suitable framework to design a new class of multi-dimensional stochastic approximation algorithms working for heterogeneous DTNs. Crucially, our proposed algorithms drive online the source node to the optimal operating point without requiring explicit estimation of network parameters. A thorough analysis of the convergence properties and stability of our algorithms is presented.

  1. Method for designing networking adaptive interactive hybrid systems

    NARCIS (Netherlands)

    Kester, L. J.H.M.

    2010-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to co-ordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public

  2. Networked Adaptive Interactive Hybrid Systems (NAIHS) for multiplatform engagement capability

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public

  3. Creating networking adaptive interactive hybrid systems : A methodic approach

    NARCIS (Netherlands)

    Kester, L.J.

    2011-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defense, crisis management, traffic management, public

  4. Exploring complex networks by means of adaptive walkers

    OpenAIRE

    Prignano, Luce; Moreno, Yamir; Diaz-Guilera, Albert

    2012-01-01

    Finding efficient algorithms to explore large networks with the aim of recovering information about their structure is an open problem. Here, we investigate this challenge by proposing a model in which random walkers with previously assigned home nodes navigate through the network during a fixed amount of time. We consider that the exploration is successful if the walker gets the information gathered back home, otherwise, no data is retrieved. Consequently, at each time step, the walkers, wit...

  5. Robust Adaptive Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks with Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2014-01-01

    Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.

  6. GAUSSIAN MIXTURE MODELS FOR ADAPTATION OF DEEP NEURAL NETWORK ACOUSTIC MODELS IN AUTOMATIC SPEECH RECOGNITION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Natalia A. Tomashenko

    2016-11-01

    Full Text Available Subject of Research. We study speaker adaptation of deep neural network (DNN acoustic models in automatic speech recognition systems. The aim of speaker adaptation techniques is to improve the accuracy of the speech recognition system for a particular speaker. Method. A novel method for training and adaptation of deep neural network acoustic models has been developed. It is based on using an auxiliary GMM (Gaussian Mixture Models model and GMMD (GMM-derived features. The principle advantage of the proposed GMMD features is the possibility of performing the adaptation of a DNN through the adaptation of the auxiliary GMM. In the proposed approach any methods for the adaptation of the auxiliary GMM can be used, hence, it provides a universal method for transferring adaptation algorithms developed for GMMs to DNN adaptation.Main Results. The effectiveness of the proposed approach was shown by means of one of the most common adaptation algorithms for GMM models – MAP (Maximum A Posteriori adaptation. Different ways of integration of the proposed approach into state-of-the-art DNN architecture have been proposed and explored. Analysis of choosing the type of the auxiliary GMM model is given. Experimental results on the TED-LIUM corpus demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can provide, approximately, a 11–18% relative word error reduction (WER on different adaptation sets, compared to the speaker-independent DNN system built on conventional features, and a 3–6% relative WER reduction compared to the SAT-DNN trained on fMLLR adapted features.

  7. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Directory of Open Access Journals (Sweden)

    Valentina Dilda

    Full Text Available Healthy subjects (N = 10 were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS on a weekly basis for 12 weeks (120 min total exposure. During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure. This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS and natural vestibular state for up to 6 months.

  8. Epidemic Dynamics On Information-Driven Adaptive Networks

    CERN Document Server

    Zhan, Xiu-Xiu; Sun, Gui-Quan; Zhang, Zi-Ke

    2015-01-01

    can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice give a visual representation about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, oscillatory, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects h...

  9. Multitask Diffusion Adaptation Over Networks With Common Latent Representations

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2017-04-01

    Online learning with streaming data in a distributed and collaborative manner can be useful in a wide range of applications. This topic has been receiving considerable attention in recent years with emphasis on both single-task and multitask scenarios. In single-task adaptation, agents cooperate to track an objective of common interest, while in multitask adaptation agents track multiple objectives simultaneously. Regularization is one useful technique to promote and exploit similarity among tasks in the latter scenario. This work examines an alternative way to model relations among tasks by assuming that they all share a common latent feature representation. As a result, a new multitask learning formulation is presented and algorithms are developed for its solution in a distributed online manner. We present a unified framework to analyze the mean-square-error performance of the adaptive strategies, and conduct simulations to illustrate the theoretical findings and potential applications.

  10. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  11. Analysis of utility-theoretic heuristics for intelligent adaptive network routing

    Energy Technology Data Exchange (ETDEWEB)

    Mikler, A.R.; Honavar, V.; Wong, J.S.K. [Iowa State Univ., Ames, IA (United States)

    1996-12-31

    Utility theory offers an elegant and powerful theoretical framework for design and analysis of autonomous adaptive communication networks. Routing of messages in such networks presents a real-time instance of a multi-criterion optimization problem in a dynamic and uncertain environment. In this paper, we incrementally develop a set of heuristic decision functions that can be used to guide messages along a near-optimal (e.g., minimum delay) path in a large network. We present an analysis of properties of such heuristics under a set of simplifying assumptions about the network topology and load dynamics and identify the conditions under which they are guaranteed to route messages along an optimal path. The paper concludes with a discussion of the relevance of the theoretical results presented in the paper to the design of intelligent autonomous adaptive communication networks and an outline of some directions of future research.

  12. Adaptation, Growth, and Resilience in Biological Distribution Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.

  13. Utilizing Network QoS for Dependability of Adaptive Smart Grid Control

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Kristensen, Thomas le Fevre; Olsen, Rasmus Løvenstein

    2014-01-01

    A smart grid is a complex system consisting of a wide range of electric grid components, entities controlling power distribution, generation and consumption, and a communication network supporting data exchange. This paper focuses on the influence of imperfect network conditions on smart grid con......- trollers, and how this can be counteracted by utilizing Quality of Service (QoS) information from the communication network. Such an interface between grid controller and network QoS is particularly relevant for smart grid scenarios that use third party communication network infrastructure, where...... modification of networking and lower layer protocols are impossible. This paper defines a middleware solution for adaptation of smart grid control, which uses network QoS information and interacts with the smart grid controller to increase dependability. In order to verify the methodology, an example scenario...

  14. Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Dragoni, Nicola

    2015-01-01

    reinforcement scheme specifically designed for EH-WSNs. The proposed scheme allows each node to take into consideration and adapt to the amount of energy available in the system. In particular, we present two approaches, one static and one fully dynamic, and we discuss some experimental results....

  15. Adaptive Relay Activation in the Network Coding Protocols

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2015-01-01

    of the channel states. Furthermore, measurements using our Raspberry Pi testbed demonstrate that our adaptive approach outperforms the previous mechanism in real channel conditions, with only 1% overhead due to linearly dependent coded packets compared to the 11% overhead of the standard PlayNCool approach....

  16. Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2013-01-01

    In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...

  17. Spectrum management considerations of adaptive power control in satellite networks

    Science.gov (United States)

    Sawitz, P.; Sullivan, T.

    1983-01-01

    Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.

  18. An adaptive failure detector based on quality of service in peer-to-peer networks.

    Science.gov (United States)

    Dong, Jian; Ren, Xiao; Zuo, Decheng; Liu, Hongwei

    2014-09-05

    The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P) networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS) can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen's classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD) is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen's model. Moreover, B-AFD has better adaptability to P2P network.

  19. An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2014-09-01

    Full Text Available The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen’s classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen’s model. Moreover, B-AFD has better adaptability to P2P network.

  20. An adaptive routing scheme in scale-free networks

    Science.gov (United States)

    Ben Haddou, Nora; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2015-05-01

    We suggest an optimal form of traffic awareness already introduced as a routing protocol which combines structural and local dynamic properties of the network to determine the followed path between source and destination of the packet. Instead of using the shortest path, we incorporate the "efficient path" in the protocol and we propose a new parameter α that controls the contribution of the queue in the routing process. Compared to the original model, the capacity of the network can be improved more than twice when using the optimal conditions of our model. Moreover, the adjustment of the proposed parameter allows the minimization of the travel time.

  1. Creating an Adaptive Ecosystem Management Network Among Stakeholders of the Lower Roanoke River, North Carolina, USA

    Directory of Open Access Journals (Sweden)

    Susan L. Manring

    2005-12-01

    Full Text Available Adaptive ecosystem management (AEM requires building and managing an interorganizational network of stakeholders to conserve ecosystem integrity while sustaining ecosystem services. This paper demonstrates the usefulness of applying the concepts of interorganizational networks and learning organizations to AEM. A case study of the lower Roanoke River in North Carolina illustrates how an AEM network can evolve to guide stakeholders in creating a shared framework for generative learning, consensus building through collaboration, and decision making. Environmental professionals can use this framework to guide institutional arrangements and to coordinate the systematic development of cohesive interorganizational AEM networks.

  2. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  3. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  4. Synchronization of general complex networks via adaptive control ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... 3Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science &. Engineering, Zigong, Sichuan, 643000, People's Republic of China ...... inputs ui(t) (i = 1, 2, 3) and the values of control inputs are acceptable. From figures 1–5, it is easy to see that the controlled complex network ...

  5. Adaptive, Tactical Mesh Networking: Control Base MANET Model

    Science.gov (United States)

    2010-09-01

    pp. 316–320 Available: IEEE Xplore , http://ieeexplore.ieee.org [Accessed: June 9, 2010]. [5] N. Sidiropoulos, “Multiuser Transmit Beamforming...Mobile Mesh Segments of TNT Testbed .......... 11 Figure 5. Infrastructure and Ad Hoc Mode of IEEE 802.11................................ 13 Figure...6. The Power Spectral Density of OFDM................................................ 14 Figure 7. A Typical IEEE 802.16 Network

  6. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  7. Effects of Implementing Adaptable Channelization in Wi-Fi Networks

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2016-01-01

    Full Text Available The unprecedented increase of wireless devices is now facing a serious threat of spectrum scarcity. The situation becomes even worse due to inefficient frequency distribution protocols, deployed in trivial Wi-Fi networks. The primary source of this inefficiency is static channelization used in wireless networks. In this work, we investigate the use of dynamic and flexible channelization, for optimal spectrum utilization in Wi-Fi networks. We propose optimal spectrum sharing algorithm (OSSA and analyze its effect on exhaustive list of essential network performance measuring parameters. The elementary concept of the proposed algorithm lies in the fact that frequency spectrum should be assigned to any access point (AP based on its current requirement. The OSSA algorithm assigns channels with high granularity, thus maximizing spectrum utilization by more than 20% as compared to static width channel allocation. This optimum spectrum utilization, in turn, increases throughput by almost 30% in many deployment scenarios. The achieved results depict considerable decrease in interference, while simultaneously increasing range. Similarly signal strength values at relatively longer distances improve significantly at narrower channel widths while simultaneously decreasing bit error rates. We found that almost 25% reduction in interference is possible in certain scenarios through proposed algorithm.

  8. Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks

    CSIR Research Space (South Africa)

    Masonta, M

    2015-09-01

    Full Text Available Spectrum decision is the ability of a cognitive radio (CR) system to select the best available spectrum band to satisfy dynamic spectrum access network (DSAN) users¿ quality of service (QoS) requirements without causing harmful interference...

  9. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    Science.gov (United States)

    2016-12-07

    proposed by Qian and Jiaxue [2010] with the help of the neural network. Other six-DOF model of AHV are presented by Vick [2014], Chamitoff [1992]. The...adap- tive robust controller is derived by Rollins et al. [2013], using dynamic inversion technique for the model proposed by Vick [2014]. Further, the...Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4):918–927, 2009. Tyler J Vick . Geometry Modeling

  10. Creep-induced anisotropy in covalent adaptable network polymers.

    Science.gov (United States)

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  11. Evolving artificial neural networks for cross-adaptive audio effects

    OpenAIRE

    Jordal, Iver

    2017-01-01

    Cross-adaptive audio effects have many applications within music technology, including for automatic mixing and live music. Commonly used methods of signal analysis capture the acoustical and mathematical features of the signal well, but struggle to capture the musical meaning. Together with the vast number of possible signal interactions, this makes manual exploration of signal interactions difficult and tedious. This project investigates Artificial Intelligence (AI) methods for finding usef...

  12. Adaptive learning in tracking control based on the dual critic network design.

    Science.gov (United States)

    Ni, Zhen; He, Haibo; Wen, Jinyu

    2013-06-01

    In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we build the reference network on top of the critic network to form a dual critic network design that contains the detailed internal goal representation to help approximate the value function. This internal goal signal, working as the reinforcement signal for the critic network in our design, is adaptively generated by the reference network and can also be adjusted automatically. In this way, we provide an alternative choice rather than crafting the reinforcement signal manually from prior knowledge. In this paper, we adopt the online action-dependent heuristic dynamic programming (ADHDP) design and provide the detailed design of the dual critic network structure. Detailed Lyapunov stability analysis for our proposed approach is presented to support the proposed structure from a theoretical point of view. Furthermore, we also develop a virtual reality platform to demonstrate the real-time simulation of our approach under different disturbance situations. The overall adaptive learning performance has been tested on two tracking control benchmarks with a tracking filter. For comparative studies, we also present the tracking performance with the typical ADHDP, and the simulation results justify the improved performance with our approach.

  13. Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation.

    Science.gov (United States)

    Dur-e-Ahmad, Muhammad; Nicola, Wilten; Campbell, Sue Ann; Skinner, Frances K

    2012-08-01

    The hippocampus is a brain structure critical for memory functioning. Its network dynamics include several patterns such as sharp waves that are generated in the CA3 region. To understand how population outputs are generated, models need to consider aspects of network size, cellular and synaptic characteristics and context, which are necessarily 'balanced' in appropriate ways to produce particular outputs. Thick slice hippocampal preparations spontaneously produce sharp waves that are initiated in CA3 regions and depend on the right balance of glutamatergic activities. As a step toward developing network models that can explain important balances in the generation of hippocampal output, we develop models of CA3 pyramidal cells. Our models are single compartment in nature, use an Izhikevich-type structure and involve parameter values that are specifically designed to encompass CA3 intrinsic properties. Importantly, they incorporate spike frequency adaptation characteristics that are directly comparable to those measured experimentally. Excitatory networks using these model cells are able to produce bursting suggesting that the amount of spike frequency adaptation expressed in the biological cells is an essential contributor to network bursting, and as such, may be important for sharp wave generation. The network bursting mechanism is numerically dissected showing the critical balance between adaptation and excitatory drive. The compact nature of our models allows large network simulations to be efficiently computed. This, together with the linkage of our models to cellular characteristics, will allow us to develop an understanding of population output of CA3 hippocampus with direct biological comparisons.

  14. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Science.gov (United States)

    Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin

    2011-01-01

    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774

  15. An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring.

    Science.gov (United States)

    Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin

    2011-01-01

    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  16. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zeng

    2010-06-01

    Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  17. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Directory of Open Access Journals (Sweden)

    Guilin Zheng

    2011-03-01

    Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  18. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  19. Profile-based adaptive anomaly detection for network security.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

    2005-11-01

    As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress

  20. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  1. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    Science.gov (United States)

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  2. A multi-objective multi-memetic algorithm for network-wide conflict-free 4D flight trajectories planning

    Directory of Open Access Journals (Sweden)

    Su YAN

    2017-06-01

    Full Text Available Under the demand of strategic air traffic flow management and the concept of trajectory based operations (TBO, the network-wide 4D flight trajectories planning (N4DFTP problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories (4DTs (3D position and time for all the flights in the whole airway network. Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity, an efficient model for strategic-level conflict management is developed in this paper. Specifically, a bi-objective N4DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated. In consideration of the large-scale, high-complexity, and multi-objective characteristics of the N4DFTP problem, a multi-objective multi-memetic algorithm (MOMMA that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented. It is capable of rapidly and effectively allocating 4DTs via rerouting, target time controlling, and flight level changing. Additionally, to balance the ability of exploitation and exploration of the algorithm, a special hybridization scheme is adopted for the integration of local and global search. Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4DFTP problem. The solutions achieved are competitive for elaborate decision support under a TBO environment.

  3. Strong Attractors in Stochastic Adaptive Networks: Emergence and Characterization

    CERN Document Server

    Santos, Augusto Almeida; Krishnan, Ramayya; Moura, José M F

    2016-01-01

    We propose a family of models to study the evolution of ties in a network of interacting agents by reinforcement and penalization of their connections according to certain local laws of interaction. The family of stochastic dynamical systems, on the edges of a graph, exhibits \\emph{good} convergence properties, in particular, we prove a strong-stability result: a subset of binary matrices or graphs -- characterized by certain compatibility properties -- is a global almost sure attractor of the family of stochastic dynamical systems. To illustrate finer properties of the corresponding strong attractor, we present some simulation results that capture, e.g., the conspicuous phenomenon of emergence and downfall of leaders in social networks.

  4. Scalable and Media Aware Adaptive Video Streaming over Wireless Networks

    Science.gov (United States)

    Tizon, Nicolas; Pesquet-Popescu, Béatrice

    2008-12-01

    This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate) variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.

  5. Photo Aesthetics Ranking Network with Attributes and Content Adaptation

    OpenAIRE

    Kong, Shu; Shen, Xiaohui; Lin, Zhe; Mech, Radomir; Fowlkes, Charless

    2016-01-01

    Real-world applications could benefit from the ability to automatically generate a fine-grained ranking of photo aesthetics. However, previous methods for image aesthetics analysis have primarily focused on the coarse, binary categorization of images into high- or low-aesthetic categories. In this work, we propose to learn a deep convolutional neural network to rank photo aesthetics in which the relative ranking of photo aesthetics are directly modeled in the loss function. Our model incorpor...

  6. A QoS-Driven Self-Adaptive Architecture For Wireless Sensor Networks

    OpenAIRE

    Jemal, Ahmed; Ben Halima, Riadh

    2013-01-01

    6 pages; International audience; Recently, Wireless Sensor Networks (WSN) have become increasingly used to perform distributed sensing and convey useful information. These kinds of environments are complex, heterogeneous and often affected by unpredictable behavior and poor management. This fostered considerable research on designs and techniques that enhance these systems with an adaptation behavior. In this paper, we focus on the self-adaptation branch of the research and give an overview o...

  7. Adaptive Synchronization of Complex Dynamical Networks Governed by Local Lipschitz Nonlinearlity on Switching Topology

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-01-01

    Full Text Available This paper investigates the adaptive synchronization of complex dynamical networks satisfying the local Lipschitz condition with switching topology. Based on differential inclusion and nonsmooth analysis, it is proved that all nodes can converge to the synchronous state, even though only one node is informed by the synchronous state via introducing decentralized adaptive strategies to the coupling strengths and feedback gains. Finally, some numerical simulations are worked out to illustrate the analytical results.

  8. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    Science.gov (United States)

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  9. Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks

    Science.gov (United States)

    Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai

    2017-09-01

    Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.

  10. Co-evolutionary behaviour selection in adaptive social networks predicts clustered marginalization of minorities

    CERN Document Server

    Schleussner, Carl-Friedrich; Engemann, Denis A; Levermann, Anders

    2015-01-01

    Human behaviour is largely shaped by local social interactions and depends on the structure of connections between individuals in social networks. These two dimensions of behaviour selection are commonly studied in isolation by different disciplines and are often treated as independent processes. To the contrary, empirical findings on spread of behaviour in social networks suggest that local interactions between individuals and network evolution are interdependent. Empirical evidence, however, remains inconclusive as social network studies often suffer from limited sample sizes or are prohibitive on ethical grounds. Here we introduce a co-evolutionary adaptive network model of social behaviour selection that provides insights into generative mechanisms by resolving both these aspects through computer simulations. We considered four complementary models and evaluated them with regard to emulating empirical behaviour dynamics in social networks. For this purpose we modelled the prevalence of smoking and and the...

  11. Adaptive Synchronization for a Class of Uncertain Fractional-Order Neural Networks

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2015-10-01

    Full Text Available In this paper, synchronization for a class of uncertain fractional-order neural networks subject to external disturbances and disturbed system parameters is studied. Based on the fractional-order extension of the Lyapunov stability criterion, an adaptive synchronization controller is designed, and fractional-order adaptation law is proposed to update the controller parameter online. The proposed controller can guarantee that the synchronization errors between two uncertain fractional-order neural networks converge to zero asymptotically. By using some proposed lemmas, the quadratic Lyapunov functions are employed in the stability analysis. Finally, numerical simulations are presented to confirm the effectiveness of the proposed method.

  12. Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)

    2010-04-05

    This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.

  13. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    Science.gov (United States)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by

  14. The Adaptive Neural Network Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    A. S. Yushenko

    2017-01-01

    Full Text Available The current steady-rising interest in using the unmanned multi-rotor aerial vehicles (UMAV designed to solve a wide range of tasks is, mainly, due to their simple design and high weight-carrying capacity as compared to classical helicopter options. Unfortunately, to solve a problem of multi-copter control is complicated because of essential nonlinearity and environmental perturbations. The most widely spread PID controllers and linear-quadratic regulators do not quite well cope with this task. The need arises for the prompt adjustment of PID controller coefficients in the course of operation or their complete re-tuning in cases of changing parameters of the control object.One of the control methods under changing conditions is the use of the sliding mode. This technology enables us to reach the stabilization and proper operation of the controlled system even under accidental external exposures and when there is a lack of the reasonably accurate mathematical model of the control object. The sliding principle is to ensure the system motion in the immediate vicinity of the sliding surface in the phase space. On the other hand, the sliding mode has some essential disadvantages. The most significant one is the high-frequency jitter of the system near the sliding surface. The sliding mode also implies the complete knowledge of the system dynamics. Various methods have been proposed to eliminate these drawbacks. For example, A.G. Aissaoui’s, H. Abid’s and M. Abid’s paper describes the application of fuzzy logic to control a drive and in Lon-Chen Hung’s and Hung-Yuan Chung’s paper an artificial neural network is used for the manipulator control.This paper presents a method of the quad-copter control with the aid of a neural network controller. This method enables us to control the system without a priori information on parameters of the dynamic model of the controlled object. The main neural network is a MIMO (“Multiple Input Multiple

  15. Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.

    Science.gov (United States)

    Dao, Nhu-Ngoc; Kim, Joongheon; Park, Minho; Cho, Sungrae

    2016-01-01

    The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS) technique. Software-defined networking (SDN), on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP) mechanism to protect the controller from the Denial of Service (DoS) attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.

  16. Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.

    Directory of Open Access Journals (Sweden)

    Nhu-Ngoc Dao

    Full Text Available The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS technique. Software-defined networking (SDN, on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP mechanism to protect the controller from the Denial of Service (DoS attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.

  17. Selective adaptation in networks of heterogeneous populations: model, simulation, and experiment.

    Directory of Open Access Journals (Sweden)

    Avner Wallach

    2008-02-01

    Full Text Available Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus increases the system's sensitivity to rare stimuli. These phenomena were explained in previous work as a result of complex interactions between the various subpopulations of the network. A formal description and analysis of neuronal systems, however, is hindered by the network's heterogeneity and by the multitude of processes taking place at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is sufficiently general to apply to different biological systems, and was demonstrated in two different cases.

  18. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    set of requirements. Lastly, the paper suggests a mechanism by which the information access or acquisition can be adapted as per the requirements of the application. The main parameters focused in this paper are mismatch probability [1] and power dissipation with respect to sampling rate....... specific WSN considering its resource constraints, neglecting the return-of-investment and usefulness of the system. In this paper, we bring out the WSN scenario which supports multiple applications and study the challenges that would pose in implementation as each specific application has its own specific...

  19. Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia

    Directory of Open Access Journals (Sweden)

    Kathryn J. Bowen

    2014-01-01

    Full Text Available Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’ in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.

  20. Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation

    Science.gov (United States)

    Bullaughey, Kevin

    2016-01-01

    When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561

  1. Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia

    Science.gov (United States)

    Bowen, Kathryn J.; Alexander, Damon; Miller, Fiona; Dany, Va

    2014-01-01

    Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’) in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes. PMID:24487452

  2. An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries

    Science.gov (United States)

    2010-10-01

    application for RUL prediction. We compare its performance with the classical recurrent neural network (RNN) and the recurrent neural fuzzy system ...Jang (1993). ANFIS: adaptive-network-based fuzzy inference system , IEEE Transactions on Systems , Man, and Cybernetics-Part B: Cybernetics, vol. 23...pp. 665-685, 1993. J. Jang, C. T. Sun, and E. Mizutani (1997). Neuro - Fuzzy and Soft Computing: A computational approach to learning and machine

  3. An adaptive distributed admission approach in Bluetooth network with QoS provisions

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2002-01-01

    In this paper, a method of adaptive distributed admission with end-to-end Quality of Service (QoS) provisions for real time and non real time tra°cs in Blue-tooth networks is highlighted, its mathematic background is analyzed and a simulation with bursty tra°c sources, Interrupted Bernoulli Process...... (IBP), is carried out. The simulation results show that the performance of Bluetooth network is improved when applying the distributed admission method...

  4. Work, exercise, and space flight. 2: Modification of adaptation by exercise (exercise prescription)

    Science.gov (United States)

    Thornton, William

    1989-01-01

    The fundamentals of exercise theory on earth must be rigorously understood and applied to prevent adaptation to long periods of weightlessness. Locomotor activity, not weight, determines the capacity or condition of the largest muscles and bones in the body and usually also determines cardio-respiratory capacity. Absence of this activity results in rapid atrophy of muscle, bone, and cardio-respiratory capacity. Upper body muscle and bone are less affected depending upon the individual's usual, or 1-g, activities. Methodology is available to prevent these changes but space operations demand that it be done in the most efficient fashion, i.e., shortest time. At this point in time we can reasonably select the type of exercise and methods of obtaining it, but additional work in 1-g will be required to optimize the time.

  5. A neural network model for familiarity and context learning during honeybee foraging flights.

    Science.gov (United States)

    Müller, Jurek; Nawrot, Martin; Menzel, Randolf; Landgraf, Tim

    2017-09-15

    How complex is the memory structure that honeybees use to navigate? Recently, an insect-inspired parsimonious spiking neural network model was proposed that enabled simulated ground-moving agents to follow learned routes. We adapted this model to flying insects and evaluate the route following performance in three different worlds with gradually decreasing object density. In addition, we propose an extension to the model to enable the model to associate sensory input with a behavioral context, such as foraging or homing. The spiking neural network model makes use of a sparse stimulus representation in the mushroom body and reward-based synaptic plasticity at its output synapses. In our experiments, simulated bees were able to navigate correctly even when panoramic cues were missing. The context extension we propose enabled agents to successfully discriminate partly overlapping routes. The structure of the visual environment, however, crucially determines the success rate. We find that the model fails more often in visually rich environments due to the overlap of features represented by the Kenyon cell layer. Reducing the landmark density improves the agents route following performance. In very sparse environments, we find that extended landmarks, such as roads or field edges, may help the agent stay on its route, but often act as strong distractors yielding poor route following performance. We conclude that the presented model is valid for simple route following tasks and may represent one component of insect navigation. Additional components might still be necessary for guidance and action selection while navigating along different memorized routes in complex natural environments.

  6. Implementation Issues of Adaptive Energy Detection in Heterogeneous Wireless Networks.

    Science.gov (United States)

    Sobron, Iker; Eizmendi, Iñaki; Martins, Wallace A; Diniz, Paulo S R; Ordiales, Juan Luis; Velez, Manuel

    2017-04-23

    Spectrum sensing (SS) enables the coexistence of non-coordinated heterogeneous wireless systems operating in the same band. Due to its computational simplicity, energy detection (ED) technique has been widespread employed in SS applications; nonetheless, the conventional ED may be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing ED algorithms from theoretical and simulation viewpoints relies on several assumptions and simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements imposed by real propagation environments. This work addresses those problems by dealing with practical implementation issues of adaptive least mean square (LMS)-based ED algorithms. The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS convergence in time-varying environments. Several implementation guidelines are provided and, additionally, an empirical assessment and validation with a software defined radio-based hardware is carried out. Experimental results show good performance in terms of probabilities of detection ( P d > 0 . 9 ) and false alarm ( P f ∼ 0 . 05 ) in a range of low signal-to-noise ratios around [ - 4 , 1 ] dB, in both single-node and cooperative modes. The proposed sensing methodology enables a seamless monitoring of the radio electromagnetic spectrum in order to provide band occupancy information for an efficient usage among several wireless communications systems.

  7. Implementation Issues of Adaptive Energy Detection in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Iker Sobron

    2017-04-01

    Full Text Available Spectrum sensing (SS enables the coexistence of non-coordinated heterogeneous wireless systems operating in the same band. Due to its computational simplicity, energy detection (ED technique has been widespread employed in SS applications; nonetheless, the conventional ED may be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing ED algorithms from theoretical and simulation viewpoints relies on several assumptions and simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements imposed by real propagation environments. This work addresses those problems by dealing with practical implementation issues of adaptive least mean square (LMS-based ED algorithms. The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS convergence in time-varying environments. Several implementation guidelines are provided and, additionally, an empirical assessment and validation with a software defined radio-based hardware is carried out. Experimental results show good performance in terms of probabilities of detection ( P d > 0 . 9 and false alarm ( P f ∼ 0 . 05 in a range of low signal-to-noise ratios around [ - 4 , 1 ] dB, in both single-node and cooperative modes. The proposed sensing methodology enables a seamless monitoring of the radio electromagnetic spectrum in order to provide band occupancy information for an efficient usage among several wireless communications systems.

  8. Map images portraying flight paths of low-altitude transects over the Arctic Network of national park units and Selawik National Wildlife Refuge, Alaska, July 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Maps portraying the flight paths for low altitude transects conducted from small aircraft over the National Park Service’s Arctic Network (Bering Land Bridge...

  9. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  10. Spatio-Temporally Adaptive Waiting Time for Cell Phone Sensor Networks

    OpenAIRE

    Deepthi Chander; Bhushan Jagyasi; Desai, U. B.; Merchant, S N

    2011-01-01

    In cell phone sensor networks (CpSN), sensor-embedded cell phones communicate sensor data using Near Field Communication outlets such as Wi-Fi or Bluetooth. This paper considers a query dissemination application of CpSN, where sensor data belonging to a certain time window [ts,min, ts,max] is needed from a region of interest. Existing approaches, such as ADAPT, use adaptive broadcast ranges at the Wireless Access Point (WAP) for query dissemination. This paper proposes the adaptation of waiti...

  11. Information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion

    Science.gov (United States)

    Wu, Juan; Xu, Yong; Wang, Haiyan; Kurths, Jürgen

    2017-06-01

    We investigate the logical information transmission of a synthetic gene network under Lévy flight superdiffusion by an information-based methodology. We first present the stochastic synthetic gene network model driven by a square wave signal under Lévy noise caused by Lévy flight superdiffusion. Then, to quantify the potential of logical information transmission and logical stochastic resonance, we theoretically obtain an information-based methodology of the symbol error rate, the noise entropy, and the mutual information of the logical information transmission. Consequently, based on the complementary "on" and "off" states shown in the logical information transmission for the repressive proteins, we numerically calculate the symbol error rate for logic gates, which demonstrate that the synthetic gene network under Lévy noise can achieve some logic gates as well as logical stochastic resonance. Furthermore, we calculate the noise entropy and the mutual information between the square wave signal and the logical information transmission, which reveal and quantify the potential of logical information transmission and logical stochastic resonance. In addition, we analyze the synchronization degree of the mutual information for the accomplished logical stochastic resonance of two repressive proteins of the synthetic gene network by synchronization variances, which shows that those mutual information changes almost synchronously.

  12. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    Science.gov (United States)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  13. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  14. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    Science.gov (United States)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  15. Design and Development of a Flight Route Modification, Logging, and Communication Network

    Science.gov (United States)

    Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.

    2016-01-01

    There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.

  16. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP-RBF neu...

  17. Adaptive and Collaborative Exploitation of 3 Dimensional Environmental Acoustics in Distributed Undersea Networks

    Science.gov (United States)

    2015-09-30

    Dimensional Environmental Acoustics in Distributed Undersea Networks PI: Henrik Schmidt Massachusetts Institute of Technology 77 Massachusetts Avenue...and understanding the spatial diversity of strongly 3D acoustic environments, including both signal and noise. SA core objective is to identify...adaptive waypoint behaviors required by this approach, with validation through field experiments of opportunity. APPROACH The fundamental approach of

  18. An adaptive resource control mechanism in multi-hop ad-hoc networks

    NARCIS (Netherlands)

    Yang, Y.; Heijenk, Geert; Haverkort, Boudewijn R.H.M.; Masip Bruin, Xavier; Verchere, Dominique; Tsaoussidis, Vassilis; Yannuzzi, Marcelo

    This paper presents an adaptive resource control mechanism for multi-hop ad-hoc network systems, which avoids bottleneck problems caused by the node-fairness property of IEEE 802.11. In our proposal, the feedback information from the downstream bottleneck, derived from Request-To-Send (RTS) and

  19. A note on "Multicriteria adaptive paths in stochastic, time-varying networks"

    DEFF Research Database (Denmark)

    Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan

    In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...

  20. An Adaptive Temporal-Causal Network Model for Enabling Learning of Social Interaction

    NARCIS (Netherlands)

    Commu, Charlotte; Theelen, Mathilde; Treur, J.

    2017-01-01

    In this study, an adaptive temporal-causal network model is present-ed for learning of basic skills for social interaction. It focuses on greeting a known person and how that relates to learning how to recognize a person from seeing his or her face. The model involves a Hebbian learning process. The

  1. Linking Climate Risk, Policy Networks and Adaptation Planning in Public Lands

    Science.gov (United States)

    Lubell, M.; Schwartz, M.; Peters, C.

    2014-12-01

    Federal public land management agencies in the United States have engaged a variety of planning efforts to address climate adaptation. A major goal of these efforts is to build policy networks that enable land managers to access information and expertise needed for responding to local climate risks. This paper investigates whether the perceived and modeled climate risk faced by different land managers is leading to larger networks or more participating in climate adaptation. In theory, the benefits of climate planning networks are larger when land managers are facing more potential changes. The basic hypothesis is tested with a survey of public land managers from hundreds of local and regional public lands management units in the Southwestern United States, as well as other stakeholders involved with climate adaptation planning. All survey respondents report their perceptions of climate risk along a variety of dimensions, as well as their participation in climate adaptation planning and information sharing networks. For a subset of respondents, we have spatially explicity GIS data about their location, which will be linked with downscaled climate model data. With the focus on climate change, the analysis is a subset of the overall idea of linking social and ecological systems.

  2. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    Science.gov (United States)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  3. Using Virtualization and Automatic Evaluation: Adapting Network Services Management Courses to the EHEA

    Science.gov (United States)

    Ros, S.; Robles-Gomez, A.; Hernandez, R.; Caminero, A. C.; Pastor, R.

    2012-01-01

    This paper outlines the adaptation of a course on the management of network services in operating systems, called NetServicesOS, to the context of the new European Higher Education Area (EHEA). NetServicesOS is a mandatory course in one of the official graduate programs in the Faculty of Computer Science at the Universidad Nacional de Educacion a…

  4. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe

    2016-01-01

    continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...

  5. Largenet2: an object-oriented programming library for simulating large adaptive networks.

    Science.gov (United States)

    Zschaler, Gerd; Gross, Thilo

    2013-01-15

    The largenet2 C++ library provides an infrastructure for the simulation of large dynamic and adaptive networks with discrete node and link states. The library is released as free software. It is available at http://biond.github.com/largenet2. Largenet2 is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. gerd@biond.org

  6. A Comprehensive Review on Adaptability of Network Forensics Frameworks for Mobile Cloud Computing

    Science.gov (United States)

    Abdul Wahab, Ainuddin Wahid; Han, Qi; Bin Abdul Rahman, Zulkanain

    2014-01-01

    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC. PMID:25097880

  7. A comprehensive review on adaptability of network forensics frameworks for mobile cloud computing.

    Science.gov (United States)

    Khan, Suleman; Shiraz, Muhammad; Wahab, Ainuddin Wahid Abdul; Gani, Abdullah; Han, Qi; Rahman, Zulkanain Bin Abdul

    2014-01-01

    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.

  8. Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Liaqat, Misbah; Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram; Ali, Rana Liaqat

    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results.

  9. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.

    Science.gov (United States)

    Abba, Sani; Lee, Jeong-A

    2015-08-18

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.

  10. Adaptive control of dynamical synchronization on evolving networks with noise disturbances

    Science.gov (United States)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen

    2018-02-01

    In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).

  11. Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

    Science.gov (United States)

    Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong

    2017-09-01

    In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council

  12. Unsupervised Remote Sensing Domain Adaptation Method with Adversarial Network and Auxiliary Task

    Directory of Open Access Journals (Sweden)

    XU Suhui

    2017-12-01

    Full Text Available An important prerequisite when annotating the remote sensing images by machine learning is that there are enough training samples for training, but labeling the samples is very time-consuming. In this paper, we solve the problem of unsupervised learning with small sample size in remote sensing image scene classification by domain adaptation method. A new domain adaptation framework is proposed which combines adversarial network and auxiliary task. Firstly, a novel remote sensing scene classification framework is established based on deep convolution neural networks. Secondly, a domain classifier is added to the network, in order to learn the domain-invariant features. The gradient direction of the domain loss is opposite to the label loss during the back propagation, which makes the domain predictor failed to distinguish the sample's domain. Lastly, we introduce an auxiliary task for the network, which augments the training samples and improves the generalization ability of the network. The experiments demonstrate better results in unsupervised classification with small sample sizes of remote sensing images compared to the baseline unsupervised domain adaptation approaches.

  13. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  14. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  15. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  16. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    DEFF Research Database (Denmark)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements...... correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...... robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables...

  18. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  19. Adaptive Robust Control for Space Robot with Ucertainty base on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhang Wenhui

    2013-11-01

    Full Text Available The trajectory tracking problems of a class of space robot manipulators with parameters and non-parameters uncertainty are considered. An adaptive robust control algorithm based on neural network is proposed by the paper. Neutral network is used to adaptive learn and compensate the unknown system for parameters uncertainties? the weight adaptive laws are designed by the paper? System stability base on Lyapunov theory is analysised to ensure the convergence of the algorithm. Non-parameters uncertainties are estimated and compensated by robust controller. It is proven that the designed controller can guarantee the asymptotic convergence of tracking error. The controller could guarantee good robust and the stability of closed-loop system. The simulation results show that the presented method is effective.

  20. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.

    Science.gov (United States)

    Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal

    2012-09-01

    The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Neural network adapted to wound cell analysis in surgical patients.

    Science.gov (United States)

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. © 2011 by the Wound Healing Society.

  2. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  3. Optimal Channel Width Adaptation, Logical Topology Design, and Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Li Li

    2009-01-01

    Full Text Available Radio frequency spectrum is a finite and scarce resource. How to efficiently use the spectrum resource is one of the fundamental issues for multi-radio multi-channel wireless mesh networks. However, past research efforts that attempt to exploit multiple channels always assume channels of fixed predetermined width, which prohibits the further effective use of the spectrum resource. In this paper, we address how to optimally adapt channel width to more efficiently utilize the spectrum in IEEE802.11-based multi-radio multi-channel mesh networks. We mathematically formulate the channel width adaptation, logical topology design, and routing as a joint mixed 0-1 integer linear optimization problem, and we also propose our heuristic assignment algorithm. Simulation results show that our method can significantly improve spectrum use efficiency and network performance.

  4. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chuan Zhu

    2014-01-01

    Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  5. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    DEFF Research Database (Denmark)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin

    2015-01-01

    dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural...... mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...... correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...

  6. A uniform instrumentation, event, and adaptation framework for network-aware middleware and advanced network applications

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Daniel A. [Univ. of Illinois, Urbana, IL (United States)

    2003-03-14

    Developers of advanced network applications such as remote instrument control, distributed data management, tele-immersion and collaboration, and distributed computing face a daunting challenge: sustaining robust application performance despite time-varying resource demands and dynamically changing resource availability. It is widely recognized that network-aware middleware is key to achieving performance robustness.

  7. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.

  8. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  9. Delay-Tolerant Networking for Space Flight Operations: Design and Development

    Science.gov (United States)

    Burleigh, Scott

    2008-01-01

    Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. The Internet protocols are not well suited for operation of a network over interplanetary distances; a Delay-Tolerant Networking (DTN) architecture has been proposed instead. DTN is now a rapidly growing research field, but most implementations are mainly aimed at supporting applications of DTN technology to terrestrial networking problems. Those implementations are not necessarily suitable for deployment in an interplanetary network. Interplanetary Overlay Network (ION) is an implementation of the DTN architecture that is specifically designed for use in resource-constrained embedded systems, such as interplanetary robotic spacecraft.

  10. Application of an Adaptive Clustering Network to Flight Control of a Fighter Aircraft. Phase 1

    Science.gov (United States)

    1991-12-19

    54 for SS-7. These are the seven Fibonacci Number Series, from 3 to 54 in which each value is the sum of the preceding two values. These have no...gaussian function. Sufficient neurons are added to assure that at least one or more overlapping radii cover the locus of input states traversed by the...the command state region, with sufficient overlap for 1 to 5 neurons to influence each control action. xi. To cover the NC-input state space (here, Qc

  11. A Context-Aware Adaptive Streaming Media Distribution System in a Heterogeneous Network with Multiple Terminals

    Directory of Open Access Journals (Sweden)

    Yepeng Ni

    2016-01-01

    Full Text Available We consider the problem of streaming media transmission in a heterogeneous network from a multisource server to home multiple terminals. In wired network, the transmission performance is limited by network state (e.g., the bandwidth variation, jitter, and packet loss. In wireless network, the multiple user terminals can cause bandwidth competition. Thus, the streaming media distribution in a heterogeneous network becomes a severe challenge which is critical for QoS guarantee. In this paper, we propose a context-aware adaptive streaming media distribution system (CAASS, which implements the context-aware module to perceive the environment parameters and use the strategy analysis (SA module to deduce the most suitable service level. This approach is able to improve the video quality for guarantying streaming QoS. We formulate the optimization problem of QoS relationship with the environment parameters based on the QoS testing algorithm for IPTV in ITU-T G.1070. We evaluate the performance of the proposed CAASS through 12 types of experimental environments using a prototype system. Experimental results show that CAASS can dynamically adjust the service level according to the environment variation (e.g., network state and terminal performances and outperforms the existing streaming approaches in adaptive streaming media distribution according to peak signal-to-noise ratio (PSNR.

  12. Development of an Adaptive Routing Mechanism in Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    A. N. Noskov

    2015-01-01

    Full Text Available The purpose of this work is to develop a unitary mechanism of adaptive routing of different kinds, basing on the current requirements on the quality of service. The software configuration of a network is the technology of the future. The trend in communication systems constantly confirms this fact. However, the application of this technology in its current form is justified only in large networks of technology giants and telecom operators. Today we have a large number of dynamic routing protocols to route big volume traffic in communication networks. Our task is to create the solution that can use the opportunities of each node to make a decision on the transmission of information by all possible means for each type of traffic. Achieving this goal is possible by solving the problem of the development of generalized metrics, which details the links between devices in the network, and the problem of establishing a framework of adaptive logical network topology (route management to ensure the quality of the whole network in order to meet the current requirements on the quality of a particular type service.

  13. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  14. OSPF for Implementing Self-adaptive Routing in Autonomic Networks: A Case Study

    Science.gov (United States)

    Rétvári, Gábor; Németh, Felicián; Chaparadza, Ranganai; Szabó, Róbert

    Autonomicity, realized through control-loop structures operating within network devices and the network as a whole, is an enabler for advanced and enriched self-manageability of network devices and networks. In this paper, we argue that the degree of self-management and self-adaptation embedded by design into existing protocols needs to be well understood before one can enhance or integrate such protocols into self-managing network architectures that exhibit more advanced autonomic behaviors. We justify this claim through an illustrative case study: we show that the well-known and extensively used intra-domain IP routing protocol, OSPF, is itself a quite capable self-managing entity, complete with all the basic components of an autonomic networking element like embedded control-loops, decision-making modules, distributed knowledge repositories, etc. We describe these components in detail, concentrating on the numerous control-loops inherent to OSPF, and discuss how some of the control-loops can be enriched with external decision making logics to implement a truly self-adapting routing functionality.

  15. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei

    2014-06-22

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  16. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  17. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level.

    Science.gov (United States)

    Harrison, Jon F; Waters, James S; Biddulph, Taylor A; Kovacevic, Aleksandra; Klok, C Jaco; Socha, John J

    2017-09-18

    While it is clear that the insect tracheal system can respond in a compensatory manner to both hypoxia and hyperoxia, there is substantial variation in how different parts of the system respond. However, the response of tracheal structures, from the tracheoles to the largest tracheal trunks, have not been studied within one species. In this study, we examined the effect of larval/pupal rearing in hypoxia, normoxia, and hyperoxia (10, 21 or 40kPa oxygen) on body size and the tracheal supply to the flight muscles of Drosophila melanogaster, using synchrotron radiation micro-computed tomography (SR-µCT) to assess flight muscle volumes and the major tracheal trunks, and confocal microscopy to assess the tracheoles. Hypoxic rearing decreased thorax length whereas hyperoxic-rearing decreased flight muscle volumes, suggestive of negative effects of both extremes. Tomography at the broad organismal scale revealed no evidence for enlargement of the major tracheae in response to lower rearing oxygen levels, although tracheal size scaled with muscle volume. However, using confocal imaging, we found a strong inverse relationship between tracheole density within the flight muscles and rearing oxygen level, and shorter tracheolar branch lengths in hypoxic-reared animals. Although prior studies of larger tracheae in other insects indicate that axial diffusing capacity should be constant with sequential generations of branching, this pattern was not found in the fine tracheolar networks, perhaps due to the increasing importance of radial diffusion in this regime. Overall, D. melanogaster responded to rearing oxygen level with compensatory morphological changes in the small tracheae and tracheoles, but retained stability in most of the other structural components of the tracheal supply to the flight muscles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop.

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2013-10-06

    The incoherent type-1 feed-forward loop (I1-FFL) is ubiquitous in biological regulatory circuits. Although much is known about the functions of the I1-FFL motif, the energy cost incurred in the network and how it affects the performance of the network have not been investigated. Here, we study a generic I1-FFL enzymatic reaction network modelled after the GEF-GAP-Ras pathway responsible for chemosensory adaptation in eukaryotic cells. Our analysis shows that the I1-FFL network always operates out of equilibrium. Continuous energy dissipation is necessary to drive an internal phosphorylation-dephosphorylation cycle that is crucial in achieving strong short-time response and accurate long-time adaptation. In particular, we show quantitatively that the energy dissipated in the I1-FFL network is used (i) to increase the system's initial response to the input signals; (ii) to enhance the adaptation accuracy at steady state; and (iii) to expand the range of such accurate adaptation. Moreover, we find that the energy dissipation rate, the catalytic speed and the maximum adaptation accuracy in the I1-FFL network satisfy the same energy-speed-accuracy relationship as in the negative-feedback-loop (NFL) networks. Because the I1-FFL and NFL are the only two basic network motifs that enable accurate adaptation, our results suggest that a universal cost-performance trade-off principle may underlie all cellular adaptation processes independent of the detailed biochemical circuit architecture.

  19. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    Science.gov (United States)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  20. An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2017-03-01

    Full Text Available The strapdown fiber optic gyrocompass (strapdown FOGC system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC.

  1. From epidemics to information propagation: striking differences in structurally similar adaptive network models.

    Science.gov (United States)

    Trajanovski, Stojan; Guo, Dongchao; Van Mieghem, Piet

    2015-09-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.

  2. Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms.

    Science.gov (United States)

    Fortuna, Miguel A; Zaman, Luis; Wagner, Andreas; Bascompte, Jordi

    2017-12-05

    The origin of evolutionary innovations is a central problem in evolutionary biology. To what extent such innovations have adaptive or non-adaptive origins is hard to assess in real organisms. This limitation, however, can be overcome using digital organisms, i.e. self-replicating computer programs that mutate, evolve and coevolve within a user-defined computational environment. Here, we quantify the role of the non-adaptive origins of host resistance traits in determining the evolution of ecological interactions among host and parasite digital organisms. We find that host resistance traits arising spontaneously as exaptations increase the complexity of antagonistic host-parasite networks. Specifically, they lead to higher host phenotypic diversification, a larger number of ecological interactions and higher heterogeneity in interaction strengths. Given the potential of network architecture to affect network dynamics, such exaptations may increase the persistence of entire communities. Our in silico approach, therefore, may complement current theoretical advances aimed at disentangling the ecological and evolutionary mechanisms shaping species interaction networks.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  3. From epidemics to information propagation: Striking differences in structurally similar adaptive network models

    Science.gov (United States)

    Trajanovski, Stojan; Guo, Dongchao; Van Mieghem, Piet

    2015-09-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.

  4. The Optimization of the Data Packet Length in Adaptive Radio Networks

    Directory of Open Access Journals (Sweden)

    Anatolii P. Voiter

    2017-10-01

    Full Text Available Background. Development of methods and means of the adaptive management of the radio networks bandwidth with competitive access to the radio channel. Objective. The aim of the paper is to determine the packet length effect on the effective radio networks transmission rate with taking into account the parameters, formats, and procedures of the physical and link levels at using the MAC protocol with a rigid strategy of competitive access to the radio channel. Methods. The goal is achieved by creating and analyzing the mathematical model of the effective transmission rate in radio networks. The model is described by the equation for the effective transmission rate, which is the function of both the probability of the conflict-free transmission of the MAC protocol and the coefficient of the data packet size deviation from the optimal for LLC protocol. Results. It is proved that there is the optimal deviation of the data packet length for each MAC protocol traffic intensity value, which provides the most effective transfer rate. This makes the possibility for adaptive management of the radio bandwidth by applying a pre-calculated deviation of the data packet size in dependence on the traffic intensity. Conclusions. The proposed mathematical model is the tool for calculation of both the radio bandwidth network capacity and the optimal deviation of the data packet length at adaptive management of competitive access to a radio channel with a rigid strategy at conditions of the significant fluctuation in traffic intensity.

  5. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    Science.gov (United States)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  6. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    Science.gov (United States)

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  7. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  8. Towards a Framework for Self-Adaptive Reliable Network Services in Highly-Uncertain Environments

    DEFF Research Database (Denmark)

    Grønbæk, Lars Jesper; Schwefel, Hans-Peter; Ceccarelli, Andrea

    2010-01-01

    to improve resilience of end-node services. In this paper we present a framework, called ODDR (Observation, Diagnosis, Decision, Remediation), for improving resilience of network based services through integration of self-adaptive monitoring services, network diagnosis, decision actions, and finally......In future inhomogeneous, pervasive and highly dynamic networks, end-nodes may often only rely on unreliable and uncertain observations to diagnose hidden network states and decide upon possible remediation actions. Inherent challenges exists to identify good and timely decision strategies...... execution (and monitoring) of remediation actions. We detail the motivations to the ODDR design, then we present its architecture, and finally we describe our current activities towards the realization and assessment of the framework services and the main results currently achieved....

  9. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  10. Cooperative Control of Heterogeneous Uncertain Dynamical Networks: An Adaptive Explicit Synchronization Framework.

    Science.gov (United States)

    Wang, Bohui; Wang, Jingcheng; Zhang, Langwen; Zhang, Bin; Li, Xiaocheng

    2017-06-01

    This paper proposes an adaptive explicit synchronization framework to address the cooperative control for heterogeneous uncertain dynamical networks under switching communication topologies. The main contribution is to develop an adaptive explicit synchronization algorithm, in which the synchronization state can be completely tracked by each agent in real time rather than only be measured after the synchronization process of all agents is over. By introducing appropriate assumptions, a class of adaptive explicit synchronization protocols is designed by using a combination of the virtual leader's states, the neighboring agents' relative information, distributed feedback gain, and distributed average weighted parameters. It is proved in the sense of Lyapunov that, if the dwell time is larger than a positive threshold, the cooperative control problem for the closed-loop heterogeneous uncertain dynamical networks under switching of strongly-connected communication topologies can be solved by the proposed adaptive explicit synchronization algorithm. Furthermore, by assuming that the topology is frequently strongly-connected, it shows that intermittent adaptive explicit synchronization can be achieved with well-designed control parameters. Two examples are presented to demonstrate the effectiveness of the proposed theory.

  11. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks.

    Science.gov (United States)

    Schwiedrzik, Caspar M; Ruff, Christian C; Lazar, Andreea; Leitner, Frauke C; Singer, Wolf; Melloni, Lucia

    2014-05-01

    Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function).

  12. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts

    DEFF Research Database (Denmark)

    Pedersen, Søren Damkiær; Yang, Lei; Molin, Søren

    2013-01-01

    The genetic basis of bacterial adaptation to a natural environment has been investigated in a highly successful Pseudomonas aeruginosa lineage (DK2) that evolved within the airways of patients with cystic fibrosis (CF) for more than 35 y. During evolution in the CF airways, the DK2 lineage...... phenotypes. Our results suggest that adaptation to a highly selective environment, such as the CF airways, is a highly dynamic and complex process, which involves continuous optimization of existing regulatory networks to match the fluctuations in the environment....

  13. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  14. Adaptive QoS in 802.11e Wireless Networks for Lunar Communications

    Science.gov (United States)

    Spearman, Will; Martin, Jim; Gao, Jay L.

    2008-01-01

    This slide presentation reviews the issues around Adaptive Quality of Service (QoS) in wireless networks for lunar communications, and how a dynamic 802.11e standard meets the requirements for all aspects of communications for lunar surface missions. This paper focuses on the use of Enhanced Distributed Channel Access (EDCA). It includes a description of an adaptive QoS Algorithm, a review of the set up of the simulation of the 802.11e standard, and the results of the simulation are included.

  15. A Traffic Prediction Model for Self-Adapting Routing Overlay Network in Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2017-01-01

    Full Text Available In large-scale location-based service, an ideal situation is that self-adapting routing strategies use future traffic data as input to generate a topology which could adapt to the changing traffic well. In the paper, we propose a traffic prediction model for the broker in publish/subscribe system, which can predict the traffic of the link in future by neural network. We first introduced our traffic prediction model and then described the model integration. Finally, the experimental results show that our traffic prediction model could predict the traffic of link well.

  16. End to end adaptive congestion control in TCP/IP networks

    CERN Document Server

    Houmkozlis, Christos N

    2012-01-01

    This book provides an adaptive control theory perspective on designing congestion controls for packet-switching networks. Relevant to a wide range of disciplines and industries, including the music industry, computers, image trading, and virtual groups, the text extensively discusses source oriented, or end to end, congestion control algorithms. The book empowers readers with clear understanding of the characteristics of packet-switching networks and their effects on system stability and performance. It provides schemes capable of controlling congestion and fairness and presents real-world app

  17. Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Abbas Ajorkar

    2015-04-01

    Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.

  18. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    Science.gov (United States)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  19. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  20. Proof-of-Concept Demonstrations of a Flight Adjustment Logging and Communication Network

    Science.gov (United States)

    Underwood, Matthew C.; Merlino, Daniel K.; Carboneau, Lindsey M.; Wilson, C. Logan; Wilder, Andrew J.

    2016-01-01

    The National Airspace System is a highly complex system of systems within which a number of participants with widely varying business and operating models exist. From the airspace user's perspective, a means by which to operate flights in a more flexible and efficient manner is highly desired to meet their business objectives. From the air navigation service provider's viewpoint, there is a need for increasing the capacity of the airspace, while maintaining or increasing the levels of efficiency and safety that currently exist in order to meet the charter under which they operate. Enhancing the communication between airspace operators and users is essential in order to meet these demands. In the spring of 2015, a prototype system that implemented an airborne tool to optimize en-route flight paths for fuel and time savings was designed and tested. The system utilized in-flight Internet as a high-bandwidth data link to facilitate collaborative decision making between the flight deck and an airline dispatcher. The system was tested and demonstrated in a laboratory environment, as well as in-situ. Initial results from these tests indicate that this system is not only feasible, but could also serve as a growth path and testbed for future air traffic management concepts that rely on shared situational awareness through data exchange and electronic negotiation between multiple entities operating within the National Airspace System.

  1. Developing an effective adaptive monitoring network to support integrated coastal management in a multiuser nature reserve

    Directory of Open Access Journals (Sweden)

    Pim Vugteveen

    2015-03-01

    Full Text Available We elaborate the necessary conceptual and strategic elements for developing an effective adaptive monitoring network to support Integrated Coastal Management (ICM in a multiuser nature reserve in the Dutch Wadden Sea Region. We discuss quality criteria and enabling actions essential to accomplish and sustain monitoring excellence to support ICM. The Wadden Sea Long-Term Ecosystem Research project (WaLTER was initiated to develop an adaptive monitoring network and online data portal to better understand and support ICM in the Dutch Wadden Sea Region. Our comprehensive approach integrates ecological and socioeconomic data and links research-driven and policy-driven monitoring for system analysis using indicators of pressures, state, benefits, and responses. The approach and concepts we elaborated are transferable to other coastal regions to accomplish ICM in complex social-ecological systems in which scientists, multisectoral stakeholders, resource managers, and governmental representatives seek to balance long-term ecological, economic, and social objectives within natural limits.

  2. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  3. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-08-01

    Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.

  4. Transcoding-Based Error-Resilient Video Adaptation for 3G Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dogan Safak

    2007-01-01

    Full Text Available Transcoding is an effective method to provide video adaptation for heterogeneous internetwork video access and communication environments, which require the tailoring (i.e., repurposing of coded video properties to channel conditions, terminal capabilities, and user preferences. This paper presents a video transcoding system that is capable of applying a suite of error resilience tools on the input compressed video streams while controlling the output rates to provide robust communications over error-prone and bandwidth-limited 3G wireless networks. The transcoder is also designed to employ a new adaptive intra-refresh algorithm, which is responsive to the detected scene activity inherently embedded into the video content and the reported time-varying channel error conditions of the wireless network. Comprehensive computer simulations demonstrate significant improvements in the received video quality performances using the new transcoding architecture without an extra computational cost.

  5. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Chien-Peng Ho

    2007-03-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  6. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Ho Chien-Peng

    2007-01-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  7. Transcoding-Based Error-Resilient Video Adaptation for 3G Wireless Networks

    Science.gov (United States)

    Eminsoy, Sertac; Dogan, Safak; Kondoz, Ahmet M.

    2007-12-01

    Transcoding is an effective method to provide video adaptation for heterogeneous internetwork video access and communication environments, which require the tailoring (i.e., repurposing) of coded video properties to channel conditions, terminal capabilities, and user preferences. This paper presents a video transcoding system that is capable of applying a suite of error resilience tools on the input compressed video streams while controlling the output rates to provide robust communications over error-prone and bandwidth-limited 3G wireless networks. The transcoder is also designed to employ a new adaptive intra-refresh algorithm, which is responsive to the detected scene activity inherently embedded into the video content and the reported time-varying channel error conditions of the wireless network. Comprehensive computer simulations demonstrate significant improvements in the received video quality performances using the new transcoding architecture without an extra computational cost.

  8. System identification and adaptive control theory and applications of the neurofuzzy and fuzzy cognitive network models

    CERN Document Server

    Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A

    2014-01-01

    Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model  stems  from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...

  9. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  10. Multi-level policies and adaptive social networks – a conceptual modeling study for maintaining a polycentric governance system

    Directory of Open Access Journals (Sweden)

    Jean-Denis Mathias

    2017-03-01

    Full Text Available Information and collaboration patterns embedded in social networks play key roles in multilevel and polycentric modes of governance. However, modeling the dynamics of such social networks in multilevel settings has been seldom addressed in the literature. Here we use an adaptive social network model to elaborate the interplay between a central and a local government in order to maintain a polycentric governance. More specifically, our analysis explores in what ways specific policy choices made by a central agent affect the features of an emerging social network composed of local organizations and local users. Using two types of stylized policies, adaptive co-management and adaptive one-level management, we focus on the benefits of multi-level adaptive cooperation for network management. Our analysis uses viability theory to explore and to quantify the ability of these policies to achieve specific network properties. Viability theory gives the family of policies that enables maintaining the polycentric governance unlike optimal control that gives a unique blueprint. We found that the viability of the policies can change dramatically depending on the goals and features of the social network. For some social networks, we also found a very large difference between the viability of the adaptive one-level management and adaptive co-management policies. However, results also show that adaptive co-management doesn’t always provide benefits. Hence, we argue that applying viability theory to governance networks can help policy design by analyzing the trade-off between the costs of adaptive co-management and the benefits associated with its ability to maintain desirable social network properties in a polycentric governance framework.

  11. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  12. ADAPTIVE SUBSYSTEM FOR DETECTING AND PREVENTING ANOMALIES AS A PROTECTION MEANS AGAINST NETWORK ATTACKS

    OpenAIRE

    Simankov V. S.; Kolodiy A. S.; Kucher V. A.; Trofimov V. M.

    2015-01-01

    This article describes the results of networks anomalies detection system based on modular adaptive approach practical implementation. The list of specific modules used in the practical implementation of IPS, their architecture, algorithms, software, organizational and technical support determined at technical working design based on the results of the audit, evaluation and risk analysis. In the general list of modules (subsystems) we may include: intrusion detection and prevention (IPS / IDS...

  13. An Energy-Efficient Link with Adaptive Transmit Power Control for Long Range Networks

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Lynggaard, Per

    2016-01-01

    — A considerable amount of research is carried out to develop a reliable smart sensor system with high energy efficiency for battery operated wireless IoT devices in the agriculture sector. However, only a limited amount of research has covered automatic transmission power adjustment schemes...... and algorithms which are essential for deployment of wireless IoT nodes. This paper presents an adaptive link algorithm for farm applications with emphasis on power adjustment for long range communication networks....

  14. An Energy-Efficient Link with Adaptive Transmit Power Control for Long Range Networks

    DEFF Research Database (Denmark)

    Lynggaard, P.; Blaszczyk, Tomasz

    2016-01-01

    A considerable amount of research is carried out to develop a reliable smart sensor system with high energy efficiency for battery operated wireless IoT devices in the agriculture sector. However, only a limited amount of research has covered automatic transmission power adjustment schemes...... and algorithms which are essential for deployment of wireless IoT nodes. This paper presents an adaptive link algorithm for farm applications with emphasis on power adjustment for long range communication networks....

  15. Diffusion Adaptation Over Clustered Multitask Networks Based on the Affine Projection Algorithm

    OpenAIRE

    Gogineni, Vinay Chakravarthi; Chakraborty, Mrityunjoy

    2015-01-01

    Distributed adaptive networks achieve better estimation performance by exploiting temporal and as well spatial diversity while consuming few resources. Recent works have studied the single task distributed estimation problem, in which the nodes estimate a single optimum parameter vector collaboratively. However, there are many important applications where the multiple vectors have to estimated simultaneously, in a collaborative manner. This paper presents multi-task diffusion strategies based...

  16. TCP-ADaLR: TCP with adaptive delay and loss response for broadband GEO satellite networks

    OpenAIRE

    Omueti, Modupe Omogbohun

    2007-01-01

    Transmission Control Protocol (TCP) performance degrades in broadband geostationary satellite networks due to long propagation delays and high bit error rates. In this thesis, we propose TCP with algorithm modifications for adaptive delay and loss response (TCP-ADaLR) to improve TCP performance. TCP-ADaLR incorporates delayed acknowledgement mechanism recommended for Internet hosts. We evaluate and compare the performance of TCP-ADaLR, TCP SACK, and TCP NewReno, with and without delayed ackno...

  17. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Directory of Open Access Journals (Sweden)

    Eduard eGrinke

    2015-10-01

    Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.

  18. A Novel Architecture for Adaptive Traffic Control in Network on Chip using Code Division Multiple Access Technique

    OpenAIRE

    Fatemeh. Dehghani; Shahram. Darooei

    2016-01-01

    Network on chip has emerged as a long-term and effective method in Multiprocessor System-on-Chip communications in order to overcome the bottleneck in bus based communication architectures. Efficiency and performance of network on chip is so dependent on the architecture and structure of the network. In this paper a new structure and architecture for adaptive traffic control in network on chip using Code Division Multiple Access technique is presented. To solve the problem of synchronous acce...

  19. Reconfigurable and adaptive photonic networks for high-performance computing systems.

    Science.gov (United States)

    Kodi, Avinash; Louri, Ahmed

    2009-08-01

    As feature sizes decrease to the submicrometer regime and clock rates increase to the multigigahertz range, the limited bandwidth at higher bit rates and longer communication distances in electrical interconnects will create a major bandwidth imbalance in future high-performance computing (HPC) systems. We explore the application of an optoelectronic interconnect for the design of flexible, high-bandwidth, reconfigurable and adaptive interconnection architectures for chip-to-chip and board-to-board HPC systems. Reconfigurability is realized by interconnecting arrays of optical transmitters, and adaptivity is implemented by a dynamic bandwidth reallocation (DBR) technique that balances the load on each communication channel. We evaluate a DBR technique, the lockstep (LS) protocol, that monitors traffic intensities, reallocates bandwidth, and adapts to changes in communication patterns. We incorporate this DBR technique into a detailed discrete-event network simulator to evaluate the performance for uniform, nonuniform, and permutation communication patterns. Simulation results indicate that, without reconfiguration techniques being applied, optical based system architecture shows better performance than electrical interconnects for uniform and nonuniform patterns; with reconfiguration techniques being applied, the dynamically reconfigurable optoelectronic interconnect provides much better performance for all communication patterns. Based on the performance study, the reconfigured architecture shows 30%-50% increased throughput and 50%-75% reduced network latency compared with HPC electrical networks.

  20. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Wang, Fuan; Wang, Yanan

    2017-07-01

    Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT. An adaptive DBN is constructed to improve the convergence rate and identification accuracy with multiple stacked adaptive restricted Boltzmann machines (RBMs). The proposed method is applied to the fault diagnosis of rolling bearings. The results confirm that the proposed method is more effective than the existing methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Adaptive Neural Network Control for the Trajectory Tracking of the Furuta Pendulum.

    Science.gov (United States)

    Moreno-Valenzuela, Javier; Aguilar-Avelar, Carlos; Puga-Guzman, Sergio A; Santibanez, Victor

    2016-12-01

    The purpose of this paper is to introduce a novel adaptive neural network-based control scheme for the Furuta pendulum, which is a two degree-of-freedom underactuated system. Adaptation laws for the input and output weights are also provided. The proposed controller is able to guarantee tracking of a reference signal for the arm while the pendulum remains in the upright position. The key aspect of the derivation of the controller is the definition of an output function that depends on the position and velocity errors. The internal and external dynamics are rigorously analyzed, thereby proving the uniform ultimate boundedness of the error trajectories. By using real-time experiments, the new scheme is compared with other control methodologies, therein demonstrating the improved performance of the proposed adaptive algorithm.

  2. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    Science.gov (United States)

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  4. On-the-fly neural network construction for repairing F-16 flight control panel using thermal imaging

    Science.gov (United States)

    Allred, Lloyd G.; Howard, Tom R.; Serpen, Gursel

    1996-03-01

    When the card-level tester for the F-16 flight control panel (FLCP) had been dysfunctional for over 18 months, infrared thermography was investigated as an alternative for diagnosing and repairing the 7 cards in the FLCP box. Using thermal imaging alone, over 20 FLCP boxes were made serviceable, effectively bringing the FLCP out of awaiting parts (AWP) status. Through the incorporation of a novel on-the-fly neural network paradigm, the neural radiant energy detection system (NREDS) now has the capability to make correct fault classification from a large history of repair data. By surveying the historical data, the network makes assessments about relevant repair actions and probable component malfunctions. On one of the circuit cards, a repair accuracy of 11 out of 12 was achieved during the first repair attempt. By operating on the raw repair data and doing the network calculations on the fly, the network becomes virtual, thus eliminating the need to retain intermediate calculations in trained network files. Erroneous classifications are correctable via a text editor. Erroneous training of neural networks has been a chronic problem with prior implementations. In view of the current environment of downsizing, the likelihood of obtaining functionality at the card-level tester is remote. Success of the imager points to corresponding inadequacies of the automatic test equipment (ATE) to detect certain kinds of failure. In particular, we were informed that one particular relay had never been ordered in the life of the F-16 system, whereas some cards became functional when the relay was the sole component replaced.

  5. Governance for Resilience: CALFED as a Complex Adaptive Network for Resource Management

    Directory of Open Access Journals (Sweden)

    David E. Booher

    2010-09-01

    Full Text Available A study of California's water planning and management process, known as CALFED, offers insights into governance strategies that can deal with adaptive management of environmental resources in ways that conventional bureaucratic procedures cannot. CALFED created an informal policy-making system, engaging multiple agencies and stakeholders. The research is built on data from 5 years of field work that included interviews with participants, review of documents, and observation of meetings. We argue that CALFED can be seen as a self-organizing complex adaptive network (CAN in which interactions were generally guided by collaborative heuristics. The case demonstrates several innovative governance practices, including new practices and norms for interactions among the agents, a distributed structure of information and decision making, a nonlinear planning method, self-organizing system behavior, and adaptation. An example of a resulting policy innovation, a method to provide real-time environmental use of water while protecting a reliable supply of water for agricultural and urban interests, is described. We outline how ideas about complex adaptive network governance differ from ideas about traditional governance. These differences result in ongoing tension and turbulence as they do for other self-organizing governance processes that operate in a context of traditional governance.

  6. An adaptive handover prediction scheme for seamless mobility based wireless networks.

    Science.gov (United States)

    Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  7. Characterizing the Networks of Digital Information that Support Collaborative Adaptive Forest Management in Sierra Nevada Forests.

    Science.gov (United States)

    Lei, Shufei; Iles, Alastair; Kelly, Maggi

    2015-07-01

    Some of the factors that can contribute to the success of collaborative adaptive management--such as social learning, open communication, and trust--are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study--the Sierra Nevada Adaptive Management Project--using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.

  8. An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ali Safa Sadiq

    2014-01-01

    Full Text Available We propose an adaptive handover prediction (AHP scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  9. Self-Adaptive Context Aware Routing Protocol for Unicast Communication in Delay and Tolerant Network

    Directory of Open Access Journals (Sweden)

    Yunbo Chen

    2014-05-01

    Full Text Available At present, most of research works in mobile network focus on the network overhead of the known path which exists between the sender and the receiver. However, the trend of the current practical application demands is becoming increasingly distributed and decentralized. The Delay and Tolerant Network (DTN just comes out of such background of the conflicts between them. The DTN could effectively eliminate the gap between the mobile network and the practical application demands. In this paper, a Self-Adaptive Context Aware Routing Protocol (SACARP for the unicast communication in delay and tolerant networks is presented. Meanwhile, according to the real-time context information of DTN, the Kalman filter theory is introduced to predict the information state of mobility for the optional message ferrying node, and then gives the optimal selection strategy of the message ferrying nodes. The simulation experiments have shown that, compared to the familiar single- copy and multi-copy protocols, the SACARP proposed in this paper has better transmission performance and stability, especially when the network is free, the protocol would keep a good performance with fewer connections and less buffer space.

  10. A Self-Driven and Adaptive Adjusting Teaching Learning Method for Optimizing Optical Multicast Network Throughput

    Science.gov (United States)

    Liu, Huanlin; Xu, Yifan; Chen, Yong; Zhang, Mingjia

    2016-09-01

    With the development of one point to multiple point applications, network resources become scarcer and wavelength channels become more crowded in optical networks. To improve the bandwidth utilization, the multicast routing algorithm based on network coding can greatly increase the resource utilization, but it is most difficult to maximize the network throughput owing to ignoring the differences between the multicast receiving nodes. For making full use of the destination nodes' receives ability to maximize optical multicast's network throughput, a new optical multicast routing algorithm based on teaching-learning-based optimization (MR-iTLBO) is proposed in the paper. In order to increase the diversity of learning, a self-driven learning method is adopted in MR-iTLBO algorithm, and the mutation operator of genetic algorithm is introduced to prevent the algorithm into a local optimum. For increasing learner's learning efficiency, an adaptive learning factor is designed to adjust the learning process. Moreover, the reconfiguration scheme based on probability vector is devised to expand its global search capability in MR-iTLBO algorithm. The simulation results show that performance in terms of network throughput and convergence rate has been improved significantly with respect to the TLBO and the variant TLBO.

  11. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability.

    Science.gov (United States)

    Valdovinos, Fernanda S; Brosi, Berry J; Briggs, Heather M; Moisset de Espanés, Pablo; Ramos-Jiliberto, Rodrigo; Martinez, Neo D

    2016-10-01

    Much research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant-pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds. This behaviour enables generalist pollinators to preferentially forage on the most specialised of their plant partners which increases the pollination services to specialist plants and cedes the resources of generalist plants to specialist pollinators. We corroborate these behavioural preferences with intensive field observations of bee foraging. Our results show that incorporating key organismal behaviours with well-known biological mechanisms such as consumer-resource interactions into the analysis of ecological networks may greatly improve our understanding of complex ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kurtz, Nolan Scot [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.

  13. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups.

    Science.gov (United States)

    Capitán, José A; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  14. Intelligent Broadcasting in Mobile Ad Hoc Networks: Three Classes of Adaptive Protocols

    Directory of Open Access Journals (Sweden)

    Colagrosso Michael D

    2007-01-01

    Full Text Available Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning can be applied to broadcasting in a mobile ad hoc network (MANET. We chose broadcasting because it functions as a foundation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be immediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed, no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol: the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN builds a classifier and trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and examine its performance in simulation.

  15. Intelligent Broadcasting in Mobile Ad Hoc Networks: Three Classes of Adaptive Protocols

    Directory of Open Access Journals (Sweden)

    Michael D. Colagrosso

    2006-11-01

    Full Text Available Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning can be applied to broadcasting in a mobile ad hoc network (MANET. We chose broadcasting because it functions as a foundation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be immediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed, no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol: the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN builds a classifier and trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and examine its performance in simulation.

  16. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2016-09-01

    Full Text Available Multi-Input Multi-Output (MIMO can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs, clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO, which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  17. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo

    Directory of Open Access Journals (Sweden)

    Marc Chevalier

    2016-01-01

    Full Text Available Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC. Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.

  18. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  19. Adaptive Security in ODMAC for Multihop Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Fafoutis, Xenofon; Dragoni, Nicola

    2015-01-01

    Energy Harvesting Wireless Sensor Networks (EH-WSNs) represent an interesting new paradigm where individual nodes forming a network are powered by energy sources scavenged from the surrounding environment. This technique provides numerous advantages, but also new design challenges. Securing...... the communications under energy constraints represents one of these key challenges. The amount of energy available is theoretically infinite in the long run but highly variable over short periods of time, and managing it is a crucial aspect. In this paper we present an adaptive approach for security in multihop EH......-WSNs which allows different nodes to dynamically choose the most appropriate energy-affecting parameters such as encryption algorithm and key size, providing in this way energy savings. In order to provide evidence of the approach's feasibility in a real-world network, we have designed and implemented...

  20. Convergence of batch gradient learning with smoothing regularization and adaptive momentum for neural networks.

    Science.gov (United States)

    Fan, Qinwei; Wu, Wei; Zurada, Jacek M

    2016-01-01

    This paper presents new theoretical results on the backpropagation algorithm with smoothing [Formula: see text] regularization and adaptive momentum for feedforward neural networks with a single hidden layer, i.e., we show that the gradient of error function goes to zero and the weight sequence goes to a fixed point as n (n is iteration steps) tends to infinity, respectively. Also, our results are more general since we do not require the error function to be quadratic or uniformly convex, and neuronal activation functions are relaxed. Moreover, compared with existed algorithms, our novel algorithm can get more sparse network structure, namely it forces weights to become smaller during the training and can eventually removed after the training, which means that it can simply the network structure and lower operation time. Finally, two numerical experiments are presented to show the characteristics of the main results in detail.

  1. Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Ouyang

    2010-02-01

    Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.

  2. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  3. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Streichert Thilo

    2006-01-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  4. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    Science.gov (United States)

    Liu, Wei; Huang, Jie

    2017-01-11

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  5. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  6. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    Science.gov (United States)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  7. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Science.gov (United States)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  8. On the nature of cultural transmission networks: evidence from Fijian villages for adaptive learning biases.

    Science.gov (United States)

    Henrich, Joseph; Broesch, James

    2011-04-12

    Unlike other animals, humans are heavily dependent on cumulative bodies of culturally learned information. Selective processes operating on this socially learned information can produce complex, functionally integrated, behavioural repertoires-cultural adaptations. To understand such non-genetic adaptations, evolutionary theorists propose that (i) natural selection has favoured the emergence of psychological biases for learning from those individuals most likely to possess adaptive information, and (ii) when these psychological learning biases operate in populations, over generations, they can generate cultural adaptations. Many laboratory experiments now provide evidence for these psychological biases. Here, we bridge from the laboratory to the field by examining if and how these biases emerge in a small-scale society. Data from three cultural domains-fishing, growing yams and using medicinal plants-show that Fijian villagers (ages 10 and up) are biased to learn from others perceived as more successful/knowledgeable, both within and across domains (prestige effects). We also find biases for sex and age, as well as proximity effects. These selective and centralized oblique transmission networks set up the conditions for adaptive cultural evolution.

  9. Adaptive Steganalysis Based on Selection Region and Combined Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Donghui Hu

    2017-01-01

    Full Text Available Digital image steganalysis is the art of detecting the presence of information hiding in carrier images. When detecting recently developed adaptive image steganography methods, state-of-art steganalysis methods cannot achieve satisfactory detection accuracy, because the adaptive steganography methods can adaptively embed information into regions with rich textures via the guidance of distortion function and thus make the effective steganalysis features hard to be extracted. Inspired by the promising success which convolutional neural network (CNN has achieved in the fields of digital image analysis, increasing researchers are devoted to designing CNN based steganalysis methods. But as for detecting adaptive steganography methods, the results achieved by CNN based methods are still far from expected. In this paper, we propose a hybrid approach by designing a region selection method and a new CNN framework. In order to make the CNN focus on the regions with complex textures, we design a region selection method by finding a region with the maximal sum of the embedding probabilities. To evolve more diverse and effective steganalysis features, we design a new CNN framework consisting of three separate subnets with independent structure and configuration parameters and then merge and split the three subnets repeatedly. Experimental results indicate that our approach can lead to performance improvement in detecting adaptive steganography.

  10. Combination Adaptive Traffic Algorithm and Coordinated Sleeping in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2014-12-01

    Full Text Available Wireless sensor network (WSN uses a battery as its primary power source, so that WSN will be limited to battery power for long operations. The WSN should be able to save the energy consumption in order to operate in a long time.WSN has the potential to be the future of wireless communications solutions. WSN are small but has a variety of functions that can help human life. WSN has the wide variety of sensors and can communicate quickly making it easier for people to obtain information accurately and quickly. In this study, we combine adaptive traffic algorithms and coordinated sleeping as power‐efficient WSN solution. We compared the performance of our proposed ideas combination adaptive traffic and coordinated sleeping algorithm with non‐adaptive scheme. From the simulation results, our proposed idea has good‐quality data transmission and more efficient in energy consumption, but it has higher delay than that of non‐adaptive scheme. Keywords:WSN,adaptive traffic,coordinated sleeping,beacon order,superframe order.

  11. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    Science.gov (United States)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  12. Fractional dynamics on networks: Emergence of anomalous diffusion and L\\'evy flights

    OpenAIRE

    Riascos, A. P.; Mateos, José L.

    2015-01-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional r...

  13. Delay/Disruption Tolerant Networks for Human Space Flight Video Project

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam

    2010-01-01

    The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.

  14. Supervised learning in a recurrent network of rate-model neurons exhibiting frequency adaptation.

    Science.gov (United States)

    Fortier, Pierre A; Guigon, Emmanuel; Burnod, Yves

    2005-09-01

    For gradient descent learning to yield connectivity consistent with real biological networks, the simulated neurons would have to include more realistic intrinsic properties such as frequency adaptation. However, gradient descent learning cannot be used straightforwardly with adapting rate-model neurons because the derivative of the activation function depends on the activation history. The objectives of this study were to (1) develop a simple computational approach to reproduce mathematical gradient descent and (2) use this computational approach to provide supervised learning in a network formed of rate-model neurons that exhibit frequency adaptation. The results of mathematical gradient descent were used as a reference in evaluating the performance of the computational approach. For this comparison, standard (nonadapting) rate-model neurons were used for both approaches. The only difference was the gradient calculation: the mathematical approach used the derivative at a point in weight space, while the computational approach used the slope for a step change in weight space. Theoretically, the results of the computational approach should match those of the mathematical approach, as the step size is reduced but floating-point accuracy formed a lower limit to usable step sizes. A systematic search for an optimal step size yielded a computational approach that faithfully reproduced the results of mathematical gradient descent. The computational approach was then used for supervised learning of both connection weights and intrinsic properties of rate-model neurons to convert a tonic input into a phasic-tonic output pattern. Learning produced biologically realistic connectivity that essentially used a monosynaptic connection from the tonic input neuron to an output neuron with strong frequency adaptation as compared to a complex network when using nonadapting neurons. Thus, more biologically realistic connectivity was achieved by implementing rate-model neurons with

  15. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    Science.gov (United States)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance

  16. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    Science.gov (United States)

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Global adaptation in networks of selfish components: emergent associative memory at the system scale.

    Science.gov (United States)

    Watson, Richard A; Mills, Rob; Buckley, C L

    2011-01-01

    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational

  18. Protection lightpath-based hitless spectrum defragmentation for distance adaptive elastic optical networks.

    Science.gov (United States)

    Wang, Chao; Shen, Gangxiang; Peng, Limei

    2016-03-07

    Spectrum defragmentation can improve spectrum utilization for an elastic optical network (EON). However, most of the existing studies have focused on defragmentation for working lightpaths, which may affect upper-layer network services. This paper considers protection lightpath-based hitless spectrum defragmentation for distance adaptive elastic optical networks. Without affecting working lightpaths, but defragmenting spectra for protection lightpaths, we expect to achieve truly hitless spectrum defragmentation for an EON. Shared backup path protection (SBPP) technique is employed as a representative network protection technique to evaluate the benefit of the proposed defragmentation scheme. To smooth the network spectra for future arriving lightpath requests so as to reduce bandwidth blocking probability (BBP), we propose two defragmentation triggering mechanisms, namely, defragmentation upon blocking (BTD) and batch defragmentation (BD). For each of them, we also propose two spectrum defragmentation algorithms, namely, defragmentation with sequentially releasing and re-establishing protection lightpaths (SR-D) and defragmentation with jointly releasing and re-establishing protection lightpaths (JR-D). The performances of these proposed algorithms are evaluated from perspectives of BBP and average number of reconfigurations per successfully established lightpath service (ANR). Simulation results show that compared to the case without defragmentation, the proposed scheme is effective to reduce BBP, which trades off with ANR.

  19. Adaptive locomotor network activation during randomized walking speeds using functional near-infrared spectroscopy.

    Science.gov (United States)

    Kim, Ha Yeon; Kim, Eun Joo; You, Joshua Sung H

    2017-07-20

    An improved understanding of the mechanisms underlying locomotor networks has the potential to benefit the neurorehabilitation of patients with neurological locomotor deficits. However, the specific locomotor networks that mediate adaptive locomotor performance and changes in gait speed remain unknown. The aim of the present study was to examine patterns of cortical activation associated with the walking speeds of 1.5, 2.0, 2.5, and 3.0 km/h on a treadmill. Functional near-infrared spectroscopy (fNIRS) was performed on a 30-year-old right-handed healthy female subject, and cerebral hemodynamic changes were observed in cortical locomotor network areas including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). The software package NIRS-statistical parametric mapping (NIRS-SPM) was utilized to analyze fNIRS data in the MATLAB environment. SPM t-statistic maps were computed at an uncorrected threshold of pglobalized locomotor network activation of the SMC, PMC, SMA, and PMC; additionally, the site with the highest cortical activation ratio shifted from the SMC to the SMA. Global locomotor network recruitment, in particular PFC activation indicated by OxyHb in our study, may indicate a response to increased cognitive-locomotor demand due to simultaneous postural maintenance and leg movement coordination.

  20. Adaptive threshold determination for efficient channel sensing in cognitive radio network using mobile sensors

    Science.gov (United States)

    Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.

    2017-03-01

    Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.

  1. Modeling and adaptive control of a camless engine using neural networks and estimation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-08-09

    A system to control the cylinder air charge (CAC) in a camless internal combustion (IC) engine was recently developed. The performance of an IC engine connected to an adaptive artificial neural network (ANN) based feedback controller was then investigated. A control oriented model for the engine intake process was created based on thermodynamics laws and was validated against engine experimental data. Input-output data at a speed of 1500 RPM was generated and used to train an ANN model for the engine. The inputs were the intake valve lift (IVL) and closing timing (IVC). The output was the CAC. The controller consisted of a feedforward controller, CAC estimator, and on-line ANN parameter estimator. The feedforward controller provided IVL and IVC that satisfied the driver's torque demand and was the inverse of the engine ANN model. The on-line ANN used the error between the CAC measurement from the CAC estimator and its predicted value from the ANN to update the network's parameters. The feedforward controller was therefore adapted since its operation depended on the ANN model. The adaptation scheme improved the ANN prediction accuracy when the engine parts degraded, the speed changed or when modeling errors occurred. The engine controller exhibited good CAC tracking performance. Computer simulation demonstrated the capability of the camless engine controller. 17 refs., 5 figs.

  2. Cross-Layer Techniques for Adaptive Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yufeng Shan

    2005-02-01

    Full Text Available Real-time streaming media over wireless networks is a challenging proposition due to the characteristics of video data and wireless channels. In this paper, we propose a set of cross-layer techniques for adaptive real-time video streaming over wireless networks. The adaptation is done with respect to both channel and data. The proposed novel packetization scheme constructs the application layer packet in such a way that it is decomposed exactly into an integer number of equal-sized radio link protocol (RLP packets. FEC codes are applied within an application packet at the RLP packet level rather than across different application packets and thus reduce delay at the receiver. A priority-based ARQ, together with a scheduling algorithm, is applied at the application layer to retransmit only the corrupted RLP packets within an application layer packet. Our approach combines the flexibility and programmability of application layer adaptations, with low delay and bandwidth efficiency of link layer techniques. Socket-level simulations are presented to verify the effectiveness of our approach.

  3. Cross-Layer Techniques for Adaptive Video Streaming over Wireless Networks

    Science.gov (United States)

    Shan, Yufeng

    2005-12-01

    Real-time streaming media over wireless networks is a challenging proposition due to the characteristics of video data and wireless channels. In this paper, we propose a set of cross-layer techniques for adaptive real-time video streaming over wireless networks. The adaptation is done with respect to both channel and data. The proposed novel packetization scheme constructs the application layer packet in such a way that it is decomposed exactly into an integer number of equal-sized radio link protocol (RLP) packets. FEC codes are applied within an application packet at the RLP packet level rather than across different application packets and thus reduce delay at the receiver. A priority-based ARQ, together with a scheduling algorithm, is applied at the application layer to retransmit only the corrupted RLP packets within an application layer packet. Our approach combines the flexibility and programmability of application layer adaptations, with low delay and bandwidth efficiency of link layer techniques. Socket-level simulations are presented to verify the effectiveness of our approach.

  4. Neural network-aided variational Bayesian adaptive cubature Kalman filtering for nonlinear state estimation

    Science.gov (United States)

    Miao, Zhiyong; Shi, Hongyang; Zhang, Yi; Xu, Fan

    2017-10-01

    In this paper, a new variational Bayesian adaptive cubature Kalman filter (VBACKF) is proposed for nonlinear state estimation. Although the conventional VBACKF performs better than cubature Kalman filtering (CKF) in solving nonlinear systems with time-varying measurement noise, its performance may degrade due to the uncertainty of the system model. To overcome this drawback, a multilayer feed-forward neural network (MFNN) is used to aid the conventional VBACKF, generalizing it to attain higher estimation accuracy and robustness. In the proposed neural-network-aided variational Bayesian adaptive cubature Kalman filter (NN-VBACKF), the MFNN is used to turn the state estimation of the VBACKF adaptively, and it is used for both state estimation and in the online training paradigm simultaneously. To evaluate the performance of the proposed method, it is compared with CKF and VBACKF via target tracking problems. The simulation results demonstrate that the estimation accuracy and robustness of the proposed method are better than those of the CKF and VBACKF.

  5. QoE-Driven In-Network Optimization for Adaptive Video Streaming Based on Packet Sampling Measurements

    NARCIS (Netherlands)

    Bouten, Niels; de Oliveira Schmidt, R.; Famaey, Jeroen; Latré, Steven; Pras, Aiko; De Turck, Filip

    2015-01-01

    HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for adaptive streaming solutions. In HAS, a video is temporally split into segments which are encoded at different quality rates. The client can then autonomously decide, based on the current buffer filling and network conditions, which

  6. Stochastic Optimal Regulation of Nonlinear Networked Control Systems by Using Event-Driven Adaptive Dynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Jagannathan, Sarangapani

    2017-02-01

    In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.

  7. Integrity of the osteocyte bone cell network in osteoporotic fracture: Implications for mechanical load adaptation

    Science.gov (United States)

    Kuliwaba, J. S.; Truong, L.; Codrington, J. D.; Fazzalari, N. L.

    2010-06-01

    The human skeleton has the ability to modify its material composition and structure to accommodate loads through adaptive modelling and remodelling. The osteocyte cell network is now considered to be central to the regulation of skeletal homeostasis; however, very little is known of the integrity of the osteocyte cell network in osteoporotic fragility fracture. This study was designed to characterise osteocyte morphology, the extent of osteocyte cell apoptosis and expression of sclerostin protein (a negative regulator of bone formation) in trabecular bone from the intertrochanteric region of the proximal femur, for postmenopausal women with fragility hip fracture compared to age-matched women who had not sustained fragility fracture. Osteocyte morphology (osteocyte, empty lacunar, and total lacunar densities) and the degree of osteocyte apoptosis (percent caspase-3 positive osteocyte lacunae) were similar between the fracture patients and non-fracture women. The fragility hip fracture patients had a lower proportion of sclerostin-positive osteocyte lacunae in comparison to sclerostin-negative osteocyte lacunae, in contrast to similar percent sclerostin-positive/sclerostin-negative lacunae for non-fracture women. The unexpected finding of decreased sclerostin expression in trabecular bone osteocytes from fracture cases may be indicative of elevated bone turnover and under-mineralisation, characteristic of postmenopausal osteoporosis. Further, altered osteocytic expression of sclerostin may be involved in the mechano-responsiveness of bone. Optimal function of the osteocyte cell network is likely to be a critical determinant of bone strength, acting via mechanical load adaptation, and thus contributing to osteoporotic fracture risk.

  8. Bayesian filtering in spiking neural networks: noise, adaptation, and multisensory integration.

    Science.gov (United States)

    Bobrowski, Omer; Meir, Ron; Eldar, Yonina C

    2009-05-01

    A key requirement facing organisms acting in uncertain dynamic environments is the real-time estimation and prediction of environmental states, based on which effective actions can be selected. While it is becoming evident that organisms employ exact or approximate Bayesian statistical calculations for these purposes, it is far less clear how these putative computations are implemented by neural networks in a strictly dynamic setting. In this work, we make use of rigorous mathematical results from the theory of continuous time point process filtering and show how optimal real-time state estimation and prediction may be implemented in a general setting using simple recurrent neural networks. The framework is applicable to many situations of common interest, including noisy observations, non-Poisson spike trains (incorporating adaptation), multisensory integration, and state prediction. The optimal network properties are shown to relate to the statistical structure of the environment, and the benefits of adaptation are studied and explicitly demonstrated. Finally, we recover several existing results as appropriate limits of our general setting.

  9. TCP throughput adaptation in WiMax networks using replicator dynamics.

    Science.gov (United States)

    Anastasopoulos, Markos P; Petraki, Dionysia K; Kannan, Rajgopal; Vasilakos, Athanasios V

    2010-06-01

    The high-frequency segment (10-66 GHz) of the IEEE 802.16 standard seems promising for the implementation of wireless backhaul networks carrying large volumes of Internet traffic. In contrast to wireline backbone networks, where channel errors seldom occur, the TCP protocol in IEEE 802.16 Worldwide Interoperability for Microwave Access networks is conditioned exclusively by wireless channel impairments rather than by congestion. This renders a cross-layer design approach between the transport and physical layers more appropriate during fading periods. In this paper, an adaptive coding and modulation (ACM) scheme for TCP throughput maximization is presented. In the current approach, Internet traffic is modulated and coded employing an adaptive scheme that is mathematically equivalent to the replicator dynamics model. The stability of the proposed ACM scheme is proven, and the dependence of the speed of convergence on various physical-layer parameters is investigated. It is also shown that convergence to the strategy that maximizes TCP throughput may be further accelerated by increasing the amount of information from the physical layer.

  10. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Directory of Open Access Journals (Sweden)

    Yiyong Gou

    2017-04-01

    Full Text Available A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinearities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equivalent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstepping control technique, a constrained adaptive neural network controller is designed, and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.

  11. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  12. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays.

    Science.gov (United States)

    Pimashkin, Alexey; Gladkov, Arseniy; Mukhina, Irina; Kazantsev, Victor

    2013-01-01

    Learning in neuronal networks can be investigated using dissociated cultures on multielectrode arrays supplied with appropriate closed-loop stimulation. It was shown in previous studies that weakly respondent neurons on the electrodes can be trained to increase their evoked spiking rate within a predefined time window after the stimulus. Such neurons can be associated with weak synaptic connections in nearby culture network. The stimulation leads to the increase in the connectivity and in the response. However, it was not possible to perform the learning protocol for the neurons on electrodes with relatively strong synaptic inputs and responding at higher rates. We proposed an adaptive closed-loop stimulation protocol capable to achieve learning even for the highly respondent electrodes. It means that the culture network can reorganize appropriately its synaptic connectivity to generate a desired response. We introduced an adaptive reinforcement condition accounting for the response variability in control stimulation. It significantly enhanced the learning protocol to a large number of responding electrodes independently on its base response level. We also found that learning effect preserved after 4-6 h after training.

  13. Users’ classification-based call admission control with adaptive resource reservation for LTE-A networks

    Directory of Open Access Journals (Sweden)

    Salman Ali AlQahtani

    2017-01-01

    In this paper, we introduce the user’s privileges and traffic maximum delay tolerance as additional dimensions in the call admission control processes to efficiently control the utilization of LTE-A network resources. Based on this idea, we propose an efficient call admission control scheme named “delay aware and user categorizing-based CAC with adaptive resource reservation (DA–UC-ARR”, where the user priority is adjusted dynamically based on the current network conditions and the users’ categorizations and traffic delay tolerances, to increase the network’s resource utilization and at the same time to maximize the operators’ revenue. In this proposed scheme, the users are classified into Golden users and Silver users, and the type of service per user is classified as real time (RT and non-real time (NRT services. We compare the performance of the proposed scheme with the corresponding results of previous schemes, referred to as the adaptive resource reservation-based call admission control (ARR-CAC (Andrews et al., 2010; AlQahtani, 2014, where user categorization and delay were not taken into consideration in the call admission control process. Simulation results indicate the superiority of the proposed scheme because it is able to achieve a better balance between system utilization, users’ privileges provided by network operators and QoS provisioning compared to the ARR-CAC scheme.

  14. Transboundary ecological networks as an adaptation strategy to climate change: The example of the Dutch - German border

    NARCIS (Netherlands)

    Rüter, S.; Vos, C.C.; Eupen, van M.; Rühmkorf, H.

    2014-01-01

    Establishing ecological networks across national boundaries is essential for species to adapt to shifts in future suitable climate zones. This paper presents a method to assess whether the existing ecological network in the Dutch – German border region is “climate proof”. Using distribution data and

  15. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.

    Science.gov (United States)

    Keller, Stephen R; Levsen, Nicholas; Olson, Matthew S; Tiffin, Peter

    2012-10-01

    Identifying the signature and targets of local adaptation is an increasingly important goal in empirical population genetics. Using data from 443 balsam poplar Populus balsamifera trees sampled from 31 populations, we tested for evidence of geographically variable selection shaping diversity at 27 homologues of the Arabidopsis flowering-time network. These genes are implicated in the control of seasonal phenology, an important determinant of fitness. Using 335 candidate and 412 reference single nucleotide polymorphisms (SNPs), we tested for evidence of local adaptation by searching for elevated population differentiation using F(ST)-based outlier analyses implemented in BayeScan or a Hierarchical Model in Arelquin and by testing for significant associations between allele frequency and environmental variables using BAYENV. A total of 46 SNPs from 14 candidate genes had signatures of local adaptation-either significantly greater population differentiation or significant covariance with one or more environmental variable relative to reference SNP distributions. Only 11 SNPs from two genes exhibited both elevated population differentiation and covariance with one or more environmental variables. Several genes including the abscisic acid gene ABI1B and the circadian clock genes ELF3 and GI5 harbored a large number of SNPs with signatures of local adaptation-with SNPs in GI5 strongly covarying with both latitude and precipitation and SNPs in ABI1B strongly covarying with temperature. In contrast to several other systems, we find little evidence that photoreceptors, including phytochromes, play an important role in local adaptation. Our results additionally show that detecting local adaptation is sensitive to the analytical approaches used and that model-based significance thresholds should be viewed with caution.

  16. Spike-timing-dependent plasticity enhanced synchronization transitions induced by autapses in adaptive Newman-Watts neuronal networks.

    Science.gov (United States)

    Gong, Yubing; Wang, Baoying; Xie, Huijuan

    2016-12-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on synchronization transitions induced by autaptic activity in adaptive Newman-Watts Hodgkin-Huxley neuron networks. It is found that synchronization transitions induced by autaptic delay vary with the adjusting rate Ap of STDP and become strongest at a certain Ap value, and the Ap value increases when network randomness or network size increases. It is also found that the synchronization transitions induced by autaptic delay become strongest at a certain network randomness and network size, and the values increase and related synchronization transitions are enhanced when Ap increases. These results show that there is optimal STDP that can enhance the synchronization transitions induced by autaptic delay in the adaptive neuronal networks. These findings provide a new insight into the roles of STDP and autapses for the information transmission in neural systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2013-11-01

    A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersion of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.

  18. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer.

    Science.gov (United States)

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-08-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.

  19. Adaptive cyclically dominating game on co-evolving networks: numerical and analytic results

    Science.gov (United States)

    Choi, Chi Wun; Xu, Chen; Hui, Pak Ming

    2017-10-01

    A co-evolving and adaptive Rock (R)-Paper (P)-Scissors (S) game (ARPS) in which an agent uses one of three cyclically dominating strategies is proposed and studied numerically and analytically. An agent takes adaptive actions to achieve a neighborhood to his advantage by rewiring a dissatisfying link with a probability p or switching strategy with a probability 1 - p. Numerical results revealed two phases in the steady state. An active phase for p pc has three separate clusters of agents using only R, P, and S, respectively with terminated adaptive actions. A mean-field theory based on the link densities in co-evolving network is formulated and the trinomial closure scheme is applied to obtain analytical solutions. The analytic results agree with simulation results on ARPS well. In addition, the different probabilities of winning, losing, and drawing a game among the agents are identified as the origin of the small discrepancy between analytic and simulation results. As a result of the adaptive actions, agents of higher degrees are often those being taken advantage of. Agents with a smaller (larger) degree than the mean degree have a higher (smaller) probability of winning than losing. The results are informative for future attempts on formulating more accurate theories.

  20. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Roviras Daniel

    2008-01-01

    Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  1. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Daniel Roviras

    2008-08-01

    Full Text Available This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  2. An Efficient and Self-Adapting Localization in Static Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2009-08-01

    Full Text Available Localization is one of the most important subjects in Wireless Sensor Networks (WSNs. To reduce the number of beacons and adopt probabilistic methods, some particle filter-based mobile beacon-assisted localization approaches have been proposed, such as Mobile Beacon-assisted Localization (MBL, Adapting MBL (A-MBL, and the method proposed by Hang et al. Some new significant problems arise in these approaches, however. The first question is which probability distribution should be selected as the dynamic model in the prediction stage. The second is whether the unknown node adopts neighbors’ observation in the update stage. The third is how to find a self-adapting mechanism to achieve more flexibility in the adapting stage. In this paper, we give the theoretical analysis and experimental evaluations to suggest which probability distribution in the dynamic model should be adopted to improve the efficiency in the prediction stage. We also give the condition for whether the unknown node should use the observations from its neighbors to improve the accuracy. Finally, we propose a Self-Adapting Mobile Beacon-assisted Localization (SA-MBL approach to achieve more flexibility and achieve almost the same performance with A-MBL.

  3. An adaptive deep convolutional neural network for rolling bearing fault diagnosis

    Science.gov (United States)

    Fuan, Wang; Hongkai, Jiang; Haidong, Shao; Wenjing, Duan; Shuaipeng, Wu

    2017-09-01

    The working conditions of rolling bearings usually is very complex, which makes it difficult to diagnose rolling bearing faults. In this paper, a novel method called the adaptive deep convolutional neural network (CNN) is proposed for rolling bearing fault diagnosis. Firstly, to get rid of manual feature extraction, the deep CNN model is initialized for automatic feature learning. Secondly, to adapt to different signal characteristics, the main parameters of the deep CNN model are determined with a particle swarm optimization method. Thirdly, to evaluate the feature learning ability of the proposed method, t-distributed stochastic neighbor embedding (t-SNE) is further adopted to visualize the hierarchical feature learning process. The proposed method is applied to diagnose rolling bearing faults, and the results confirm that the proposed method is more effective and robust than other intelligent methods.

  4. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

    Science.gov (United States)

    Zeng, Y; Zhang, J; Yin, H; Pan, Y

    2007-01-01

    Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

  5. An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zichuan Xu

    2010-10-01

    Full Text Available A high degree of reliability for critical data transmission is required in body sensor networks (BSNs. However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.

  6. A Least Square-Based Self-Adaptive Localization Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Baoguo Yu

    2016-01-01

    Full Text Available In the wireless sensor network (WSN localization methods based on Received Signal Strength Indicator (RSSI, it is usually required to determine the parameters of the radio signal propagation model before estimating the distance between the anchor node and an unknown node with reference to their communication RSSI value. And finally we use a localization algorithm to estimate the location of the unknown node. However, this localization method, though high in localization accuracy, has weaknesses such as complex working procedure and poor system versatility. Concerning these defects, a self-adaptive WSN localization method based on least square is proposed, which uses the least square criterion to estimate the parameters of radio signal propagation model, which positively reduces the computation amount in the estimation process. The experimental results show that the proposed self-adaptive localization method outputs a high processing efficiency while satisfying the high localization accuracy requirement. Conclusively, the proposed method is of definite practical value.

  7. Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network

    Science.gov (United States)

    Sun, W. Z.; Jiang, M. Y.; Ren, L.; Dang, J.; You, T.; Yin, F.-F.

    2017-09-01

    To improve the prediction accuracy of respiratory signals using adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for gated treatment of moving target in radiation therapy. The respiratory signals acquired using a real-time position management (RPM) device from 138 previous 4DCT scans were retrospectively used in this study. The ADMLP-NN was composed of several artificial neural networks (ANNs) which were used as weaker predictors to compose a stronger predictor. The respiratory signal was initially smoothed using a Savitzky-Golay finite impulse response smoothing filter (S-G filter). Then, several similar multi-layer perceptron neural networks (MLP-NNs) were configured to estimate future respiratory signal position from its previous positions. Finally, an adaptive boosting (Adaboost) decision algorithm was used to set weights for each MLP-NN based on the sample prediction error of each MLP-NN. Two prediction methods, MLP-NN and ADMLP-NN (MLP-NN plus adaptive boosting), were evaluated by calculating correlation coefficient and root-mean-square-error between true and predicted signals. For predicting 500 ms ahead of prediction, average correlation coefficients were improved from 0.83 (MLP-NN method) to 0.89 (ADMLP-NN method). The average of root-mean-square-error (relative unit) for 500 ms ahead of prediction using ADMLP-NN were reduced by 27.9%, compared to those using MLP-NN. The preliminary results demonstrate that the ADMLP-NN respiratory prediction method is more accurate than the MLP-NN method and can improve the respiration prediction accuracy.

  8. Adaptive-Compression Based Congestion Control Technique for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Joa-Hyoung Lee

    2010-03-01

    Full Text Available Congestion in a wireless sensor network causes an increase in the amount of data loss and delays in data transmission. In this paper, we propose a new congestion control technique (ACT, Adaptive Compression-based congestion control Technique based on an adaptive compression scheme for packet reduction in case of congestion. The compression techniques used in the ACT are Discrete Wavelet Transform (DWT, Adaptive Differential Pulse Code Modulation (ADPCM, and Run-Length Coding (RLC. The ACT first transforms the data from the time domain to the frequency domain, reduces the range of data by using ADPCM, and then reduces the number of packets with the help of RLC before transferring the data to the source node. It introduces the DWT for priority-based congestion control because the DWT classifies the data into four groups with different frequencies. The ACT assigns priorities to these data groups in an inverse proportion to the respective frequencies of the data groups and defines the quantization step size of ADPCM in an inverse proportion to the priorities. RLC generates a smaller number of packets for a data group with a low priority. In the relaying node, the ACT reduces the amount of packets by increasing the quantization step size of ADPCM in case of congestion. Moreover, in order to facilitate the back pressure, the queue is controlled adaptively according to the congestion state. We experimentally demonstrate that the ACT increases the network efficiency and guarantees fairness to sensor nodes, as compared with the existing methods. Moreover, it exhibits a very high ratio of the available data in the sink.

  9. Understanding Migration as an Adaptation in Deltas Using a Bayesian Network Model

    Science.gov (United States)

    Lázár, A. N.; Adams, H.; de Campos, R. S.; Mortreux, C. C.; Clarke, D.; Nicholls, R. J.; Amisigo, B. A.

    2016-12-01

    Deltas are hotspots of high population density, fertile lands and dramatic environmental and anthropogenic pressures and changes. Amongst other environmental factors, sea level rise, soil salinization, water shortages and erosion threaten people's livelihoods and wellbeing. As a result, there is a growing concern that significant environmental change induced migration might occur from these areas. Migration, however, is already happening for economic, education and other reasons (e.g. livelihood change, marriage, planned relocation, etc.). Migration hence has multiple, interlinked drivers and depending on the perspective, can be considered as a positive or negative phenomenon. The DECCMA project (Deltas, Vulnerability & Climate Change: Migration & Adaptation) studies migration as part of a suite of adaptation options available to the coastal populations in the Ganges delta in Bangladesh, the Mahanadi delta in India and the Volta delta in Ghana. It aims to develop a holistic framework of analysis that assesses the impact of climate and environmental change on the migration patterns of these areas. This assessment framework will couple environmental, socio-economics and governance dimensions in an attempt to synthesise drivers and barriers and allow testing of plausible future scenarios. One of the integrative methods of DECCMA is a Bayesian Belief Network (BBN) model describing the decision-making of a coastal household. BBN models are built on qualitative and quantitative observations/expert knowledge and describe the probability of different events/responses etc. BBN models are especially useful to capture uncertainties of large systems and engaging with stakeholders. The DECCMA BBN model is based on household survey results from delta migrant sending areas. This presentation will describe model elements (livelihood sensitivity to climate change, local and national adaptation options, household characteristics/attitude, social networks, household decision) and

  10. Robust distributed control of spacecraft formation flying with adaptive network topology

    Science.gov (United States)

    Shasti, Behrouz; Alasty, Aria; Assadian, Nima

    2017-07-01

    In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.

  11. User-Adapted Recommendation of Content on Mobile Devices Using Bayesian Networks

    Science.gov (United States)

    Iwasaki, Hirotoshi; Mizuno, Nobuhiro; Hara, Kousuke; Motomura, Yoichi

    Mobile devices, such as cellular phones and car navigation systems, are essential to daily life. People acquire necessary information and preferred content over communication networks anywhere, anytime. However, usability issues arise from the simplicity of user interfaces themselves. Thus, a recommendation of content that is adapted to a user's preference and situation will help the user select content. In this paper, we describe a method to realize such a system using Bayesian networks. This user-adapted mobile system is based on a user model that provides recommendation of content (i.e., restaurants, shops, and music that are suitable to the user and situation) and that learns incrementally based on accumulated usage history data. However, sufficient samples are not always guaranteed, since a user model would require combined dependency among users, situations, and contents. Therefore, we propose the LK method for modeling, which complements incomplete and insufficient samples using knowledge data, and CPT incremental learning for adaptation based on a small number of samples. In order to evaluate the methods proposed, we applied them to restaurant recommendations made on car navigation systems. The evaluation results confirmed that our model based on the LK method can be expected to provide better generalization performance than that of the conventional method. Furthermore, our system would require much less operation than current car navigation systems from the beginning of use. Our evaluation results also indicate that learning a user's individual preference through CPT incremental learning would be beneficial to many users, even with only a few samples. As a result, we have developed the technology of a system that becomes more adapted to a user the more it is used.

  12. Discrete-time adaptive backstepping nonlinear control via high-order neural networks.

    Science.gov (United States)

    Alanis, Alma Y; Sanchez, Edgar N; Loukianov, Alexander G

    2007-07-01

    This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm. Applicability of the scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.

  13. Feasibility of using adaptive logic networks to predict compressor unit failure

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.W.; Chungying Chu; Thomas, M.M. [Dendronic Decisions Limited, Edmonton (Canada)] [and others

    1995-12-31

    In this feasibility study, an adaptive logic network (ALN) was trained to predict failures of turbine-driven compressor units using a large database of measurements. No expert knowledge about compressor systems was involved. The predictions used only the statistical properties of the measurements and the indications of failure types. A fuzzy set was used to model measurements typical of normal operation. It was constrained by a requirement imposed during ALN training, that it should have a shape similar to a Gaussian density, more precisely, that its logarithm should be convex-up. Initial results obtained using this approach to knowledge discovery in the database were encouraging.

  14. Adaptive Square-Shaped Trajectory-Based Service Location Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hwa-Jung Lim

    2010-04-01

    Full Text Available In this paper we propose an adaptive square-shaped trajectory (ASST-based service location method to ensure load scalability in wireless sensor networks. This first establishes a square-shaped trajectory over the nodes that surround a target point computed by the hash function and any user can access it, using the hash. Both the width and the size of the trajectory are dynamically adjustable, depending on the number of queries made to the service information on the trajectory. The number of sensor nodes on the trajectory varies in proportion to the changing trajectory shape, allowing high loads to be distributed around the hot spot area.

  15. Exponential cluster synchronization in directed community networks via adaptive nonperiodically intermittent pinning control

    Science.gov (United States)

    Zhou, Peipei; Cai, Shuiming; Jiang, Shengqin; Liu, Zengrong

    2018-02-01

    In this paper, the problem of exponential cluster synchronization for a class of directed community networks is investigated via adaptive nonperiodically intermittent pinning control. By constructing a novel piecewise continuous Lyapunov function, some sufficient conditions to guarantee globally exponential cluster synchronization are derived. It is noted that the derived cluster synchronization criteria rely on the control rates, but not the control widths or the control periods, which facilitates the choice of the control periods in practical applications. A numerical example is finally presented to show the effectiveness of the obtained theoretical results.

  16. Performance assessment of electric power generations using an adaptive neural network algorithm and fuzzy DEA

    Energy Technology Data Exchange (ETDEWEB)

    Javaheri, Zahra

    2010-09-15

    Modeling, evaluating and analyzing performance of Iranian thermal power plants is the main goal of this study which is based on multi variant methods analysis. These methods include fuzzy DEA and adaptive neural network algorithm. At first, we determine indicators, then data is collected, next we obtained values of ranking and efficiency by Fuzzy DEA, Case study is thermal power plants In view of the fact that investment to establish on power plant is very high, and maintenance of power plant causes an expensive expenditure, moreover using fossil fuel effected environment hence optimum produce of current power plants is important.

  17. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  18. Adaptive Reliable Routing Based on Cluster Hierarchy for Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2010-01-01

    Full Text Available As a multimedia information acquisition and processing method, wireless multimedia sensor network(WMSN has great application potential in military and civilian areas. Compared with traditional wireless sensor network, the routing design of WMSN should obtain more attention on the quality of transmission. This paper proposes an adaptive reliable routing based on clustering hierarchy named ARCH, which includes energy prediction and power allocation mechanism. To obtain a better performance, the cluster structure is formed based on cellular topology. The introduced prediction mechanism makes the sensor nodes predict the remaining energy of other nodes, which dramatically reduces the overall information needed for energy balancing. ARCH can dynamically balance the energy consumption of nodes based on the predicted results provided by power allocation. The simulation results prove the efficiency of the proposed ARCH routing.

  19. Investigations on Incipient Fault Diagnosis of Power Transformer Using Neural Networks and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Nandkumar Wagh

    2014-01-01

    Full Text Available Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP, radial basis function (RBF neural network, and adaptive neurofuzzy inference system (ANFIS has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.

  20. Artificial neural networks for adaptability and stability evaluation in alfalfa genotypes

    Directory of Open Access Journals (Sweden)

    Moysés Nascimento

    2013-06-01

    Full Text Available The purpose of this work was to evaluate a methodology of adaptability and phenotypic stability of alfalfa genotypes basedon the training of an artificial neural network considering the methodology of Eberhart and Russell. Data from an experiment on drymatter production of 92 alfalfa genotypes (Medicago sativa L. were used. The experimental design constituted of randomized blocks,with two repetitions. The genotypes were submitted to 20 cuttings, in the growing season of November 2004 to June 2006. Each cuttingwas considered an environment. The artificial neural network was able to satisfactorily classify the genotypes. In addition, the analysispresented high agreement rates, compared with the results obtained by the methodology of Eberhart and Russell.