WorldWideScience

Sample records for network activity appeared

  1. Fast Newton active appearance models

    NARCIS (Netherlands)

    Kossaifi, Jean; Tzimiropoulos, Georgios; Pantic, Maja

    2014-01-01

    Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to

  2. Object tracking using active appearance models

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2001-01-01

    This paper demonstrates that (near) real-time object tracking can be accomplished by the deformable template model; the Active Appearance Model (AAM) using only low-cost consumer electronics such as a PC and a web-camera. Successful object tracking of perspective, rotational and translational...

  3. Active Versus Passive Academic Networking

    DEFF Research Database (Denmark)

    Goel, Rajeev K.; Grimpe, Christoph

    2013-01-01

    This paper examines determinants of networking by academics. Using information from a unique large survey of German researchers, the key contribution focuses on the active versus passive networking distinction. Is active networking by researchers a substitute or a complement to passive networking...... that some types of passive academic networking are complementary to active networking, while others are substitute. Further, we find differences in factors promoting participation in European conferences versus conferences in rest of the world. Finally, publishing bottlenecks as a group generally do...... not appear to be a hindrance to active networking. Implications for academic policy are discussed...

  4. Bi-temporal 3D Active Appearance Modelling

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2005-01-01

    in fourdimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection, and a texture...

  5. Prostate MR image segmentation using 3D active appearance models

    NARCIS (Netherlands)

    Maan, Bianca; van der Heijden, Ferdinand

    2012-01-01

    This paper presents a method for automatic segmentation of the prostate from transversal T2-weighted images based on 3D Active Appearance Models (AAM). The algorithm consist of two stages. Firstly, Shape Context based non-rigid surface registration of the manual segmented images is used to obtain

  6. Active appearance pyramids for object parametrisation and fitting.

    Science.gov (United States)

    Zhang, Qiang; Bhalerao, Abhir; Dickenson, Edward; Hutchinson, Charles

    2016-08-01

    Object class representation is one of the key problems in various medical image analysis tasks. We propose a part-based parametric appearance model we refer to as an Active Appearance Pyramid (AAP). The parts are delineated by multi-scale Local Feature Pyramids (LFPs) for superior spatial specificity and distinctiveness. An AAP models the variability within a population with local translations of multi-scale parts and linear appearance variations of the assembly of the parts. It can fit and represent new instances by adjusting the shape and appearance parameters. The fitting process uses a two-step iterative strategy: local landmark searching followed by shape regularisation. We present a simultaneous local feature searching and appearance fitting algorithm based on the weighted Lucas and Kanade method. A shape regulariser is derived to calculate the maximum likelihood shape with respect to the prior and multiple landmark candidates from multi-scale LFPs, with a compact closed-form solution. We apply the 2D AAP on the modelling of variability in patients with lumbar spinal stenosis (LSS) and validate its performance on 200 studies consisting of routine axial and sagittal MRI scans. Intervertebral sagittal and parasagittal cross-sections are typically used for the diagnosis of LSS, we therefore build three AAPs on L3/4, L4/5 and L5/S1 axial cross-sections and three on parasagittal slices. Experiments show significant improvement in convergence range, robustness to local minima and segmentation precision compared with Constrained Local Models (CLMs), Active Shape Models (ASMs) and Active Appearance Models (AAMs), as well as superior performance in appearance reconstruction compared with AAMs. We also validate the performance on 3D CT volumes of hip joints from 38 studies. Compared to AAMs, AAPs achieve a higher segmentation and reconstruction precision. Moreover, AAPs have a significant improvement in efficiency, consuming about half the memory and less than 10% of

  7. Active appearance model-based segmentation of hip radiographs

    Science.gov (United States)

    Boukala, Nabil; Favier, Eric; Laget, Bernard

    2005-04-01

    Despite the advantages that 3D medical image analysis methods offer and the fast introduction of CT and MRI, to date most hospitals use radiographs to perform preoperative planning of hip surgeries and automatic analysis of hip radiographs is still of interest. In this paper, we present a novel method for segmentation of bone structures in anterior-posterior (AP) radiographs based on Active Appearance Models. The pelvis shape is decomposed in circular regions which reflect convex local arrangement of shape points. A priori global knowledge of the geometric structure of this region representation is captured by a statistical deformable template integrating a set of admissible deformations. The texture of each region is modeled separately, and we build a local Active Appearance Model for each region. A leave-one-out test was used to evaluate the performance of the proposed method and to compare it with conventional Active Appearance Model. The results demonstrate that the method is precise and very robust to large-scale noise present in radiographs, and that it can be useful in the context of preoperative planning of hip surgery.

  8. An Active Illumination and Appearance (AIA) Model for Face Alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, Muhittin; Darkner, Sune

    2007-01-01

    Face recognition systems are typically required to work under highly varying illumination conditions. This leads to complex effects imposed on the acquired face image that pertains little to the actual identity. Consequently, illumination normalization is required to reach acceptable recognition...... rates in face recognition systems. In this paper, we propose an approach that integrates the face identity and illumination models under the widely used Active Appearance Model framework as an extension to the texture model in order to obtain illumination-invariant face localization...

  9. Eye Typing using Markov and Active Appearance Models

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Hansen, John Paulin; Nielsen, Mads

    2002-01-01

    We propose a non-intrusive eye tracking system intended for the use of everyday gaze typing using web cameras. We argue that high precision in gaze tracking is not needed for on-screen typing due to natural language redundancy. This facilitates the use of low-cost video components for advanced...... multi-modal interactions based on video tracking systems. Robust methods are needed to track the eyes using web cameras due to the poor image quality. A real-time tracking scheme using a mean-shift color tracker and an Active Appearance Model of the eye is proposed. It is possible from this model...

  10. Active illumination and appearance model for face alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, M.; Darkner, Sune

    2010-01-01

    Illumination conditions have an explicit effect on the performance of face recognition systems. In particular, varying the illumination upon the face imposes such, complex effects that the identification often fails to provide a stable performance level. In this paper, we propose an approach......, integrating face identity and illumination models in order to reach acceptable and stable face recognition rates. For this purpose, Active Appearance Model (A AM) and illumination model of faces are combined in order to obtain an illumination invariant face localization. The proposed method is an integrated......, is sufficient. There is no need to build complex models for illumination. As a result, this paper has presented a simple and efficient method for face modeling and face alignment in order to increase the performance of face localization by means of the proposed illumination invariant AIA method for face...

  11. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... Full Length Research Paper. DNA topoisomerase II enzyme activity ... examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was ..... topoisomerase 2 is required for segregation of daughter molecules at termination of DNA replication. Proc.

  12. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Sperm suspensions of 4 male mice (A, B, C and D), having an initial motility grade of 3.5 were used to examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was 75%, male B was 80%, male C was 70% and male D was 60%. Top 2 activity was examined by ...

  13. Dimensions of network activity

    NARCIS (Netherlands)

    Torenvlied, R.; Akkerman, A.; Meier, K.; O'Toole, L.

    2013-01-01

    Studies in public management show that agencies draw different types of support from different actors and organizations in their environment. If this is true, we would expect that managers differentiate their networking activity toward different types of external actors and organizations. However,

  14. The effect of social network site use on appearance investment and desire for cosmetic surgery among adolescent boys and girls

    NARCIS (Netherlands)

    de Vries, D.A.; Peter, J.; Nikken, P.; de Graaf, H.

    2014-01-01

    Although adolescents frequently use social network sites, little is known about whether the highly visual and self-presentation-centered character of such sites affects body-related outcomes such as investment in appearance and appearance-changing strategies. Due to gender differences in appearance

  15. Fast and exact Newton and Bidirectional fitting of Active Appearance Models

    NARCIS (Netherlands)

    Kossaifi, Jean; Tzimiropoulos, Georgios; Pantic, Maja

    Active Appearance Models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose and occlusion when trained in the wild, while not requiring large training dataset like regression-based or deep learning

  16. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation

    Directory of Open Access Journals (Sweden)

    van Horssen Jack

    2012-07-01

    Full Text Available Abstract Background In brain tissues from multiple sclerosis (MS patients, clusters of activated HLA-DR-expressing microglia, also referred to as preactive lesions, are located throughout the normal-appearing white matter. The aim of this study was to gain more insight into the frequency, distribution and cellular architecture of preactive lesions using a large cohort of well-characterized MS brain samples. Methods Here, we document the frequency of preactive lesions and their association with distinct white matter lesions in a cohort of 21 MS patients. Immunohistochemistry was used to gain further insight into the cellular and molecular composition of preactive lesions. Results Preactive lesions were observed in a majority of MS patients (67% irrespective of disease duration, gender or subtype of disease. Microglial clusters were predominantly observed in the vicinity of active demyelinating lesions and are not associated with T cell infiltrates, axonal alterations, activated astrocytes or blood–brain barrier disruption. Microglia in preactive lesions consistently express interleukin-10 and TNF-α, but not interleukin-4, whereas matrix metalloproteases-2 and −9 are virtually absent in microglial nodules. Interestingly, key subunits of the free-radical-generating enzyme NADPH oxidase-2 were abundantly expressed in microglial clusters. Conclusions The high frequency of preactive lesions suggests that it is unlikely that most of them will progress into full-blown demyelinating lesions. Preactive lesions are not associated with blood–brain barrier disruption, suggesting that an intrinsic trigger of innate immune activation, rather than extrinsic factors crossing a damaged blood–brain barrier, induces the formation of clusters of activated microglia.

  17. Adolescents' Social Network Site Use, Peer Appearance-Related Feedback, and Body Dissatisfaction: Testing a Mediation Model.

    Science.gov (United States)

    de Vries, Dian A; Peter, Jochen; de Graaf, Hanneke; Nikken, Peter

    2016-01-01

    Previous correlational research indicates that adolescent girls who use social network sites more frequently are more dissatisfied with their bodies. However, we know little about the causal direction of this relationship, the mechanisms underlying this relationship, and whether this relationship also occurs among boys to the same extent. The present two-wave panel study (18 month time lag) among 604 Dutch adolescents (aged 11-18; 50.7% female; 97.7% native Dutch) aimed to fill these gaps in knowledge. Structural equation modeling showed that social network site use predicted increased body dissatisfaction and increased peer influence on body image in the form of receiving peer appearance-related feedback. Peer appearance-related feedback did not predict body dissatisfaction and thus did not mediate the effect of social network site use on body dissatisfaction. Gender did not moderate the findings. Hence, social network sites can play an adverse role in the body image of both adolescent boys and girls.

  18. The relationship between Facebook and Instagram appearance-focused activities and body image concerns in young women.

    Science.gov (United States)

    Cohen, Rachel; Newton-John, Toby; Slater, Amy

    2017-12-01

    The present study aimed to identify the specific social networking sites (SNS) features that relate to body image concerns in young women. A total of 259 women aged 18-29years completed questionnaire measures of SNS use (Facebook and Instagram) and body image concerns. It was found that appearance-focused SNS use, rather than overall SNS use, was related to body image concerns in young women. Specifically, greater engagement in photo activities on Facebook, but not general Facebook use, was associated with greater thin-ideal internalisation and body surveillance. Similarly, following appearance-focused accounts on Instagram was associated with thin-ideal internalisation, body surveillance, and drive for thinness, whereas following appearance-neutral accounts was not associated with any body image outcomes. Implications for future SNS research, as well as for body image and disordered eating interventions for young women, are discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands

    NARCIS (Netherlands)

    Kolk, Van Der Henk Jan; Wallis de Vries, Michiel; Vliet, Van Arnold J.H.

    2016-01-01

    Phenological responses of butterflies to temperature have been demonstrated in several European countries by using data from standardized butterfly monitoring schemes. Recently, phenological networks have enabled volunteers to record phenological observations at project websites. In this study,

  20. Self-Concealment, Social Network Sites Usage, Social Appearance Anxiety, Loneliness of High School Students: A Model Testing

    Science.gov (United States)

    Dogan, Ugur; Çolak, Tugba Seda

    2016-01-01

    This study was tested a model for explain to social networks sites (SNS) usage with structural equation modeling (SEM). Using SEM on a sample of 475 high school students (35% male, 65% female) students, model was investigated the relationship between self-concealment, social appearance anxiety, loneliness on SNS such as Twitter and Facebook usage.…

  1. Partner network communities – a resource of universities’ activities

    Directory of Open Access Journals (Sweden)

    Romm Mark V.

    2016-01-01

    Full Text Available The network activity is not only part and parcel of the modern university, but it also demonstrates the level of its success. There appeared an urgent need for understanding the nature of universities’ network interactions and finding the most effective models of their network cooperation. The article analyzes partnership network communities with higher educational establishments (universities’ participation, which are being actively created nowadays. The conditions for successful network activities of a university in scientific, academic and professional network communities are presented.

  2. The effect of social network sites on adolescents’ appearance investment and desire for cosmetic surgery

    NARCIS (Netherlands)

    de Vries, D.; Peter, J.; Nikken, P.; de Graaf, H.

    2013-01-01

    Although adolescents frequently use social network sites (SNS), little is known about whether the highly visual and self-presentation-centered character of such sites affects body-related outcomes. The first aim of the current study was to investigate the causal direction of the relationship between

  3. Appearance of Unstable Monopoly State Caused by Selective and Concentrative Mergers in Business Networks.

    Science.gov (United States)

    Goto, Hayato; Viegas, Eduardo; Jensen, Henrik Jeldtoft; Takayasu, Hideki; Takayasu, Misako

    2017-07-11

    Recently, growth mechanism of firms in complex business networks became new targets of scientific study owing to increasing availability of high quality business firms' data. Here, we paid attention to comprehensive data of M&A events for 40 years and derived empirical laws by applying methods and concepts of aggregation dynamics of aerosol physics. It is found that the probability of merger between bigger firms is bigger than that between smaller ones, and such tendency is enhancing year by year. We introduced a numerical model simulating the whole ecosystem of firms and showed that the system is already in an unstable monopoly state in which growth of middle sized firms are suppressed.

  4. The Investigation of Participation Physical Activity and Social Appearance Anxiety at The Preservice Teachers

    Directory of Open Access Journals (Sweden)

    Serdar ALEMDAĞ

    2015-07-01

    Full Text Available The aim of this study is to examine and specify the relationship between the participation of candidate teachers in physical activity and social appearance anxiety according to some variables. 2324 (1483 female, 840 male students participated in this rese arch as an investigation group. “Personal Information Form”, “Variation Stages of Exercise Behaviour Questionnaire” and “Social appearance anxiety scale ” were employed for data collection. The statistical methods used in this research were descriptive sta tistics, the independent group one way ANOVA, the independent group t - Test, Chi – square test and also the correlation analysis for determining the relationship among dependent variables . At the end of the research, it became clear that the students’ parti cipation in physical activity varies depending on gender, department, and n o significant differences were found between class variable . The soscial appearance anxiety have a significant variation in all independent variables. In addition, increasing the level of participation in physical activity , concern for the social appearance anxiety is decreasing . From the results of this prospective teachers , some of the factors that may have become effective in being a qualified teacher , in terms of participation in physical activity is recommended.

  5. The AAM-API: An Open Source Active Appearance Model Implementation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2003-01-01

    This paper presents a public domain implementation of the Active Appearance Model framework and gives examples using it for segmentation and analysis of medical images. The software is open source, designed with efficiency in mind, and has been thoroughly tested and evaluated in several medical a...

  6. Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Pedersen, Dorthe

    2005-01-01

    in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection...

  7. NETWORK ACTIVATION DURING BIMANUAL MOVEMENTS IN HUMANS

    Science.gov (United States)

    Walsh, RR; Small, SL; Chen, EE; Solodkin, A.

    2008-01-01

    The coordination of movement between the upper limbs is a function highly distributed across the animal kingdom. How the central nervous system generates such bilateral, synchronous movements, and how this differs from the generation of unilateral movements, remains uncertain. Electrophysiologic and functional imaging studies support that the activity of many brain regions during bimanual and unimanual movement are quite similar. Thus, the same brain regions (and indeed the same neurons) respond similarly during unimanual and bimanual movements as measured by electrophysiological responses. How then are different motor behaviors generated? To address this question, we studied unimanual and bimanual movements using fMRI and constructed networks of activation using Structural Equation Modeling (SEM). Our results suggest that (1) the dominant hemisphere appears to initiate activity responsible for bimanual movement; (2) activation during bimanual movement does not reflect the sum of right and left unimanual activation; (3) production of unimanual movement involves a network that is distinct from, and not a mirror of, the network for contralateral unimanual movement; and (4) using SEM, it is possible to obtain robust group networks representative of a population and to identify individual networks which can be used to detect subtle differences both between subjects as well as within a single subject over time. In summary, these results highlight a differential role for the dominant and non-dominant hemispheres during bimanual movements, further elaborating the concept of handedness and dominance. This knowledge increases our understanding of cortical motor physiology in health and after neurological damage. PMID:18718872

  8. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Active appearance model (AAM is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.

  9. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony

    Science.gov (United States)

    Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748

  10. Rationales for Anti-aging Activities in Middle Age: Aging, Health, or Appearance?

    Science.gov (United States)

    Calasanti, Toni; King, Neal; Pietilä, Ilkka; Ojala, Hanna

    2016-08-09

    We explore the motivations of middle-aged consumers of anti-aging products and services in relation to aging, health, and appearance. Admission of use of anti-aging products and services could align a respondent with a stigmatized group, old people, and also connotes a feminine concern with aesthetics. For these reasons, people, particularly men, will be unlikely to report using them for this purpose. Semi-structured, in-depth interviews were conducted among 19 men and women aged 42-61 years. Topics included their perceptions of bodily changes and their responses to these. We analyzed data qualitatively. Respondents frame their uses of anti-aging products in terms of health and appearance, not anti-aging per se. Both men and women see anti-aging as related to beautiful appearance and thus as a feminized activity. Both are concerned about appearance, but in gendered ways. Overall, respondents conflate bodily appearance, health, and aging in their constructions of anti-aging. This conflation maintains inequality by stigmatizing old age as unhealthy and unseemly. Our results point to the limits of studying the consumption of anti-aging products and services if researchers ask only about anti-aging uses per se. They also point to the ways that discourses of health and appearance naturalize ageism, as they suggest that old age inheres in bodies that "naturally" decline and thus should be excluded. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Theorizing Network-Centric Activity in Education

    Science.gov (United States)

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  12. Networking activism: implications for Greece

    Directory of Open Access Journals (Sweden)

    Pantelis Vatikiotis

    2011-12-01

    Full Text Available The outbreak of December 2008 against police brutality through a wave of demonstrations and street protests in Athens, which was strongly advocated by protest activities and practices across the world, addresses several issues in relation to the transformative potentials of mediated collective action. The paper critically evaluates different accounts of December events, probing then into thevery networking of that movement. From this perspective, it points out another aspect of the local-global interplay in protest culture along new mediating practices (beyond the creation of transnational publics, that of the implications of transnational networking for local social activism and identification, addressing relevant questions in the Greek context.

  13. ANTIOXIDATIVE ACTIVITY AND BER APPEARANCE IN PEPPER FRUITS UNDER INFLUENCE OF BIOSTIMULANT TREATMENT AND HYBRID

    Directory of Open Access Journals (Sweden)

    Nada Parađiković

    2010-06-01

    Full Text Available Anti-oxidative activity of pepper fruits, total and commercial yield, number of non-commercial and BER fruits under influence of bio-stimulant treatment and pepper hybrid were investigated in this experiment. Significantly highest anti-oxidative activity, determined by DPPH assay, was recorded in treated Century F1 hybrid pepper plants. Also, positive significant correlation (r=0.526* between commercial yield and anti-oxidative activity appeared. Generally, treatment with bio-stimulants positively influenced all investigated parameters in Century F1 hybrid, while in Blondy F1 significantly decreased number of non-commercial and BER fruits. At the end, compared to untreated plants, treatment resulted in higher commercial yield in both hybrids.

  14. Essence, classification and reason of crisis appearance in the enterprises’ activity

    Directory of Open Access Journals (Sweden)

    О.G. Denusyuk

    2015-03-01

    Full Text Available In the article the theoretical approaches concerning determination the «crisis» conception and its classification are generalized, the factors of crisis situation in the enterprises’ activity are examined and the substance and essence of the enterprises management process in the crisis situations are motivated. As the researches results are certified, the problems of clear meaning illustration of «crisis», «crisis management» conceptions, its place and its role in the economy remain are insufficiently developed in the work the enterprise crisis is determinate as the direct threat for its functioning, and the crisis management conception – as the sets of principles, forms and methods of operations and realizations of management decisions complex, aimed at the earliest detections of the crisis danger, the reasons diagnosis of its appearances, and at the proper conditions for the timely crisis overcoming and the restoring of the viability of the enterprise. The study demonstrated a wider range of outside and inside factors of crisis appearance in the enterprises. Sequencing of crisis management functions in the enterprises is considered. For the purpose of the crisis situations averting the possible sequence of the crisis measures realization is determinate. All that will support of the competitiveness providing, will determinate real volumes of the own and involved financial resources receiving, will gain the balanced and harmonious development off all enterprises’ activity aspects, and will timely carry out an adaptive management considering the changes in the environmental.

  15. Excessive Time on Social Networking Sites and Disordered Eating Behaviors Among Undergraduate Students: Appearance and Weight Esteem as Mediating Pathways.

    Science.gov (United States)

    Murray, Marisa; Maras, Danijela; Goldfield, Gary S

    2016-12-01

    Social networking sites (SNS) are a popular form of communication among undergraduate students. Body image concerns and disordered eating behaviors are also quite prevalent among this population. Maladaptive use of SNS has been associated with disordered eating behaviors; however, the mechanisms remain unclear. The present study examined if body image concerns (e.g., appearance and weight esteem) mediate the relationship between excessive time spent on SNS and disordered eating behaviors (restrained and emotional eating). The sample included 383 (70.2 percent female) undergraduate students (mean age = 23.08 years, standard deviation = 3.09) who completed self-report questionnaires related to SNS engagement, body image, disordered eating behaviors, and demographics. Parallel multiple mediation and moderated mediation analyses revealed that lower weight and appearance esteem mediated the relationship between excessive time on SNS and restrained eating for males and females, whereas appearance esteem mediated the relationship between excessive time on SNS and emotional eating for females only. The study adds to the literature by highlighting mediational pathways and gender differences. Intervention research is needed to determine if teaching undergraduate students more adaptive ways of using SNS or reducing exposure to SNS reduces body dissatisfaction and disordered eating in this high-risk population.

  16. How Sleep Activates Epileptic Networks?

    Directory of Open Access Journals (Sweden)

    Peter Halász

    2013-01-01

    Full Text Available Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system.

  17. Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

    Directory of Open Access Journals (Sweden)

    Jinwei Wang

    2014-01-01

    Full Text Available The active appearance model (AAM is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  18. Topical tissue plasminogen activator appears ineffective for the clearance of intraocular fibrin.

    Science.gov (United States)

    Zwaan, J; Latimer, W B

    1998-06-01

    To determine the efficacy of topical tissue plasminogen activator (tPA) for the resolution of postoperative or inflammatory intraocular fibrinous exudates. Each treatment consisted of drops of 1 mg/ml tPA given 9 times 5 minutes apart. Records were reviewed and the results at 24 and 48 hours were recorded. Sixty-two patients had a total of 94 treatments. Fibrin exudates following intraocular surgery in 34 patients were treated 44 times. In 6 patients there was a positive result. Fibrin associated with intraocular infection was treated in 9 patients. None showed clear improvement. Nineteen patients had a total of 34 treatments for poorly controlled intraocular pressure (IOP) after glaucoma surgery. Five patients showed adequate control of the IOP, 12 did not change, and 2 had a questionable improvement. Eleven patients had adequate IOP control after additional treatment. Seven required suture lysis, 2 ab interno bleb revision, and 2 YAG capsulotomy or iridotomy to reduce the IOP to an acceptable level. Within the limits of this retrospective study and taking into account that fibrin may resolve spontaneously, it appears that topical tPA drops are not effective for the liquefaction of intraocular fibrin after surgery or in association with intraocular inflammation. They did not improve IOP control after glaucoma surgery.

  19. Multifeature landmark-free active appearance models: application to prostate MRI segmentation.

    Science.gov (United States)

    Toth, Robert; Madabhushi, Anant

    2012-08-01

    Active shape models (ASMs) and active appearance models (AAMs) are popular approaches for medical image segmentation that use shape information to drive the segmentation process. Both approaches rely on image derived landmarks (specified either manually or automatically) to define the object's shape, which require accurate triangulation and alignment. An alternative approach to modeling shape is the levelset representation, defined as a set of signed distances to the object's surface. In addition, using multiple image derived attributes (IDAs) such as gradient information has previously shown to offer improved segmentation results when applied to ASMs, yet little work has been done exploring IDAs in the context of AAMs. In this work, we present a novel AAM methodology that utilizes the levelset implementation to overcome the issues relating to specifying landmarks, and locates the object of interest in a new image using a registration based scheme. Additionally, the framework allows for incorporation of multiple IDAs. Our multifeature landmark-free AAM (MFLAAM) utilizes an efficient, intuitive, and accurate algorithm for identifying those IDAs that will offer the most accurate segmentations. In this paper, we evaluate our MFLAAM scheme for the problem of prostate segmentation from T2-w MRI volumes. On a cohort of 108 studies, the levelset MFLAAM yielded a mean Dice accuracy of 88% ± 5%, and a mean surface error of 1.5 mm ±.8 mm with a segmentation time of 150/s per volume. In comparison, a state of the art AAM yielded mean Dice and surface error values of 86% ± 9% and 1.6 mm ± 1.0 mm, respectively. The differences with respect to our levelset-based MFLAAM model are statistically significant . In addition, our results were in most cases superior to several recent state of the art prostate MRI segmentation methods.

  20. Segmentation of common carotid artery with active appearance models from ultrasound images

    Science.gov (United States)

    Yang, Xin; He, Wanji; Fenster, Aaron; Yuchi, Ming; Ding, Mingyue

    2013-02-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, a new segmentation method is proposed and evaluated for outlining the common carotid artery (CCA) from transverse view images, which were sliced from three-dimensional ultrasound (3D US) of 1mm inter-slice distance (ISD), to support the monitoring and assessment of carotid atherosclerosis. The data set consists of forty-eight 3D US images acquired from both left and right carotid arteries of twelve patients in two time points who had carotid stenosis of 60% or more at the baseline. The 3D US data were collected at baseline and three-month follow-up, where seven treated with 80mg atorvastatin and five with placebo. The baseline manual boundaries were used for Active Appearance Models (AAM) training; while the treatment data for segmentation testing and evaluation. The segmentation results were compared with experts manually outlined boundaries, as a surrogate for ground truth, for further evaluation. For the adventitia and lumen segmentations, the algorithm yielded Dice Coefficients (DC) of 92.06%+/-2.73% and 89.67%+/-3.66%, mean absolute distances (MAD) of 0.28+/-0.18 mm and 0.22+/-0.16 mm, maximum absolute distances (MAXD) of 0.71+/-0.28 mm and 0.59+/-0.21 mm, respectively. The segmentation results were also evaluated via Pratt's figure of merit (FOM) with the value of 0.61+/-0.06 and 0.66+/-0.05, which provides a quantitative measure for judging the similarity. Experimental results indicate that the proposed method can promote the carotid 3D US usage for a fast, safe and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  1. Simultaneous Segmentation of Prostatic Zones Using Active Appearance Models With Multiple Coupled Levelsets.

    Science.gov (United States)

    Toth, Robert; Ribault, Justin; Gentile, John; Sperling, Dan; Madabhushi, Anant

    2013-09-01

    In this work we present an improvement to the popular Active Appearance Model (AAM) algorithm, that we call the Multiple-Levelset AAM (MLA). The MLA can simultaneously segment multiple objects, and makes use of multiple levelsets, rather than anatomical landmarks, to define the shapes. AAMs traditionally define the shape of each object using a set of anatomical landmarks. However, landmarks can be difficult to identify, and AAMs traditionally only allow for segmentation of a single object of interest. The MLA, which is a landmark independent AAM, allows for levelsets of multiple objects to be determined and allows for them to be coupled with image intensities. This gives the MLA the flexibility to simulataneously segmentation multiple objects of interest in a new image. In this work we apply the MLA to segment the prostate capsule, the prostate peripheral zone (PZ), and the prostate central gland (CG), from a set of 40 endorectal, T2-weighted MRI images. The MLA system we employ in this work leverages a hierarchical segmentation framework, so constructed as to exploit domain specific attributes, by utilizing a given prostate segmentation to help drive the segmentations of the CG and PZ, which are embedded within the prostate. Our coupled MLA scheme yielded mean Dice accuracy values of .81, .79 and .68 for the prostate, CG, and PZ, respectively using a leave-one-out cross validation scheme over 40 patient studies. When only considering the midgland of the prostate, the mean DSC values were .89, .84, and .76 for the prostate, CG, and PZ respectively.

  2. Assessing state-level active living promotion using network analysis.

    Science.gov (United States)

    Buchthal, Opal Vanessa; Taniguchi, Nicole; Iskandar, Livia; Maddock, Jay

    2013-01-01

    Physical inactivity is a growing problem in the United States, one that is being addressed through the development of active living communities. However, active living promotion requires collaboration among organizations that may not have previously shared goals. A network analysis was conducted to assess Hawaii's active living promotion network. Twenty-six organizations playing a significant role in promoting active living in Hawaii were identified and surveyed about their frequency of contact, level of collaboration, and funding flow with other agencies. A communication network was identified linking all agencies. This network had many long pathways, impeding information flow. The Department of Health (DOH) and the State Nutrition and Physical Activity Coalition (NPAC) were central nodes, but DOH connected state agencies while NPAC linked county and voluntary organizations. Within the network, information sharing was common, but collaboration and formal partnership were low. Linkages between county and state agencies, between counties, and between state agencies with different core agendas were particularly low. Results suggest that in the early stages of development, active living networks may be divided by geography and core missions, requiring work to bridge these divides. Network mapping appears helpful in identifying areas for network development.

  3. The Implications of the Appearance of the Printing Activity in the Romanian Space

    Directory of Open Access Journals (Sweden)

    Agnes Erich

    2006-01-01

    Full Text Available In the general context of the Cyrillic European print, the print from Wallachia is placed to leader place, reflecting a high cultural degree of development, a level and a tradition which is worth a special attention. A fact of culture, as the establishment of the typography, can't be studied apart from the society needs from that time. The appearance of Cyrillic print in Wallachia constituted a part of an European phenomenon, the reflect of it on the local plan and not at all an singular appearance, broken by the European culture.

  4. Reduced Creatine Kinase B Activity in Multiple Sclerosis Normal Appearing White Matter

    NARCIS (Netherlands)

    Steen, Christel; Wilczak, Nadine; Hoogduin, Johannes M.; Koch, Marcus; De Keyser, Jacques

    2010-01-01

    Background: Two studies using (31)P-magnetic resonance spectroscopy (MRS) reported enhanced phosphocreatine (PCr) levels in normal appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but this finding could not be properly explained. Methodology/Principal Findings: We performed

  5. Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity.

    Science.gov (United States)

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich

    2017-04-05

    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance, and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e., promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity, and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics. SIGNIFICANCE STATEMENT Computational studies predict richer and persisting spatiotemporal patterns of spontaneous activity in

  6. Active Appearance Segmentation for Intensity Inhomogeneity in Light Sheet Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Lyksborg, Mark; Hecksher-Sørensen, J.

    2016-01-01

    inhomogeneities which are often seen in Light Sheet Fluorescence Microscopy (LSFM) images. This robustness is achieved by modelling the appearance of an image as a regularized Normalized Gradient Field (rNGF). We perform two experiments to challenge the model. First it is tested using a repeated leave......-one-out approach on images with minimal imperfections where the left out images are corrupted by a simulated bias field and segmented using the AAM. Secondly we test the model on LSFM images with common acquisition problems. In both experiments the proposed approach outperforms the often used AAM implementation...

  7. Stochastic cycle selection in active flow networks

    Science.gov (United States)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  8. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Directory of Open Access Journals (Sweden)

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  9. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    Science.gov (United States)

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  10. Adolescents' social network site use, peer appearance-related feedback, and body dissatisfaction: Testing a mediation model

    NARCIS (Netherlands)

    de Vries, D.A.; Peter, J.; de Graaf, H.; Nikken, P.

    Previous correlational research indicates that adolescent girls who use social network sites more frequently are more dissatisfied with their bodies. However, we know little about the causal direction of this relationship, the mechanisms underlying this relationship, and whether this relationship

  11. Network management systems for active distribution networks. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.A.

    2004-07-01

    A technical feasibility study on network management systems for active distribution networks is reported. The study investigated the potential for modifying a Distribution Network Operator (DNO) Supervisory Control and Data Acquisition System (SCADA) to give some degree of active management. Government incentives have encouraged more and more embedded generation being connected to the UK distribution networks and further acceleration of the process should support the 2010 target for a reduction in emissions of carbon dioxide. The report lists the objectives of the study and summarises what has been achieved; it also discusses limitations, reliability and resilience of existing SCADA. Safety and operational communications are discussed under staff safety and operational safety. Recommendations that could facilitate active management through SCADA are listed, together with suggestions for further study. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions.

  12. Mode Selection in Compressible Active Flow Networks

    Science.gov (United States)

    Forrow, Aden; Woodhouse, Francis G.; Dunkel, Jörn

    2017-07-01

    Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. Here, we introduce and explore an analytically tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems, we find that active friction selects discrete states with a limited number of oscillation modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy networks and find good agreement with a Bayesian state estimation based on a hidden Markov model applied to simulated time series data. Our results suggest that the macroscopic response of active network structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well suited to study topological sound modes and spectral band gaps in active matter.

  13. Examination of the association of sex and race/ethnicity with appearance concerns: A Scleroderma Patient-centered Intervention Network (SPIN) cohort study

    NARCIS (Netherlands)

    Jewett, L.R.; Kwakkenbos, C.M.C.; Carrier, M.E.; Malcarne, V.L.; Bartlett, S.J.; Furst, D.E.; Gottesman, K.; Mayes, M.D.; Assassi, S.; Harcourt, D.; Williamson, H.; Johnson, S.R.; Körner, A.; Steen, V.; Fox, R.S.; Gholizadeh, S.; Mills, S.D.; Molnar, J.C.; Rice, D.B.; Thombs, B.D.

    2016-01-01

    OBJECTIVES: Appearance concerns are common in systemic sclerosis (SSc) and have been linked to younger age and more severe disease. No study has examined their association with sex or race/ethnicity. METHODS: SSc patients were sampled from the Scleroderma Patient-centered Intervention Network

  14. Active late-appearing variable surface antigen genes in Trypanosoma equiperdum are constructed entirely from pseudogenes.

    Science.gov (United States)

    Roth, C; Bringaud, F; Layden, R E; Baltz, T; Eisen, H

    1989-12-01

    The expression of genes coding for variable surface glycoproteins (VSGs) in Trypanosoma equiperdum is linked to duplicative transpositions of silent, basic copy sequences into telomere-linked expression sites. Examination of three independently derived late-appearing trypanosome clones expressing VSG-78 revealed that the expressed gene in all cases is composed of sequences derived from three or four individual silent genes. The 182 base pairs at the 3' end of the coding sequence are derived from one silent gene, the 3' donor. The remaining 5' segment is a mosaic structure containing variable-length segments derived from two, or perhaps three, related silent genes. All of the silent genes that participate in the construction of the VSG-78 expression-linked copy (ELC) genes contain multiple stop codons and are unable to code for VSGs. Individual silent pseudogenes complement one another in the mosaic structure of the 5' portions of the ELC genes and create functional VSG genes. The joining of the 3' and 5' portions of the composite genes occurs in short regions of homology and suggests a mechanism by which the ordered expression of the VSG genes is generated.

  15. Altered default network activity in obesity.

    Science.gov (United States)

    Tregellas, Jason R; Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Jesse; Kronberg, Eugene; Cordes, Dietmar; Cornier, Marc-Andre

    2011-12-01

    The regulation of energy intake is a complex process involving the integration of homeostatic signals and both internal and external sensory inputs. To better understand the neurobiology of this process and how it may be dysfunctional in obesity, this study examined activity of the brain's "default network" in reduced-obese (RO) as compared to lean individuals. The default network is a group of functionally connected brain regions thought to play an important role in internally directed cognitive activity and the interplay between external and internal sensory processing. Functional magnetic resonance imaging was performed in 24 lean and 18 RO individuals in the fasted state after 2 days of eucaloric energy intake and after 2 days of 30% overfeeding in a counterbalanced design. Scanning was performed while subjects passively viewed images of food and nonfood objects. Independent component analysis was used to identify the default network component. In the eucaloric state, greater default network activity was observed in RO compared to lean individuals in the lateral inferior parietal and posterior cingulate cortices. Activity was positively correlated with appetite. Overfeeding resulted in increased default network activity in lean but not RO individuals. These findings suggest that the function of the default network, a major contributor to intrinsic neuronal activity, is altered in obesity and/or obese-prone individuals. Future studies of the network's function and its relationship to other brain networks may improve our understanding of the mechanisms and treatment of obesity.

  16. Competing activation mechanisms in epidemics on networks

    Science.gov (United States)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2012-04-01

    In contrast to previous common wisdom that epidemic activity in heterogeneous networks is dominated by the hubs with the largest number of connections, recent research has pointed out the role that the innermost, dense core of the network plays in sustaining epidemic processes. Here we show that the mechanism responsible of spreading depends on the nature of the process. Epidemics with a transient state are boosted by the innermost core. Contrarily, epidemics allowing a steady state present a dual scenario, where either the hub independently sustains activity and propagates it to the rest of the system, or, alternatively, the innermost network core collectively turns into the active state, maintaining it globally. In uncorrelated networks the former mechanism dominates if the degree distribution decays with an exponent larger than 5/2, and the latter otherwise. Topological correlations, rife in real networks, may perturb this picture, mixing the role of both mechanisms.

  17. [Appearance of undiagnosed diabetes mellitus in the population of professionally active people in the urban areas].

    Science.gov (United States)

    Wierusz-Wysocka, B; Zozulińska, D; Knast, B; Pisarczyk-Wiza, D

    2001-09-01

    Diabetes remains a great social and clinical problem. Therefore, there is a need to focus our efforts on prevention of the disease, especially of type 2 diabetes. Type 2 diabetes is characterized by accelerated development of atherosclerotic changes (macroangiopathy). Hyperglycaemia, hypertension, hyperlipidaemia and hyperfibrinogenaemia also play an important role in the development of macroangiopathy. Hyperinsulinemia, which accompanies the visceral type of obesity, is characteristic of type 2 diabetes. Considering all the above mentioned findings, prevention of type 2 diabetes should be based on the population level, concentrating especially on the groups with increased risk of obesity and/or diabetes (early primary prevention). However, in the present conditions, it seems that screening studies can be conducted only in the groups with high risk of type 2 diabetes (late primary prevention). They allow for relatively early detection of disturbances in carbohydrate metabolism. The aim of the study was to assess the prevalence of undiagnosed diabetes in the population of professionally active inhabitants in Pleszew. 2700 subjects, aged 35-65 years, entered the study. All patients claimed to be healthy. In the first phase of the study, the fasting capillary glycaemia was tested. Fasting blood glucose or oral glucose tolerance test was performed in all cases which fasting capillary glucose was higher then 5.5 mmol/l (100 mg/dl). The screening study revealed 91 cases with glycaemia higher than 6.8 mmol/l (3.4%). 387 subjects (14.3%) with glycaemia ranging from 5.5 to 6.8 mmol/l were qualified to perform the oral glucose tolerance test. Out of this group 138 persons did not come to the laboratory. Thus, the test was conducted in 249 causes (64.3%). The results obtained excluded another 197 subjects as no disturbances in the glucose metabolism were found. Based on the results of the oral glucose tolerance test 39 patients were diagnosed to have an impaired glucose

  18. Active Learning for Node Classification in Assortative and Disassortative Networks

    CERN Document Server

    Moore, Cristopher; Zhu, Yaojia; Rouquier, Jean-Baptiste; Lane, Terran

    2011-01-01

    In many real-world networks, nodes have class labels, attributes, or variables that affect the network's topology. If the topology of the network is known but the labels of the nodes are hidden, we would like to select a small subset of nodes such that, if we knew their labels, we could accurately predict the labels of all the other nodes. We develop an active learning algorithm for this problem which uses information-theoretic techniques to choose which nodes to explore. We test our algorithm on networks from three different domains: a social network, a network of English words that appear adjacently in a novel, and a marine food web. Our algorithm makes no initial assumptions about how the groups connect, and performs well even when faced with quite general types of network structure. In particular, we do not assume that nodes of the same class are more likely to be connected to each other---only that they connect to the rest of the network in similar ways.

  19. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  20. Complex Network for Solar Active Regions

    Science.gov (United States)

    Daei, Farhad; Safari, Hossein; Dadashi, Neda

    2017-08-01

    In this paper we developed a complex network of solar active regions (ARs) to study various local and global properties of the network. The values of the Hurst exponent (0.8-0.9) were evaluated by both the detrended fluctuation analysis and the rescaled range analysis applied on the time series of the AR numbers. The findings suggest that ARs can be considered as a system of self-organized criticality (SOC). We constructed a growing network based on locations, occurrence times, and the lifetimes of 4227 ARs recorded from 1999 January 1 to 2017 April 14. The behavior of the clustering coefficient shows that the AR network is not a random network. The logarithmic behavior of the length scale has the characteristics of a so-called small-world network. It is found that the probability distribution of the node degrees for undirected networks follows the power law with exponents of about 3.7-4.2. This indicates the scale-free nature of the AR network. The scale-free and small-world properties of the AR network confirm that the system of ARs forms a system of SOC. Our results show that the occurrence probability of flares (classified by GOES class C> 5, M, and X flares) in the position of the AR network hubs takes values greater than that obtained for other nodes.

  1. A Method Based on Active Appearance Model and Gradient Orientation Pyramid of Face Verification as People Age

    Directory of Open Access Journals (Sweden)

    Ji-Xiang Du

    2014-01-01

    Full Text Available Face verification in the presence of age progression is an important problem that has not been widely addressed. In this paper, we propose to use the active appearance model (AAM and gradient orientation pyramid (GOP feature representation for this problem. First, we use the AAM on the dataset and generate the AAM images; we then get the representation of gradient orientation on a hierarchical model, which is the appearance of GOP. When combined with a support vector machine (SVM, experimental results show that our approach has excellent performance on two public domain face aging datasets: FGNET and MORPH. Second, we compare the performance of the proposed methods with a number of related face verification methods; the results show that the new approach is more robust and performs better.

  2. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  3. Elastic Appearance Models

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Fagertun, Jens; Larsen, Rasmus

    2011-01-01

    This paper presents a fusion of the active appearance model (AAM) and the Riemannian elasticity framework which yields a non-linear shape model and a linear texture model – the active elastic appearance model (EAM). The non-linear elasticity shape model is more flexible than the usual linear...

  4. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  5. [Legal aspects of networking of medical activities].

    Science.gov (United States)

    Preissler, Reinhold

    2005-04-01

    Medical networks lack a legal definition. From the viewpoint of social law, this term means a form of organization of joint-service providers in a non-specified composition for the undertaking of medical care activities; from the point of view of occupational law, this consists of a loose form of joint practice. Such medical network can conclude treatment contracts with the patients and exchange patients' medical records. A practice network can take over services as contract partner of hospitals or other institutions, in the interest of improved competition chances within the integrated care system. The joining of a third partner is basically left open by the MBO, however according to SGB V this is possible only after approval by all contract partners. In advance of a planned medical care center, is it recommended to found a physician network as starting model. Before single practices fuse into a single enterprise, management-, tax-, legal-, as well as psychological aspects must be considered.

  6. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  7. Structure formation in active networks

    CERN Document Server

    Köhler, Simone; Bausch, Andreas R

    2011-01-01

    Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics.

  8. Modulation of neuronal network activity with ghrelin

    NARCIS (Netherlands)

    Stoyanova, Irina; Rutten, Wim; le Feber, Jakob

    2012-01-01

    Ghrelin is a neuropeptide regulating multiple physiological processes, including high brain functions such as learning and memory formation. However, the effect of ghrelin on network activity patterns and developments has not been studied yet. Therefore, we used dissociated cortical neurons plated

  9. Activity Recognition Using Complex Network Analysis.

    Science.gov (United States)

    Jalloul, Nahed; Poree, Fabienne; Viardot, Geoffrey; L'Hostis, Phillipe; Carrault, Guy

    2017-10-12

    In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a Random Forest (RF) classifier, and when considering a monitoring system composed of only two modules positioned at the Neck and Thigh of the subject's body.

  10. Collective dynamics of active cytoskeletal networks

    CERN Document Server

    Köhler, Simone; Bausch, Andreas R

    2011-01-01

    Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsative collective long range dynamics. The reorganizations in the highly dynamic steady state of the active gel are characterized by alternating periods of runs and stalls resulting in a superdiffusive dynamics of the network's constituents. They are dominated by the complex competition of crosslinking molecules and motor filaments in the network: Collective dynamics are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. The feedback between structure formation and dynamics can be resolved by combining these experiments with phenomenological simulations base...

  11. Networking activities in technology-based entrepreneurial teams

    DEFF Research Database (Denmark)

    Neergaard, Helle

    2005-01-01

    Based on social network theoy, this article investigates the distribution of networking roles and responsibilities in entrepreneurial founding teams. Its focus is on the team as a collection of individuals, thus allowing the research to address differences in networking patterns. It identifies six...... central networking activities and shows that not all founding team members are equally active 'networkers'. The analyses show that team members prioritize different networking activities and that one member in particular has extensive networking activities whereas other memebrs of the team are more...

  12. Intruder Activity Analysis under Unreliable Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Tae-Sic Yoo; Humberto E. Garcia

    2007-09-01

    This paper addresses the problem of counting intruder activities within a monitored domain by a sensor network. The deployed sensors are unreliable. We characterize imperfect sensors with misdetection and false-alarm probabilities. We model intruder activities with Markov Chains. A set of Hidden Markov Models (HMM) models the imperfect sensors and intruder activities to be monitored. A novel sequential change detection/isolation algorithm is developed to detect and isolate a change from an HMM representing no intruder activity to another HMM representing some intruder activities. Procedures for estimating the entry time and the trace of intruder activities are developed. A domain monitoring example is given to illustrate the presented concepts and computational procedures.

  13. "If You Don't Have Anything Nice to Say, Then Don't Say Anything At All": Positive Appearance-Related Commentary and Physical Activity.

    Science.gov (United States)

    Cline, Lindsay; Gammage, Kimberley L

    2016-04-01

    Despite the well-documented benefits of physical activity, North Americans remain insufficiently inactive. Consequently, determining what motivates individuals to engage in physical activity becomes increasingly important. The purpose of this study was to examine whether the frequency of negative appearance-related commentary and positive appearance-related commentary could predict physical activity behavior. Participants were young adult women (N = 192) who completed a series of questionnaires to assess the frequency of appearance-related commentary they received and their physical activity behavior. A hierarchical regression analysis indicated the overall regression was significant, F (4,187) = 4.73, P appearance-related commentary (β = 470.27, P physical activity behavior, while controlling for body mass index. Providing positive reinforcement via positive weight/shape compliments may be beneficial to motivate physical activity participation.

  14. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  15. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  16. When thinking that you are fat makes you feel worthless: Activation and application of meta-stereotypes when appearance matters.

    NARCIS (Netherlands)

    Gordijn, E.H.

    This research examined whether normal-weight people who believe they are overweight expect that other people negatively stereotype them when their appearance becomes relevant. Moreover, it was examined whether these negative "meta-stereotypes" in turn make people feel worthless. Indeed, the first

  17. Circumpolar Active Layer Monitoring (CALM) Program Network, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CALM network includes 168 active sites in both hemispheres with 15 participating countries. This network represents the only coordinated and standardized program...

  18. Social networks: Networking of social actors in the sphere of economic activities

    OpenAIRE

    Babović Marija

    2005-01-01

    The article reviews one of the important fields of study in contemporary economic sociology - social networks in the sphere of economic activities. Besides basic theoretical and methodological conceptions in studying social networks that originate from general sociology and special sociological disciplines most important fields of study of social networks in economic sociology are presented. Some influential studies of social networks are analyzed; some key weaknesses of social network approa...

  19. Using Active Networking to Detect and Troubleshoot Issues in Tactical Data Networks

    Science.gov (United States)

    2014-06-01

    team SDN software defined networking SIPRnet Secret Internet Protocol Router Network SSH secure shell xiv SVG Scalable Vector Graphics SNMP Simple...networking ( SDN ) paradigm, which has gained popularity in recent years, has its roots in the idea of programmable networks [6]. By extending the...addressed by SDN [6]. While there are simi- larities between SDN and active networking, SDN is primarily concerned with the idea of separating the control

  20. Wavelet Enhanced Appearance Modelling

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren; Cootes, Timothy F.

    2004-01-01

    Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage...

  1. Wrestling model of the repertoire of activity propagation modes in quadruple neural networks.

    Science.gov (United States)

    Shteingart, Hanan; Raichman, Nadav; Baruchi, Itay; Ben-Jacob, Eshel

    2010-01-01

    The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each event corresponds to a specific activity propagation mode (APM) defined by the order of activity propagation between the sub-networks. We statistically characterized the frequency of spontaneous appearance of the different types of APMs. The relative frequencies of the APMs were then examined for their power-law properties. We found that the frequencies of appearance of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf's scaling of words. We show that the observations are consistent with a simplified "wrestling" model. This model represents an extension of the "boxing arena" model which was previously proposed to describe the ratio between the two activity modes in two coupled sub-networks. The additional new element in the "wrestling" model presented here is that the firing within each network is modeled by a time interval generator with similar intra-network Lévy distribution. We modeled the different burst-initiation zones' interaction by competition between the stochastic generators with Gaussian inter-network variability. Estimation of the model parameters revealed similarity across different cultures while the inter-burst-interval of the cultures was similar across different APMs as numerical simulation of the model predicts.

  2. Opinion dynamics in activity-driven networks

    Science.gov (United States)

    Li, Dandan; Han, Dun; Ma, Jing; Sun, Mei; Tian, Lixin; Khouw, Timothy; Stanley, H. Eugene

    2017-10-01

    Social interaction between individuals constantly affects the development of their personal opinions. Previous models such as the Deffuant model and the Hegselmann-Krause (HK) model have assumed that individuals only update their opinions after interacting with neighbors whose opinions are similar to their own. However, people are capable of communicating widely with all of their neighbors to gather their ideas and opinions, even if they encounter a number of opposing attitudes. We propose a model in which agents listen to the opinions of all their neighbors. Continuous opinion dynamics are investigated in activity-driven networks with a tolerance threshold. We study how the initial opinion distribution, tolerance threshold, opinion-updating speed, and activity rate affect the evolution of opinion. We find that when the initial fraction of positive opinion is small, all opinions become negative by the end of the simulation. As the initial fraction of positive opinions rises above a certain value —about 0.45— the final fraction of positive opinions sharply increases and eventually equals 1. Increased tolerance threshold δ is found to lead to a more varied final opinion distribution. We also find that if the negative opinion has an initial advantage, the final fraction of negative opinion increases and reaches its peak as the updating speed λ approaches 0.5. Finally we show that the lower the activity rate of individuals, the greater the fluctuation range of their opinions.

  3. Linking Environmental Orientation to Start-ups’ Networking Activities

    DEFF Research Database (Denmark)

    Dickel, Petra; Ritter, Thomas

    generation as their primary focus. Addressing this research gap, we develop hypotheses on the different networking activities of environmentally oriented start-ups arguing that their societal focus has a positive impact on the frequency of their networking and the size of their network. For empirically...... investigating such networking differences, we use data from 179 technology-based start-ups and show that start-ups with a strong external environmental orientation have significantly higher networking frequency and build larger networks. On the contrary, strong internal environmental orientation is linked...

  4. A hybrid framework of multiple active appearance models and global registration for 3D prostate segmentation in MRI

    Science.gov (United States)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C.; Meriaudeau, Fabrice

    2012-02-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient 3D segmentation of the prostate in MR images could be a challenging task due to inter-patient shape and intensity variability of the prostate gland. In this work, we propose to use multiple statistical shape and appearance models to segment the prostate in 2D and a global registration framework to impose shape restriction in 3D. Multiple mean parametric models of the shape and appearance corresponding to the apex, central and base regions of the prostate gland are derived from principal component analysis (PCA) of prior shape and intensity information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve segmentation in 2D. The 2D segmented slices are then rigidly registered with the average 3D model produced by affine registration of the ground truth of the training datasets to minimize pose variations and impose 3D shape restriction. The proposed method achieves a mean Dice similarity coefficient (DSC) value of 0.88+/-0.11, and mean Hausdorff distance (HD) of 3.38+/-2.81 mm when validated with 15 prostate volumes of a public dataset in leave-one-out validation framework. The results achieved are better compared to some of the works in the literature.

  5. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    Science.gov (United States)

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  6. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...... patches are localized, ABSN designs a completely distributed, hybrid discovery protocol which is proactive in a neighbourhood zone and reactive outside, tailored so that any query among the sensors of one activity is routed through the network with minimum overhead, guided by the bounds of that activity...

  7. Random walks on activity-driven networks with attractiveness

    Science.gov (United States)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  8. Evaluating Maximum Wind Energy Exploitation in Active Distribution Networks

    DEFF Research Database (Denmark)

    Siano, Pierluigi; Chen, Peiyuan; Chen, Zhe

    2010-01-01

    The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF...

  9. Topological evolution of virtual social networks by modeling social activities

    Science.gov (United States)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  10. Wedgelet Enhanced Appearance Models

    DEFF Research Database (Denmark)

    Darkner, Sune; Larsen, Rasmus; Stegmann, Mikkel Bille

    2004-01-01

    Statistical region-based segmentation methods such as the Active Appearance Model (AAM) are used for establishing dense correspondences in images based on learning the variation in shape and pixel intensities in a training set. For low resolution 2D images correspondences can be recovered reliably...... in real-time. However, as resolution increases this becomes infeasible due to excessive storage and computational requirements. In this paper we propose to reduce the textural components by modelling the coefficients of a wedgelet based regression tree instead of the original pixel intensities....... The wedgelet regression trees employed are based on triangular domains and estimated using cross validation. The wedgelet regression trees are functional descriptions of the intensity information and serve to 1) reduce noise and 2) produce a compact textural description. The wedgelet enhanced appearance model...

  11. Friendship networks and physical activity and sedentary behavior among youth: a systematized review

    Science.gov (United States)

    2013-01-01

    Background Low levels of physical activity and increased participation in sedentary leisure-time activities are two important obesity-risk behaviors that impact the health of today’s youth. Friend’s health behaviors have been shown to influence individual health behaviors; however, current evidence on the specific role of friendship networks in relation to levels of physical activity and sedentary behavior is limited. The purpose of this review was to summarize evidence on friendship networks and both physical activity and sedentary behavior among children and adolescents. Method After a search of seven scientific databases and reference scans, a total of thirteen articles were eligible for inclusion. All assessed the association between friendship networks and physical activity, while three also assessed sedentary behavior. Results Overall, higher levels of physical activity among friends are associated with higher levels of physical activity of the individual. Longitudinal studies reveal that an individual’s level of physical activity changes to reflect his/her friends’ higher level of physical activity. Boys tend to be influenced by their friendship network to a greater extent than girls. There is mixed evidence surrounding a friend’s sedentary behavior and individual sedentary behavior. Conclusion Friends’ physical activity level appears to have a significant influence on individual’s physical activity level. Evidence surrounding sedentary behavior is limited and mixed. Results from this review could inform effective public health interventions that harness the influence of friends to increase physical activity levels among children and adolescents. PMID:24289113

  12. Friendship networks and physical activity and sedentary behavior among youth: a systematized review.

    Science.gov (United States)

    Sawka, Keri Jo; McCormack, Gavin R; Nettel-Aguirre, Alberto; Hawe, Penelope; Doyle-Baker, Patricia K

    2013-12-01

    Low levels of physical activity and increased participation in sedentary leisure-time activities are two important obesity-risk behaviors that impact the health of today's youth. Friend's health behaviors have been shown to influence individual health behaviors; however, current evidence on the specific role of friendship networks in relation to levels of physical activity and sedentary behavior is limited. The purpose of this review was to summarize evidence on friendship networks and both physical activity and sedentary behavior among children and adolescents. After a search of seven scientific databases and reference scans, a total of thirteen articles were eligible for inclusion. All assessed the association between friendship networks and physical activity, while three also assessed sedentary behavior. Overall, higher levels of physical activity among friends are associated with higher levels of physical activity of the individual. Longitudinal studies reveal that an individual's level of physical activity changes to reflect his/her friends' higher level of physical activity. Boys tend to be influenced by their friendship network to a greater extent than girls. There is mixed evidence surrounding a friend's sedentary behavior and individual sedentary behavior. Friends' physical activity level appears to have a significant influence on individual's physical activity level. Evidence surrounding sedentary behavior is limited and mixed. Results from this review could inform effective public health interventions that harness the influence of friends to increase physical activity levels among children and adolescents.

  13. Brain network activity in monolingual and bilingual older adults.

    Science.gov (United States)

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The salience network causally influences default mode network activity during moral reasoning

    Science.gov (United States)

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  15. A user oriented active network simulator

    Science.gov (United States)

    Rao, K. S.; Swamy, M. N. S.

    1980-07-01

    A digital computer simulator for the frequency response and tolerance analysis of an electrical network comprising RLCM elements, ideal operational amplifiers and controlled sources is presented in this tutorial paper. The simulator is based on 'tableau approach'. Reordering of the sparse tableau matrix is done using Markowitz Criterion and the diagonal pivots are chosen for simplicity. The simulator also employs dynamic allocation for maximum utilization of memory and faster turn around time. Three networks are simulated and their results are presented in this paper. A network in which the operational amplifiers are assumed to have single pole behaviour is also analyzed.

  16. Distress and body image due to altered appearance in posttreatment and active treatment of breast cancer patients and in general population controls.

    Science.gov (United States)

    Kang, Danbee; Choi, Eun-Kyung; Kim, Im-Ryung; Nam, Seok Jin; Lee, Jeong Eon; Im, Young-Hyuck; Ahn, Jin Seok; Park, Yeon Hee; Cho, Juhee

    2017-03-06

    Our objective was to evaluate long-term altered appearance, distress, and body image in posttreatment breast cancer patients and compare them with those of patients undergoing active treatment and with general population controls. We conducted a cross-sectional survey between May and December of 2010. We studied 138 breast cancer patients undergoing active treatment and 128 posttreatment patients from 23 Korean hospitals and 315 age- and area-matched subjects drawn from the general population. Breast, hair, and skin changes, distress, and body image were assessed using visual analogue scales and the EORTC BR-23. Average levels of distress were compared across groups, and linear regression was utilized to identify the factors associated with body image. Compared to active-treatment patients, posttreatment patients reported similar breast changes (6.6 vs. 6.2), hair loss (7.7 vs. 6.7), and skin changes (5.8 vs. 5.4), and both groups had significantly more severe changes than those of the general population controls (p appearance, however, breast cancer patients experienced significantly higher levels of distress than the general population. In multivariate analysis, patients with high altered appearance distress reported significantly poorer body image (-20.7, CI 95% = -28.3 to -13.1) than patients with low distress. Posttreatment breast cancer patients experienced similar levels of altered appearance, distress, and body-image disturbance relative to patients undergoing active treatment but significantly higher distress and poorer body image than members of the general population. Healthcare professionals should acknowledge the possible long-term effects of altered appearance among breast cancer survivors and help them to manage the associated distress and psychological consequences.

  17. Creative elements: network-based predictions of active centres in proteins, cellular and social networks

    CERN Document Server

    Csermely, Peter

    2008-01-01

    Active centres and hot spots of proteins have a paramount importance in enzyme action, protein complex formation and drug design. Recently a number of publications successfully applied the analysis of residue networks to predict active centres in proteins. Most real-world networks show a number of properties, such as small-worldness or scale-free degree distribution, which are rather general features of networks from molecules to the society. Based on extensive analogies I propose that the existing findings and methodology enable us to detect active centres in cells, social networks and ecosystems. Members of these active centres are creative elements of the respective networks, which may help them to survive unprecedented, novel challenges, and play a key role in the development, survival and evolvability of complex systems.

  18. Modeling the Relationship Between Social Network Activity, Inactivity, and Growth

    CERN Document Server

    Ribeiro, Bruno

    2013-01-01

    Online Social Networks (OSNs) are multi-billion dollar enterprises. Surprisingly, little is known about the mechanisms that drive them to growth, stability, or death. This study sheds light on these mechanisms. We are particularly interested in OSNs where current subscribers can invite new users to join the network (e.g., Facebook, LinkedIn). Measuring the relationship between subscriber activity and network growth of a large OSN over five years, we formulate three hypotheses that together describe the observed OSN subscriber behavior. We then provide a model (and extensions) that simultaneously satisfies all three hypotheses. Our model provides deep insights into the dynamics of subscriber activity, inactivity, and network growth rates, even predicting four types of OSNs with respect to subscriber activity evolution. Finally, we present activity data of nearly thirty OSN websites, measured over five years, and show that the observed activity is well described by one of the four activity time series predicted...

  19. Simulating activation propagation in social networks using the graph theory

    Directory of Open Access Journals (Sweden)

    František Dařena

    2010-01-01

    Full Text Available The social-network formation and analysis is nowadays one of objects that are in a focus of intensive research. The objective of the paper is to suggest the perspective of representing social networks as graphs, with the application of the graph theory to problems connected with studying the network-like structures and to study spreading activation algorithm for reasons of analyzing these structures. The paper presents the process of modeling multidimensional networks by means of directed graphs with several characteristics. The paper also demonstrates using Spreading Activation algorithm as a good method for analyzing multidimensional network with the main focus on recommender systems. The experiments showed that the choice of parameters of the algorithm is crucial, that some kind of constraint should be included and that the algorithm is able to provide a stable environment for simulations with networks.

  20. The Contagion Effects of Repeated Activation in Social Networks

    OpenAIRE

    Piedrahita, Pablo; Borge-Holthoefer, Javier; Moreno, Yamir; González-Bailón, Sandra

    2017-01-01

    Demonstrations, protests, riots, and shifts in public opinion respond to the coordinating potential of communication networks. Digital technologies have turned interpersonal networks into massive, pervasive structures that constantly pulsate with information. Here, we propose a model that aims to analyze the contagion dynamics that emerge in networks when repeated activation is allowed, that is, when actors can engage recurrently in a collective effort. We analyze how the structure of communi...

  1. Recognizing Multi-user Activities using Body Sensor Networks

    DEFF Research Database (Denmark)

    Gu, Tao; Wang, Liang; Chen, Hanhua

    2011-01-01

    activity classes of data—for building activity models and design a scalable, noise-resistant, Emerging Pattern based Multi-user Activity Recognizer (epMAR) to recognize both single- and multi-user activities. We develop a multi-modal, wireless body sensor network for collecting real-world traces in a smart...

  2. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  3. Detecting eavesdropping activity in fiber optic networks

    Science.gov (United States)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  4. Botulinum Toxin Suppression of CNS Network Activity In Vitro

    Directory of Open Access Journals (Sweden)

    Joseph J. Pancrazio

    2014-01-01

    Full Text Available The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A. Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects.

  5. Tourist activated networks: Implications for dynamic packaging systems in tourism

    DEFF Research Database (Denmark)

    Zach, Florian; Gretzel, Ulrike; Fesenmaier, Daniel R.

    2008-01-01

    This paper discusses tourist activated networks as a concept to inform technological applications supporting dynamic bundling and en-route recommendations. Empirical data was collected from travellers who visited a regional destination in the US and then analyzed with respect to its network struc...... marketing....

  6. Facility Activity Inference Using Radiation Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ramirez Aviles, Camila A. [ORNL

    2017-11-01

    We consider the problem of inferring the operational status of a reactor facility using measurements from a radiation sensor network deployed around the facility’s ventilation off-gas stack. The intensity of stack emissions decays with distance, and the sensor counts or measurements are inherently random with parameters determined by the intensity at the sensor’s location. We utilize the measurements to estimate the intensity at the stack, and use it in a one-sided Sequential Probability Ratio Test (SPRT) to infer on/off status of the reactor. We demonstrate the superior performance of this method over conventional majority fusers and individual sensors using (i) test measurements from a network of 21 NaI detectors, and (ii) effluence measurements collected at the stack of a reactor facility. We also analytically establish the superior detection performance of the network over individual sensors with fixed and adaptive thresholds by utilizing the Poisson distribution of the counts. We quantify the performance improvements of the network detection over individual sensors using the packing number of the intensity space.

  7. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  8. Consumer Activities and Reactions to Social Network Marketing

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2017-06-01

    Full Text Available The purpose of this paper is to understand consumer behavioural models with respect to their reactions to social network marketing. Theoretical background is focused on online and social network usage, motivations and behaviour. The research goal is to explore consumer reactions to the exposure of social network marketing based on the following criteria: level of brand engagement, word-of-mouth (WOM referral behaviour, and purchase intentions. Consumers are investigated based on their attitudes toward social network marketing and basic socio-demographic covariates using data from a sample size of 700 Bulgarian respondents (age group 21–54 years, Internet users, urban inhabitants. Factor and cluster analyses are applied. It is found that consumers are willing to receive information about brands and companies through social networks. They like to talk in social networks about these brands and companies and to share information as well (factor 2, brand engagement. Internet users are willing to share information received through social network advertising (factor 1, wom referral behaviour but they would not buy a certain brand as a result of brand communication activities in social networks (factor 3, purchase intention. Several practical implications regarding marketing activities through social networks are drawn.

  9. Contagion processes on the static and activity driven coupling networks

    CERN Document Server

    Lei, Yanjun; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2015-01-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated either static or time-varying, supposing the whole network is observed in a same time window. In this paper, we consider the epidemic spreading on a network consisting of both static and time-varying structures. At meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity driven coupling (SADC) network model to characterize the coupling between static (strong) structure and dynamic (weak) structure. Epidemic thresholds of SIS and SIR model are studied on SADC both analytically and numerically with various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that weak structure...

  10. Network interventions on physical activity in an afterschool program: an agent-based social network study.

    Science.gov (United States)

    Zhang, Jun; Shoham, David A; Tesdahl, Eric; Gesell, Sabina B

    2015-04-01

    We studied simulated interventions that leveraged social networks to increase physical activity in children. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children's physical activity. We tested 3 intervention strategies. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children's physical activity.

  11. Reduction Method for Active Distribution Networks

    DEFF Research Database (Denmark)

    Raboni, Pietro; Chen, Zhe

    2013-01-01

    On-line security assessment is traditionally performed by Transmission System Operators at the transmission level, ignoring the effective response of distributed generators and small loads. On the other hand the required computation time and amount of real time data for including Distribution Net...... by comparing the results obtained in PSCAD® with the detailed network model and with the reduced one. Moreover the control schemes of a wind turbine and a photovoltaic plant included in the detailed network model are described.......On-line security assessment is traditionally performed by Transmission System Operators at the transmission level, ignoring the effective response of distributed generators and small loads. On the other hand the required computation time and amount of real time data for including Distribution...

  12. Critical Transitions in Social Network Activity

    DEFF Research Database (Denmark)

    Kuehn, Christian; Martens, Erik Andreas; Romero, Daniel M

    2014-01-01

    for a priori unknown events in society are present in social networks is an exciting open problem, to which at present only highly speculative answers can be given. Here, we instead provide a first step towards tackling a simpler question by focusing on a priori known events and analyse a social media data set...... with a focus on classical variance and autocorrelation warning signs. Our results thus pertain to one absolutely fundamental question: Can the stochastic warning signs known from other areas also be detected in large-scale social media data? We answer this question affirmatively as we find that several...... a priori known events are preceded by variance and autocorrelation growth. Our findings thus clearly establish the necessary starting point to further investigate the relationship between abstract mathematical theory and various classes of critical transitions in social networks....

  13. Unveiling causal activity of complex networks

    Science.gov (United States)

    Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo

    2017-07-01

    We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].

  14. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  15. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  16. Social network activation: the role of health discussion partners in recovery from mental illness.

    Science.gov (United States)

    Perry, Brea L; Pescosolido, Bernice A

    2015-01-01

    In response to health problems, individuals may strategically activate their social network ties to help manage crisis and uncertainty. While it is well-established that social relationships provide a crucial safety net, little is known about who is chosen to help during an episode of illness. Guided by the Network Episode Model, two aspects of consulting others in the face of mental illness are considered. First, we ask who activates ties, and what kinds of ties and networks they attempt to leverage for discussing health matters. Second, we ask about the utility of activating health-focused network ties. Specifically, we examine the consequences of network activation at time of entry into treatment for individuals' quality of life, social satisfaction, ability to perform social roles, and mental health functioning nearly one year later. Using interview data from the longitudinal Indianapolis Network Mental Health Study (INMHS, N = 171), we focus on a sample of new patients with serious mental illness and a group with less severe disorders who are experiencing their first contact with the mental health treatment system. Three findings stand out. First, our results reveal the nature of agency in illness response. Whether under a rational choice or habitus logic, individuals appear to evaluate support needs, identifying the best possible matches among a larger group of potential health discussants. These include members of the core network and those with prior mental health experiences. Second, selective activation processes have implications for recovery. Those who secure adequate network resources report better outcomes than those who injudiciously activate network ties. Individuals who activate weaker relationships and those who are unsupportive of medical care experience poorer functioning, limited success in fulfilling social roles, and lower social satisfaction and quality of life later on. Third, the evidence suggests that social networks matter above and

  17. ICA model order selection of task co-activation networks.

    Science.gov (United States)

    Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.

  18. Systematic network assessment of the carcinogenic activities of cadmium.

    Science.gov (United States)

    Chen, Peizhan; Duan, Xiaohua; Li, Mian; Huang, Chao; Li, Jingquan; Chu, Ruiai; Ying, Hao; Song, Haiyun; Jia, Xudong; Ba, Qian; Wang, Hui

    2016-11-01

    Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  20. Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation

    Directory of Open Access Journals (Sweden)

    Anne eSchuemann

    2013-06-01

    Full Text Available Coordinated changes at excitatory and inhibitory synapses are essential for normal brain development and function. It is well established that excitatory neurons undergo structural changes, but our knowledge about inhibitory structural plasticity is rather scarce. Here we present a quantitative analysis of the dynamics of GABAergic boutons in the dendritic region of the hippocampal CA1 area using time-lapse two-photon imaging in organotypic hippocampal cultures from GAD65-GFP mice. We show that ~20% of inhibitory boutons are not stable. They are appearing, disappearing and reappearing at specific locations along the inhibitory axon and reflect immature or incomplete synapses. Furthermore, we observed that persistent boutons show large volume fluctuations over several hours, suggesting that presynaptic content of inhibitory synapses is not constant. Our data show that inhibitory boutons are highly dynamic structures and suggest that inhibitory axons are continuously probing potential locations for inhibitory synapse formation by redistributing presynaptic material along the axon.In addition, we found that neuronal activity affects the exploratory dynamics of inhibitory axons. Blocking network activity rapidly reduces the number of transient boutons, whereas enhancing activity reduces the number of persistent inhibitory boutons, possibly reflecting enhanced competition between boutons along the axon. The latter effect requires signaling through GABAA receptors. We propose that activity-dependent regulation of bouton dynamics contributes to inhibitory synaptic plasticity.

  1. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  2. Associations between Aspects of Friendship Networks, Physical Activity, and Sedentary Behaviour among Adolescents

    Directory of Open Access Journals (Sweden)

    Keri Jo Sawka

    2014-01-01

    Full Text Available Background. Adolescent friendships have been linked to physical activity levels; however, network characteristics have not been broadly examined. Method. In a cross-sectional analysis of 1061 adolescents (11–15 years, achieving 60 minutes/day of moderate-to-vigorous physical activity (MVPA and participating in over 2 hours/day of sedentary behaviour were determined based on friendship network characteristics (density; proportion of active/sedentary friends; betweenness centrality; popularity; clique membership and perceived social support. Results. Adolescents with no friendship nominations participated in less MVPA. For boys and girls, a ten percent point increase in active friends was positively associated with achievement of 60 minutes/day of MVPA (OR 1.11; 95% CI 1.02–1.21, OR 1.14; 95% CI 1.02–1.27, resp.. For boys, higher social support from friends was negatively associated with achieving 60 minutes/day of MVPA (OR 0.63; 95% CI 0.42–0.96. Compared with low density networks, boys in higher density networks were more likely to participate in over 2 hours/day of sedentary behaviour (OR 2.93; 95% CI 1.32–6.49. Social support from friends also modified associations between network characteristics and MVPA and sedentary behaviour. Conclusion. Different network characteristics appeared to have different consequences. The proportion of active close friends was associated with MVPA, while network density was associated with sedentary behaviour. This poses challenges for intervention design.

  3. Flexibility and Balancing in Active Distribution Networks

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi

    , and causes higher fluctuations in the demand. In countries such as Denmark, different incentives have been proposed and applied to encourage customers for investing on solar photovoltaic (PV) panels. These policies have increased the number of household PV panels. However, presence of such small energy...... in these batteries. A detailed modeling of Li-ion battery is presented in chapter 2 as well. PV panels are modelled as a function of solar irradiation and ambient temperature. In the next step, the impact of PV panels and electric vehicles on LV network was quantified separately. For PV panels, different placement......Environmental concerns, together with the fast-pacing changes in the renewable energy technologies, have led to significant growth of renewable energy sources (RESs) in energy systems. Among different sources of renewable energy, wind and solar energy are the most progressed sources so far. However...

  4. Regulation of burstiness by network-driven activation

    CERN Document Server

    García-Pérez, Guillermo; Serrano, M Ángeles

    2014-01-01

    We prove that complex networks of interactions have the capacity to regulate and buffer unpredictable fluctuations in production events. We show that non-bursty network-driven activation dynamics can effectively regulate the level of burstiness in the production of nodes, which can be enhanced or reduced. Burstiness can be induced even when the endogenous inter-event time distribution of nodes' production is non-bursty. We found that hubs tend to be less controllable than low degree nodes, which are more susceptible to the networked regulatory effects. Our results have important implications for the analysis and engineering of bursty activity in a range of systems, from telecommunication networks to transcription and translation of genes into proteins in cells.

  5. Study of active crossover network | Tyona | Nigerian Journal of Physics

    African Journals Online (AJOL)

    An active crossover network system has been realized using an active component LF356 with a JFET input. The net work has two drives, the low frequency drive (Bass) and the high frequency drive (Treble). It employs high level crossover technique. The circuit performance was adequately verified and the frequency ...

  6. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  7. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  8. AMETH laboratories network activities; Activites du reseau de Laboratoires AMETH

    Energy Technology Data Exchange (ETDEWEB)

    Marimbordes, T.; Ould El Moctar, A.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, UMR CNRS 6607, Lab. de Thermocinetique, 44 (France)] [and others

    2000-07-01

    The AMETH laboratories are a network for the improvement of thermal exchanges for one or two phases. This meeting of the 15 november 2000, dealt with the activities of this network of laboratories in the following topics: thermal-hydrodynamic instabilities and control of the limit layer; transfers with change in the liquid-vapor phase; transfers with change in the solid-liquid phase. Ten papers were presented. (A.L.B.)

  9. High Accuracy Human Activity Monitoring using Neural network

    OpenAIRE

    Sharma, Annapurna; Lee, Young-Dong; Chung, Wan-Young

    2011-01-01

    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical a...

  10. Modafinil enhances alerting-related brain activity in attention networks.

    Science.gov (United States)

    Ikeda, Yumiko; Funayama, Takuya; Tateno, Amane; Fukayama, Haruhisa; Okubo, Yoshiro; Suzuki, Hidenori

    2017-07-01

    Modafinil is a wake-promoting agent and has been reported to be effective in improving attention in patients with attentional disturbance. However, neural substrates underlying the modafinil effects on attention are not fully understood. We employed a functional magnetic resonance imaging (fMRI) study with the attention network test (ANT) task in healthy adults and examined which networks of attention are mainly affected by modafinil and which neural substrates are responsible for the drug effects. We used a randomized placebo-controlled within-subjects cross-over design. Twenty-three healthy adults participated in two series of an fMRI study, taking either a placebo or modafinil. The participants performed the ANT task, which is designed to measure three distinct attentional networks, alerting, orienting, and executive control, during the fMRI scanning. The effects of modafinil on behavioral performance and regional brain activity were analyzed. We found that modafinil enhanced alerting performance and showed greater alerting network activity in the left middle and inferior occipital gyri as compared with the placebo. The brain activations in the occipital regions were positively correlated with alerting performance. Modafinil enhanced alerting performance and increased activation in the occipital lobe in the alerting network possibly relevant to noradrenergic activity during the ANT task. The present study may provide a rationale for the treatment of patients with distinct symptoms of impaired attention.

  11. Poly(Capro-Lactone) Networks as Actively Moving Polymers

    Science.gov (United States)

    Meng, Yuan

    Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double

  12. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    Science.gov (United States)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  13. Online social networks that connect users to physical activity partners: a review and descriptive analysis.

    Science.gov (United States)

    Nakhasi, Atul; Shen, Album Xiaotian; Passarella, Ralph Joseph; Appel, Lawrence J; Anderson, Cheryl Am

    2014-06-16

    The US Centers for Disease Control and Prevention have identified a lack of encouragement, support, or companionship from family and friends as a major barrier to physical activity. To overcome this barrier, online social networks are now actively leveraging principles of companion social support in novel ways. The aim was to evaluate the functionality, features, and usability of existing online social networks which seek to increase physical activity and fitness among users by connecting them to physical activity partners, not just online, but also face-to-face. In September 2012, we used 3 major databases to identify the website addresses for relevant online social networks. We conducted a Google search using 8 unique keyword combinations: the common keyword "find" coupled with 1 of 4 prefix terms "health," "fitness," "workout," or "physical" coupled with 1 of 2 stem terms "activity partners" or "activity buddies." We also searched 2 prominent technology start-up news sites, TechCrunch and Y Combinator, using 2 unique keyword combinations: the common keyword "find" coupled with 1 of 2 stem terms "activity partners" and "activity buddies." Sites were defined as online social health activity networks if they had the ability to (1) actively find physical activity partners or activities for the user, (2) offer dynamic, real-time tracking or sharing of social activities, and (3) provide virtual profiles to users. We excluded from our analysis sites that were not Web-based, publicly available, in English, or free. Of the 360 initial search results, we identified 13 websites that met our complete criteria of an online social health activity network. Features such as physical activity creation (13/13, 100%) and private messaging (12/13, 92%) appeared almost universally among these websites. However, integration with Web 2.0 technologies such as Facebook and Twitter (9/13, 69%) and the option of direct event joining (8/13, 62%) were not as universally present. Largely

  14. Motion Alters Color Appearance

    Science.gov (United States)

    Hong, Sang-Wook; Kang, Min-Suk

    2016-01-01

    Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098

  15. Measurement of appearance

    Science.gov (United States)

    White, Helen; Pointer, Michael

    2002-06-01

    The visual appearance can be one of the most critical parameters affecting customer choise and, therefore, it needs to be quantifiable to ensure uniformity and reproducibility. A starting point in assessing the appearance of a consumer product might be the measurement of its colour. The description of its total appearance, however, cannot be achieved by the definition of color alone; other attributes of the material from which it is fabricated contribute to the overall appearance. The texture of a surface, for example, will cause changes in colour depending on the lighting direction; the freshness of food is judged by its overall appearance, but in a way that is much more subtle than by just its color; and novel effects such as pearlescence are added to products to enhance their attractiveness. For some products, such as cosmetics, it is not only their own appearance characteristics that are important, but also the visual effect after they have been applied to the skin, nails, hair, etc. It is clear, therefore, that the interest of industry in the measurement of appearance goes beyond simply surface color.

  16. Managing CSCL Activity through networking models

    Directory of Open Access Journals (Sweden)

    Luis Casillas

    2014-04-01

    Full Text Available This study aims at managing activity carried out in Computer-Supported Collaborative Learning (CSCL environments. We apply an approach that gathers and manages the knowledge underlying huge data structures, resulting from collaborative interaction among participants and stored as activity logs. Our method comprises a variety of important issues and aspects, such as: deep understanding of collaboration among participants in workgroups, definition of an ontology for providing meaning to isolated data manifestations, discovering of knowledge structures built in huge amounts of data stored in log files, and development of high-semantic indicators to describe diverse primitive collaborative acts, and binding these indicators to formal descriptions defined in the collaboration ontology; besides our method includes gathering collaboration indicators from web forums using natural language processing (NLP techniques.

  17. The giant fibrillar center: a nucleolar structure enriched in upstream binding factor (UBF) that appears in transcriptionally more active sensory ganglia neurons.

    Science.gov (United States)

    Casafont, Iñigo; Bengoechea, Rocio; Navascués, Joaquín; Pena, Emma; Berciano, Maria T; Lafarga, Miguel

    2007-09-01

    This paper studies the molecular organization, neuronal distribution and cellular differentiation dynamics of the giant fibrillar centers (GFCs) of nucleoli in rat sensory ganglia neurons. The GFC appeared as a round nucleolar domain (1-2 microm in diameter) partially surrounded by the dense fibrillar component and accompanied by numerous small FCs. By immunocytochemistry, the GFC concentrated the upstream binding factor, which may serve as a marker of this structure, and also contain RNA polymerase I, DNA topoisomerase I, SUMO-1 and Ubc9. However, they lack ubiquitin-proteasome conjugates and 20S proteasome. Transcription assay with 5'-fluorouridine incorporation revealed the presence of nascent RNA on the dense fibrillar component of the neuronal nucleolus, but not within the low electron-density area of the GFC. The formation of GFCs is neuronal size dependent: they were found in 58%, 30% and 0% of the large, medium and small neurons, respectively. GFCs first appeared during the postnatal period, concomitantly with a stage of neuronal growth, myelination and bioelectrical maturation. GFCs were not observed in segregated nucleoli induced by severe inhibition of RNA synthesis. We suggest that the formation of GFCs is associated with a high rate of ribosome biogenesis of the transcriptionally more active large-size neurons.

  18. CT appearance of splenosis

    Energy Technology Data Exchange (ETDEWEB)

    Mendelson, D.S.; Cohen, B.A.; Armas, R.R.

    1982-12-01

    Splenosis is an unusual complication of splenic trauma. The computed tomographic (CT) appearance of splenosis is described. One should consider this diagnosis when faced with a history of splenic trauma and multiple round or oval masses at CT.

  19. On Multiple Appearances

    DEFF Research Database (Denmark)

    Bork Petersen, Franziska

    2012-01-01

    reduction and epoché to focus on how dancing bodies appear in a stage context. To test these tools’ ability to explore dancing bodies from a third-person perspective, I analyse the Danish choreographer Kitt Johnson’s solo performance Drift (2011) - focussing on her shifting physical appearance. While...... phenomenology helps me to describe the multiple and radically different guises that Johnson assumes in her piece, my analysis, ultimately, does not aim to distil a truer, more real being from her appearances as is often the case in phenomenological philosophy. I complement my analytical approach...... with the Deleuzian notion of becoming animal and suggest that Johnson stages what could, in Judith Butler’s terms, be called a critical contingency of bodily appearance....

  20. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    Science.gov (United States)

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Persistent activity in neural networks with dynamic synapses.

    Directory of Open Access Journals (Sweden)

    Omri Barak

    2007-02-01

    Full Text Available Persistent activity states (attractors, observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli.

  2. Distributional Learning of Appearance

    Science.gov (United States)

    Griffin, Lewis D.; Wahab, M. Husni; Newell, Andrew J.

    2013-01-01

    Opportunities for associationist learning of word meaning, where a word is heard or read contemperaneously with information being available on its meaning, are considered too infrequent to account for the rate of language acquisition in children. It has been suggested that additional learning could occur in a distributional mode, where information is gleaned from the distributional statistics (word co-occurrence etc.) of natural language. Such statistics are relevant to meaning because of the Distributional Principle that ‘words of similar meaning tend to occur in similar contexts’. Computational systems, such as Latent Semantic Analysis, have substantiated the viability of distributional learning of word meaning, by showing that semantic similarities between words can be accurately estimated from analysis of the distributional statistics of a natural language corpus. We consider whether appearance similarities can also be learnt in a distributional mode. As grounds for such a mode we advance the Appearance Hypothesis that ‘words with referents of similar appearance tend to occur in similar contexts’. We assess the viability of such learning by looking at the performance of a computer system that interpolates, on the basis of distributional and appearance similarity, from words that it has been explicitly taught the appearance of, in order to identify and name objects that it has not been taught about. Our experiment tests with a set of 660 simple concrete noun words. Appearance information on words is modelled using sets of images of examples of the word. Distributional similarity is computed from a standard natural language corpus. Our computation results support the viability of distributional learning of appearance. PMID:23460927

  3. Distributional learning of appearance.

    Directory of Open Access Journals (Sweden)

    Lewis D Griffin

    Full Text Available Opportunities for associationist learning of word meaning, where a word is heard or read contemperaneously with information being available on its meaning, are considered too infrequent to account for the rate of language acquisition in children. It has been suggested that additional learning could occur in a distributional mode, where information is gleaned from the distributional statistics (word co-occurrence etc. of natural language. Such statistics are relevant to meaning because of the Distributional Principle that 'words of similar meaning tend to occur in similar contexts'. Computational systems, such as Latent Semantic Analysis, have substantiated the viability of distributional learning of word meaning, by showing that semantic similarities between words can be accurately estimated from analysis of the distributional statistics of a natural language corpus. We consider whether appearance similarities can also be learnt in a distributional mode. As grounds for such a mode we advance the Appearance Hypothesis that 'words with referents of similar appearance tend to occur in similar contexts'. We assess the viability of such learning by looking at the performance of a computer system that interpolates, on the basis of distributional and appearance similarity, from words that it has been explicitly taught the appearance of, in order to identify and name objects that it has not been taught about. Our experiment tests with a set of 660 simple concrete noun words. Appearance information on words is modelled using sets of images of examples of the word. Distributional similarity is computed from a standard natural language corpus. Our computation results support the viability of distributional learning of appearance.

  4. Connecting African Activism with Global Networks: ICTs and South ...

    African Journals Online (AJOL)

    Connecting African Activism with Global Networks: ICTs and South African Social Movements. Herman Wasserman. Abstract. No Abstract Available Africa Development Vol. XXX (1&2) 2005: 163-182. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM · http://dx.doi.org/10.4314/ad.v30i1.22218 · AJOL African ...

  5. Designing a dynamic network based approach for asset management activities

    NARCIS (Netherlands)

    Volker, L.; Scharpff, J.; De Weerdt, M.M.; Herder, P.M.

    2012-01-01

    Transportation networks are important public infrastructures because they enable economic and social activity. Trends in contracting the maintenance of such assets have caused a shift in governance from a public body to market-like arrangements and changed the roles and responsibilities among asset

  6. Microgrids in Active Network Management-Part I

    DEFF Research Database (Denmark)

    Palizban, Omid; Kauhaniemia, Kimmo; Guerrero, Josep M.

    2014-01-01

    The microgrid concept has been closely investigated and implemented by numerous experts worldwide. The first part of this paper describes the principles of microgrid design, considering the operational concepts and requirements arising from participation in active network management. Over the last...

  7. Active ageing roadmap - a collaborative networks contribution to demographic sustainability

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2010-01-01

    The application of the collaborative networks paradigm, and a new generation of collaboration-support platforms and tools, is a promising approach to supporting active ageing, and facilitating better use of the talents and potential of retired or retiring senior professionals. As such, collaborative

  8. Predicting forest insect flight activity: A Bayesian network approach.

    Science.gov (United States)

    Pawson, Stephen M; Marcot, Bruce G; Woodberry, Owen G

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model's predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways.

  9. Multichannel activity propagation across an engineered axon network

    Science.gov (United States)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  10. Microgrids in Active Network Management-Part II

    DEFF Research Database (Denmark)

    Palizban, Omid; Kauhaniemi, Kimmo; Guerrero, Josep M.

    2014-01-01

    The development of distribution networks for participation in active network management (ANM) and smart grids is introduced using the microgrid concept. In recent years, this issue has been researched and implemented by many experts. The second part of this paper describes those developed......, following planned or unplanned transitions to island mode, microgrids may develop instability. For this reason, the paper addresses the principles behind island-detection methods, black-start operation, fault management, and protection systems, along with a comprehensive review of power quality. Finally...

  11. Topological dimension tunes activity patterns in hierarchical modular networks

    Science.gov (United States)

    Safari, Ali; Moretti, Paolo; Muñoz, Miguel A.

    2017-11-01

    Connectivity patterns of relevance in neuroscience and systems biology can be encoded in hierarchical modular networks (HMNs). Recent studies highlight the role of hierarchical modular organization in shaping brain activity patterns, providing an excellent substrate to promote both segregation and integration of neural information. Here, we propose an extensive analysis of the critical spreading rate (or ‘epidemic’ threshold)—separating a phase with endemic persistent activity from one in which activity ceases—on diverse HMNs. By employing analytical and computational techniques we determine the nature of such a threshold and scrutinize how it depends on general structural features of the underlying HMN. We critically discuss the extent to which current graph-spectral methods can be applied to predict the onset of spreading in HMNs and, most importantly, we elucidate the role played by the network topological dimension as a relevant and unifying structural parameter, controlling the epidemic threshold.

  12. High solar activity predictions through an artificial neural network

    Science.gov (United States)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  13. Activity-Driven Influence Maximization in Social Networks

    DEFF Research Database (Denmark)

    Saleem, Muhammad Aamir; Kumar, Rohit; Calders, Toon

    2017-01-01

    in to locations. Previous work on finding influential nodes in such networks mainly concentrate on the static structure imposed by the interactions or are based on fixed models for which parameters are learned using the interactions. In two recent works, however, we proposed an alternative activity data......-driven approach based on the identification of influence propagation patterns. In the first work, we identify so-called information-channels to model potential pathways for information spread, while the second work exploits how users in a location-based social network check in to locations in order to identify...... influential locations. To make our algorithms scalable, approximate versions based on sketching techniques from the data streams domain have been developed. Experiments show that in this way it is possible to efficiently find good seed sets for influence propagation in social networks....

  14. Meditation leads to reduced default mode network activity beyond an active task.

    Science.gov (United States)

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  15. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera.

    Science.gov (United States)

    Chandran, Uma; Patwardhan, Bhushan

    2017-02-02

    Withania somnifera (L.) Dunal (Ashwagandha, WS) is one of the extensively explored Ayurvedic botanicals. Several properties including immunomodulation, anti-cancer and neuro-protection of the botanical have been reported. Even though, in indigenous medicine, WS is well known for its immunomodulatory activity, the molecular mechanism of immunomodulation has not been elucidated. This study aimed the evaluation of the immunomodulatory effect of WS using network ethnopharmacology technique to elucidate the in silico molecular mechanism. Databases- DPED, UNPD, PubChem, Binding DB, ChEMBL, KEGG and STRING were used to gather information to develop the networks. The networks were constructed using Cytoscape 3.2.1. Data analysis was performed with the help of Excel pivot table and Cytoscape network analyzer tool. Investigation for WS immune modulation mechanism identified five bioactives that are capable of regulating 15 immune system pathways through 16 target proteins by bioactive-target and protein-protein interactions. The study also unveils the potential of withanolide-phytosterol combination to achieve effective immunomodulation and seven novel bioactive-immune target combinations. The study elucidated an in silico molecular mechanism of immunomodulation of WS. It unveils the potential of withanolide-phytosterol combination to achieve a better immunomodulation. Experimental validation of the network findings would aid in understanding the rationale behind WS immunomodulation as well as aid in bioactive formulation based drug discovery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. 3D Filament Network Segmentation with Multiple Active Contours

    Science.gov (United States)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  17. Musculoskeletal infections: ultrasound appearances

    Energy Technology Data Exchange (ETDEWEB)

    Chau, C.L.F. [Department of Radiology, North District Hospital, NTEC, Fanling, NT, Hong Kong (China)]. E-mail: c8681@yahoo.com; Griffith, J.F. [Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, NTEC, Shatin, NT, Hong Kong (China)

    2005-02-01

    Musculoskeletal infections are commonly encountered in clinical practice. This review will discuss the ultrasound appearances of a variety of musculoskeletal infections such as cellulitis, infective tenosynovitis, pyomyositis, soft-tissue abscesses, septic arthritis, acute and chronic osteomyelitis, and post-operative infection. The peculiar sonographic features of less common musculoskeletal infections, such as necrotizing fasciitis, and rice body formation in atypical mycobacterial tenosynovitis, and bursitis will also be presented.

  18. Labor Mobility, Social Network Effects, and Innovative Activity

    DEFF Research Database (Denmark)

    Kongsted, Hans Christian; Rønde, Thomas; Kaiser, Ulrich

    . This relationship is stronger if workers join from innovative firms. We also find evidence for positive feedback from workers who leave for an innovative firm, presumably because the worker who left stays in contact with their former colleagues. This implies that the positive feedback (“social network effects......We study the mapping between labor mobility and industrial innovative activity for the population of R&D active Danish firms observed between 1999 and 2004. Our study documents a positive relationship between the number of workers who join a firm and the firm’s innovative activity...

  19. Color appearance in stereoscopy

    Science.gov (United States)

    Gadia, Davide; Rizzi, Alessandro; Bonanomi, Cristian; Marini, Daniele; Galmonte, Alessandra; Agostini, Tiziano

    2011-03-01

    The relationship between color and lightness appearance and the perception of depth has been studied since a while in the field of perceptual psychology and psycho-physiology. It has been found that depth perception affects the final object color and lightness appearance. In the stereoscopy research field, many studies have been proposed on human physiological effects, considering e.g. geometry, motion sickness, etc., but few has been done considering lightness and color information. Goal of this paper is to realize some preliminar experiments in Virtual Reality in order to determine the effects of depth perception on object color and lightness appearance. We have created a virtual test scene with a simple 3D simultaneous contrast configuration. We have created three different versions of this scene, each with different choices of relative positions and apparent size of the objects. We have collected the perceptual responses of several users after the observation of the test scene in the Virtual Theater of the University of Milan, a VR immersive installation characterized by a semi-cylindrical screen that covers 120° of horizontal field of view from an observation distance of 3.5 m. We present a description of the experiments setup and procedure, and we discuss the obtained results.

  20. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  1. Uterine Leiomyoma: Hysterosalpingographic Appearances

    Directory of Open Access Journals (Sweden)

    Firoozeh Ahmadi

    2008-01-01

    Full Text Available Uterine leiomyoma is the most common benign tumor of genital tract. The etiology of myomasis unknown. Leiomyoma shows a broad spectrum of radiographic appearances depending on thenumber, size, and location of the tumor. The diagnostic method for uterine leiomyomas is basedprimarily on the clinical situation. Despite of the varied diagnostic options such as; transvaginalsonography, sonohysterography, hysteroscopy, laparoscopy and MRI; hysterosalpingography isstill one of the valuable imaging methods for identification of uterine leiomyoma.The various features of the proved leiomyoma are illustrated in this pictorial review. The incidence,risk factors and clinical features will also be discussed briefly.

  2. Network analysis of inter-organizational relationships and policy use among active living organizations in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Christina C. Loitz

    2017-08-01

    peripheral organizations could increase the capacity of the network to promote active living across Alberta. Uptake of the AA policy within the network is high and appears to be facilitated by the most central ALO. Promoting policy use through a central organization appeared to be an effective strategy for disseminating the province-level physical activity policy and could be considered as a policy-uptake strategy by other regions.

  3. Network analysis of inter-organizational relationships and policy use among active living organizations in Alberta, Canada.

    Science.gov (United States)

    Loitz, Christina C; Stearns, Jodie A; Fraser, Shawn N; Storey, Kate; Spence, John C

    2017-08-09

    network to promote active living across Alberta. Uptake of the AA policy within the network is high and appears to be facilitated by the most central ALO. Promoting policy use through a central organization appeared to be an effective strategy for disseminating the province-level physical activity policy and could be considered as a policy-uptake strategy by other regions.

  4. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  5. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  6. Active defense scheme against DDoS based on mobile agent and network control in network confrontation

    Science.gov (United States)

    Luo, Rong; Li, Junshan; Ye, Xia; Wang, Rui

    2013-03-01

    In order to effective defend DDoS attacks in network confrontation, an active defense scheme against DDoS is built based on Mobile Agent and network control. A distributed collaborative active defense model is constructed by using mobile agent technology and encapsulating a variety of DDoS defense techniques. Meanwhile the network control theory is applied to establish a network confrontation's control model for DDoS to control the active defense process. It provides a new idea to solve the DDoS problem.

  7. Taurine activates GABAergic networks in the neocortex of immature mice

    Directory of Open Access Journals (Sweden)

    Bogdan Aurel Sava

    2014-02-01

    Full Text Available Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-GFP transgenic mice (postnatal days 2-4. In 46 % of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 mM significantly enhanced the frequency of postsynaptic currents (PSCs by 744.3 ± 93.8 % (n = 120 cells. This taurine-induced increase of PSC frequency was abolished by 0.2 mM tetrodotoxine, 1 mM strychnine or 3 mM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX and (± R(--3-(2-carboxypiperazine-4-yl-propyl-1-phosphonic acid (CPP, suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate action potentials in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors.

  8. Innovation diffusion on time-varying activity driven networks

    Science.gov (United States)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  9. β-catenin/Tcf-signaling appears to establish the murine ovarian surface epithelium (OSE and remains active in selected postnatal OSE cells

    Directory of Open Access Journals (Sweden)

    Usongo Macalister

    2012-06-01

    Full Text Available Abstract Background Wnts are a family of secreted signaling molecules involved in a number of developmental processes including the establishment of cell fate, polarity and proliferation. Recent studies also implicate wnts in epithelial adult stem cell maintenance, renewal and differentiation. Wnts transduce their signal through one of three signaling pathways. The best studied, the wnt/β-catenin pathway, leads to an increase in intracellular β-catenin which acts as a co-transcription factor with members of the Tcf/Lef family. A number of wnts are expressed in the ovary, specifically in the membrana granulosa and ovarian surface epithelium (OSE. We investigated the spatio-temporal pattern of β-catenin/Tcf expression in the OSE using responsive transgenic (TopGal mice. Results The generated β-galactosidase response (lacZ+ identified the cell population that overlies the medio-lateral surface of the indifferent gonad at embryonic day (E 11.5. From E12.5 onwards, lacZ expression disappeared in cells covering the testis but remained with ovary development. LacZ+ OSE cells were present throughout embryonic and postnatal ovarian development but demonstrated an age-dependent decrease to a small proportion when animals were weaned and remained at this proportion with aging. Flow cytometric (FACS and ovarian section analyses showed lacZ+ cells constitute approximately 20% of OSE in postnatal (day 1 mice which fell to 8% in 5 day-old animals while in prepubertal and adult mice this accounted for only 0.2% of OSE. Apoptosis was undetected in OSE of neonates and β-catenin/Tcf-signaling cells were proliferative in neonatal mice indicating that neither cell death nor proliferation failure was responsible for the proportion alteration. It appeared that lacZ+ cells give rise to lacZ- cells and this was confirmed in cell cultures. The DNA-binding dye DyeCycle Violet was used to set up the side population (SP assay aimed at identifying subpopulations of OSE

  10. Sensory Conflict Disrupts Activity of the Drosophila Circadian Network

    Directory of Open Access Journals (Sweden)

    Ross E.F. Harper

    2016-11-01

    Full Text Available Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits.

  11. Saliency Changes Appearance

    Science.gov (United States)

    Kerzel, Dirk; Schönhammer, Josef; Burra, Nicolas; Born, Sabine; Souto, David

    2011-01-01

    Numerous studies have suggested that the deployment of attention is linked to saliency. In contrast, very little is known about how salient objects are perceived. To probe the perception of salient elements, observers compared two horizontally aligned stimuli in an array of eight elements. One of them was salient because of its orientation or direction of motion. We observed that the perceived luminance contrast or color saturation of the salient element increased: the salient stimulus looked even more salient. We explored the possibility that changes in appearance were caused by attention. We chose an event-related potential indexing attentional selection, the N2pc, to answer this question. The absence of an N2pc to the salient object provides preliminary evidence against involuntary attentional capture by the salient element. We suggest that signals from a master saliency map flow back into individual feature maps. These signals boost the perceived feature contrast of salient objects, even on perceptual dimensions different from the one that initially defined saliency. PMID:22162760

  12. Imaging Appearances in Gout

    Directory of Open Access Journals (Sweden)

    Gandikota Girish

    2013-01-01

    Full Text Available Gout is an ancient disease. Last decade has brought about significant advancement in imaging technology and real scientific growth in the understanding of the pathophysiology of gout, leading to the availability of multiple effective noninvasive diagnostic imaging options for gout and treatment options fighting inflammation and controlling urate levels. Despite this, gout is still being sub-optimally treated, often by nonspecialists. Increased awareness of optimal treatment options and an increasing role of ultrasound and dual energy computed tomography (DECT in the diagnosis and management of gout are expected to transform the management of gout and limit its morbidity. DECT gives an accurate assessment of the distribution of the deposited monosodium urate (MSU crystals in gout and quantifies them. The presence of a combination of the ultrasound findings of an effusion, tophus, erosion and the double contour sign in conjunction with clinical presentation may be able to obviate the need for intervention and joint aspiration in a certain case population for the diagnosis of gout. The purpose of this paper is to review imaging appearances of gout and its clinical applications.

  13. Platelet serotonin transporter function predicts default-mode network activity.

    Directory of Open Access Journals (Sweden)

    Christian Scharinger

    Full Text Available The serotonin transporter (5-HTT is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence.A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD activity and platelet Vmax.The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity.This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation.

  14. Epidemic spreading on activity-driven networks with attractiveness

    Science.gov (United States)

    Pozzana, Iacopo; Sun, Kaiyuan; Perra, Nicola

    2017-10-01

    We study SIS epidemic spreading processes unfolding on a recent generalization of the activity-driven modeling framework. In this model of time-varying networks, each node is described by two variables: activity and attractiveness. The first describes the propensity to form connections, while the second defines the propensity to attract them. We derive analytically the epidemic threshold considering the time scale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in the case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.

  15. Default-mode-like network activation in awake rodents.

    Directory of Open Access Journals (Sweden)

    Jaymin Upadhyay

    Full Text Available During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN, an intrinsic central nervous system (CNS network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain. However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess 'DMN-like' functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8. At Day 8, significant (p<0.05 functional connectivity was observed amongst structures such as the anterior cingulate (seed region, retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2, functional connectivity was only detected (p<0.05 amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region, posterior hypothalamic area, amygdala and parabracial nucleus. In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = -0.65, p = 0.0004 was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks.

  16. Mapping epileptic activity: sources or networks for the clinicians?

    Directory of Open Access Journals (Sweden)

    Francesca ePittau

    2014-11-01

    Full Text Available Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localisation of relevant structural lesions and selection of patients for epilepsy surgery. Recent progresses in neuro-imaging and electro-physiology and combinations thereof have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in humans and animal models for characterizing network connectivity.

  17. Connectivity, excitability and activity patterns in neuronal networks

    NARCIS (Netherlands)

    le Feber, Jakob; Stoyanova, Irina; Chiappalone, Michela

    2014-01-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods

  18. Correlation of brain default mode network activation with bipolarity index in youth with mood disorders.

    Science.gov (United States)

    Ford, Kristen A; Théberge, Jean; Neufeld, Richard J; Williamson, Peter C; Osuch, Elizabeth A

    2013-09-25

    Major Depressive Disorder (MDD) and Bipolar Disorder (BD) can be difficult to differentiate, as both feature depressive episodes. Here we have utilized fMRI and a measure of trait bipolarity to examine resting-state functional connectivity of brain activation in the default mode network in youth with MDD and BD to isolate trait-specific patterns. We collected resting-state fMRI scans from thirty youth (15 MDD; 15 BD, Type 1). The Bipolarity Index (BI) was completed by each patient's treating psychiatrist. Independent components analysis was used to extract a default mode network component from each participant, and then multiple regression was used to identify correlations between bipolarity and network activation. Activation in putamen/claustrum/insula correlated positively with BI; activation in the postcentral gyrus/posterior cingulate gyrus correlated negatively with BI. These correlations did not appear to be driven by movement in the scanner, state depression, gender or lithium use. There were group differences in state depression and sex that needed to be statistically covaried; differences in medication use existed between the groups; sample size was not large. The identification of the putamen/claustrum in our positive correlation may indicate a potential trait marker for the psychomotor activation unique to bipolar mania. The negative correlation in the postcentral gyrus/posterior cingulate suggests that this functional inactivation is more specific to MDD and is consistent with previous research. Ultimately, this approach may help to develop techniques to minimize the current clinical dilemma by facilitating the classification between BD and MDD. © 2013 Elsevier B.V. All rights reserved.

  19. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  20. Labor Mobility, Social Network Effects, and Innovative Activity

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, H.C.; Rønde, Thomas

    We study the mapping between labor mobility and industrial innovative activity for the population of R&D active Danish firms observed between 1999 and 2004. Our study documents a positive relationship between the number of workers who join a firm and the firm’s innovative activity. This relations......We study the mapping between labor mobility and industrial innovative activity for the population of R&D active Danish firms observed between 1999 and 2004. Our study documents a positive relationship between the number of workers who join a firm and the firm’s innovative activity....... This relationship is stronger if workers join from innovative firms. We also find evidence for positive feedback from workers who leave for an innovative firm, presumably because the worker who left stays in contact with their former colleagues. This implies that the positive feedback (“social network effects......”) that has been found by other studies not only exists but even outweighs the disruption and loss of knowledge occurring to the previous employer from the worker leaving. Summing up the effects of joining and leaving workers, we find ample evidence for mobility to be associated with an increase in total...

  1. Neural Network Hydrological Modelling: Linear Output Activation Functions?

    Science.gov (United States)

    Abrahart, R. J.; Dawson, C. W.

    2005-12-01

    The power to represent non-linear hydrological processes is of paramount importance in neural network hydrological modelling operations. The accepted wisdom requires non-polynomial activation functions to be incorporated in the hidden units such that a single tier of hidden units can thereafter be used to provide a 'universal approximation' to whatever particular hydrological mechanism or function is of interest to the modeller. The user can select from a set of default activation functions, or in certain software packages, is able to define their own function - the most popular options being logistic, sigmoid and hyperbolic tangent. If a unit does not transform its inputs it is said to possess a 'linear activation function' and a combination of linear activation functions will produce a linear solution; whereas the use of non-linear activation functions will produce non-linear solutions in which the principle of superposition does not hold. For hidden units, speed of learning and network complexities are important issues. For the output units, it is desirable to select an activation function that is suited to the distribution of the target values: e.g. binary targets (logistic); categorical targets (softmax); continuous-valued targets with a bounded range (logistic / tanh); positive target values with no known upper bound (exponential; but beware of overflow); continuous-valued targets with no known bounds (linear). It is also standard practice in most hydrological applications to use the default software settings and to insert a set of identical non-linear activation functions in the hidden layer and output layer processing units. Mixed combinations have nevertheless been reported in several hydrological modelling papers and the full ramifications of such activities requires further investigation and assessment i.e. non-linear activation functions in the hidden units connected to linear or clipped-linear activation functions in the output unit. There are two

  2. Optimal Bidding Strategy for Renewable Microgrid with Active Network Management

    Directory of Open Access Journals (Sweden)

    Seung Wan Kim

    2016-01-01

    Full Text Available Active Network Management (ANM enables a microgrid to optimally dispatch the active/reactive power of its Renewable Distributed Generation (RDG and Battery Energy Storage System (BESS units in real time. Thus, a microgrid with high penetration of RDGs can handle their uncertainties and variabilities to achieve the stable operation using ANM. However, the actual power flow in the line connecting the main grid and microgrid may deviate significantly from the day-ahead bids if the bids are determined without consideration of the real-time adjustment through ANM, which will lead to a substantial imbalance cost. Therefore, this study proposes a formulation for obtaining an optimal bidding which reflects the change of power flow in the connecting line by real-time adjustment using ANM. The proposed formulation maximizes the expected profit of the microgrid considering various network and physical constraints. The effectiveness of the proposed bidding strategy is verified through the simulations with a 33-bus test microgrid. The simulation results show that the proposed bidding strategy improves the expected operating profit by reducing the imbalance cost to a greater degree compared to the basic bidding strategy without consideration of ANM.

  3. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    Full Text Available Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  4. Active multistage coarsening of actin networks driven by myosin motors

    Science.gov (United States)

    Silva, Marina Soares e; Depken, Martin; Stuhrmann, Björn; Korsten, Marijn; MacKintosh, Fred C.; Koenderink, Gijsje H.

    2011-01-01

    In cells, many vital processes involve myosin-driven motility that actively remodels the actin cytoskeleton and changes cell shape. Here we study how the collective action of myosin motors organizes actin filaments into contractile structures in a simplified model system devoid of biochemical regulation. We show that this self-organization occurs through an active multistage coarsening process. First, motors form dense foci by moving along the actin network structure followed by coalescence. Then the foci accumulate actin filaments in a shell around them. These actomyosin condensates eventually cluster due to motor-driven coalescence. We propose that the physical origin of this multistage aggregation is the highly asymmetric load response of actin filaments: they can support large tensions but buckle easily under piconewton compressive loads. Because the motor-generated forces well exceed this threshold, buckling is induced on the connected actin network that resists motor-driven filament sliding. We show how this buckling can give rise to the accumulation of actin shells around myosin foci and subsequent coalescence of foci into superaggregates. This new physical mechanism provides an explanation for the formation and contractile dynamics of disordered condensed actomyosin states observed in vivo. PMID:21593409

  5. Situation awareness of active distribution network: roadmap, technologies, and bottlenecks

    DEFF Research Database (Denmark)

    Lin, Jin; Wan, Can; Song, Yonghua

    2016-01-01

    With the rapid development of local generation and demand response, the active distribution network (ADN), which aggregates and manages miscellaneous distributed resources, has moved from theory to practice. Secure and optimal operations now require an advanced situation awareness (SA) system so...... in the project of developing an SA system as the basic component of a practical active distribution management system (ADMS) deployed in Beijing, China, is presented. This paper reviews the ADN’s development roadmap by illustrating the changes that are made in elements, topology, structure, and control scheme....... Taking into consideration these hardware changes, a systematic framework is proposed for the main components and the functional hierarchy of an SA system for the ADN. The SA system’s implementation bottlenecks are also presented, including, but not limited to issues in big data platform, distribution...

  6. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    Directory of Open Access Journals (Sweden)

    Mara eKottlow

    2015-05-01

    Full Text Available Working memory (WM processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health.We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods.Four temporally coherent networks - the default mode network (DMN, the dorsal attention, the right and the left WM network - were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks’ pre-stimulus activation upon retention-related EEG activity in the theta, alpha and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing.We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be online synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.

  7. Influence Activation Model: A New Perspective in Social Influence Analysis and Social Network Evolution

    CERN Document Server

    Yang, Yang; Lichtenwalter, Ryan N; Dong, Yuxiao

    2016-01-01

    What drives the propensity for the social network dynamics? Social influence is believed to drive both off-line and on-line human behavior, however it has not been considered as a driver of social network evolution. Our analysis suggest that, while the network structure affects the spread of influence in social networks, the network is in turn shaped by social influence activity (i.e., the process of social influence wherein one person's attitudes and behaviors affect another's). To that end, we develop a novel model of network evolution where the dynamics of network follow the mechanism of influence propagation, which are not captured by the existing network evolution models. Our experiments confirm the predictions of our model and demonstrate the important role that social influence can play in the process of network evolution. As well exploring the reason of social network evolution, different genres of social influence have been spotted having different effects on the network dynamics. These findings and ...

  8. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Science.gov (United States)

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. © 2015 Wiley Periodicals, Inc.

  9. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter

    NARCIS (Netherlands)

    Melief, Jeroen; de Wit, Stella J.; van Eden, Corbert G.; Teunissen, Charlotte; Hamann, Jörg; Uitdehaag, Bernard M.; Swaab, Dick; Huitinga, Inge

    2013-01-01

    The hypothalamus-pituitary-adrenal (HPA) axis is activated in most, but not all multiple sclerosis (MS) patients and is implicated in disease progression and comorbid mood disorders. In this post-mortem study, we investigated how HPA axis activity in MS is related to disease severity,

  10. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.

    Science.gov (United States)

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence.

  11. Natural lecithin promotes neural network complexity and activity.

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-05-27

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications.

  12. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage.

    Science.gov (United States)

    Liato, Viacheslav; Hammami, Riadh; Aïder, Mohammed

    2017-06-01

    The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Abnormal activity of default mode network in GERD patients

    National Research Council Canada - National Science Library

    Sun, Huihui; Chen, Ying; Zhao, Xiaohu; Wang, Xiangbin; Jiang, Yuanxi; Wu, Ping; Tang, Yinhan; Meng, Qingwei; Xu, Shuchang

    2013-01-01

    ...). However, most studies were focused on the possible functions of perceptual processing related network during task status, little attention has been paid to default mode network, which has been...

  14. Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities.

    Science.gov (United States)

    Gasper, Paul M; Fuglestad, Brian; Komives, Elizabeth A; Markwick, Phineus R L; McCammon, J Andrew

    2012-12-26

    The serine protease α-thrombin is a dual-action protein that mediates the blood-clotting cascade. Thrombin alone is a procoagulant, cleaving fibrinogen to make the fibrin clot, but the thrombin-thrombomodulin (TM) complex initiates the anticoagulant pathway by cleaving protein C. A TM fragment consisting of only the fifth and sixth EGF-like domains (TM56) is sufficient to bind thrombin, but the presence of the fourth EGF-like domain (TM456) is critical to induce the anticoagulant activity of thrombin. Crystallography of the thrombin-TM456 complex revealed no significant structural changes in thrombin, suggesting that TM4 may only provide a scaffold for optimal alignment of protein C for its cleavage by thrombin. However, a variety of experimental data have suggested that the presence of TM4 may affect the dynamic properties of the active site loops. In the present work, we have used both conventional and accelerated molecular dynamics simulation to study the structural dynamic properties of thrombin, thrombin:TM56, and thrombin:TM456 across a broad range of time scales. Two distinct yet interrelated allosteric pathways are identified that mediate both the pro- and anticoagulant activities of thrombin. One allosteric pathway, which is present in both thrombin:TM56 and thrombin:TM456, directly links the TM5 domain to the thrombin active site. The other allosteric pathway, which is only present on slow time scales in the presence of the TM4 domain, involves an extended network of correlated motions linking the TM4 and TM5 domains and the active site loops of thrombin.

  15. Size-dependent regulation of synchronized activity in living neuronal networks.

    Science.gov (United States)

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  16. Intracellular antimicrobial activity appearing as a relevant factor in antibiotic efficacy against an experimental foreign-body infection caused by Staphylococcus aureus.

    Science.gov (United States)

    Murillo, O; Pachón, M E; Euba, G; Verdaguer, R; Carreras, M; Cabellos, C; Cabo, J; Gudiol, F; Ariza, J

    2009-11-01

    The presence of bacterial biofilm, tolerance to antibiotics and dysfunctional activity of phagocytic cells are all related to difficulties in eradicating foreign-body infections. We aimed to quantify the presence of intracellular Staphylococcus aureus and to study the extent to which the intracellular activity of antibiotics might determine their efficacy against an experimental rat tissue-cage model of foreign-body infection. Using this model, animals were treated for 7 days with 100 mg/kg/day levofloxacin or 200 mg/kg/12 h cloxacillin, or were left untreated. Antibiotic efficacy was evaluated by means of bacterial counts from tissue-cage fluid (TCF); these counts were derived separately in total, intracellular and extracellular bacteria. The presence of intracellular bacteria was checked by electron microscopy. Population analysis was performed with surviving bacteria recovered at the end of levofloxacin therapy. Among a total number of bacteria (mean log cfu/mL +/- SD) from TCF of 6.86 +/- 0.6, we identified 6.38 +/- 0.8 intracellular bacteria and 5.57 +/- 0.5 extracellular bacteria. Levofloxacin was more efficient than cloxacillin (P < 0.05) against both intracellular and extracellular bacteria. The killing activity of levofloxacin against the intracellular population was higher than against the extracellular bacteria (P = 0.1). The frequency of levofloxacin-resistant mutants among surviving bacteria at the end of levofloxacin therapy was similar to that for the wild-type strain. Intracellular bacteria accounted for the largest proportion of the total inoculum in this model of foreign-body infection. The intracellular activity of an antibiotic seems to be an additional relevant factor in the antibiotic response to these infections.

  17. Who Can You Turn to? Tie Activation within Core Business Discussion Networks

    Science.gov (United States)

    Renzulli, Linda A.; Aldrich, Howard

    2005-01-01

    We examine the connection between personal network characteristics and the activation of ties for access to resources during routine times. We focus on factors affecting business owners' use of their core network ties to obtain legal, loan, financial and expert advice. Owners rely more on core business ties when their core networks contain a high…

  18. Estimation of Active Stream Network Length in a Hilly Headwater Catchment Using Recession Flow Analysis

    National Research Council Canada - National Science Library

    Wei Li; Ke Zhang; Yuqiao Long; Li Feng

    2017-01-01

    .... Regarding the correlation between active stream networks and stream recession flow characteristics, we developed a new method to estimate the ASNL, under different wetness conditions, of a catchment...

  19. Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition

    National Research Council Canada - National Science Library

    Haider, Bilal; Duque, Alvaro; Hasenstaub, Andrea R; McCormick, David A

    2006-01-01

    .... Models of cortical function often assume that recurrent excitation and inhibition are balanced, and we recently demonstrated that spontaneous network activity in vitro contains a precise balance...

  20. Both novelty and expertise increase action observation network activity

    Directory of Open Access Journals (Sweden)

    Sook-Lei eLiew

    2013-09-01

    Full Text Available Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON, is modulated by one’s expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices, 11 experienced occupational therapists (OTs who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ, as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ and extreme novelty (novices can result in the greatest AON activity.

  1. Elastic network normal mode dynamics reveal the GPCR activation mechanism.

    Science.gov (United States)

    Kolan, Dikla; Fonar, Gennadiy; Samson, Abraham O

    2014-04-01

    G-protein-coupled receptors (GPCR) are a family of membrane-embedded metabotropic receptors which translate extracellular ligand binding into an intracellular response. Here, we calculate the motion of several GPCR family members such as the M2 and M3 muscarinic acetylcholine receptors, the A2A adenosine receptor, the β2 -adrenergic receptor, and the CXCR4 chemokine receptor using elastic network normal modes. The normal modes reveal a dilation and a contraction of the GPCR vestibule associated with ligand passage, and activation, respectively. Contraction of the vestibule on the extracellular side is correlated with cavity formation of the G-protein binding pocket on the intracellular side, which initiates intracellular signaling. Interestingly, the normal modes of rhodopsin do not correlate well with the motion of other GPCR family members. Electrostatic potential calculation of the GPCRs reveal a negatively charged field around the ligand binding site acting as a siphon to draw-in positively charged ligands on the membrane surface. Altogether, these results expose the GPCR activation mechanism and show how conformational changes on the cell surface side of the receptor are allosterically translated into structural changes on the inside. Copyright © 2013 Wiley Periodicals, Inc.

  2. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  3. Role of mechanics in the appearance of oscillatory instability and standing waves of the mechanochemical activity in the Physarum polycephalum plasmodium

    Science.gov (United States)

    Teplov, Vladimir A.

    2017-06-01

    The modes of continuously distributed mechanochemical self-sustained oscillations (autowaves) exhibited by the Physarum plasmodium under different experimental conditions are reviewed. The role of the stretch-induced activation of contractile oscillations in the spatiotemporal self-organization of the plasmodium is elucidated. Different mathematical models describing contractile autowaves in ectoplasm and the streaming of the endoplasm are considered. Our mathematical models, which are based on the hypothesis of local positive feedback between the deformation and contraction of the contractile apparatus, are also presented. The feedback is mediated through a chemical regulatory system, whose kinetics involves the coupling to the mechanical strain. The mathematical analysis and computer simulations have demonstrated that the solutions of the models agree quantitatively with the experimental data. In particular, the only hydrodynamic interactions between the different parts of the plasmodium via the streaming endoplasm can lead to globally coordinated ectoplasmic contractions and vigorous shuttle endoplasmic streaming. These models, with empirically determined values of the viscoelastic parameters, well simulate the form and duration of the transient contractile processes observed after the isolation of the strands as well as the subsequent excitation of auto-oscillations and their stretch-induced activation under isotonic and isometric conditions.

  4. Model Integrating Fuzzy Argument with Neural Network Enhancing the Performance of Active Queue Management

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2015-08-01

    Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.

  5. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  6. Networking in Sport Management: Ideas and Activities to Enhance Student Engagement and Career Development

    Directory of Open Access Journals (Sweden)

    Alan S. Kornspan

    2013-01-01

    Full Text Available The primary purpose of this paper is to present information regarding the development of networking skills to enhance the career development of sport management students. Specifically, literature is reviewed which supports the importance of networking in the attainment of employment and career advancement in the sport industry. This is followed by an overview of emerging networking activities that allow opportunities for sport management students to expand their network. Sport industry career fairs and career conferences that students can attend are discussed. Additionally, sport industry professional associations that students can become involved with are presented. This is then followed with information related to the development of sport management clubs and various events that can be promoted to enhance the networking process. Specifically, activities provided by university faculty to enhance the educational experience of sport management students are detailed. Finally, a sample schedule of semester activities focused on student engagement and networking activities is provided.

  7. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine–ON cone bipolar cell network is driven by voltage-gated Na+ channels

    Science.gov (United States)

    Trenholm, Stuart; Borowska, Joanna; Zhang, Jiawei; Hoggarth, Alex; Johnson, Kyle; Barnes, Steven; Lewis, Timothy J; Awatramani, Gautam B

    2012-01-01

    In the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10–20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (Ih), voltage-gated Na+ channels and gap junctions in mediating such oscillatory activity. Blocking Ih (1 mm Cs+) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na+ channels (1 μm TTX) abolished oscillatory activity in the AII amacrine–ON cone bipolar cell network. Voltage-gated Na+ channels were only observed in AII amacrine cells, implicating these cells as major drivers of activity. Pharmacologically uncoupling the network (200 μm meclofenamic acid (MFA)) blocked oscillations in all cells indicating that Na+ channels exert their influence over multiple cell types within the network. In wt retina, occluding photoreceptor inputs to bipolar cells (10 μm NBQX and 50 μm l-AP4) resulted in a mild (∼10 mV) hyperpolarization and the induction of oscillatory activity within the AII amacrine–ON cone bipolar cell network. These oscillations had similar properties to those observed in rd1 retina, suggesting that no major degeneration-induced network rewiring is required to trigger spontaneous oscillations. Finally, we constructed a simplified computational model that exhibited Na+ channel-dependent network oscillations. In this model, mild heterogeneities in channel densities between individual neurons reproduced our experimental findings. These results indicate that TTX-sensitive Na+ channels in AII amacrine cells trigger degeneration-induced network oscillations, which provide a persistent synaptic drive to downstream remnant neurons, thus appearing to replace photoreceptors as the principal drivers of retinal activity. PMID:22393249

  8. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na+ channels.

    Science.gov (United States)

    Trenholm, Stuart; Borowska, Joanna; Zhang, Jiawei; Hoggarth, Alex; Johnson, Kyle; Barnes, Steven; Lewis, Timothy J; Awatramani, Gautam B

    2012-05-15

    In the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10–20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (I(h)), voltage-gated Na(+) channels and gap junctions in mediating such oscillatory activity. Blocking I(h) (1 mm Cs(+)) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na(+) channels (1 μm TTX) abolished oscillatory activity in the AII amacrine-ON cone bipolar cell network. Voltage-gated Na(+) channels were only observed in AII amacrine cells, implicating these cells as major drivers of activity. Pharmacologically uncoupling the network (200 μm meclofenamic acid (MFA)) blocked oscillations in all cells indicating that Na(+) channels exert their influence over multiple cell types within the network. In wt retina, occluding photoreceptor inputs to bipolar cells (10 μm NBQX and 50 μm l-AP4) resulted in a mild (∼10 mV) hyperpolarization and the induction of oscillatory activity within the AII amacrine-ON cone bipolar cell network. These oscillations had similar properties to those observed in rd1 retina, suggesting that no major degeneration-induced network rewiring is required to trigger spontaneous oscillations. Finally, we constructed a simplified computational model that exhibited Na(+) channel-dependent network oscillations. In this model, mild heterogeneities in channel densities between individual neurons reproduced our experimental findings. These results indicate that TTX-sensitive Na(+) channels in AII amacrine cells trigger degeneration-induced network oscillations, which provide a persistent synaptic drive to downstream remnant neurons, thus appearing to replace photoreceptors as the principal drivers of retinal activity.

  9. Collecting social network data to study social activity-travel behavior: an egocentric approach

    OpenAIRE

    Juan Antonio Carrasco; Bernie Hogan; Barry Wellman; Miller, Eric J.

    2008-01-01

    This paper presents a data collection effort designed to incorporate the social dimension in social activity-travel behavior by explicitly studying the link between individuals’ social activities and their social networks. The main hypothesis of the data collection effort is that individuals’ travel behavior is conditional upon their social networks; that is, a key cause of travel behavior is the social dimension represented by social networks. With this hypothesis in mind, and using survey a...

  10. A Hierarchical Approach to Real-time Activity Recognition in Body Sensor Networks

    DEFF Research Database (Denmark)

    Wang, Liang; Gu, Tao; Tao, Xianping

    2012-01-01

    Real-time activity recognition in body sensor networks is an important and challenging task. In this paper, we propose a real-time, hierarchical model to recognize both simple gestures and complex activities using a wireless body sensor network. In this model, we rst use a fast and lightweight al...

  11. Real-time Human Activity Recognition using a Body Sensor Network

    DEFF Research Database (Denmark)

    Wang, Liang; Gu, Tao; Chen, Hanhua

    2010-01-01

    Real-time activity recognition using body sensor networks is an important and challenging task and it has many potential applications. In this paper, we propose a realtime, hierarchical model to recognize both simple gestures and complex activities using a wireless body sensor network...

  12. Environmental activism in urban China: the role of personal networks

    NARCIS (Netherlands)

    Xie Lei,

    2007-01-01

    The study examines the characteristics of the Chinese environmental movement by looking into the roles played by leaders, activists and their individual networks in environmental NGOs. Looking into individual networks is a vital starting point to examine the dynamics of the Chinese environmental

  13. Engagement, compliance and retention with a gamified online social networking physical activity intervention.

    Science.gov (United States)

    Ryan, Jillian; Edney, Sarah; Maher, Carol

    2017-12-01

    Health behaviour interventions delivered via online social networks are an increasingly popular approach to addressing lifestyle-related health problems. However, research to date consistently reports poor user engagement and retention. The current study examined user engagement, compliance and retention with Active Team-a gamified physical activity intervention delivered by via an online Facebook application. Associations between engagement and participant (n = 51) demographic and team characteristics (sex, age, education and team size) were examined, as well as temporal trends in engagement during the 50-day intervention. Analyses revealed significant associations between both engagement (p = gamification (p = 0.04) with education, with participants in the middle education category appearing to have the highest rates of engagement and use of gamification features. Gender was also related to engagement, with males demonstrating the highest use of the intervention's gamification features (p = 0.004). Although compliance was consistently high for the duration, engagement declined steadily throughout the intervention. Engagement peaked on Wednesdays, coinciding with the delivery of a customised email reminder. Findings reveal individual differences in engagement with Active Team, highlighting a need to tailor interventions to the target audience. Gamification features may enhance engagement amongst males, who are traditionally recognised as a difficult demographic group to engage. Finally, the use of customised, periodic push reminders delivered by email may enhance user engagement by drawing them back to the intervention and helping to sustain intervention behaviours.

  14. Social networks of experientially similar others: formation, activation, and consequences of network ties on the health care experience.

    Science.gov (United States)

    Gage, Elizabeth A

    2013-10-01

    Research documents that interactions among experientially similar others (individuals facing a common stressor) shape health care behavior and ultimately health outcomes. However, we have little understanding of how ties among experientially similar others are formed, what resources and information flows through these networks, and how network embeddedness shapes health care behavior. This paper uses in-depth interviews with 76 parents of pediatric cancer patients to examine network ties among experientially similar others after a serious medical diagnosis. Interviews were conducted between August 2009 and May 2011. Findings demonstrate that many parents formed ties with other families experiencing pediatric cancer, and that information and resources were exchanged during the everyday activities associated with their child's care. Network flows contained emotional support, caregiving strategies, information about second opinions, health-related knowledge, and strategies for navigating the health care system. Diffusion of information, resources, and support occurred through explicit processes (direct information and support exchanges) and implicit processes (parents learning through observing other families). Network flows among parents shaped parents' perceptions of the health care experience and their role in their child's care. These findings contribute to the social networks and social support literatures by elucidating the mechanisms through which network ties among experientially similar others influence health care behavior and experiences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    Science.gov (United States)

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  16. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; /SLAC; Grigoriev, Maxim; /Fermilab; Haro, Felipe; /Chile U., Catolica; Nazir, Fawad; /NUST, Rawalpindi; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our

  17. False Positive STEMI Activations in a Regional Network: Comprehensive Analysis and Clinical Impact. Results From the Catalonian Codi Infart Network.

    Science.gov (United States)

    Regueiro, Ander; Fernández-Rodríguez, Diego; Freixa, Xavier; Bosch, Xavier; Martín-Yuste, Victoria; Brugaletta, Salvatore; Roqué, Mercè; Sabaté, Manel; Masotti, Mónica

    2017-07-12

    ST-segment elevation myocardial infarction (STEMI) network activation by a noncardiologist reduces delay times but may increase the rate of false-positive STEMI diagnoses. We aimed to determine the prevalence, predictors, and clinical impact of false-positive activations within the Catalonian STEMI network (Codi Infart). From January 2010 through December 2011, all consecutive patients treated within the Codi Infart network were included. Code activations were classified as appropriate if they satisfied both electrocardiogram and clinical STEMI criteria. Appropriate activations were classified as false positives using 2 nonexclusive definitions: a) "angiographic" if a culprit coronary artery was not identified, and b) "clinical" if the discharge diagnosis was other than STEMI. In total, 5701 activations were included. Appropriate activation was performed in 87.8% of the episodes. The rate of angiographic false positives was 14.6%, while the rate of clinical false positives was 11.6%. Irrespective of the definition, female sex, left bundle branch block, and previous myocardial infarction were independent predictors of false-positive STEMI diagnoses. Using the clinical definition, hospitals without percutaneous coronary intervention and patients with complications during the first medical contact also had a false-positive STEMI diagnoses rate higher than the mean. In-hospital and 30-day mortality rates were similar for false-positive and true-positive STEMI patients after adjustment for possible confounders. False-positive STEMI diagnoses were frequent. Outcomes were similar for patients with a true-positive or false-positive STEMI diagnosis treated within a STEMI network. The presence of any modifiable predictors of a false-positive STEMI diagnosis warrants careful assessment to optimize the use of STEMI networks. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  19. Evolution, Appearance, and Occupational Success

    Directory of Open Access Journals (Sweden)

    Anthony C. Little

    2012-12-01

    Full Text Available Visual characteristics, including facial appearance, are thought to play an important role in a variety of judgments and decisions that have real occupational outcomes in many settings. Indeed, there is growing evidence suggesting that appearance influences hiring decisions and even election results. For example, attractive individuals are more likely to be hired, taller men earn more, and the facial appearance of candidates has been linked to real election outcomes. In this article, we review evidence linking physical appearance to occupational success and evaluate the hypothesis that appearance based biases are consistent with predictions based on evolutionary theories of coalition formation and leadership choice. We discuss why appearance based effects are so pervasive, addressing ideas about a “kernel of truth” in attributions and about coalitional psychology. We additionally highlight that appearance may be differently related to success at work according to the types of job or task involved. For example, leaders may be chosen because the characteristics they possess are seen as best suited to lead in particular situations. During a time of war, a dominant-appearing leader may inspire confidence and intimidate enemies while during peace-time, when negotiation and diplomacy are needed, interpersonal skills may outweigh the value of a dominant leader. In line with these ideas, masculine-faced leaders are favored in war-time scenarios while feminine-faced leaders are favored in peace-time scenarios. We suggest that such environment or task specific competencies may be prevalent during selection processes, whereby individuals whose appearance best matches perceived task competences are most likely selected, and propose the general term “task-congruent selection” to describe these effects. Overall, our review highlights how potentially adaptive biases could influence choices in the work place. With respect to certain biases

  20. Evolution, appearance, and occupational success.

    Science.gov (United States)

    Little, Anthony C; Roberts, Craig S

    2012-01-01

    Visual characteristics, including facial appearance, are thought to play an important role in a variety of judgments and decisions that have real occupational outcomes in many settings. Indeed, there is growing evidence suggesting that appearance influences hiring decisions and even election results. For example, attractive individuals are more likely to be hired, taller men earn more, and the facial appearance of candidates has been linked to real election outcomes. In this article, we review evidence linking physical appearance to occupational success and evaluate the hypothesis that appearance based biases are consistent with predictions based on evolutionary theories of coalition formation and leadership choice. We discuss why appearance based effects are so pervasive, addressing ideas about a "kernel of truth" in attributions and about coalitional psychology. We additionally highlight that appearance may be differently related to success at work according to the types of job or task involved. For example, leaders may be chosen because the characteristics they possess are seen as best suited to lead in particular situations. During a time of war, a dominant-appearing leader may inspire confidence and intimidate enemies while during peace-time, when negotiation and diplomacy are needed, interpersonal skills may outweigh the value of a dominant leader. In line with these ideas, masculine-faced leaders are favored in war-time scenarios while feminine-faced leaders are favored in peace-time scenarios. We suggest that such environment or task specific competencies may be prevalent during selection processes, whereby individuals whose appearance best matches perceived task competences are most likely selected, and propose the general term "task-congruent selection" to describe these effects. Overall, our review highlights how potentially adaptive biases could influence choices in the work place. With respect to certain biases, understanding their origin and current

  1. National Needs for Appearance Metrology

    Science.gov (United States)

    Nadal, Maria E.

    2003-04-01

    Appearance greatly influences a customer's judgement of the quality and acceptability of manufactured products, as yearly there is approximately $700 billion worth of shipped goods for which overall appearance is critical to their sale. For example, appearance is reported to be a major factor in about half of automobile purchases. The appearance of an object is the result of a complex interaction of the light field incident upon the object, the scattering and absorption properties of the object, and human perception. The measurable attributes of appearance are divided into color (hue, saturation, and lightness) and geometry (gloss, haze). The nature of the global economy has increased international competition and the need to improve the quality of many manufactured products. Since the manufacturing and marketing of these products is international in scope, the lack of national appearance standard artifacts and measurement protocols results in a direct loss to the supplier. One of the primary missions of the National Institute of Standards and Technology (NIST) is to strengthen the U.S. economy by working with industry to develop and apply technology, measurements and standards. The NIST Physics Laboratory has established an appearance metrology laboratory. This new laboratory provides calibration services for 0^o/45^o color standards and 20^o°, 60^o°, and 85^o° specular gloss, and research in the colorimetric characterization of gonioapparent including a new Standard Reference Material for metallic coatings (SRM 2017) and measurement protocols for pearlescent coatings. These services are NIST's first appearance metrology efforts in many years; a response to needs articulated by industry. These services are designed to meet demands for improved measurements and standards to enhance the acceptability of final products since appearance often plays a major role in their acceptability.

  2. Young adolescents' perceived activity space risk, peer networks, and substance use.

    Science.gov (United States)

    Mason, Michael; Mennis, Jeremy; Way, Thomas; Light, John; Rusby, Julie; Westling, Erika; Crewe, Stephanie; Flay, Brian; Campbell, Leah; Zaharakis, Nikola; McHenry, Chantal

    2015-07-01

    Adolescent substance use is a developmentally contingent social practice that is constituted within the routine social-environment of adolescents' lives. Few studies have examined peer networks, perceived activity space risk (risk of substance use at routine locations), and substance use. We examined the moderating influence of peer network characteristics on the relationship between perceived activity space risk and substance use among a sample of 250 urban adolescents. Significant interactions were found between peer networks and perceived activity space risk on tobacco and marijuana use, such that protective peer networks reduced the effect of activity place risk on substance use. A significant 3-way interaction was found on marijuana use indicating that gender moderated peer network's effect on activity space risk. Conditional effect analysis found that boys' peer networks moderated the effect of perceived activity space risk on marijuana use, whereas for girls, the effect of perceived activity space risk on marijuana use was not moderated by their peer networks. These findings could advance theoretical models to inform social-environmental research among adolescents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Rate-Based Active Queue Management for TCP Flows over Wired and Wireless Networks

    OpenAIRE

    Jun Wang; Min Song

    2007-01-01

    Current active queue management (AQM) and TCP protocol are designed and tuned to work well on wired networks where packet loss is mainly due to network congestion. In wireless networks, however, communication links suffer from significant transmission bit errors and handoff failures. As a result, the performance of TCP flows is significantly degraded. To mitigate this problem, we analyze existing AQM schemes and propose a rate-based exponential AQM (REAQM) scheme. The proposed REAQM scheme u...

  4. Social network analysis of childhood and youth physical activity: a systematic review.

    Science.gov (United States)

    Macdonald-Wallis, Kyle; Jago, Russell; Sterne, Jonathan A C

    2012-12-01

    Social network analysis has been used to better understand the influence of friends and peer groups in a wide range of health behaviors. This systematic review synthesizes findings from various social network analyses of child and adolescent physical activity, to determine the extent to which social network structure is associated with physical activity behaviors. Medical and social science databases were searched and screened between September and November 2011. Eligible studies collected a measure of physical activity and a measure of an individual's social network, either through friendship nominations or social ratings, and reported analyses investigating the association between physical activity and the social network measure. A total of 1767 articles yielded nine publications from seven eligible studies, which were synthesized and analyzed in December 2011. Three research themes were identified: (1) friendship similarities in physical activity; (2) peer group influences on physical activity; and (3) social preference (i.e., popularity) and physical activity. Synthesis of findings across studies found strong evidence for similarities in physical activity levels between an individual and their friends and within peer groups. There was mixed evidence for an association between social preference and physical activity levels. Friendship plays an important role in shaping physical activity behaviors. Physical activity interventions targeted at peer groups and that account for the influence of friendship groups might have utility as a means of increasing youth physical activity. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  6. Active patterning and asymmetric transport in a model actomyosin network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenshen [Department of Chemical Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wolynes, Peter G. [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  7. Appearance concerns in ophthalmic patients

    Science.gov (United States)

    James, H; Jenkinson, E; Harrad, R; Ezra, D G; Newman, S

    2011-01-01

    Aims This study aimed to determine the psychosocial and appearance-related concerns of a sample of ophthalmic patients by measuring a range of psychological, social, and demographic factors. Methods Standardized psychological measures including anxiety, depression, appearance-related distress, self-discrepancy, appearance salience and valence were administered to 98 participants attending ophthalmic outpatient clinics in either London, Bristol, Sheffield or Bradford. Differences between groups were explored using t-tests and ANOVA, relationships between all variables were investigated using Pearson's correlation coefficient. Results Although mean scores for psychological adjustment were within the normal range, some participants were experiencing considerable levels of generalized anxiety. Being older, male, and married or living with a partner was related to significantly better adjustment. Better adjustment was also related to a less visible area of concern, greater disguisability of the affected area, a more positive evaluation of their own appearance, less engagement in comparing themselves with others, greater feelings of being accepted by others, appearance being less important to their self-concept, and a smaller discrepancy between the persons ideal and actual appearance. Conclusions A majority of ophthalmic patients adjust positively to the demands placed on them. By identifying the variables that are associated with successful adaptation, the specific psychological interventions and appropriate systems of support can be put in place to help those who are adversely affected. PMID:21597486

  8. Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields.

    Science.gov (United States)

    Kao, Hsin-Yi; Dvořák, Dino; Park, EunHye; Kenney, Jana; Kelemen, Eduard; Fenton, André A

    2017-12-06

    We used the psychotomimetic phencyclidine (PCP) to investigate the relationships among cognitive behavior, coordinated neural network function, and information processing within the hippocampus place cell system. We report in rats that PCP (5 mg/kg, i.p.) impairs a well learned, hippocampus-dependent place avoidance behavior in rats that requires cognitive control even when PCP is injected directly into dorsal hippocampus. PCP increases 60-100 Hz medium-freguency gamma oscillations in hippocampus CA1 and these increases correlate with the cognitive impairment caused by systemic PCP administration. PCP discoordinates theta-modulated medium-frequency and slow gamma oscillations in CA1 LFPs such that medium-frequency gamma oscillations become more theta-organized than slow gamma oscillations. CA1 place cell firing fields are preserved under PCP, but the drug discoordinates the subsecond temporal organization of discharge among place cells. This discoordination causes place cell ensemble representations of a familiar space to cease resembling pre-PCP representations despite preserved place fields. These findings point to the cognitive impairments caused by PCP arising from neural discoordination. PCP disrupts the timing of discharge with respect to the subsecond timescales of theta and gamma oscillations in the LFP. Because these oscillations arise from local inhibitory synaptic activity, these findings point to excitation-inhibition discoordination as the root of PCP-induced cognitive impairment.SIGNIFICANCE STATEMENT Hippocampal neural discharge is temporally coordinated on timescales of theta and gamma oscillations in the LFP and the discharge of a subset of pyramidal neurons called "place cells" is spatially organized such that discharge is restricted to locations called a cell's "place field." Because this temporal coordination and spatial discharge organization is thought to represent spatial knowledge, we used the psychotomimetic phencyclidine (PCP) to disrupt

  9. Effects of active links on epidemic transmission over social networks

    Science.gov (United States)

    Zhu, Guanghu; Chen, Guanrong; Fu, Xinchu

    2017-02-01

    A new epidemic model with two infection periods is developed to account for the human behavior in social network, where newly infected individuals gradually restrict most of future contacts or are quarantined, causing infectivity change from a degree-dependent form to a constant. The corresponding dynamics are formulated by a set of ordinary differential equations (ODEs) via mean-field approximation. The effects of diverse infectivity on the epidemic dynamics ​are examined, with a behavioral interpretation of the basic reproduction number. Results show that such simple adaptive reactions largely determine the impact of network structure on epidemics. Particularly, a theorem proposed by Lajmanovich and Yorke in 1976 is generalized, so that it can be applied for the analysis of the epidemic models with multi-compartments especially network-coupled ODE systems.

  10. Tourist activated networks: Implications for dynamic bundling and en-route recommendations

    DEFF Research Database (Denmark)

    Zach, Florian; Gretzel, Ulrike

    2011-01-01

    This article discusses tourist-activated networks as a concept to inform technological applications supporting dynamic bundling and en route recommendations. Empirical data were collected from travelers who visited a regional destination in the US and then analyzed with respect to its network str...... marketing....

  11. High catalytic activity of palladium nanoparticle clusters supported on a spherical polymer network.

    Science.gov (United States)

    Sultanova, Elza D; Salnikov, Vadim V; Mukhitova, Rezeda K; Zuev, Yuriy F; Osin, Yuriy N; Zakharova, Lucia Ya; Ziganshina, Albina Y; Konovalov, Alexander I

    2015-09-04

    In this communication we report the synthesis of Pd nanoparticle clusters achieved via the assembly of Pd nanoparticles on the surface of a spherical polymer network. The network exhibits flexibility and adapts to the cluster formation. The nanoclusters display high catalytic activity toward p-nitrophenol reduction and the Suzuki-Miyaura coupling reaction.

  12. DELTAMETHRIN AND ESFENVALERATE INHIBIT SPONTANEOUS NETWORK ACTIVITY IN RAT CORTICAL NEURONS IN VITRO.

    Science.gov (United States)

    Understanding pyrethroid actions on neuronal networks will help to establish a mode of action for these compounds, which is needed for cumulative risk decisions under the Food Quality Protection Act of 1996. However, pyrethroid effects on spontaneous activity in networks of inter...

  13. AST: Activity-Security-Trust driven modeling of time varying networks.

    Science.gov (United States)

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-18

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  14. Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters

    Directory of Open Access Journals (Sweden)

    Muhammad Ammirrul Atiqi Mohd Zainuri

    2016-05-01

    Full Text Available This paper presents improvement of a harmonics extraction algorithm, known as the fundamental active current (FAC adaptive linear element (ADALINE neural network with the integration of photovoltaic (PV to shunt active power filters (SAPFs as active current source. Active PV injection in SAPFs should reduce dependency on grid supply current to supply the system. In addition, with a better and faster harmonics extraction algorithm, the SAPF should perform well, especially under dynamic PV and load conditions. The role of the actual injection current from SAPF after connecting PVs will be evaluated, and the better effect of using FAC ADALINE will be confirmed. The proposed SAPF was simulated and evaluated in MATLAB/Simulink first. Then, an experimental laboratory prototype was also developed to be tested with a PV simulator (CHROMA 62100H-600S, and the algorithm was implemented using a TMS320F28335 Digital Signal Processor (DSP. From simulation and experimental results, significant improvements in terms of total harmonic distortion (THD, time response and reduction of source power from grid have successfully been verified and achieved.

  15. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail.

    Science.gov (United States)

    Gritsun, Taras A; le Feber, Joost; Rutten, Wim L C

    2012-01-01

    A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.

  16. Growth Dynamics Explain the Development of Spatiotemporal Burst Activity of Young Cultured Neuronal Networks in Detail

    Science.gov (United States)

    Gritsun, Taras A.; le Feber, Joost; Rutten, Wim L. C.

    2012-01-01

    A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms. PMID:23028450

  17. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail.

    Directory of Open Access Journals (Sweden)

    Taras A Gritsun

    Full Text Available A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP synapses (so, no long-term potentiation, LTP, or depression, LTD, was included. However, elevated pre-phases (burst leaders and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.

  18. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  19. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  20. Fast demand response in support of the active distribution network

    NARCIS (Netherlands)

    MacDougall, P.; Heskes, P.; Crolla, P.; Burt, G.; Warmer, C.

    2013-01-01

    Demand side management has traditionally been investigated for "normal" operation services such as balancing and congestion management. However they potentially could be utilized for Distributed Network Operator (DNO) services. This paper investigates and validates the use of a supply and demand

  1. Voltage Estimation in Active Distribution Grids Using Neural Networks

    DEFF Research Database (Denmark)

    Pertl, Michael; Heussen, Kai; Gehrke, Oliver

    2016-01-01

    the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...

  2. Emulation of the Active Immune Response in a Computer Network

    Science.gov (United States)

    2009-01-15

    there exist a number of methods connected to processes of optimization intended to solve several problems including immunotherapy and immuno ...researchers and security analysts to respond faster in order to keep up with these attacks. New approaches for network security analysis, reactive and

  3. Engineering Online and In-person Social Networks for Physical Activity: A Randomized Trial

    Science.gov (United States)

    Rovniak, Liza S.; Kong, Lan; Hovell, Melbourne F.; Ding, Ding; Sallis, James F.; Ray, Chester A.; Kraschnewski, Jennifer L.; Matthews, Stephen A.; Kiser, Elizabeth; Chinchilli, Vernon M.; George, Daniel R.; Sciamanna, Christopher N.

    2016-01-01

    Background Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. Purpose To conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively-measured outcomes. Methods Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3% male, 83.4% overweight/obese) were randomized to 1 of 3 groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking, and prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Results Participants increased their MVPA by 21.0 mins/week, 95% CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Conclusions Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. Trial Registration Number NCT01142804 PMID:27405724

  4. Engineering Online and In-Person Social Networks for Physical Activity: A Randomized Trial.

    Science.gov (United States)

    Rovniak, Liza S; Kong, Lan; Hovell, Melbourne F; Ding, Ding; Sallis, James F; Ray, Chester A; Kraschnewski, Jennifer L; Matthews, Stephen A; Kiser, Elizabeth; Chinchilli, Vernon M; George, Daniel R; Sciamanna, Christopher N

    2016-12-01

    Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. The purpose of this study was to conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively measured outcomes. Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3 % male, 83.4 % overweight/obese) were randomized to one of three groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking as well as prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Participants increased their MVPA by 21.0 min/week, 95 % CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. The trial was registered with the ClinicalTrials.gov (NCT01142804).

  5. The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation

    Science.gov (United States)

    Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T.

    2015-01-01

    Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. Herein we present the 2.3 Å resolution structure of native-source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent mediated hydrogen-bonding network to the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When taken with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. PMID:26526852

  6. Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    José Manuel eBenita

    2012-08-01

    Full Text Available Short-term synaptic depression (STD is a form of synaptic plasticity that has a large impact on network computations. Experimental results suggest that STD is modulated by cortical activity, decreasing with activity in the network andincreasing during silent states. Here we explored different activity-modulation protocols in a biophysical network model for which the model displayed less STD when the network was active than when it was silent, in agreement with experimental results. Furthermore, trains of synaptic potentials had lesser decay during periods of activity (UP states than during silent periods (DOWN states, providing new experimental predictions. We next tackled the inverse question of what is the impact of modifying STD parameters on the emergent activity of the network, a question difficult to answer experimentally. We found that synaptic depression of cortical connections had a critical role to determine the regime of rhythmic cortical activity. While low STD resulted in an emergent rhythmic activity with short UP states and long DOWN states, increasing STD resulted in longer and more frequent UP states interleaved with short silent periods. A still higher synaptic depression set the network into a non-oscillatory firing regime where DOWN states no longer occurred. The speed of propagation of UP states along the network was not found to be modulated by STD during the oscillatory regime; it remained relatively stable over a range of values of STD. Overall, we found that the mutual interactions between synaptic depression and ongoing network activity are critical to determine the mechanisms that modulate cortical emergent patterns.

  7. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  8. Personalized Social Network Activity Feeds for Increased Interaction and Content Contribution

    Directory of Open Access Journals (Sweden)

    Shlomo eBerkovsky

    2015-10-01

    Full Text Available Online social networks were originally conceived as means of sharing information and activities with friends, and their success has been one of the primary contributors of the tremendous growth of the Web. Social network activity feeds were devised as a means to aggregate recent actions of friends into a convenient list. But the volume of actions and content generated by social network users is overwhelming, such that keeping users up-to-date with friend activities is an ongoing challenge for social network providers. Personalization has been proposed as a solution to combat social network information overload and help users to identify the nuggets of relevant information in the incoming flood of network activities. In this paper, we propose and thoroughly evaluate a personalized model for predicting the relevance of the activity feed items, which informs the ranking of the feeds and facilitates personalization. Results of a live study show that the proposed feed personalization approach successfully identifies and promotes relevant feed items and boosts the uptake of the feeds. In addition, it increases the contribution of user-generated content to the social network and spurs interaction between users.

  9. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    Science.gov (United States)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  10. Object Knowledge Modulates Colour Appearance

    Directory of Open Access Journals (Sweden)

    Christoph Witzel

    2011-01-01

    Full Text Available We investigated the memory colour effect for colour diagnostic artificial objects. Since knowledge about these objects and their colours has been learned in everyday life, these stimuli allow the investigation of the influence of acquired object knowledge on colour appearance. These investigations are relevant for questions about how object and colour information in high-level vision interact as well as for research about the influence of learning and experience on perception in general. In order to identify suitable artificial objects, we developed a reaction time paradigm that measures (subjective colour diagnosticity. In the main experiment, participants adjusted sixteen such objects to their typical colour as well as to grey. If the achromatic object appears in its typical colour, then participants should adjust it to the opponent colour in order to subjectively perceive it as grey. We found that knowledge about the typical colour influences the colour appearance of artificial objects. This effect was particularly strong along the daylight axis.

  11. Object knowledge modulates colour appearance

    Science.gov (United States)

    Witzel, Christoph; Valkova, Hanna; Hansen, Thorsten; Gegenfurtner, Karl R

    2011-01-01

    We investigated the memory colour effect for colour diagnostic artificial objects. Since knowledge about these objects and their colours has been learned in everyday life, these stimuli allow the investigation of the influence of acquired object knowledge on colour appearance. These investigations are relevant for questions about how object and colour information in high-level vision interact as well as for research about the influence of learning and experience on perception in general. In order to identify suitable artificial objects, we developed a reaction time paradigm that measures (subjective) colour diagnosticity. In the main experiment, participants adjusted sixteen such objects to their typical colour as well as to grey. If the achromatic object appears in its typical colour, then participants should adjust it to the opponent colour in order to subjectively perceive it as grey. We found that knowledge about the typical colour influences the colour appearance of artificial objects. This effect was particularly strong along the daylight axis. PMID:23145224

  12. Appearance questions can be misleading

    DEFF Research Database (Denmark)

    Hansen, Mikkel; Markman, Ellen M.

    2005-01-01

    , children were at near ceiling levels in each of our manipulations while they failed the standard versions of the tasks. Moreover, we show how this discourse-based explanation accounts for findings in the literature. Thus children master the appearance-reality distinction by the age of 3 but the standard......Preschoolers' success on the appearance-reality task is a milestone in theory-of-mind development. On the standard task children see a deceptive object, such as a sponge that looks like a rock, and are asked, "What is this really?" and "What does this look like?" Children below 4 1/2 years of age...... fail saying that the object not only is a sponge but also looks like a sponge. We propose that young children's difficulty stems from ambiguity in the meaning of "looks like." This locution can refer to outward appearance ("Peter looks like Paul") but in fact often refers to likely reality ("That looks...

  13. Sonographic appearance of epididymal microlithiasis.

    Science.gov (United States)

    Vandervelde, Clive; Varghese, Ajay; Mason, Althea; Howlett, David

    2007-09-01

    We report a case of epididymal microlithiasis that was diagnosed sonographically in a 75-year-old man undergoing scrotal sonographic examination to investigate right groin pain associated with an inguinal hernia. The sonographic appearance was that of multiple comet-shaped foci of microcalcification throughout both epididymides, with associated comet-tail artifacts. The testes had normal appearance with no evidence of testicular microlithiasis. The patient subsequently remained well after hernia repair. To our knowledge, epididymal microlithiasis has only previously been reported in a cadaveric study; the authors of that study hypothesized that the condition is caused by aging, with ischemia likely implicated in the pathogenesis. There are many other patterns of extratesticular calcification, including sperm granuloma, hematoma, and chronic epididymitis. We discuss how these differ in appearance from epididymal microlithiasis. Epididymal microlithiasis is a completely separate entity from testicular microlithiasis and should be recognized and dismissed by sonographers and radiologists. (c) 2007 Wiley Periodicals, Inc.

  14. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    Science.gov (United States)

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  15. Cross-Layer Active Predictive Congestion Control Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yinfeng Wu

    2009-10-01

    Full Text Available In wireless sensor networks (WSNs, there are numerous factors that may cause network congestion problems, such as the many-to-one communication modes, mutual interference of wireless links, dynamic changes of network topology and the memory-restrained characteristics of nodes. All these factors result in a network being more vulnerable to congestion. In this paper, a cross-layer active predictive congestion control scheme (CL-APCC for improving the performance of networks is proposed. Queuing theory is applied in the CL-APCC to analyze data flows of a single-node according to its memory status, combined with the analysis of the average occupied memory size of local networks. It also analyzes the current data change trends of local networks to forecast and actively adjust the sending rate of the node in the next period. In order to ensure the fairness and timeliness of the network, the IEEE 802.11 protocol is revised based on waiting time, the number of the node‟s neighbors and the original priority of data packets, which dynamically adjusts the sending priority of the node. The performance of CL-APCC, which is evaluated by extensive simulation experiments. is more efficient in solving the congestion in WSNs. Furthermore, it is clear that the proposed scheme has an outstanding advantage in terms of improving the fairness and lifetime of networks.

  16. ePAL roadmap for active ageing: a collaborative networks approach to extending professional life

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.; del Cura, A.; Playfoot, J.

    2010-01-01

    Active ageing, through a balanced combination of leisure and social interaction with continued work involvement, is central to meeting older citizens expectations, and maintaining their mental and physical health. Application of the collaborative networks paradigm, and the new generation of

  17. Active Power Distribution Network Security Monitoring System Based on PDMiner Platform

    National Research Council Canada - National Science Library

    CHANG Cheng

    2017-01-01

    ...,using the data mining technology and distributed parallel computing method,establishing an active distribution network security monitoring system model based on PDMiner large data mining platform...

  18. Assembling the puzzle for promoting physical activity in Brazil: a social network analysis.

    Science.gov (United States)

    Brownson, Ross C; Parra, Diana C; Dauti, Marsela; Harris, Jenine K; Hallal, Pedro C; Hoehner, Christine; Malta, Deborah Carvalho; Reis, Rodrigo S; Ramos, Luiz Roberto; Ribeiro, Isabela C; Soares, Jesus; Pratt, Michael

    2010-07-01

    Physical inactivity is a significant public health problem in Brazil that may be addressed by partnerships and networks. In conjunction with Project GUIA (Guide for Useful Interventions for Physical Activity in Brazil and Latin America), the aim of this study was to conduct a social network analysis of physical activity in Brazil. An online survey was completed by 28 of 35 organizations contacted from December 2008 through March 2009. Network analytic methods examined measures of collaboration, importance, leadership, and attributes of the respondent and organization. Leadership nominations for organizations studied ranged from 0 to 23. Positive predictors of collaboration included: south region, GUIA membership, years working in physical activity, and research, education, and promotion/practice areas of physical activity. The most frequently reported barrier to collaboration was bureaucracy. Social network analysis identified factors that are likely to improve collaboration among organizations in Brazil.

  19. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation.

    Science.gov (United States)

    Lambe, E K; Aghajanian, G K

    2007-03-30

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic N-methyl-d-aspartic acid (NMDA) receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by 2,5-dimethoxy-4-iodoamphetamine (DOI) (a psychedelic hallucinogen that is a partial agonist of 5-HT(2A/2C) receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor threo-beta-benzoylaspartic acid (TBOA) restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABA(A) antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia.

  20. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    Science.gov (United States)

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.

  1. Differential activation of the default mode network in jet lagged individuals

    OpenAIRE

    Coutinho,Joana; Óscar F. Gonçalves; Maia, Liliana Filipa Costa; Vasconcelos, Cristiana Fernandes; Perrone-McGovern, Kristin; Simon-Dack, Stephanie; Hernandez, Kristina; Silva, Patrícia Oliveira; Mesquita, Ana Raquel; Sampaio, Adriana

    2015-01-01

    Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test ...

  2. Multi-level Control Framework for Enhanced Flexibility of Active Distribution Network

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    In this paper, the control objectives of future active distribution networks with high penetration of renewables and flexible loads are analyzed and reviewed. From a state of the art review, the important control objectives seen from the perspective of a distribution system operator are identified...... to be hosting capacity improvement, high reliable operation and cost effective network management. Based on this review and a state of the art review concerning future distribution network control methods, a multi-level control architecture is constructed for an active distribution network, which satisfies...... the selected control objectives and provides enhanced flexibility. The control architecture is supported by generation/load forecasting and distribution state estimation techniques to improve the controllability of the network. The multi-level control architecture consists of three levels of hierarchical...

  3. Investigating solvability and complexity of linear active networks by means of matroids

    DEFF Research Database (Denmark)

    Petersen, Bjørn

    1979-01-01

    The solvability and complexity problems of finear active network are approached from a purely combinatorial point of view, using the concepts of matroid theory. Since the method is purely combinatorial, we take into account the network topology alone. Under this assumption necessary and sufficient...... conditions are given for the unique solvablity of linear active networks. The complexity and the number of dc-eigenfrequencies are also given. The method enables.you to decide if degeneracies are due to the topology alone, or if they are caused by special relations among network parameter values....... If the network parameter values are taken into account, the complexity and number of dc-eigenfrequencies given by the method, are only upper and lower bounds, respectively. The above conditions are fairly easily checked, and the complexity and number of dc-elgenfrequencies are found, using polynomially bounded...

  4. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    Science.gov (United States)

    Sahoo, Ramendra; Jain, Vikrant

    2017-04-01

    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger

  5. Analyzing heterogeneity in the effects of physical activity in children on social network structure and peer selection dynamics.

    Science.gov (United States)

    Henry, Teague; Gesell, Sabina B; Ip, Edward H

    2016-09-01

    Social networks influence children and adolescents' physical activity. The focus of this paper is to examine the differences in the effects of physical activity on friendship selection, with eye to the implications on physical activity interventions for young children. Network interventions to increase physical activity are warranted but have not been conducted. Prior to implementing a network intervention in the field, it is important to understand potential heterogeneities in the effects that activity level have on network structure. In this study, the associations between activity level and cross sectional network structure, and activity level and change in network structure are assessed. We studied a real-world friendship network among 81 children (average age 7.96 years) who lived in low SES neighborhoods, attended public schools, and attended one of two structured aftercare programs, of which one has existed and the other was new. We used the exponential random graph model (ERGMs) and its longitudinal extension to evaluate the association between activity level and various demographic factors in having, forming, and dissolving friendship. Due to heterogeneity between the friendship networks within the aftercare programs, separate analyses were conducted for each network. There was heterogeneity in the effect of physical activity on both cross sectional network structure and the formation and dissolution processes, both across time and between networks. Network analysis could be used to assess the unique structure and dynamics of a social network before an intervention is implemented, so as to optimize the effects of the network intervention for increasing childhood physical activity. Additionally, if peer selection processes are changing within a network, a static network intervention strategy for childhood physical activity could become inefficient as the network evolves.

  6. Color Categories and Color Appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  7. Memory colours affect colour appearance.

    Science.gov (United States)

    Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R

    2016-01-01

    Memory colour effects show that colour perception is affected by memory and prior knowledge and hence by cognition. None of Firestone & Scholl's (F&S's) potential pitfalls apply to our work on memory colours. We present a Bayesian model of colour appearance to illustrate that an interaction between perception and memory is plausible from the perspective of vision science.

  8. Morphological Transformation and Force Generation of Active Cytoskeletal Networks.

    Directory of Open Access Journals (Sweden)

    Tamara Carla Bidone

    2017-01-01

    Full Text Available Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation.

  9. Impact of Demand Side Management in Active Distribution Networks

    DEFF Research Database (Denmark)

    Ponnaganti, Pavani; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    Demand Side Management (DSM) is an efficient flexible program which helps distribution network operators to meet the future critical peak demand. It is executed in cases of not only technical issues like voltage sag or swell, transformer burdening, cable congestions, but also to increase the degree...... vehicle, electric heating etc. are present. Simulations are carried out in Danish low voltage grid for summer and winter cases....

  10. Mathematical analysis techniques for modeling the space network activities

    Science.gov (United States)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  11. Hierarchical brain networks active in approach and avoidance goal pursuit

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin Spielberg

    2013-06-01

    Full Text Available Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal pursuit processes (e.g., motivation has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity vital to goal pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  12. Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios

    Science.gov (United States)

    Başağaoğlu, Hakan; Succi, Sauro; Manepally, Chandrika; Fedors, Randall; Wyrick, Danielle Y.

    2009-09-01

    Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture-matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11-0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.

  13. A web-based, social networking physical activity intervention for insufficiently active adults delivered via Facebook app : randomized controlled trial

    OpenAIRE

    Maher, Carol; Ferguson, Monika; Vandelanotte, Corneel; Plotnikoff, Ron; de Bourdeaudhuij, Ilse; Thomas, Samantha; Nelson-Field, Karen; Olds, Tim

    2015-01-01

    Background Online social networks offer considerable potential for delivery of socially influential health behavior change interventions. Objective To determine the efficacy, engagement, and feasibility of an online social networking physical activity intervention with pedometers delivered via Facebook app. Methods A total of 110 adults with a mean age of 35.6 years (SD 12.4) were recruited online in teams of 3 to 8 friends. Teams were randomly allocated to receive access to a 50-day online s...

  14. Active Power Distribution Network Security Monitoring System Based on PDMiner Platform

    Directory of Open Access Journals (Sweden)

    CHANG Cheng

    2017-04-01

    Full Text Available Active distribution network system has the characteristics of complex structure,high DG permeability,large load fluctuation,strict control requirements. The data information of operation has the characteristics of high volume,high speed,diversity and value. For active distribution network data processing, according to the theory of cloud calculation,using the data mining technology and distributed parallel computing method,establishing an active distribution network security monitoring system model based on PDMiner large data mining platform. The processing of historical data and real time fault data are studied respectively. Research results show that the system by processing of historical data for risk zoning,development planning,operation state evaluation,by processing of fault data for fault analysis and processing,providing the basis for the distribution network security. The result of the system is verified by the simulation example.

  15. Transferring knowledge of activity recognition across sensor networks

    NARCIS (Netherlands)

    van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A.

    2010-01-01

    A problem in performing activity recognition on a large scale (i.e. in many homes) is that a labelled data set needs to be recorded for each house activity recognition is performed in. This is because most models for activity recognition require labelled data to learn their parameters. In this paper

  16. Special Feature: Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors

    Science.gov (United States)

    Koenderink, Gijsje H.; Dogic, Zvonimir; Nakamura, Fumihiko; Bendix, Poul M.; MacKintosh, Frederick C.; Hartwig, John H.; Stossel, Thomas P.; Weitz, David A.

    2009-09-01

    We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.

  17. Bi-directional astrocytic regulation of neuronal activity within a network

    Science.gov (United States)

    Gordleeva, S. Yu; Stasenko, S. V.; Semyanov, A. V.; Dityatev, A. E.; Kazantsev, V. B.

    2012-01-01

    The concept of a tripartite synapse holds that astrocytes can affect both the pre- and post-synaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin–Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs) obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the PSCs. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them. PMID:23129997

  18. Analysing human mobility patterns of hiking activities through complex network theory.

    Science.gov (United States)

    Lera, Isaac; Pérez, Toni; Guerrero, Carlos; Eguíluz, Víctor M; Juiz, Carlos

    2017-01-01

    The exploitation of high volume of geolocalized data from social sport tracking applications of outdoor activities can be useful for natural resource planning and to understand the human mobility patterns during leisure activities. This geolocalized data represents the selection of hike activities according to subjective and objective factors such as personal goals, personal abilities, trail conditions or weather conditions. In our approach, human mobility patterns are analysed from trajectories which are generated by hikers. We propose the generation of the trail network identifying special points in the overlap of trajectories. Trail crossings and trailheads define our network and shape topological features. We analyse the trail network of Balearic Islands, as a case of study, using complex weighted network theory. The analysis is divided into the four seasons of the year to observe the impact of weather conditions on the network topology. The number of visited places does not decrease despite the large difference in the number of samples of the two seasons with larger and lower activity. It is in summer season where it is produced the most significant variation in the frequency and localization of activities from inland regions to coastal areas. Finally, we compare our model with other related studies where the network possesses a different purpose. One finding of our approach is the detection of regions with relevant importance where landscape interventions can be applied in function of the communities.

  19. Object Knowledge Modulates Colour Appearance

    OpenAIRE

    Witzel, Christoph; Valkova, Hanna; Hansen, Thorsten; Gegenfurtner, Karl R.

    2011-01-01

    We investigated the memory colour effect for colour diagnostic artificial objects. Since knowledge about these objects and their colours has been learned in everyday life, these stimuli allow the investigation of the influence of acquired object knowledge on colour appearance. These investigations are relevant for questions about how object and colour information in high-level vision interact as well as for research about the influence of learning and experience on perception in general. In o...

  20. Cerebral candidiasis. Computed tomography appearance

    Energy Technology Data Exchange (ETDEWEB)

    Chaabane, M.; Ladeb, M.F.; Bouhaouala, M.H.; Ben Hammouda, M.; Ataalah, R.; Gannouni, A.; Krifa, H.

    1989-07-01

    A three year old child who had been suffering from oral candidiasis since the age of 1 year presented with osteitis of the clavicle, 2 cerebral frontal abscesses and an occipital abscess which extended across the calvaria and was associated with osteolysis. Histological and microbiological studies following surgery confirmed the diagnosis of candidiasis in this girl who was found to have IgA immunodefinciency. The authors report the computed tomographic appearance of the cerebral lesions and review the literature. (orig.).

  1. Subcutaneous granuloma annulare: radiologic appearance

    Energy Technology Data Exchange (ETDEWEB)

    Kransdorf, M.J. [Saint Mary`s Hospital, Richmond, VA (United States). Dept. of Radiol.]|[Department of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Murphey, M.D. [Department of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States)]|[Department of Radiology and Nuclear Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States)]|[Department of Radiology, School of Medicine, University of Maryland, Baltimore, Maryland (United States); Temple, H.T. [Department of Orthopedic Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia (United States)]|[Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States)

    1998-05-01

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.) With 3 figs., 17 refs.

  2. The imaging appearance of crayons

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, Aaron S.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Lall, Neil U. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Ochsner Health System, Department of Radiology, New Orleans, LA (United States); Tawfik, Kareem O. [University of Cincinnati College of Medicine, Department of Otolaryngology-Head and Neck Surgery, Cincinnati, OH (United States)

    2017-05-15

    A crayon fragment was determined to be the source of a foreign body inflammatory process in the masticator space of a 15-month-old boy. The appearance of the crayon on CT and MR imaging was unexpected, leading to a further analysis of the imaging features of crayons. To investigate and characterize the imaging appearance of crayons at CT and MRI. The authors obtained CT and MR images of 22 crayons from three manufacturers and three non-pigmented crayons cast by the authors. CT attenuation of the crayons and diameter of the MRI susceptibility signal dropout were plotted versus brand and color. All crayons demonstrated a longitudinal central hypo-attenuating tract. Crayon attenuation varied by brand and color. All of the crayons demonstrated a signal void on T1 and T2 imaging and signal dropout on susceptibility-weighted imaging, the diameter of which varied by brand and color. Understanding the imaging appearance of crayons could help in the correct identification of a crayon as a foreign body on imaging studies, even when it is located in unusual places. (orig.)

  3. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  4. The distribution of physical activity in an after-school friendship network.

    Science.gov (United States)

    Gesell, Sabina B; Tesdahl, Eric; Ruchman, Eileen

    2012-06-01

    To examine whether a child's friendship network in an afterschool program influences his/her physical activity. Three waves of data were collected from school-aged children participating in aftercare (n = 81; mean [SD] age, 7.96 [1.74] years; 40% African American, 39% white, and 19% Latino) a name generator survey was used to map each child's social network, and accelerometers were used to measure physical activity. We applied stochastic actor-based modeling for social networks and behavior. Children did not form or dissolve friendships based on physical activity levels, but existing friendships heavily influenced children's level of physical activity. The strongest influence on the amount of time children spent in moderate-to-vigorous activity in the afterschool hours was the activity level of their immediate friends. Children consistently made adjustments to their activity levels of 10% or more to emulate the activity levels of their peers (odds ratio [OR] = 6.89, P < .01). Age (OR = 0.92, P < .10) and obesity status (OR = 0.66, P < .10) had marginally significant and relatively small direct effects on the activity. Gender had no direct effect on activity. These results suggest that friendship ties play a critical role in setting physical activity patterns in children as young as 5 to 12 years. Children's activity levels can be increased, decreased, or stabilized depending on the activity level of their immediate social network during a 12-week afterschool program. Network-based interventions hold the potential to produce clinically significant changes to children's physical activity.

  5. The ATLAS Women's Network: one year of activities

    CERN Multimedia

    Paula Eerola

    The idea for an ATLAS Women's Network was born during the ATLAS overview week in October 2005, when a few of us discussed our experiences and were pondering about what we could do. We felt that it was important to increase the visibility of women working in ATLAS in order to make a better and more effective use of the ATLAS human resources, that is, make sure that women are duly included at all levels. Furthermore, it is our belief that making ATLAS a better working environment for female collaborators and other female co-workers will benefit both us and the collaboration as a whole. On the individual level, all of us thought that we could benefit from peer support and experience sharing, and an ATLAS Women's Network could facilitate this by developing contacts between the ATLAS Women in ATLAS Institutes worldwide. Finally, we thought that it was important to increase the number of women studying physics and working in the field of physics research by identifying gender barriers in the career paths of women i...

  6. Nuclear power plant maintenance optimisation SENUF network activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrand, R.; Bieth, M.; Pla, P.; Rieg, C.; Trampus, P. [Inst. for Energy, EC DG Joint Research Centre, Petten (Netherlands)

    2004-07-01

    During providing scientific and technical support to TACIS and PHARE nuclear safety programs a large amount of knowledge related to Russian design reactor systems has accumulated and led to creation of a new Network concerning Nuclear Safety in Central and Eastern Europe called ''Safety of Eastern European type Nuclear Facilities'' (SENUF). SENUF contributes to bring together all stakeholders of TACIS and PHARE: beneficiaries, end users, Eastern und Western nuclear industries, and thus, to favour fruitful technical exchanges and feedback of experience. At present the main focus of SENUF is the nuclear power plant maintenance as substantial element of plant operational safety as well as life management. A Working Group has been established on plant maintenance. One of its major tasks in 2004 is to prepare a status report on advanced strategies to optimise maintenance. Optimisation projects have an interface with the plant's overall life management program. Today, almost all plants involved in SENUF network have an explicit policy to extend their service life, thus, component ageing management, modernization and refurbishment actions became much more important. A database is also under development, which intends to help sharing the available knowledge and specific equipment and tools. (orig.)

  7. Active Coordinated Operation of Distribution Network System for Many Connections of Distributed Generators

    Science.gov (United States)

    Hayashi, Yasuhiro; Kawasaki, Shoji; Matsuki, Junya; Wakao, Shinji; Baba, Junpei; Hojo, Masahide; Yokoyama, Akihiko; Kobayashi, Naoki; Hirai, Takao; Oishi, Kohei

    Recently, total number of distributed generators (DGS) such as photovoltaic generation system and wind turbine generation system connected to an actual distribution network increases drastically. The distribution network connected with many distributed generators must be operated keeping reliability of power supply, power quality and loss minimization. In order to accomplish active distribution network operation to take advantage of many connections of DGS, a new coordinated operation of distribution system with many connections of DGS is necessary. In this paper, the authors propose a coordinated operation of distribution network system connected with many DGS by using newly proposed sectionalizing switches control, sending voltage control and computation of available DG connection capability. In order to check validity of the proposed coordinated operation of distribution system, numerical simulations using the proposed coordinated distribution system operation are carried out in a practical distribution network model.

  8. Frequency Count Attribute Oriented Induction of Corporate Network Data for Mapping Business Activity

    Science.gov (United States)

    Tanutama, Lukas

    2014-03-01

    Companies increasingly rely on Internet for effective and efficient business communication. As Information Technology infrastructure backbone for business activities, corporate network connects the company to Internet and enables its activities globally. It carries data packets generated by the activities of the users performing their business tasks. Traditionally, infrastructure operations mainly maintain data carrying capacity and network devices performance. It would be advantageous if a company knows what activities are running in its network. The research provides a simple method of mapping the business activity reflected by the network data. To map corporate users' activities, a slightly modified Attribute Oriented Induction (AOI) approach to mine the network data was applied. The frequency of each protocol invoked were counted to show what the user intended to do. The collected data was samples taken within a certain sampling period. Samples were taken due to the enormous data packets generated. Protocols of interest are only Internet related while intranet protocols are ignored. It can be concluded that the method could provide the management a general overview of the usage of its infrastructure and lead to efficient, effective and secure ICT infrastructure.

  9. Normal pediatric postmortem CT appearances

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Willemijn M.; Bosboom, Dennis G.H.; Koopmanschap, Desiree H.J.L.M. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Nievelstein, Rutger A.J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Nikkels, Peter G.J. [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Rijn, Rick R. van [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands)

    2015-04-01

    Postmortem radiology is a rapidly developing specialty that is increasingly used as an adjunct to or substitute for conventional autopsy. The goal is to find patterns of disease and possibly the cause of death. Postmortem CT images bring to light processes of decomposition most radiologists are unfamiliar with. These postmortem changes, such as the formation of gas and edema, should not be mistaken for pathological processes that occur in living persons. In this review we discuss the normal postmortem thoraco-abdominal changes and how these appear on CT images, as well as how to differentiate these findings from those of pathological processes. (orig.)

  10. CT appearances of pleural tumours

    Energy Technology Data Exchange (ETDEWEB)

    Salahudeen, H.M. [Department of Radiology, Leeds Teaching Hospitals NHS Trust (United Kingdom)], E-mail: hmdsal@gmail.com; Hoey, E.T.D. [Department of Radiology, Leeds Teaching Hospitals NHS Trust (United Kingdom); Department of Radiology, Papworth Hospital, Cambridge (United Kingdom); Robertson, R.J.; Darby, M.J. [Department of Radiology, Leeds Teaching Hospitals NHS Trust (United Kingdom)

    2009-09-15

    Computed tomography (CT) is the imaging technique of choice for characterizing pleural masses with respect to their location, composition, and extent. CT also provides important information regarding invasion of the chest wall and surrounding structures. A spectrum of tumours can affect the pleura of which metastatic adenocarcinoma is the commonest cause of malignant pleural disease, while malignant mesothelioma is the most common primary pleural tumour. Certain CT features help differentiate benign from malignant processes. This pictorial review highlights the salient CT appearances of a range of tumours that may affect the pleura.

  11. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain.

    Science.gov (United States)

    Spiegler, Andreas; Hansen, Enrique C A; Bernard, Christophe; McIntosh, Anthony R; Jirsa, Viktor K

    2016-01-01

    When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation.

  12. Activity in the action observation network enhances emotion regulation during observation of risk-taking: an fMRI study.

    Science.gov (United States)

    Tamura, Miyuki; Moriguchi, Yoshiya; Higuchi, Shigekazu; Hida, Akiko; Enomoto, Minori; Umezawa, Jun; Mishima, Kazuo

    2013-01-01

    The results of neuroimaging studies have indicated that viewing emotional stimuli can lead to activity increases in brain regions associated with processing actions. We hypothesized that observation of actions involving the potential for harm (i.e., risk-taking actions) would activate emotion- and pain-related processing. We used functional magnetic resonance imaging to examine the changes in neural activity during the observation of safe and risk-taking actions in 34 healthy participants (14 females, 20 males; mean age: 23·4±3·7 years). Observation of risk-taking actions elicited significantly stronger neural activation in the inferior frontal gyrus, ventromedial prefrontal cortex, superior frontal gyrus/frontal pole, inferior parietal lobule, middle temporal gyrus, middle occipital gyrus, lingual gyrus, cuneus (including the calcarine sulcus), insula, and amygdala, than observation of safe actions. Interestingly, we observed significant activation of affect-related brain areas (ventromedial prefrontal cortex, amygdala, and insula), thought to be implicated in various aspects of emotion regulation during the observation of risk-taking actions. No brain regions exhibited greater activation during observation of safe actions than during observation of risk-taking actions associated with risk. Our results reveal that the risk-related content of the observed actions in the video clips elicited activation of a network of visual input and processing regions, including the action observation network, that appears to encode the meanings of observed actions as well as the reflective or retrospective monitoring of their outcomes. These findings suggest that risk-taking situations may increase cognitive load on the entire action perception system, and may command more attention.

  13. Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller

    Directory of Open Access Journals (Sweden)

    Hossein ASHTIANI

    2012-01-01

    Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers

  14. A review of active learning approaches to experimental design for uncovering biological networks.

    Directory of Open Access Journals (Sweden)

    Yuriy Sverchkov

    2017-06-01

    Full Text Available Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area.

  15. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  16. Active-Varying Sampling-Based Fault Detection Filter Design for Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2014-01-01

    Full Text Available This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.

  17. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  18. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  19. The Contribution of Extracurricular Activities to Adolescent Friendships: New Insights through Social Network Analysis

    Science.gov (United States)

    Schaefer, David R.; Simpkins, Sandra D.; Vest, Andrea E.; Price, Chara D.

    2011-01-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods…

  20. HACMAC: A reliable human activity-based medium access control for implantable body sensor networks

    NARCIS (Netherlands)

    Karuppiah Ramachandran, Vignesh Raja; Havinga, Paul J.M.; Meratnia, Nirvana

    Chronic care is an eminent application of implantable body sensor networks (IBSN). Performing physical activities such as walking, running, and sitting is unavoidable during the long-term monitoring of chronic-care patients. These physical activities cripple the radio frequency (RF) signal between

  1. Activating the adoption of innovation : lessons from a passive house network

    NARCIS (Netherlands)

    Mlecnik, E.

    2016-01-01

    Purpose – The purpose of this paper is to explore innovation adoption theory and to define a model to investigate operational activities and communication in innovation networks that can stimulate both supply and demand. It also aims to exemplify this model with the activities of an innovation

  2. Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production.

    Science.gov (United States)

    Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2017-03-01

    Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating.

    Science.gov (United States)

    Ibe, Takeshi; Frings, Rainer B; Lachowicz, Artur; Kyo, Soichi; Nishide, Hiroyuki

    2010-05-28

    Highly and homogeneously crosslinked poly(beta-ketoester) networks densely bearing robust nitroxide radicals were prepared via a click-type and stepwise Michael polyaddition. A half-battery cell composed of the thermally-cured radical network coatings displayed a rapid, reversible, and almost stoichiometric redox-activity even with a thickness of ca. 10 mum, which may be applicable as the electrode of organic-based rechargeable devices.

  4. Central European MetEor NeTwork: Current status and future activities

    Science.gov (United States)

    Srba, J.; Koukal, J.; Ferus, M.; Lenža, L.; Gorková, S.; Civiš, S.; Simon, J.; Csorgei, T.; Jedlièka, M.; Korec, M.; Kaniansky, S.; Polák, J.; Spurný, M.; Brázdil, T.; Mäsiar, J.; Zima, M.; Delinèák, P.; Popek, M.; Bahýl, V.; Piffl, R.; Èechmánek, M.

    2016-06-01

    The Central European video Meteor Network (CEMeNt) established in 2010 is a platform for cross-border cooperation in the field of video meteor observations between Czech Republic and Slovakia. During five years of operation the CEMeNt network went through an extensive development. In total, 37 video systems were working on 20 permanent stations located in Czech Republic and Slovakia during 2015. In this paper we summarize CEMeNt current status and introduce some future activities.

  5. Microgrids in Active Network Management-Part II:System Operation, Power Quality and Protection

    OpenAIRE

    Palizban, Omid; Kauhaniemi, Kimmo; Josep M. Guerrero

    2014-01-01

    The development of distribution networks for participation in active network management (ANM) and smart grids is introduced using the microgrid concept. In recent years, this issue has been researched and implemented by many experts. The second part of this paper describes those developed operational concepts of microgrids that have an impact on their participation in ANM and in the requirements for achieving targets. Power quality is the most challenging task in microgrids, especially when t...

  6. Robust Functionality and Active Data Management for Cooperative Networks in the Presence of WMD Stressors

    Science.gov (United States)

    2011-09-01

    Active Data ManagemE~nt for Cooperative Networks in the Presentee of WMD Stressors Approved for public release; distribution is unlimited. September...policies were obtaiMd by solving a constrained optimization problem whose cost function employs the rigorous model developed for the service reliability of...to policies that considered nodes’ roliability but disregarded the communication costs over the network. Moreover, the algorithm developed ill this

  7. FCJ-191 Mirroring the Videos of Anonymous: Cloud Activism, Living Networks, and Political Mimesis

    Directory of Open Access Journals (Sweden)

    Adam Fish

    2015-06-01

    Full Text Available Mirrors describe the multiplication of data across a network. In this article, I examine the politics of mirroring as practiced on videos by the hacktivist network Anonymous. Mirrors are designed to retain visibility on social media platforms and motivate viewers towards activism. They emerge from a particular social structure and propagate a specific symbolic system. Furthermore, mirrors are not exact replicas nor postmodern representations. Rather, mirroring maps a contestation over visibility that entangles both cloud activists and platform firms.

  8. What Motivates Young Adults to Talk About Physical Activity on Social Network Sites?

    Science.gov (United States)

    Zhang, Ni; Campo, Shelly; Yang, Jingzhen; Eckler, Petya; Snetselaar, Linda; Janz, Kathleen; Leary, Emily

    2017-06-22

    Electronic word-of-mouth on social network sites has been used successfully in marketing. In social marketing, electronic word-of-mouth about products as health behaviors has the potential to be more effective and reach more young adults than health education through traditional mass media. However, little is known about what motivates people to actively initiate electronic word-of-mouth about health behaviors on their personal pages or profiles on social network sites, thus potentially reaching all their contacts on those sites. This study filled the gap by applying a marketing theoretical model to explore the factors associated with electronic word-of-mouth on social network sites about leisure-time physical activity. A Web survey link was sent to undergraduate students at one of the Midwestern universities and 439 of them completed the survey. The average age of the 439 participants was 19 years (SD=1 year, range: 18-24). Results suggested that emotional engagement with leisure-time physical activity (ie, affective involvement in leisure-time physical activity) predicted providing relevant opinions or information on social network sites. Social network site users who perceived stronger ties with all their contacts were more likely to provide and seek leisure-time physical activity opinions and information. People who provided leisure-time physical activity opinions and information were more likely to seek opinions and information, and people who forwarded information about leisure-time physical activity were more likely to chat about it. This study shed light on the application of the electronic word-of-mouth theoretical framework in promoting health behaviors. The findings can also guide the development of future social marketing interventions using social network sites to promote leisure-time physical activity.

  9. Modeling users' activity on twitter networks: validation of Dunbar's number.

    Directory of Open Access Journals (Sweden)

    Bruno Gonçalves

    Full Text Available Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the 'economy of attention' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  10. Modeling users' activity on Twitter networks: validation of Dunbar's number

    Science.gov (United States)

    Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro

    2012-02-01

    Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the ``economy of attention'' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  11. Activity Patterns of Cultured Neural Networks on Micro Electrode Arrays

    National Research Council Canada - National Science Library

    Rutten, Wim

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord...

  12. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    Science.gov (United States)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  13. Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus.

    Science.gov (United States)

    Claus, Lena; Philippot, Camille; Griemsmann, Stephanie; Timmermann, Aline; Jabs, Ronald; Henneberger, Christian; Kettenmann, Helmut; Steinhäuser, Christian

    2018-01-01

    The ventral posterior nucleus of the thalamus plays an important role in somatosensory information processing. It contains elongated cellular domains called barreloids, which are the structural basis for the somatotopic organization of vibrissae representation. So far, the organization of glial networks in these barreloid structures and its modulation by neuronal activity has not been studied. We have developed a method to visualize thalamic barreloid fields in acute slices. Combining electrophysiology, immunohistochemistry, and electroporation in transgenic mice with cell type-specific fluorescence labeling, we provide the first structure-function analyses of barreloidal glial gap junction networks. We observed coupled networks, which comprised both astrocytes and oligodendrocytes. The spread of tracers or a fluorescent glucose derivative through these networks was dependent on neuronal activity and limited by the barreloid borders, which were formed by uncoupled or weakly coupled oligodendrocytes. Neuronal somata were distributed homogeneously across barreloid fields with their processes running in parallel to the barreloid borders. Many astrocytes and oligodendrocytes were not part of the panglial networks. Thus, oligodendrocytes are the cellular elements limiting the communicating panglial network to a single barreloid, which might be important to ensure proper metabolic support to active neurons located within a particular vibrissae signaling pathway. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  15. Radiologic appearance of pancreatic cystadenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shinichiro; Nagano, Hideki; Kimoto, Masatoshi and others

    1988-07-01

    We report the radiologic appearance of pancreatic cystadenoma and cystadenocarcinoma by various imaging methods. US demonstrated predominantly cystic mass containing internal septations. Highly echogenic solid components are often noted within cysts. CT revealed an encapsulated and lobulated cystic mass and most of the cysts contained thin and curvilinear septa within multilocular mass. Calcifications were often noted in the thick wall of the cysts. ERP showed extension of the pancreatic duct and no communication between cysts and pancreatic duct seemed to be characteristic findings. By angiography displacement of pancreatic vessels without encasement were common features and abnormal staining were noted in some cases. Seven cases experienced in our laboratory were analyzed clinically and one case of 90 year old female might be the oldest case ever reported.

  16. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Science.gov (United States)

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  17. Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks.

    Science.gov (United States)

    Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S

    2017-08-03

    Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.

  18. An investigation of the relationship between activation of a social cognitive neural network and social functioning.

    Science.gov (United States)

    Pinkham, Amy E; Hopfinger, Joseph B; Ruparel, Kosha; Penn, David L

    2008-07-01

    Previous work examining the neurobiological substrates of social cognition in healthy individuals has reported modulation of a social cognitive network such that increased activation of the amygdala, fusiform gyrus, and superior temporal sulcus are evident when individuals judge a face to be untrustworthy as compared with trustworthy. We examined whether this pattern would be present in individuals with schizophrenia who are known to show reduced activation within these same neural regions when processing faces. Additionally, we sought to determine how modulation of this social cognitive network may relate to social functioning. Neural activation was measured using functional magnetic resonance imaging with blood oxygenation level dependent contrast in 3 groups of individuals--nonparanoid individuals with schizophrenia, paranoid individuals with schizophrenia, and healthy controls--while they rated faces as either trustworthy or untrustworthy. Analyses of mean percent signal change extracted from a priori regions of interest demonstrated that both controls and nonparanoid individuals with schizophrenia showed greater activation of this social cognitive network when they rated a face as untrustworthy relative to trustworthy. In contrast, paranoid individuals did not show a significant difference in levels of activation based on how they rated faces. Further, greater activation of this social cognitive network to untrustworthy faces was significantly and positively correlated with social functioning. These findings indicate that impaired modulation of neural activity while processing social stimuli may underlie deficits in social cognition and social dysfunction in schizophrenia.

  19. My neighbors made me do it: an exploration of a neighborhood network model of activism

    Science.gov (United States)

    Lewis, Michael A.; Noguchi, Eri

    2008-08-01

    Social scientists have allocated a great deal of time to trying to understand the determinants of civic/political engagement. They, along with physicists, have also shown some interest in social networks, some in the question of the association between such networks and civic/political engagement. This paper builds on this work by exploring the extent to which the association between one's neighborhood network and the chance that one has taken part in a march, boycott, or demonstration varies by gender. We did several types of analyses. Initially, we used conditional probabilities to explore the relationship between neighborhood network and the chance that one has taken part in a march, boycott, or demonstration. After pointing out the problems with these conditional probabilities, we conducted logistic regression on a data set of 1897 females and 1521 males from the United States. We found that males whose neighbors give them a sense of community had about one and a half times the odds of having taken part in a march, boycott, or demonstration over the previous twelve months compared to males whose neighbors do not give them such a sense. For females, there appeared to be no such association between neighborhood network and the chance of having taken part in a march, boycott, or demonstration.

  20. Explosive percolation on directed networks due to monotonic flow of activity

    Science.gov (United States)

    Waagen, Alex; D'Souza, Raissa M.; Lu, Tsai-Ching

    2017-07-01

    An important class of real-world networks has directed edges, and in addition, some rank ordering on the nodes, for instance the popularity of users in online social networks. Yet, nearly all research related to explosive percolation has been restricted to undirected networks. Furthermore, information on such rank-ordered networks typically flows from higher-ranked to lower-ranked individuals, such as follower relations, replies, and retweets on Twitter. Here we introduce a simple percolation process on an ordered, directed network where edges are added monotonically with respect to the rank ordering. We show with a numerical approach that the emergence of a dominant strongly connected component appears to be discontinuous. Large-scale connectivity occurs at very high density compared with most percolation processes, and this holds not just for the strongly connected component structure but for the weakly connected component structure as well. We present analysis with branching processes, which explains this unusual behavior and gives basic intuition for the underlying mechanisms. We also show that before the emergence of a dominant strongly connected component, multiple giant strongly connected components may exist simultaneously. By adding a competitive percolation rule with a small bias to link uses of similar rank, we show this leads to formation of two distinct components, one of high-ranked users, and one of low-ranked users, with little flow between the two components.

  1. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  2. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H; Ben-Zvi, Ayal; Kaeser, Pascal S; Xu, Xiaoyin; Costa, Luciano da F; Gu, Chenghua

    2014-09-03

    Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether or not neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals an important feature of neurovascular interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on V-Fluctuations during Network Activity

    DEFF Research Database (Denmark)

    Kolind, Jens; Hounsgaard, Jørn Dybkjær; Berg, Rune W

    2012-01-01

    Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (V(m)) and spike timing. The conductance increase is commonly attributed to synaptic......(m) -fluctuations and conductance observed experimentally during functional network activity leave little room for intrinsic conductance to contribute. Even without intrinsic conductances the variance in V(m) -fluctuations can only be explained by a high degree of correlated firing among presynaptic neurons....... conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential...

  4. Adaptive locomotor network activation during randomized walking speeds using functional near-infrared spectroscopy.

    Science.gov (United States)

    Kim, Ha Yeon; Kim, Eun Joo; You, Joshua Sung H

    2017-07-20

    An improved understanding of the mechanisms underlying locomotor networks has the potential to benefit the neurorehabilitation of patients with neurological locomotor deficits. However, the specific locomotor networks that mediate adaptive locomotor performance and changes in gait speed remain unknown. The aim of the present study was to examine patterns of cortical activation associated with the walking speeds of 1.5, 2.0, 2.5, and 3.0 km/h on a treadmill. Functional near-infrared spectroscopy (fNIRS) was performed on a 30-year-old right-handed healthy female subject, and cerebral hemodynamic changes were observed in cortical locomotor network areas including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). The software package NIRS-statistical parametric mapping (NIRS-SPM) was utilized to analyze fNIRS data in the MATLAB environment. SPM t-statistic maps were computed at an uncorrected threshold of pglobalized locomotor network activation of the SMC, PMC, SMA, and PMC; additionally, the site with the highest cortical activation ratio shifted from the SMC to the SMA. Global locomotor network recruitment, in particular PFC activation indicated by OxyHb in our study, may indicate a response to increased cognitive-locomotor demand due to simultaneous postural maintenance and leg movement coordination.

  5. Wearable Networked Sensing for Human Mobility and Activity Analytics: A Systems Study

    OpenAIRE

    Dong, Bo; Biswas, Subir

    2012-01-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities in ...

  6. Alcohol brand appearances in US popular music.

    Science.gov (United States)

    Primack, Brian A; Nuzzo, Erin; Rice, Kristen R; Sargent, James D

    2012-03-01

    The average US adolescent is exposed to 34 references to alcohol in popular music daily. Although brand recognition is an independent, potent risk factor for alcohol outcomes among adolescents, alcohol brand appearances in popular music have not been assessed systematically. We aimed to determine the prevalence of and contextual elements associated with alcohol brand appearances in US popular music. Qualitative content analysis. We used Billboard Magazine to identify songs to which US adolescents were most exposed in 2005-07. For each of the 793 songs, two trained coders analyzed independently the lyrics of each song for references to alcohol and alcohol brand appearances. Subsequent in-depth assessments utilized Atlas.ti to determine contextual factors associated with each of the alcohol brand appearances. Our final code book contained 27 relevant codes representing six categories: alcohol types, consequences, emotional states, activities, status and objects. Average inter-rater reliability was high (κ = 0.80), and all differences were easily adjudicated. Of the 793 songs in our sample, 169 (21.3%) referred explicitly to alcohol, and of those, 41 (24.3%) contained an alcohol brand appearance. Consequences associated with alcohol were more often positive than negative (41.5% versus 17.1%, P popular music had explicit references to alcohol, and one-quarter of these mentioned a specific alcohol brand. These alcohol brand appearances are associated commonly with a luxury life-style characterized by wealth, sex, partying and other drugs. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  7. Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Alaburda, Aidas; Hounsgaard, Jørn Dybkjær

    2013-01-01

    Intrinsic response properties of neurons change during network activity. These changes may reinforce the initiation of particular forms of network activity. If so, the involvement of neurons in particular behaviors in multifunctional networks could be determined by up or down regulation...... of their intrinsic excitability. Here we employed an experimental paradigm of protracted scratch initiation in the integrated carapace-spinal cord preparation of adult turtles (Chrysemys scripta elegans). The protracted initiation of scratch network activity allows us to investigate the excitability of motoneurons...... and pre-motor network activity in the time interval from the start of sensory stimulation until the onset of scratch activity. Our results suggest that increased activity in the pre-motor network facilitates the onset of scratch episodes but does not change the excitability of motoneurons at the onset...

  8. A Web-Based, Social Networking Physical Activity Intervention for Insufficiently Active Adults Delivered via Facebook App: Randomized Controlled Trial.

    Science.gov (United States)

    Maher, Carol; Ferguson, Monika; Vandelanotte, Corneel; Plotnikoff, Ron; De Bourdeaudhuij, Ilse; Thomas, Samantha; Nelson-Field, Karen; Olds, Tim

    2015-07-13

    Online social networks offer considerable potential for delivery of socially influential health behavior change interventions. To determine the efficacy, engagement, and feasibility of an online social networking physical activity intervention with pedometers delivered via Facebook app. A total of 110 adults with a mean age of 35.6 years (SD 12.4) were recruited online in teams of 3 to 8 friends. Teams were randomly allocated to receive access to a 50-day online social networking physical activity intervention which included self-monitoring, social elements, and pedometers ("Active Team" Facebook app; n=51 individuals, 12 teams) or a wait-listed control condition (n=59 individuals, 13 teams). Assessments were undertaken online at baseline, 8 weeks, and 20 weeks. The primary outcome measure was self-reported weekly moderate-to-vigorous physical activity (MVPA). Secondary outcomes were weekly walking, vigorous physical activity time, moderate physical activity time, overall quality of life, and mental health quality of life. Analyses were undertaken using random-effects mixed modeling, accounting for potential clustering at the team level. Usage statistics were reported descriptively to determine engagement and feasibility. At the 8-week follow-up, the intervention participants had significantly increased their total weekly MVPA by 135 minutes relative to the control group (P=.03), due primarily to increases in walking time (155 min/week increase relative to controls, Pself-monitoring features, were observed. An online, social networking physical activity intervention with pedometers can produce sizable short-term physical activity changes. Future work is needed to determine how to maintain behavior change in the longer term, how to reach at-need populations, and how to disseminate such interventions on a mass scale. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12614000488606; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366239

  9. Female facial appearance and health.

    Science.gov (United States)

    Gray, Alan W; Boothroyd, Lynda G

    2012-02-01

    The current study addressed whether rated femininity, attractiveness, and health in female faces are associated with numerous indices of self-reported health history (number of colds/stomach bugs/frequency of antibiotic use) in a sample of 105 females. It was predicted that all three rating variables would correlate negatively with bouts of illness (with the exception of rates of stomach infections), on the assumption that aspects of facial appearance signal mate quality. The results showed partial support for this prediction, in that there was a general trend for both facial femininity and attractiveness to correlate negatively with the reported number of colds in the preceding twelve months and with the frequency of antibiotic use in the last three years and the last twelve months. Rated facial femininity (as documented in September) was also associated with days of flu experienced in the period spanning the November-December months. However, rated health did not correlate with any of the health indices (albeit one marginal result with antibiotic use in the last twelve months). The results lend support to previous findings linking facial femininity to health and suggest that facial femininity may be linked to some aspects of disease resistance but not others.

  10. Facial appearance affects science communication

    Science.gov (United States)

    Gheorghiu, Ana I.; Callan, Mitchell J.; Skylark, William J.

    2017-01-01

    First impressions based on facial appearance predict many important social outcomes. We investigated whether such impressions also influence the communication of scientific findings to lay audiences, a process that shapes public beliefs, opinion, and policy. First, we investigated the traits that engender interest in a scientist’s work, and those that create the impression of a “good scientist” who does high-quality research. Apparent competence and morality were positively related to both interest and quality judgments, whereas attractiveness boosted interest but decreased perceived quality. Next, we had members of the public choose real science news stories to read or watch and found that people were more likely to choose items that were paired with “interesting-looking” scientists, especially when selecting video-based communications. Finally, we had people read real science news items and found that the research was judged to be of higher quality when paired with researchers who look like “good scientists.” Our findings offer insights into the social psychology of science, and indicate a source of bias in the dissemination of scientific findings to broader society. PMID:28533389

  11. Cultured neural networks: Optimisation of patterned network adhesiveness and characterisation of their neural activity

    NARCIS (Netherlands)

    Rutten, Wim; Ruardij, T.G.; Marani, Enrico; Roelofsen, B.H.

    2006-01-01

    One type of future, improved neural interface is the "cultured probe"?. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA) on a planar substrate, each electrode being covered and

  12. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China

    Science.gov (United States)

    Li, Jibin; Lau, Joseph T. F.; Mo, Phoenix K. H.; Su, Xuefen; Wu, Anise M. S.; Tang, Jie; Qin, Zuguo

    2016-01-01

    Background Online social networking use has been integrated into adolescents’ daily life and the intensity of online social networking use may have important consequences on adolescents’ well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS) and validate it among junior middle school students in China. Methods A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods. Results Two factors, Social Function Use Intensity (SFUI) and Entertainment Function Use Intensity (EFUI), were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach’s alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, pnetworking, social networking addiction, Internet addiction, and characteristics related to social networking use. Conclusions The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population. PMID:27798699

  13. Active turnover regulates pattern formation and stress transmission in disordered acto-myosin networks

    Science.gov (United States)

    McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret

    The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.

  14. Active influence in dynamical models of structural balance in social networks

    Science.gov (United States)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  15. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China.

    Science.gov (United States)

    Li, Jibin; Lau, Joseph T F; Mo, Phoenix K H; Su, Xuefen; Wu, Anise M S; Tang, Jie; Qin, Zuguo

    2016-01-01

    Online social networking use has been integrated into adolescents' daily life and the intensity of online social networking use may have important consequences on adolescents' well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS) and validate it among junior middle school students in China. A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods. Two factors, Social Function Use Intensity (SFUI) and Entertainment Function Use Intensity (EFUI), were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach's alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, pnetworking, social networking addiction, Internet addiction, and characteristics related to social networking use. The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population.

  16. Update on the activities of the GGOS Bureau of Networks and Observations

    Science.gov (United States)

    Pearlman, Michael R.; Pavlis, Erricos C.; Ma, Chopo; Noll, Carey; Thaller, Daniela; Richter, Bernd; Gross, Richard; Neilan, Ruth; Mueller, Juergen; Barzaghi, Ricardo; hide

    2016-01-01

    The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This poster will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.

  17. Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Wenpeng Yu

    2013-12-01

    Full Text Available Due to the interconnection and active management of Distributed Generation (DG and Energy Storage Systems (ESSs, the traditional electrical distribution network has become an Active Distribution Network (ADN, posing challenges to the operation optimization of the network. The power supply and storage capacity indexes of a Local Autonomy Control Region (LACR, which consists of DGs, ESSs and the network, are proposed in this paper to quantify the power regulating range of a LACR. DG/ESS and the network are considered as a whole in the model of the indexes, considering both network constraints and power constraints of the DG/ESS. The index quantifies the maximum LACR power supplied to or received from ADN lines. Similarly, power supply and storage capacity indexes of the ADN line are also proposed to quantify the maximum power exchanged between ADN lines. Then a practical algorithm to calculate the indexes is presented, and an operation optimization model is proposed based on the indexes to maximum the economic benefit of DG/ESS. In the optimization model, the power supply reliability of the ADN line is also considered. Finally, the indexes of power supply and storage capacity and the optimization are demonstrated in a case study.

  18. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective......: To elucidate the activation of allosteric networks in the catalytic domain of the FVIIa protease it is when bound to TF.MethodsLong-timescale molecular dynamics simulations of FVIIa, free and in complex with TF, were executed and analyzed by dynamic network analysis. Results: Allosteric paths of correlated...

  19. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Oniga Stefan

    2015-12-01

    Full Text Available The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  20. Neural oscillations: beta band activity across motor networks.

    Science.gov (United States)

    Khanna, Preeya; Carmena, Jose M

    2015-06-01

    Local field potential (LFP) activity in motor cortical and basal ganglia regions exhibits prominent beta (15-40Hz) oscillations during reaching and grasping, muscular contraction, and attention tasks. While in vitro and computational work has revealed specific mechanisms that may give rise to the frequency and duration of this oscillation, there is still controversy about what behavioral processes ultimately drive it. Here, simultaneous behavioral and large-scale neural recording experiments from non-human primate and human subjects are reviewed in the context of specific hypotheses about how beta band activity is generated. Finally, a new experimental paradigm utilizing operant conditioning combined with motor tasks is proposed as a way to further investigate this oscillation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Science.gov (United States)

    Lonardoni, Davide; Amin, Hayder; Di Marco, Stefano; Maccione, Alessandro; Berdondini, Luca; Nieus, Thierry

    2017-07-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  2. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  3. Genetic Networks Activated by Blast Injury to the Eye

    Science.gov (United States)

    2015-08-01

    transferred to PVD membranes. The blots were blocked with 2% non-fat dry milk in phosphate buffer (pH 7.4) and probed overnight with the rabbit anti- SOX11...inorganic cation transmembrane transporter, and metal ion transmembrane transporter activity); and cellular components (cell projection part, neuron...primary antibody (Santa Cruz Biotechnology, Inc. California). We then rinsed the blots and probed them with the HRP-labeled donkey anti- rabbit

  4. Impact of Demand Side Management in Active Distribution Networks

    DEFF Research Database (Denmark)

    Ponnaganti, Pavani; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    of visibility in the electricity markets. The aim of this paper is to find the optimal flexible demands that can be shifted to another time in order to operate the active distribution system within secure operating limits. A simple mechanism is proposed for finding the flexibility of the loads where electric...... vehicle, electric heating etc. are present. Simulations are carried out in Danish low voltage grid for summer and winter cases....

  5. Cybersecurity Activities Support to DoD Information Network Operations

    Science.gov (United States)

    2016-03-07

    Component training or certification requirements. DoDI 8530.01, March 7, 2016 ENCLOSURE 4 33 ENCLOSURE 4 CYBERSECURITY INTEGRATION INTO DoDIN...Department of Defense INSTRUCTION NUMBER 8530.01 March 7, 2016 DoD CIO SUBJECT: Cybersecurity Activities Support to DoD Information...organizational entities within the DoD (referred to collectively in this instruction as the “DoD Components”). DoDI 8530.01, March 7, 2016 2 b

  6. The Activity Reaction Core and Plasticity of Metabolic Networks.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Understanding the system-level adaptive changes taking place in an organism in response to variations in the environment is a key issue of contemporary biology. Current modeling approaches, such as constraint-based flux-balance analysis, have proved highly successful in analyzing the capabilities of cellular metabolism, including its capacity to predict deletion phenotypes, the ability to calculate the relative flux values of metabolic reactions, and the capability to identify properties of optimal growth states. Here, we use flux-balance analysis to thoroughly assess the activity of Escherichia coli, Helicobacter pylori, and Saccharomyces cerevisiae metabolism in 30,000 diverse simulated environments. We identify a set of metabolic reactions forming a connected metabolic core that carry non-zero fluxes under all growth conditions, and whose flux variations are highly correlated. Furthermore, we find that the enzymes catalyzing the core reactions display a considerably higher fraction of phenotypic essentiality and evolutionary conservation than those catalyzing noncore reactions. Cellular metabolism is characterized by a large number of species-specific conditionally active reactions organized around an evolutionary conserved, but always active, metabolic core. Finally, we find that most current antibiotics interfering with bacterial metabolism target the core enzymes, indicating that our findings may have important implications for antimicrobial drug-target discovery.

  7. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  8. Connecting macroscopic dynamics with microscopic properties in active microtubule network contraction

    Science.gov (United States)

    Foster, Peter J.; Yan, Wen; Fürthauer, Sebastian; Shelley, Michael J.; Needleman, Daniel J.

    2017-12-01

    The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bulk contraction driven by the motor protein dynein, and investigate the effects of varying the initial microtubule density and length distribution. We find that networks contract to a similar final density, irrespective of the length of microtubules or their initial density, but that the contraction timescale varies with the average microtubule length. To gain insight into why this microscopic property influences the macroscopic network contraction time, we developed simulations where microtubules and motors are explicitly represented. The simulations qualitatively recapitulate the variation of contraction timescale with microtubule length, and allowed stress contributions from different sources to be estimated and decoupled.

  9. Contextual Multi-Scale Region Convolutional 3D Network for Activity Detection

    KAUST Repository

    Bai, Yancheng

    2018-01-28

    Activity detection is a fundamental problem in computer vision. Detecting activities of different temporal scales is particularly challenging. In this paper, we propose the contextual multi-scale region convolutional 3D network (CMS-RC3D) for activity detection. To deal with the inherent temporal scale variability of activity instances, the temporal feature pyramid is used to represent activities of different temporal scales. On each level of the temporal feature pyramid, an activity proposal detector and an activity classifier are learned to detect activities of specific temporal scales. Temporal contextual information is fused into activity classifiers for better recognition. More importantly, the entire model at all levels can be trained end-to-end. Our CMS-RC3D detector can deal with activities at all temporal scale ranges with only a single pass through the backbone network. We test our detector on two public activity detection benchmarks, THUMOS14 and ActivityNet. Extensive experiments show that the proposed CMS-RC3D detector outperforms state-of-the-art methods on THUMOS14 by a substantial margin and achieves comparable results on ActivityNet despite using a shallow feature extractor.

  10. Reduced salience and default mode network activity in women with anorexia nervosa.

    Science.gov (United States)

    McFadden, Kristina L; Tregellas, Jason R; Shott, Megan E; Frank, Guido K W

    2014-05-01

    The neurobiology of anorexia nervosa is poorly understood. Neuronal networks contributing to action selection, self-regulation and interoception could contribute to pathologic eating and body perception in people with anorexia nervosa. We tested the hypothesis that the salience network (SN) and default mode network (DMN) would show decreased intrinsic activity in women with anorexia nervosa and those who had recovered from the disease compared to controls. The basal ganglia (BGN) and sensorimotor networks (SMN) were also investigated. Between January 2008 and January 2012, women with restricting-type anorexia nervosa, women who recovered from the disease and healthy control women completed functional magnetic resonance imaging during a conditioned stimulus task. Network activity was studied using independent component analysis. We studied 20 women with anorexia nervosa, 24 recovered women and 24 controls. Salience network activity in the anterior cingulate cortex was reduced in women with anorexia nervosa (p = 0.030; all results false-discovery rate- corrected) and recovered women (p = 0.039) compared to controls. Default mode network activity in the precuneus was reduced in women with anorexia compared to controls (p = 0.023). Sensorimotor network activity in the supplementary motor area (SMA; p = 0.008), and the left (p = 0.028) and right (p = 0.002) postcentral gyrus was reduced in women with anorexia compared to controls; SMN activity in the SMA (p = 0.019) and the right postcentral gyrus (p = 0.008) was reduced in women with anorexia compared to recovered women. There were no group differences in the BGN. Differences between patient and control populations (e.g., depression, anxiety, medication) are potential confounds, but were included as covariates. Reduced SN activity in women with anorexia nervosa and recovered women could be a trait-related biomarker or illness remnant, altering the drive to approach food. The alterations in the DMN and SMN observed only

  11. Reduced salience and default mode network activity in women with anorexia nervosa

    Science.gov (United States)

    McFadden, Kristina L.; Tregellas, Jason R.; Shott, Megan E.; Frank, Guido K.W.

    2014-01-01

    Background The neurobiology of anorexia nervosa is poorly understood. Neuronal networks contributing to action selection, self-regulation and interoception could contribute to pathologic eating and body perception in people with anorexia nervosa. We tested the hypothesis that the salience network (SN) and default mode network (DMN) would show decreased intrinsic activity in women with anorexia nervosa and those who had recovered from the disease compared to controls. The basal ganglia (BGN) and sensorimotor networks (SMN) were also investigated. Methods Between January 2008 and January 2012, women with restricting-type anorexia nervosa, women who recovered from the disease and healthy control women completed functional magnetic resonance imaging during a conditioned stimulus task. Network activity was studied using independent component analysis. Results We studied 20 women with anorexia nervosa, 24 recovered women and 24 controls. Salience network activity in the anterior cingulate cortex was reduced in women with anorexia nervosa (p = 0.030; all results false-discovery rate–corrected) and recovered women (p = 0.039) compared to controls. Default mode network activity in the precuneus was reduced in women with anorexia compared to controls (p = 0.023). Sensorimotor network activity in the supplementary motor area (SMA; p = 0.008), and the left (p = 0.028) and right (p = 0.002) postcentral gyrus was reduced in women with anorexia compared to controls; SMN activity in the SMA (p = 0.019) and the right postcentral gyrus (p = 0.008) was reduced in women with anorexia compared to recovered women. There were no group differences in the BGN. Limitations Differences between patient and control populations (e.g., depression, anxiety, medication) are potential confounds, but were included as covariates. Conclusion Reduced SN activity in women with anorexia nervosa and recovered women could be a trait-related biomarker or illness remnant, altering the drive to approach

  12. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  13. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    National Research Council Canada - National Science Library

    Benjamin M Bader; Anne Steder; Anders Bue Klein; Bente Frølund; Olaf H U Schroeder; Anders A Jensen

    2017-01-01

    .... In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced...

  14. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.

    Science.gov (United States)

    Picton, Laurence D; Nascimento, Filipe; Broadhead, Matthew J; Sillar, Keith T; Miles, Gareth B

    2017-01-25

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. The sodium pump is ubiquitously expressed and responsible for at least half of total

  15. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  16. Default-Mode Network Activity Identified by Group Independent Component Analysis

    Science.gov (United States)

    Liu, Conghui; Zhuang, Jie; Peng, Danling; Yu, Guoliang; Yang, Yanhui

    Default-mode network activity refers to some regional increase in blood oxygenation level-dependent (BOLD) signal during baseline than cognitive tasks. Recent functional imaging studies have found co-activation in a distributed network of cortical regions, including ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PPC) that characterize the default mode of human brain. In this study, general linear model and group independent component analysis (ICA) were utilized to analyze the fMRI data obtained from two language tasks. Both methods yielded similar, but not identical results and detected a resting deactivation network at some midline regions including anterior and posterior cingulate cortex and precuneus. Particularly, the group ICA method segregated functional elements into two separate maps and identified ventral cingulate component and fronto-parietal component. These results suggest that these two components might be linked to different mental function during "resting" baseline.

  17. Dissipativity and Synchronization of Generalized BAM Neural Networks With Multivariate Discontinuous Activations.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong; Tang, Longkun

    2017-09-14

    This paper is concerned with the dissipativity and synchronization problems of a class of delayed bidirectional associative memory (BAM) neural networks in which neuron activations are modeled by discontinuous bivariate functions. First, the concept of the Filippov solution is extended to functional differential equations with discontinuous right-hand sides and mixed delays via functional differential inclusions. The global dissipativity of the Filippov solution to the considered BAM neural networks is proven using generalized Halanay inequalities and matrix measure approaches. Second, to realize global exponential complete synchronization of BAM neural networks with multivariate discontinuous activations, discontinuous state feedback controllers are designed using functional differential inclusions theory and nonsmooth analysis theory with generalized Lyapunov functional method. Finally, several numerical examples are provided to demonstrate the applicability and effectiveness of our proposed results.

  18. CA1 hippocampal network activity changes during sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Nicolette N Ognjanovski

    2014-04-01

    Full Text Available A period of sleep over the first few hours following single-trial contextual fear conditioning (CFC is essential for hippocampally-mediated memory consolidation. Recent studies have uncovered intracellular mechanisms required for memory formation that are affected by post-conditioning sleep and sleep deprivation. However, almost nothing is known about the circuit-level activity changes during sleep that underlie activation of these intracellular pathways. Here we continuously record neuronal activity from the CA1 region of freely-behaving mice to characterize neuronal and network activity changes occurring during active memory consolidation. C57BL/6J mice were implanted with custom stereotrode recording arrays to monitor activity of individual CA1 neurons, local field potentials (LFPs, and electromyographic activity. Sleep architecture and state-specific CA1 activity patterns were assessed during a 24 h baseline recording period, and for 24 h following either single-trial CFC or Sham conditioning. We find that consolidation of CFC is not associated with significant sleep architecture changes, but is accompanied by long-lasting increases in CA1 neuronal firing, as well as increases in delta, theta, and gamma-frequency CA1 LFP activity. These changes occurred in both sleep and wakefulness, and may drive synaptic plasticity within the hippocampus during memory formation. We also find that functional connectivity within the CA1 network, assessed through functional clustering analysis (FCA of spike timing relationships among recorded neurons, becomes more stable during consolidation of CFC. This increase in network stability was not present following Sham conditioning, was most evident during post-CFC slow wave sleep, and was negligible during post-CFC wakefulness. Thus in the interval between encoding and recall, slow wave sleep may stabilize the hippocampal contextual fear memory trace by promoting CA1 network stability.

  19. FAME - A Flexible Appearance Modelling Environment

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Ersbøll, Bjarne Kjær; Larsen, Rasmus

    2003-01-01

    applications within medicine and describes a public domain implementation, namely the Flexible Appearance Modelling Environment (FAME). We give guidelines for the use of this research platform, and show that the optimisation techniques used renders it applicable to interactive medical applications. To increase......Combined modelling of pixel intensities and shape has proven to be a very robust and widely applicable approach to interpret images. As such the Active Appearance Model (AAM) framework has been applied to a wide variety of problems within medical image analysis. This paper summarises AAM...... performance and make models generalise better, we apply parallel analysis to obtain automatic and objective model truncation. Further, two different AAM training methods are compared along with a reference case study carried out on cross-sectional short-axis cardiac magnetic resonance images and face images...

  20. Memory-induced mechanism for self-sustaining activity in networks

    Science.gov (United States)

    Allahverdyan, A. E.; Steeg, G. Ver; Galstyan, A.

    2015-12-01

    We study a mechanism of activity sustaining on networks inspired by a well-known model of neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity patterns, where no single node can stay active by itself, but the activity provided initially is sustained within the collective of interacting agents. In contrast to existing models of self-sustaining activity that are caused by (long) loops present in the network, here we focus on treelike structures and examine activation mechanisms that are due to temporal memory of the nodes. This approach is motivated by applications in social media, where long network loops are rare or absent. Our results suggest that under a weak behavioral noise, the nodes robustly split into several clusters, with partial synchronization of nodes within each cluster. We also study the randomly weighted version of the models where the nodes are allowed to change their connection strength (this can model attention redistribution) and show that it does facilitate the self-sustained activity.

  1. Electric space heating scheduling for real-time explicit power control in active distribution networks

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Bernstein, Andrey; Chamorro, Lorenzo Reyes

    2015-01-01

    This paper presents a systematic approach for abstracting the flexibility of a building space heating system and using it within a composable framework for real-time explicit power control of microgrids and, more in general, active distribution networks. In particular, the proposed approach is de...

  2. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo

    Directory of Open Access Journals (Sweden)

    Marc Chevalier

    2016-01-01

    Full Text Available Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC. Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.

  3. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    Science.gov (United States)

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  4. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    Science.gov (United States)

    Fazeli, Walid; Zappettini, Stefania; Marguet, Stephan Lawrence; Grendel, Jasper; Esclapez, Monique; Bernard, Christophe; Isbrandt, Dirk

    2017-09-01

    The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    Science.gov (United States)

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  6. A Model of Active Ageing through Elder Learning: The Elder Academy Network in Hong Kong

    Science.gov (United States)

    Tam, Maureen

    2013-01-01

    This article presents the Elder Academy (EA) Network as the policy and practice in promoting active ageing through elder learning in Hong Kong. First, the article examines how the change in demographics and the prevalent trend of an ageing population have propelled the government in Hong Kong to tackle issues and challenges brought about by an…

  7. Identification of children's activity type with accelerometer-based neural networks

    NARCIS (Netherlands)

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following

  8. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  9. Windows Server 2003 Active Directory Design and Implementation Creating, Migrating, and Merging Networks

    CERN Document Server

    Savill, John

    2005-01-01

    This book is for Windows network administrators, analysts, or architects,  with a grasp of the basic operations of Active Directory, and are looking for a book that goes beyond rudimentary operations. However, all of the concepts are explained from the g

  10. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb.

    Science.gov (United States)

    Fukunaga, Izumi; Herb, Jan T; Kollo, Mihaly; Boyden, Edward S; Schaefer, Andreas T

    2014-09-01

    Circuits in the brain possess the ability to orchestrate activities on different timescales, but the manner in which distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example of a place in which slow theta and fast gamma rhythms coexist. Furthermore, inhibitory interneurons that are generally implicated in rhythm generation are segregated into distinct layers, neatly separating local and global motifs. We combined intracellular recordings in vivo with circuit-specific optogenetic interference to examine the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits controlled rhythms on distinct timescales: local, glomerular networks coordinated theta activity, regulating baseline and odor-evoked inhibition, whereas granule cells orchestrated gamma synchrony and spike timing. Notably, granule cells did not contribute to baseline rhythms or sniff-coupled odor-evoked inhibition. Thus, activities on theta and gamma timescales are controlled by separate, dissociable inhibitory networks in the olfactory bulb.

  11. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks.

    Science.gov (United States)

    Zhao, Suwen; Sakai, Ayano; Zhang, Xinshuai; Vetting, Matthew W; Kumar, Ritesh; Hillerich, Brandan; San Francisco, Brian; Solbiati, Jose; Steves, Adam; Brown, Shoshana; Akiva, Eyal; Barber, Alan; Seidel, Ronald D; Babbitt, Patricia C; Almo, Steven C; Gerlt, John A; Jacobson, Matthew P

    2014-06-30

    Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.

  12. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...... the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 Angstrom apo PTP1B structure has been obtained, showing four highly coordinated water molecules in the active......-site pocket of the enzyme; hence, the active site is highly solvated in the apo state. Three of the water molecules are located at positions that approximately correspond to the positions of the phosphate O atoms of the natural substrate phosphotyrosine and form a similar network of hydrogen bonds. The active...

  13. Sleep: A synchrony of cell activity-driven small network states

    Science.gov (United States)

    Krueger, James M.; Huang, Yanhua; Rector, David M.; Buysse, Daniel J.

    2013-01-01

    We posit a bottom-up sleep regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole organism sleep onset. Within brain we posit that small networks of highly interconnected neurons and glia, e.g. cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks, and regional areas of brain share sleep-like properties with whole animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep regulatory substances (SRS) and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions such as insomnia. PMID:23651209

  14. The application of the multi-alternative approach in active neural network models

    Science.gov (United States)

    Podvalny, S.; Vasiljev, E.

    2017-02-01

    The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.

  15. Deep Recurrent Neural Network for Mobile Human Activity Recognition with High Throughput

    OpenAIRE

    Inoue, Masaya; Inoue, Sozo; Nishida, Takeshi

    2016-01-01

    In this paper, we propose a method of human activity recognition with high throughput from raw accelerometer data applying a deep recurrent neural network (DRNN), and investigate various architectures and its combination to find the best parameter values. The "high throughput" refers to short time at a time of recognition. We investigated various parameters and architectures of the DRNN by using the training dataset of 432 trials with 6 activity classes from 7 people. The maximum recognition ...

  16. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China.

    Directory of Open Access Journals (Sweden)

    Jibin Li

    Full Text Available Online social networking use has been integrated into adolescents' daily life and the intensity of online social networking use may have important consequences on adolescents' well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS and validate it among junior middle school students in China.A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods.Two factors, Social Function Use Intensity (SFUI and Entertainment Function Use Intensity (EFUI, were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach's alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, p<0.001. As expected, the SNAIS and its subscale scores were correlated significantly with emotional connection to social networking, social networking addiction, Internet addiction, and characteristics related to social networking use.The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population.

  17. Mining Emerging Sequential Patterns for Activity Recognition in Body Sensor Networks

    DEFF Research Database (Denmark)

    Gu, Tao; Wang, Liang; Chen, Hanhua

    2010-01-01

    Body Sensor Networks oer many applications in healthcare, well-being and entertainment. One of the emerging applications is recognizing activities of daily living. In this paper, we introduce a novel knowledge pattern named Emerging Sequential Pattern (ESP)|a sequential pattern that discovers...... signicant class dierences|to recognize both simple (i.e., sequential) and complex (i.e., interleaved and concurrent) activities. Based on ESPs, we build our complex activity models directly upon the sequential model to recognize both activity types. We conduct comprehensive empirical studies to evaluate...

  18. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Ahmed M. Wefky

    2010-04-01

    Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  19. Spatio-temporal analysis of lightning activity over Greece - Preliminary results derived from the recent state precision lightning network

    Science.gov (United States)

    Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.

    2014-07-01

    Lightning is a natural phenomenon in the atmosphere, being a major cause of storm related deaths, main trigger of forest fires and affects many electrochemical systems of the body. Significant scientific interest has come up in the last decades, as numerous lightning detection networks have been established in operational basis, providing lightning data to assess and mitigate lightning impact to the local society by spatio-temporal analysis. In this study, a preliminary analysis of spatial and temporal variabilities of recorded lightnings over Greece during the period from January 2008 to December 2009 is presented. The data for retrieving the location and time-of-occurrence (TOA) of lightning were acquired from the Hellenic National Meteorological Service (HNMS). An operational precision lightning network (PLN) has been established since 2007 by HNMS, consisting of eight time-of-arrival (TOA) sensors, spatially distributed across Greek territory. The spatial variability of lightnings revealed their incidence within specific geographical sub-regions while the temporal variability concerns the seasonal and monthly distributions. All the analyses were carried out with respect to cloud to cloud (CC), cloud to ground (CG) and ground to cloud (GC) lightnings, within the examined time period. During the autumn season, lightning activity was the highest, followed by summer and spring. Higher frequencies of stokes appear over Ionian Sea and Aegean Sea than over land during winter period against continental mountainous regions during summer period.

  20. A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks

    Science.gov (United States)

    Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes

    2016-01-01

    Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches. PMID:27792136

  1. Forecast and restoration of geomagnetic activity indices by using the software-computational neural network complex

    Science.gov (United States)

    Barkhatov, Nikolay; Revunov, Sergey

    2010-05-01

    It is known that currently used indices of geomagnetic activity to some extent reflect the physical processes occurring in the interaction of the perturbed solar wind with Earth's magnetosphere. Therefore, they are connected to each other and with the parameters of near-Earth space. The establishment of such nonlinear connections is interest. For such purposes when the physical problem is complex or has many parameters the technology of artificial neural networks is applied. Such approach for development of the automated forecast and restoration method of geomagnetic activity indices with the establishment of creative software-computational neural network complex is used. Each neural network experiments were carried out at this complex aims to search for a specific nonlinear relation between the analyzed indices and parameters. At the core of the algorithm work program a complex scheme of the functioning of artificial neural networks (ANN) of different types is contained: back propagation Elman network, feed forward network, fuzzy logic network and Kohonen layer classification network. Tools of the main window of the complex (the application) the settings used by neural networks allow you to change: the number of hidden layers, the number of neurons in the layer, the input and target data, the number of cycles of training. Process and the quality of training the ANN is a dynamic plot of changing training error. Plot of comparison of network response with the test sequence is result of the network training. The last-trained neural network with established nonlinear connection for repeated numerical experiments can be run. At the same time additional training is not executed and the previously trained network as a filter input parameters get through and output parameters with the test event are compared. At statement of the large number of different experiments provided the ability to run the program in a "batch" mode is stipulated. For this purpose the user a

  2. 46 CFR 201.17 - Written appearance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Written appearance. 201.17 Section 201.17 Shipping... PROCEDURE Appearance and Practice Before the Administration (Rule 2) § 201.17 Written appearance. Persons who appear at any hearing shall deliver a written notation of appearance to the reporter, stating for...

  3. Tracking Eyes using Shape and Appearance

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Nielsen, Mads; Hansen, John Paulin

    2002-01-01

    We propose a non-intrusive eye tracking system intended for the use of everyday gaze typing using web cameras. We argue that high precision in gaze tracking is not needed for on-screen typing due to natural language redundancy. This facilitates the use of low-cost video components for advanced...... multi-modal interactions based on video tracking systems. Robust methods are needed to track the eyes using web cameras due to the poor image quality. A real-time tracking scheme using a mean-shift color tracker and an Active Appearance Model of the eye is proposed. From this model, it is possible...

  4. A SLM2 Feedback Pathway Controls Cortical Network Activity and Mouse Behavior

    Directory of Open Access Journals (Sweden)

    Ingrid Ehrmann

    2016-12-01

    Full Text Available The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown. Here, we find that SLM2 levels are maintained by a homeostatic feedback control pathway that predates the divergence of SLM2 and Sam68. SLM2 also controls the splicing of Tomosyn2, LysoPLD/ATX, Dgkb, Kif21a, and Cask, each of which are important for synapse function. Cortical neural network activity dependent on synaptic connections between SLM2-expressing-pyramidal neurons and interneurons is decreased in Slm2-null mice. Additionally, these mice are anxious and have a decreased ability to recognize novel objects. Our data reveal a pathway of SLM2 homeostatic auto-regulation controlling brain network activity and behavior.

  5. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    Science.gov (United States)

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adolescents' social environment and depression: social networks, extracurricular activity, and family relationship influences.

    Science.gov (United States)

    Mason, Michael J; Schmidt, Christopher; Abraham, Anisha; Walker, Leslie; Tercyak, Kenneth

    2009-12-01

    The present study examined components of adolescents' social environment (social network, extracurricular activities, and family relationships) in association with depression. A total of 332 adolescents presenting for a routine medical check-up were self-assessed for social network risk (i.e., smoking habits of best male and female friends), extracurricular activity level (i.e., participation in organized sports teams, clubs, etc.), family relationship quality (i.e., cohesion and conflict), and symptoms of depression (i.e., minimal, mild, moderate/severe). Results of a forward linear regression modeling indicate that social environment components were associated with a significant proportion of the variance in adolescent depression (Adjusted R (2) = .177, p social network (beta = .107, p social environment plays in adolescent depression, as well as yields new insights into socially-based intervention targets that may ameliorate adolescent depression. These intervention targets may be gender-specific, include positive social network skills training, increase adolescents' engagement in organized activities, and attend to the quality of their family relationships.

  7. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks

    Science.gov (United States)

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-01-01

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods. PMID:27399696

  8. River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data

    Science.gov (United States)

    McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.

    2016-12-01

    River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.

  9. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine.

    Science.gov (United States)

    Santana, Noemí; Troyano-Rodriguez, Eva; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc

    2011-05-15

    Noncompetitive N-methyl-D-aspartate receptor antagonists are widely used as pharmacological models of schizophrenia. Their neurobiological actions are still poorly understood, although the prefrontal cortex (PFC) appears as a key target area. We examined the effect of phencyclidine (PCP) on neuronal activity of the mediodorsal (MD) and centromedial (CM) thalamic nuclei, reciprocally connected with the PFC, using extracellular recordings (n = 50 neurons from 35 Wistar rats) and c-fos expression. Phencyclidine (.25 mg/kg intravenous [IV]) markedly disorganized the activity of MD/CM neurons, increasing (424%) and decreasing (41%) the activity of 57% and 20% of the recorded neurons, respectively (23% remained unaffected). Phencyclidine reduced delta oscillations (.15-4 Hz) as assessed by recording local field potentials. The subsequent clozapine administration (1 mg/kg IV) reversed PCP effects on neuronal discharge and delta oscillations. Double in situ hybridization experiments revealed that PCP (10 mg/kg intraperitoneal [IP]) markedly increased c-fos expression in glutamatergic neurons of several cortical areas (prefrontal, somatosensory, retrosplenial, entorhinal) and in thalamic nuclei, including MD/CM. Phencyclidine also increased c-fos expression in the amygdala; yet, it had a small effect in the hippocampus. Phencyclidine did not increase c-fos expression in gamma-aminobutyric acidergic cells except in hippocampus, amygdala, somatosensory, and retrosplenial cortices. Clozapine (5 mg/kg IP) had no effect by itself but significantly prevented PCP-induced c-fos expression. Phencyclidine likely exerts its psychotomimetic action by increasing excitatory neurotransmission in thalamo-cortico-thalamic networks involving, among others, PFC, retrosplenial, and somatosensory cortices. The antipsychotic action of clozapine includes, among other actions, an attenuation of the neuronal hyperactivity in thalamocortical networks. Copyright © 2011 Society of Biological

  10. Quantum delocalization of protons in the hydrogen bond network of an enzyme active site

    CERN Document Server

    Wang, Lu; Boxer, Steven G; Markland, Thomas E

    2015-01-01

    Enzymes utilize protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  11. Video-based convolutional neural networks for activity recognition from robot-centric videos

    Science.gov (United States)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  12. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    Science.gov (United States)

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Friendship Network Characteristics Are Associated with Physical Activity and Sedentary Behavior in Early Adolescence.

    Directory of Open Access Journals (Sweden)

    Jennifer Marks

    Full Text Available There is limited understanding of the association between peer social networks and physical activity (PA, sedentary and screen-related behaviors. This study reports on associations between personal network characteristics and these important health behaviors for early adolescents.Participants were 310 students, aged 11-13 years, from fifteen randomly selected Victorian primary schools (43% response rate. PA and sedentary behaviors were collected via accelerometer and self-report questionnaire, and anthropometric measures via trained researchers. Participants nominated up to fifteen friends, and described the frequency of interaction and perceived activity intensity of these friends. Personal network predictors were examined using regression modelling for PA and sedentary/screen behavior.Perceived activity levels of friends, and friendships with very frequent interaction were associated with outside-of-school PA and/or sedentary/screen time. Differences according to sex were also observed in the association between network characteristics and PA and sedentary time. A higher number of friends and greater proportion of same sex friends were associated with boys engaging in more moderate-to-vigorous PA outside of school hours. PA intensity during school-day breaks was positively associated with having a greater proportion of friends who played sports for girls, and a greater proportion of male friends for boys.Friendship network characteristics are associated with PA and sedentary/screen time in late childhood/early adolescence, and these associations differ by sex. The positive influence of very active peers may be a promising avenue to strengthen traditional interventions for the promotion of PA and reduction in screen time.

  14. Friendship Network Characteristics Are Associated with Physical Activity and Sedentary Behavior in Early Adolescence.

    Science.gov (United States)

    Marks, Jennifer; de la Haye, Kayla; Barnett, Lisa M; Allender, Steven

    2015-01-01

    There is limited understanding of the association between peer social networks and physical activity (PA), sedentary and screen-related behaviors. This study reports on associations between personal network characteristics and these important health behaviors for early adolescents. Participants were 310 students, aged 11-13 years, from fifteen randomly selected Victorian primary schools (43% response rate). PA and sedentary behaviors were collected via accelerometer and self-report questionnaire, and anthropometric measures via trained researchers. Participants nominated up to fifteen friends, and described the frequency of interaction and perceived activity intensity of these friends. Personal network predictors were examined using regression modelling for PA and sedentary/screen behavior. Perceived activity levels of friends, and friendships with very frequent interaction were associated with outside-of-school PA and/or sedentary/screen time. Differences according to sex were also observed in the association between network characteristics and PA and sedentary time. A higher number of friends and greater proportion of same sex friends were associated with boys engaging in more moderate-to-vigorous PA outside of school hours. PA intensity during school-day breaks was positively associated with having a greater proportion of friends who played sports for girls, and a greater proportion of male friends for boys. Friendship network characteristics are associated with PA and sedentary/screen time in late childhood/early adolescence, and these associations differ by sex. The positive influence of very active peers may be a promising avenue to strengthen traditional interventions for the promotion of PA and reduction in screen time.

  15. Friendship Network Characteristics Are Associated with Physical Activity and Sedentary Behavior in Early Adolescence

    Science.gov (United States)

    Marks, Jennifer; de la Haye, Kayla; Barnett, Lisa M; Allender, Steven

    2015-01-01

    Introduction There is limited understanding of the association between peer social networks and physical activity (PA), sedentary and screen-related behaviors. This study reports on associations between personal network characteristics and these important health behaviors for early adolescents. Methods Participants were 310 students, aged 11–13 years, from fifteen randomly selected Victorian primary schools (43% response rate). PA and sedentary behaviors were collected via accelerometer and self-report questionnaire, and anthropometric measures via trained researchers. Participants nominated up to fifteen friends, and described the frequency of interaction and perceived activity intensity of these friends. Personal network predictors were examined using regression modelling for PA and sedentary/screen behavior. Results Perceived activity levels of friends, and friendships with very frequent interaction were associated with outside-of-school PA and/or sedentary/screen time. Differences according to sex were also observed in the association between network characteristics and PA and sedentary time. A higher number of friends and greater proportion of same sex friends were associated with boys engaging in more moderate-to-vigorous PA outside of school hours. PA intensity during school-day breaks was positively associated with having a greater proportion of friends who played sports for girls, and a greater proportion of male friends for boys. Conclusion Friendship network characteristics are associated with PA and sedentary/screen time in late childhood/early adolescence, and these associations differ by sex. The positive influence of very active peers may be a promising avenue to strengthen traditional interventions for the promotion of PA and reduction in screen time. PMID:26709924

  16. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity

    Science.gov (United States)

    Babaei, Arash; Kern, Mark; Antonik, Stephen; Mepani, Rachel; Ward, B. Douglas; Li, Shi-Jiang; Hyde, James

    2010-01-01

    A better understanding of the central control of the physiology of deglutition is necessary for devising interventions aimed at correcting pathophysiological conditions of swallowing. Positive modulation of the cortical swallowing network can have clinical ramifications in dysphagia due to central nervous system deficits. Our aim was to determine the effect of nutritive sensory input on the cortical swallowing network. In 14 healthy right-handed volunteers, we utilized a paradigm-driven protocol to quantify the number of activated voxels and their signal intensity within the left hemispheric cortical swallowing network by high-resolution functional MRI (fMRI) during five different swallowing conditions. Swallowing conditions included a dry swallow (saliva) and natural water-, lemon-, popcorn-, and chocolate-flavored liquid swallows. Each flavored liquid was presented simultaneously by its image, scent, and taste in random order and tested over three runs. fMRIs were analyzed in a blinded fashion. Average fMRI blood oxygenation level-dependent signal intensity and number of activated voxels during swallowing concurrent with nutritive gustatory, olfactory, and visual stimulations were significantly increased compared with dry/natural water swallows throughout the cortical swallowing network (P < 0.001 and P < 0.05, respectively). Subregion analysis showed the increased activity for flavored liquids in prefrontal, cingulate gyrus, and sensory/motor cortex, but not in precuneus and insula. Concurrent gustatory, olfactory, and visual nutritive stimulation enhances the activity of the cortical swallowing network. This finding may have clinical implications in management of swallowing disorders due to cortical lesions. PMID:20508154

  17. Human Activities in Natura 2000 Sites: A Highly Diversified Conservation Network

    Science.gov (United States)

    Tsiafouli, Maria A.; Apostolopoulou, Evangelia; Mazaris, Antonios D.; Kallimanis, Athanasios S.; Drakou, Evangelia G.; Pantis, John D.

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  18. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O’Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  19. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    Science.gov (United States)

    Ordóñez, Francisco Javier; Roggen, Daniel

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612

  20. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  1. Complete stability of delayed recurrent neural networks with Gaussian activation functions.

    Science.gov (United States)

    Liu, Peng; Zeng, Zhigang; Wang, Jun

    2017-01-01

    This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3(k) equilibrium points with 0≤k≤n, among which 2(k) and 3(k)-2(k) equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Navigation of autonomous mobile robot using different activation functions of wavelet neural network

    Directory of Open Access Journals (Sweden)

    Panigrahi Pratap Kumar

    2015-03-01

    Full Text Available An autonomous mobile robot is a robot which can move and act autonomously without the help of human assistance. Navigation problem of mobile robot in unknown environment is an interesting research area. This is a problem of deducing a path for the robot from its initial position to a given goal position without collision with the obstacles. Different methods such as fuzzy logic, neural networks etc. are used to find collision free path for mobile robot. This paper examines behavior of path planning of mobile robot using three activation functions of wavelet neural network i.e. Mexican Hat, Gaussian and Morlet wavelet functions by MATLAB. The simulation result shows that WNN has faster learning speed with respect to traditional artificial neural network.

  3. Distinguishable brain activation networks for short- and long-term motor skill learning.

    Science.gov (United States)

    Floyer-Lea, A; Matthews, P M

    2005-07-01

    The acquisition of a new motor skill is characterized first by a short-term, fast learning stage in which performance improves rapidly, and subsequently by a long-term, slower learning stage in which additional performance gains are incremental. Previous functional imaging studies have suggested that distinct brain networks mediate these two stages of learning, but direct comparisons using the same task have not been performed. Here we used a task in which subjects learn to track a continuous 8-s sequence demanding variable isometric force development between the fingers and thumb of the dominant, right hand. Learning-associated changes in brain activation were characterized using functional MRI (fMRI) during short-term learning of a novel sequence, during short-term learning after prior, brief exposure to the sequence, and over long-term (3 wk) training in the task. Short-term learning was associated with decreases in activity in the dorsolateral prefrontal, anterior cingulate, posterior parietal, primary motor, and cerebellar cortex, and with increased activation in the right cerebellar dentate nucleus, the left putamen, and left thalamus. Prefrontal, parietal, and cerebellar cortical changes were not apparent with short-term learning after prior exposure to the sequence. With long-term learning, increases in activity were found in the left primary somatosensory and motor cortex and in the right putamen. Our observations extend previous work suggesting that distinguishable networks are recruited during the different phases of motor learning. While short-term motor skill learning seems associated primarily with activation in a cortical network specific for the learned movements, long-term learning involves increased activation of a bihemispheric cortical-subcortical network in a pattern suggesting "plastic" development of new representations for both motor output and somatosensory afferent information.

  4. Predictive functional control for active queue management in congested TCP/IP networks.

    Science.gov (United States)

    Bigdeli, N; Haeri, M

    2009-01-01

    Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.

  5. Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns

    Science.gov (United States)

    Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro

    2017-05-01

    The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.

  6. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  7. Preliminary investigation of Brain Network Activation (BNA) and its clinical utility in sport-related concussion

    Science.gov (United States)

    Reches, A.; Kutcher, J.; Elbin, R. J.; Or-Ly, H.; Sadeh, B.; Greer, J.; McAllister, D. J.; Geva, A.; Kontos, A. P.

    2017-01-01

    ABSTRACT Background: The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician’s decision-making process. Objective: The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Methods: Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Results: Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. Conclusion: The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions. PMID:28055228

  8. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    Science.gov (United States)

    Cáceres, María J; Perthame, Benoît

    2014-06-07

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Active vision and image/video understanding systems for UGV based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-09-01

    Vision evolved as a sensory system for reaching, grasping and other motion activities. In advanced creatures, it has become a vital component of situation awareness, navigation and planning systems. Vision is part of a larger information system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. It is hard to split such a system apart. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for natural processing of visual information. It converts visual information into relational Network-Symbolic models, avoiding artificial precise computations of 3-dimensional models. Logic of visual scenes can be captured in such models and used for disambiguation of visual information. Network-Symbolic transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps create unambiguous network-symbolic models. This approach is consistent with NIST RCS. The UGV, equipped with such smart vision, will be able to plan path and navigate in a real environment, perceive and understand complex real-world situations and act accordingly.

  10. UK scenario of islanded operation of active distribution networks with renewable distributed generators

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S.P.; Chowdhury, S.; Gaunt, C.T. [Electrical Engineering Department, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, Western Cape (South Africa); Crossley, P.A. [Joule Centre for Energy Research, The University of Manchester, M60 1QD (United Kingdom)

    2009-12-15

    This paper reports on the current UK scenario of islanded operation of active distribution networks with renewable distributed generators (RDGs). Different surveys indicate that the present scenario does not economically justify islanding operation of active distribution networks with RDGs. Anti-islanding protection schemes currently enforce the renewable distributed generators (RDGs) to disconnect immediately and stop generation for grid faults through loss of grid (LOG) protection system. This greatly reduces the benefits of RDG deployment. With rising RDG penetration, much benefit would be lost if the RDGs are not allowed to island only due to conventional operational requirement of utilities. For preventing disconnection of RDGs during LOG, several islanding operation, control and protection schemes are being developed. Technical studies clearly indicate the need to review parts of the ESQCR (Electricity Safety, Quality and Continuity Regulations) for successful islanded operations. Commercial viability of islanding operation must be assessed in relation to enhancement of power quality, system reliability and supply of potential ancillary services through network support. Demonstration projects under Registered Power Zone and Technical Architecture Projects should be initiated to investigate the usefulness of DG islanding. However these efforts should be compounded with a realistic judgement of the associated technical and economic issues for the development of future power networks. (author)

  11. Implications of synaptic biophysics for recurrent network dynamics and active memory.

    Science.gov (United States)

    Durstewitz, Daniel

    2009-10-01

    In cortical networks, synaptic excitation is mediated by AMPA- and NMDA-type receptors. NMDA differ from AMPA synaptic potentials with regard to peak current, time course, and a strong voltage-dependent nonlinearity. Here we illustrate based on empirical and computational findings that these specific biophysical properties may have profound implications for the dynamics of cortical networks, and via dynamics on cognitive functions like active memory. The discussion will be led along a minimal set of neural equations introduced to capture the essential dynamics of the various phenomena described. NMDA currents could establish cortical bistability and may provide the relatively constant synaptic drive needed to robustly maintain enhanced levels of activity during working memory epochs, freeing fast AMPA currents for other computational purposes. Perhaps more importantly, variations in NMDA synaptic input-due to their biophysical particularities-control the dynamical regime within which single neurons and networks reside. By provoking bursting, chaotic irregularity, and coherent oscillations their major effect may be on the temporal pattern of spiking activity, rather than on average firing rate. During active memory, neurons may thus be pushed into a spiking regime that harbors complex temporal structure, potentially optimal for the encoding and processing of temporal sequence information. These observations provide a qualitatively different view on the role of synaptic excitation in neocortical dynamics than entailed by many more abstract models. In this sense, this article is a plead for taking the specific biophysics of real neurons and synapses seriously when trying to account for the neurobiology of cognition.

  12. High ionospheric activity effects on LatPos RTK network performance in Latvia

    Science.gov (United States)

    Dobelis, D.; Zvirgzds, J.; Kaļinka, M.

    2017-10-01

    Fast and reliable coordinate determination with GNSS in real time is the main objective of continuous operating reference system (CORS) network users. To provide services for coordinate determination, Network-based Real Time Kinematic (NRTK) system called “LatPos” has been established and operated in Latvia since 2006. One of the factors, affecting the performance of LatPos system services, is activity of ionosphere. Ionosphere is a region of the earth’s atmosphere, from about 60 kilometers up to 1000 km above the earth’s surface, in which there is a high concentration of free electrons, spatially variated, affected by space weather, seasonal and solar cycle changes. Ionospheric activity conditions depending on mentioned factors can be analyzed by LatPos system data. Some data processing strategies has been developed and LatPos RTK network performance results obtained, during different ionospheric activity conditions. This paper focused on both segments: the NRTK performance and the rover receiver coordinate determination possibilities in field when high ionospheric activity occurs.

  13. Integration and transmission of distributed deterministic neural activity in feed-forward networks.

    Science.gov (United States)

    Asai, Yoshiyuki; Villa, Alessandro E P

    2012-01-24

    A ten layer feed-forward network characterized by diverging/converging patterns of projection between successive layers of regular spiking (RS) neurons is activated by an external spatiotemporal input pattern fed to Layer 1 in presence of stochastic background activities fed to all layers. We used three dynamical systems to derive the external input spike trains including the temporal information, and three types of neuron models for the network, i.e. either a network formed either by neurons modeled by exponential integrate-and-fire dynamics (RS-EIF, Fourcaud-Trocmé et al., 2003), or by simple spiking neurons (RS-IZH, Izhikevich, 2004) or by multiple-timescale adaptive threshold neurons (RS-MAT, Kobayashi et al., 2009), given five intensities for the background activity. The assessment of the temporal structure embedded in the output spike trains was carried out by detecting the preferred firing sequences for the reconstruction of de-noised spike trains (Asai and Villa, 2008). We confirmed that the RS-MAT model is likely to be more efficient in integrating and transmitting the temporal structure embedded in the external input. We observed that this structure could be propagated not only up to the 10th layer but in some cases it was retained better beyond the 4th downstream layers. This study suggests that diverging/converging network structures, by the propagation of synfire activity, could play a key role in the transmission of complex temporal patterns of discharges associated to deterministic nonlinear activity. This article is part of a Special Issue entitled Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 45 CFR 81.11 - Appearance.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Appearance. 81.11 Section 81.11 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRACTICE AND PROCEDURE FOR HEARINGS UNDER PART 80 OF THIS TITLE Appearance and Practice § 81.11 Appearance. A party may appear in person or by...

  16. 46 CFR 502.21 - Appearance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Appearance. 502.21 Section 502.21 Shipping FEDERAL MARITIME COMMISSION GENERAL AND ADMINISTRATIVE PROVISIONS RULES OF PRACTICE AND PROCEDURE Appearance and Practice Before the Commission § 502.21 Appearance. (a) Parties. A party may appear in person or by an...

  17. 16 CFR 1502.15 - Appearance.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Appearance. 1502.15 Section 1502.15... PROCEDURES FOR FORMAL EVIDENTIARY PUBLIC HEARING Appearance and Participation § 1502.15 Appearance. (a) A... issues. (b) The presiding officer may strike a person's appearance for violation of the requirements...

  18. 34 CFR 101.11 - Appearance.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Appearance. 101.11 Section 101.11 Education Regulations... PRACTICE AND PROCEDURE FOR HEARINGS UNDER PART 100 OF THIS TITLE Appearance and Practice § 101.11 Appearance. A party may appear in person or by counsel and participate fully in any proceeding. A State...

  19. 21 CFR 12.40 - Appearance.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Appearance. 12.40 Section 12.40 Food and Drugs... HEARING Appearance and Participation § 12.40 Appearance. (a) A person who has filed a notice of... person's appearance for violation of the rules of conduct in § 12.90. ...

  20. 38 CFR 18b.13 - Appearance.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Appearance. 18b.13... AND PROCEDURE UNDER TITLE VI OF THE CIVIL RIGHTS ACT OF 1964 AND PART 18 OF THIS CHAPTER Appearance and Practice § 18b.13 Appearance. A party may appear in person or by counsel and participate fully in...

  1. How do students from Student Incubators (SI) use networks and how can SI support the activity?

    DEFF Research Database (Denmark)

    Andersen, Henrik Mariendal

    2015-01-01

    This paper examines Student Entrepreneur’s (SE) use of networks as part of their activities in a Student Incubator (SI). Recommendations are made as to how SI can create activities to support students' use of internal and external relationships and discusses the paradox between running a learning...... is on SEs because students are likely to have a smaller (in size), less well-founded and limited professional network. In addition, an SI is assumed to be characterized by “limitations” related to their student status. So far none has paid any attention to how SEs "compensate for" and/or develop relevant...... internal and external relationships and how SI supports an appropriate project and business development process with these assumptions and “limitations” in mind. To investigate this, a series of qualitative interviews with SEs are conducted, with an emphasis on the use of relationships...

  2. Opinion formation in a social network: The role of human activity

    Science.gov (United States)

    Grabowski, Andrzej

    2009-03-01

    The model of opinion formation in human population based on social impact theory is investigated numerically. On the basis of a database received from the on-line game server, we examine the structure of social network and human dynamics. We calculate the activity of individuals, i.e. the relative time devoted daily to interactions with others in the artificial society. We study the influence of correlation between the activity of an individual and its connectivity on the process of opinion formation. We find that such correlations have a significant influence on the temperature of the phase transition and the effect of the mass media, modeled as an external stimulation acting on the social network.

  3. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  4. Biophysical Model of Cortical Network Activity and the Influence of Electrical Stimulation

    Science.gov (United States)

    2015-11-13

    SECURITY CLASSIFICATION OF: We examined the effects of subdural electrical stimulation on a high-density network consisting of several populations of...multicompartment cell types. The results can be summarized as follows: 1) Electrical stimulation mainly affects and activates axon initial and the most...of Electrical Stimulation . The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an

  5. NetWorking News - A Method for Engaging Children Actively In Design

    DEFF Research Database (Denmark)

    Nørregaard, Peter; Dindler, Christian; Fritsch, Jonas

    2003-01-01

    For many years cooperative design was primarily concerned with the development of IT supported systems for professional users. However, the cooperative design approach can embrace other social practices such as children’s everyday life. At a methodological level there is no difference in designin...... the Networking News workshop, offers an opportunity to make first hand studies of children’s IT supported social activities in an informal classroom setting....

  6. An active distribution network model for smart grid control and protection studies : model validation progress

    OpenAIRE

    Mahseredjian, Jean; Haddadi, Aboutaleb; HOOSHYAR, Hossein; Vanfretti, Luigi; Dufour, Christian

    2017-01-01

    This paper presents the implementation of an Active Distribution Network (ADN) model and its qualitative assessment using different off-line and real-time simulation tools. The objective is to provide software-to-software verification for the establishment of the model as a potential benchmark. Expanding upon the authors’ previous work [7], this paper provides additional simulation results, cross-examination of the models, and presents the latest modifications incorporated to address practica...

  7. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord

    Directory of Open Access Journals (Sweden)

    Lauriane eBeliez

    2014-08-01

    Full Text Available Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1 to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2 to investigate how the biogenic amines serotonin (5-HT, dopamine (DA and noradrenaline (NA modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic signature regarding its specific effect on intersegmental phase

  8. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  9. Tracking people by learning their appearance.

    Science.gov (United States)

    Ramanan, Deva; Forsyth, David A; Zisserman, Andrew

    2007-01-01

    An open vision problem is to automatically track the articulations of people from a video sequence. This problem is difficult because one needs to determine both the number of people in each frame and estimate their configurations. But, finding people and localizing their limbs is hard because people can move fast and unpredictably, can appear in a variety of poses and clothes, and are often surrounded by limb-like clutter. We develop a completely automatic system that works in two stages; it first builds a model of appearance of each person in a video and then it tracks by detecting those models in each frame ("tracking by model-building and detection"). We develop two algorithms that build models; one bottom-up approach groups together candidate body parts found throughout a sequence. We also describe a top-down approach that automatically builds people-models by detecting convenient key poses within a sequence. We finally show that building a discriminative model of appearance is quite helpful since it exploits structure in a background (without background-subtraction). We demonstrate the resulting tracker on hundreds of thousands of frames of unscripted indoor and outdoor activity, a feature-length film ("Run Lola Run"), and legacy sports footage (from the 2002 World Series and 1998 Winter Olympics). Experiments suggest that our system 1) can count distinct individuals, 2) can identify and track them, 3) can recover when it loses track, for example, if individuals are occluded or briefly leave the view, 4) can identify body configuration accurately, and 5) is not dependent on particular models of human motion.

  10. The contribution of extracurricular activities to adolescent friendships: new insights through social network analysis.

    Science.gov (United States)

    Schaefer, David R; Simpkins, Sandra D; Vest, Andrea E; Price, Chara D

    2011-07-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods and data from the National Longitudinal Study of Adolescent Health to examine whether dyadic friendship ties were more likely to exist among activity coparticipants while controlling for alternative friendship processes, namely dyadic homophily (e.g., demographic and behavioral similarities) and network-level processes (e.g., triadic closure). Results provide strong evidence that activities were associated with current friendships and promoted the formation of new friendships. These associations varied based on school level (i.e., middle vs. high school) and activity type (i.e., sports, academic, arts). Results of this study provide new insight into the complex relations between activities and friendship that can inform theories of their developmental outcomes. PsycINFO Database Record (c) 2011 APA, all rights reserved

  11. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function

    Science.gov (United States)

    QingJie, Wei; WenBin, Wang

    2017-06-01

    In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval

  12. An Active Cooperation-Aware Spectrum Allocation Mechanism for Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Fu Jiang

    2015-01-01

    Full Text Available A cognitive radio-based spectrum allocation scheme using an active cooperative-aware mechanism is proposed in this paper. The scheme ensures that the primary user and secondary users cooperate actively for their own benefits. The primary user releases some spectrum resources to secondary users to actively stimulate them to actively join the cooperative transmission of the primary user, and secondary users help the primary user to relay data in return, as well as its self-data transmission at the same time. The Stackelberg game is used to evenly and jointly optimize the utilities of both the primary and secondary users. Simulation results show that the proposed active cooperation-aware mechanism could improve the body sensor network performance.

  13. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  14. Effect of Heterogeneity of Vertex Activation on Epidemic Spreading in Temporal Networks

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available Development of sensor technologies and the prevalence of electronic communication services provide us with a huge amount of data on human communication behavior, including face-to-face conversations, e-mail exchanges, phone calls, message exchanges, and other types of interactions in various online forums. These indirect or direct interactions form potential bridges of the virus spread. For a long time, the study of virus spread is based on the aggregate static network. However, the interaction patterns containing diverse temporal properties may affect dynamic processes as much as the network topology does. Some empirical studies show that the activation time and duration of vertices and links are highly heterogeneous, which means intense activity may be followed by longer intervals of inactivity. We take heterogeneous distribution of the node interactivation time as the research background to build an asynchronous communication model. The two sides of the communication do not have to be active at the same time. One derives the threshold of virus spreading on the communication mode and analyzes the reason the heterogeneous distribution of the vertex interactivation time suppresses the spread of virus. At last, the analysis and results from the model are verified on the BA network.

  15. Out on the Land: Income, Subsistence Activities, and Food Sharing Networks in Nain, Labrador

    Directory of Open Access Journals (Sweden)

    Kirk Dombrowski

    2013-01-01

    Full Text Available In recent Inuit ethnography, a major concern has been how and to what extent contemporary Inuit participate in and depend on subsistence activities, particularly in the context of increasing wage employment and growing participation in the cash economy. This paper provides an analysis of these activities in the predominately Inuit community of Nain, Labrador. Using social network data and demographic information collected between January and June 2010, we examine the interconnections between subsistence activities—obtaining “country food” through activities such as hunting, fishing, and collecting—with access to the means of obtaining subsistence resources (such as snow mobiles, cabins, and boats, employment status, and income. Our data indicate that individuals with higher employment status and income tend to be more central to the network of subsistence food sharing, but not because they have greater access to hunting tools or equipment (they do not. We conclude that those individuals who play the most central role in the network are those who are financially able to do so, regardless of access to hunting tools/means.

  16. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm.

    Science.gov (United States)

    Tengku Hashim, Tengku Juhana; Mohamed, Azah

    2017-01-01

    The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.

  17. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates.

    Science.gov (United States)

    Szaleniec, Maciej

    2012-01-01

    Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.

  18. The Moderated Relationship of Appearance Valence on Appearance Self Consciousness: Development and Testing of New Measures of Appearance Schema Components

    Science.gov (United States)

    Moss, Timothy P.; Rosser, Benjamin A.

    2012-01-01

    This paper describes the creation and psychometric properties of two independent measures of aspects of appearance schematicity – appearance salience and valence, assessed by the CARSAL and CARVAL, and their relation to appearance self-consciousness. Five hundred and ninety two participants provided data in a web based task. The results demonstrate the sound psychometric properties of both scales. This was demonstrated by good item total characteristics, good internal reliability of each scale, and the independence of the two scales shown through principal components analysis. Furthermore, the scales show independent and moderated relationships with valid measures of appearance related psychosocial distress. Negatively valenced appearance information was associated with increased appearance self-consciousness. More crucially, the impact of negative valence on appearance self-consciousness was exacerbated by the moderating effect increased salience of appearance. PMID:23226326

  19. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  20. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity.

    Science.gov (United States)

    Karus, Claudia; Mondragão, Miguel A; Ziemens, Daniel; Rose, Christine R

    2015-06-01

    Influx of sodium ions into active neurons is a highly energy-expensive process which must be strictly limited. Astrocytes could play an important role herein because they take up glutamate and potassium from the extracellular space, thereby dampening neuronal excitation. Here, we performed sodium imaging in mouse hippocampal slices combined with field potential and whole-cell patch-clamp recordings and measurement of extracellular potassium ([K(+)]o). Network activity was induced by Mg(2+)-free, bicuculline-containing saline, during which neurons showed recurring epileptiform bursting, accompanied by transient increases in [K(+)]o and astrocyte depolarizations. During bursts, neurons displayed sodium increases by up to 22 mM. Astrocyte sodium concentration increased by up to 8.5 mM, which could be followed by an undershoot below baseline. Network sodium oscillations were dependent on action potentials and activation of ionotropic glutamate receptors. Inhibition of glutamate uptake caused acceleration, followed by cessation of electrical activity, irreversible sodium increases, and swelling of neurons. The gliotoxin NaFAc (sodium-fluoroacetate) resulted in elevation of astrocyte sodium concentration and reduced glial uptake of glutamate and potassium uptake through Na(+) /K(+)-ATPase. Moreover, NaFAc extended epileptiform bursts, caused elevation of neuronal sodium, and dramatically prolonged accompanying sodium signals, most likely because of the decreased clearance of glutamate and potassium by astrocytes. Our experiments establish that recurrent neuronal bursting evokes sodium transients in neurons and astrocytes and confirm the essential role of glutamate transporters for network activity. They suggest that astrocytes restrict discharge duration and show that an intact astrocyte metabolism is critical for the neurons' capacity to recover from sodium loads during synchronized activity. © 2015 Wiley Periodicals, Inc.

  1. The importance of delineating networks by activity type in bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida.

    Science.gov (United States)

    Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange

    2015-03-01

    Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states-socializing, travelling and foraging-and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns.

  2. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation.

    Science.gov (United States)

    Anderson, William S; Kudela, Pawel; Weinberg, Seth; Bergey, Gregory K; Franaszczuk, Piotr J

    2009-03-01

    A neural network simulation with realistic cortical architecture has been used to study synchronized bursting as a seizure representation. This model has the property that bursting epochs arise and cease spontaneously, and bursting epochs can be induced by external stimulation. We have used this simulation to study the time-frequency properties of the evolving bursting activity, as well as effects due to network stimulation. The model represents a cortical region of 1.6 mm x 1.6mm, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. There are a total of 65,536 modeled single compartment neurons that operate according to a version of Hodgkin-Huxley dynamics. The intercellular wiring is based on histological studies and our previous modeling efforts. The bursting phase is characterized by a flat frequency spectrum. Stimulation pulses are applied to this modeled network, with an electric field provided by a 1mm radius circular electrode represented mathematically in the simulation. A phase dependence to the post-stimulation quiescence is demonstrated, with local relative maxima in efficacy occurring before or during the network depolarization phase in the underlying activity. Brief periods of network insensitivity to stimulation are also demonstrated. The phase dependence was irregular and did not reach statistical significance when averaged over the full 2.5s of simulated bursting investigated. This result provides comparison with previous in vivo studies which have also demonstrated increased efficacy of stimulation when pulses are applied at the peak of the local field potential during cortical after discharges. The network bursting is synchronous when comparing the different neuron classes represented up to an uncertainty of 10 ms. Studies performed with an excitatory chandelier cell component demonstrated increased synchronous bursting in the model, as predicted from

  3. Multi-agent based controller for islanding operation of active distribution networks with distributed generation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Østergaard, Jacob

    2011-01-01

    are important, and the overall network synchronism must be ensured in the islanded distribution system. In this paper, a multi-agent based controller has been proposed to stabilize the frequency and voltages of an active distribution system after it enters into the islanding operation mode. The modified IEEE 9......-bus system was used to investigate the dynamic and steady state performance of the active distribution system during islanding operation. Case studies have been carried out using the Real-Time Digital Simulator (RTDS) based simulation platform. Case study results show that the proposed multi-agent...

  4. Using convolutional neural networks for human activity classification on micro-Doppler radar spectrograms

    Science.gov (United States)

    Jordan, Tyler S.

    2016-05-01

    This paper presents the findings of using convolutional neural networks (CNNs) to classify human activity from micro-Doppler features. An emphasis on activities involving potential security threats such as holding a gun are explored. An automotive 24 GHz radar on chip was used to collect the data and a CNN (normally applied to image classification) was trained on the resulting spectrograms. The CNN achieves an error rate of 1.65 % on classifying running vs. walking, 17.3 % error on armed walking vs. unarmed walking, and 22 % on classifying six different actions.

  5. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    Science.gov (United States)

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  6. Altered default mode network activity in patient with anxiety disorders: An fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaohu [Imaging Department of Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China) and Bio-X lab, Department of Physics, Zhe Jiang University, Hangzhou 310027 (China)], E-mail: xhzhao999@263.net; Wang Peijun [Imaging Department of Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: tongjipjwang@vip.sina.com; Li Chunbo [Department of Psychiatry, Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: licb@mail.tongji.edu.cn; Hu Zhenghui [Department of Electrical and Engineering, Hong Kong University of Science and Technology, Hong Kong (China)], E-mail: eezhhu@ust.hk; Xi Qian [Imaging Department of Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: 96125007@sina.com.cn; Wu Wenyuan [Department of Psychiatry, Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: wuwy@mail.tongji.edu.cn; Tang Xiaowei [Bio-X lab, Department of Physics, Zhe Jiang University, Hangzhou 310027 (China)], E-mail: tangxw@zju.edu.cn

    2007-09-15

    Anxiety disorder, a common mental disorder in our clinical practice, is characterized by unprovoked anxiety. Medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), which closely involved in emotional processing, are critical regions in the default mode network. We used functional magnetic resonance imaging (fMRI) to investigate whether default mode network activity is altered in patients with anxiety disorder. Ten anxiety patients and 10 healthy controls underwent fMRI while listening to emotionally neutral words alternating with rest (Experiment 1) and threat-related words alternating with emotionally neutral words (Experiment 2). In Experiment 1, regions of deactivation were observed in patients and controls. In Experiment 2, regions of deactivation were observed only in patients. The observed deactivation patterns in the two experiments, which included MPFC, PCC, and inferior parietal cortex, were similar and consistent with the default model network. Less deactivation in MPFC and greater deactivation in PCC were observed for patients group comparing to controls in Experiment 1. Our observations suggest that the default model network is altered in anxiety patients and dysfunction in MPFC and PCC may play an important role in anxiety psychopathology.

  7. Restrictions of physical activity participation in older adults with disability: employing keyword network analysis.

    Science.gov (United States)

    Koo, Kyo-Man; Kim, Chun-Jong; Park, Chae-Hee; Byeun, Jung-Kyun; Seo, Geon-Woo

    2016-08-01

    Older adults with disability might have been increasing due to the rapid aging of society. Many studies showed that physical activity is an essential part for improving quality of life in later lives. Regular physical activity is an efficient means that has roles of primary prevention and secondary prevention. However, there were few studies regarding older adults with disability and physical activity participation. The purpose of this current study was to investigate restriction factors to regularly participate older adults with disability in physical activity by employing keyword network analysis. Two hundred twenty-nine older adults with disability who were over 65 including aging with disability and disability with aging in type of physical disability and brain lesions defined by disabled person welfare law partook in the open questionnaire assessing barriers to participate in physical activity. The results showed that the keyword the most often used was 'Traffic' which was total of 21 times (3.47%) and the same proportion as in the 'personal' and 'economical'. Exercise was considered the most central keyword for participating in physical activity and keywords such as facility, physical activity, disabled, program, transportation, gym, discomfort, opportunity, and leisure activity were associated with exercise. In conclusion, it is necessary to educate older persons with disability about a true meaning of physical activity and providing more physical activity opportunities and decreasing inconvenience should be systematically structured in Korea.

  8. Energy Efficient Routing and Node Activity Scheduling in the OCARI Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2010-08-01

    Full Text Available Sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. Energy efficient strategies are required in such networks to maximize network lifetime. In this paper, we focus on a solution integrating energy efficient routing and node activity scheduling. The energy efficient routing we propose, called EOLSR, selects the route and minimizes the energy consumed by an end-to-end transmission, while avoiding nodes with low residual energy. Simulation results show that EOLSR outperforms the solution selecting the route of minimum energy as well as the solution based on node residual energy. Cross-layering allows EOLSR to use information from the application layer or the MAC layer to reduce its overhead and increase network lifetime. Node activity scheduling is based on the following observation: the sleep state is the least power consuming state. So, to schedule node active and sleeping periods, we propose SERENA that colors all network nodes using a small number of colors, such that two nodes with the same color can transmit without interfering. The node color is mapped into a time slot during which the node can transmit. Consequently, each node is awake during its slot and the slots of its one-hop neighbors, and sleeps in the remaining time. We evaluate SERENA benefits obtained in terms of bandwidth, delay and energy. We also show how cross-layering with the application layer can improve the end-to-end delays for data gathering applications.

  9. Default mode network activation and Transcendental Meditation practice: Focused Attention or Automatic Self-transcending?

    Science.gov (United States)

    Travis, Frederick; Parim, Niyazi

    2017-02-01

    This study used subjective reports and eLORETA analysis to assess to what extent Transcendental Meditation (TM) might involve focused attention-voluntary control of mental content. Eighty-seven TM subjects with one month to five years TM experience participated in this study. Regression analysis of years TM practice and self-reported transcendental experiences (lack of time, space and body sense) during meditation practice was flat (r=.07). Those practicing Transcendental Meditation for 1month reported as much transcending as those with 5years of practice. The eLORETA comparison of eyes-closed rest/task and TM practice/task identified similar areas of activation: theta and alpha activation during rest and TM in the posterior cingulate and precuneus, part of the default mode network, and beta2 and beta3 activation during the task in anterior cingulate, ventral lateral and dorsolateral prefrontal cortices, part of the central executive network. In addition, eLORETA comparison of rest and TM identified higher beta temporal activation during rest and higher theta orbitofrontal activation during TM. Thus, it does not seem accurate to include TM practice with meditations in the catgory of Focused Attention, which are characterized by gamma EEG and DMN deactivation. Mixing meditations with different procedures into a single study confounds exploration of meditation effects and confounds application of meditation practices to different subject populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Psychedelic State Induced by Ayahuasca Modulates the Activity and Connectivity of the Default Mode Network

    Science.gov (United States)

    Palhano-Fontes, Fernanda; Andrade, Katia C.; Tofoli, Luis F.; Santos, Antonio C.; Crippa, Jose Alexandre S.; Hallak, Jaime E. C.; Ribeiro, Sidarta; de Araujo, Draulio B.

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  11. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Science.gov (United States)

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  12. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Directory of Open Access Journals (Sweden)

    Fernanda Palhano-Fontes

    Full Text Available The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN, a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN. Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC/Precuneus and the medial Prefrontal Cortex (mPFC. Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic, meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  13. The Brain on Art: Intense Aesthetic Experience Activates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Edward A Vessel

    2012-04-01

    Full Text Available Aesthetic responses to visual art comprise multiple types of experiences, from sensation and perception to emotion and self-reflection. Moreover, aesthetic experience is highly individual, with observers varying significantly in their responses to the same artwork. Combining fMRI and behavioral analysis of individual differences in aesthetic response, we identify two distinct patterns of neural activity exhibited by different subnetworks. Activity increased linearly with observers’ ratings (4-level scale in sensory (occipito-temporal regions. Activity in the striatum also varied linearly with ratings, with below-baseline activations for low-rated artworks. In contrast, a network of frontal regions showed a step-like increase only for the most moving artworks (4 ratings and non-differential activity for all others. This included several regions belonging to the default mode network previously associated with self-referential mentation. Our results suggest that aesthetic experience involves the integration of sensory and emotional reactions in a manner linked with their personal relevance.

  14. Preliminary evidence of reduced brain network activation in patients with post-traumatic migraine following concussion.

    Science.gov (United States)

    Kontos, Anthony P; Reches, Amit; Elbin, R J; Dickman, Dalia; Laufer, Ilan; Geva, Amir B; Shacham, Galit; DeWolf, Ryan; Collins, Michael W

    2016-06-01

    Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.

  15. Subjective loudness and reality of auditory verbal hallucinations and activation of the inner speech processing network.

    Science.gov (United States)

    Vercammen, Ans; Knegtering, Henderikus; Bruggeman, Richard; Aleman, André

    2011-09-01

    One of the most influential cognitive models of auditory verbal hallucinations (AVH) suggests that a failure to adequately monitor the production of one's own inner speech leads to verbal thought being misidentified as an alien voice. However, it is unclear whether this theory can explain the phenomenological complexity of AVH. We aimed to assess whether subjective perceptual and experiential characteristics may be linked to neural activation in the inner speech processing network. Twenty-two patients with schizophrenia and AVH underwent a 3-T functional magnetic resonance imaging scan, while performing a metrical stress evaluation task, which has been shown to activate both inner speech production and perception regions. Regions of interest (ROIs) comprising the putative inner speech network were defined using the Anatomical Automatic Labeling system. Correlations were calculated between scores on the "loudness" and "reality" subscales of the Auditory Hallucination Rating Scale (AHRS) and activation in these ROIs. Second, the AHRS subscales, and general AVH severity, indexed by the Positive and Negative Syndrome Scale, were correlated with a language lateralization index. Louder AVH were associated with reduced task-related activity in bilateral angular gyrus, anterior cingulate gyrus, left inferior frontal gyrus, left insula, and left temporal cortex. This could potentially be due to a competition for shared neural resources. Reality on the other hand was found to be associated with reduced language lateralization. Strong activation of the inner speech processing network may contribute to the subjective loudness of AVH. However, a relatively increased contribution from right hemisphere language areas may be responsible for the more complex experiential characteristics, such as the nonself source or how real AVH are.

  16. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics

    Science.gov (United States)

    Chao, Zenas C.; Bakkum, Douglas J.; Potter, Steve M.

    2007-09-01

    Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.

  17. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Losonczy, Attila; Zemelman, Boris V; Vaziri, Alipasha; Magee, Jeffrey C

    2010-08-01

    Although hippocampal theta oscillations represent a prime example of temporal coding in the mammalian brain, little is known about the specific biophysical mechanisms. Intracellular recordings support a particular abstract oscillatory interference model of hippocampal theta activity, the soma-dendrite interference model. To gain insight into the cellular and circuit level mechanisms of theta activity, we implemented a similar form of interference using the actual hippocampal network in mice in vitro. We found that pairing increasing levels of phasic dendritic excitation with phasic stimulation of perisomatic projecting inhibitory interneurons induced a somatic polarization and action potential timing profile that reproduced most common features. Alterations in the temporal profile of inhibition were required to fully capture all features. These data suggest that theta-related place cell activity is generated through an interaction between a phasic dendritic excitation and a phasic perisomatic shunting inhibition delivered by interneurons, a subset of which undergo activity-dependent presynaptic modulation.

  18. Associations within school-based same-sex friendship networks of children's physical activity and sedentary behaviours: a cross-sectional social network analysis.

    Science.gov (United States)

    Salway, Ruth E; Sebire, Simon J; Solomon-Moore, Emma; Thompson, Janice L; Jago, Russell

    2018-02-21

    Physical activity in children is associated with better physical and mental health but many children do not meet physical activity guidelines. Friendship groups are potentially an important influence on children's physical activity and sedentary time. This paper examines the association between children of physical activity and sedentary time in school-based same-sex friendship networks, for both moderate-to-vigorous intensity physical activity (MVPA) and sedentary time. Moreover, considering the methodological challenges of conducting and interpreting these analyses, we provide examples of how to analyse these data and interpret results to encourage further work in the area. Accelerometer data for 1223 children, aged 8-9 years, were collected in 2015-2016 and analysed in 2017. Mean accelerometer minutes of MVPA and sedentary time were calculated. Children named up to four school friends and same-sex school-based friendship networks were constructed. Network models, which include correlation between friends, were fitted by sex. Both MVPA and sedentary time were found to be associated via the friendship networks, for both boys and girls. The network autocorrelation was 0.21 (95% CI: 0.15 to 0.26) for boys' MVPA, and 0.14 (95% CI: 0.07 to 0.21) for sedentary time. Network autocorrelation between girls was weaker, with 0.13 (95% CI: 0.06 to 0.19) for MVPA and 0.11 (95% CI: 0.05 to 0.17) for sedentary time. Physical activity and sedentary time of boys and girls are associated with the physical activity and sedentary time respectively of others within same-sex friendship networks, and these associations are comparable to other known factors. In this study, the correlation between friends was stronger for boys than girls, and stronger for MVPA than for sedentary time. These findings suggest that friendship networks play a part in understanding children's physical activity and sedentary time and could play a valuable role in developing effective interventions.

  19. Support for School-to-School Networks: How Networking Teachers Perceive Support Activities of a Local Coordinating Agency

    Science.gov (United States)

    Sartory, Katharina; Jungermann, Anja-Kristin; Järvinen, Hanna

    2017-01-01

    External support by a local coordinating agency facilitates the work of school-to-school networks. This study provides an innovative theoretical framework to analyse how support provided by local education offices for school-to-school networks is perceived by the participating teachers. Based on a quantitative survey and qualitative interview data…

  20. Burstiness and tie activation strategies in time-varying social networks

    Science.gov (United States)

    Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella

    2017-04-01

    The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks’ evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.

  1. Higher Physical Activity is Associated with Increased Attentional Network Connectivity in the Healthy Elderly

    Directory of Open Access Journals (Sweden)

    Geon Ha Kim

    2016-08-01

    Full Text Available The purpose of this study was to demonstrate the potential alterations in structural network properties related to physical activity (PA in healthy elderly. We recruited 76 elderly individuals with normal cognition from Samsung Medical Center in Seoul, Korea. All participants underwent the Cambridge Neuropsychological Test Automated Battery and 3.0T brain magnetic resonance imaging (MRI. Participants were subdivided into quartiles according to the International Physical Activity Questionnaire scores, which represents the amount of PA. Through graph theory based analyses, we compared global and local network topologies according to PA quartile. The higher PA group demonstrated better performance in speed processing compared to the lower PA group. Regional nodal strength also significantly increased in the higher PA group, which involved the bilateral middle frontal, bilateral inferior parietal, right medial orbitofrontal, right superior and middle temporal gyri. These results were further replicated when the highest and the lowest quartile groups were compared in terms of regional nodal strengths and local efficiency. Our findings that the regional nodal strengths associated with the attentional network were increased in the higher PA group suggest the preventive effects of PA on age-related cognitive decline, especially in attention.

  2. Disrupted Co-activation of Interneurons and Hippocampal Network after Focal Kainate Lesion

    Directory of Open Access Journals (Sweden)

    Lim-Anna Sieu

    2017-11-01

    Full Text Available GABAergic interneurons are known to control activity balance in physiological conditions and to coordinate hippocampal networks during cognitive tasks. In temporal lobe epilepsy interneuron loss and consecutive network imbalance could favor pathological hypersynchronous epileptic discharges. We tested this hypothesis in mice by in vivo unilateral epileptogenic hippocampal kainate lesion followed by in vitro recording of extracellular potentials and patch-clamp from GFP-expressing interneurons in CA3, in an optimized recording chamber. Slices from lesioned mice displayed, in addition to control synchronous events, larger epileptiform discharges. Despite some ipsi/contralateral and layer variation, interneuron density tended to decrease, average soma size to increase. Their membrane resistance decreased, capacitance increased and contralateral interneuron required higher current intensity to fire action potentials. Examination of synchronous discharges of control and larger amplitudes, revealed that interneurons were biased to fire predominantly with the largest population discharges. Altogether, these observations suggest that the overall effect of reactive cell loss, hypertrophy and reduced contralateral excitability corresponds to interneuron activity tuning to fire with larger population discharges. Such cellular and network mechanisms may contribute to a runaway path toward epilepsy.

  3. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  4. Atypical imaging appearances of intracranial meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, S. [Radiology Department, Derriford Hospital, Plymouth (United Kingdom); Adams, W.M. [Radiology Department, Derriford Hospital, Plymouth (United Kingdom); Parrish, R.W. [Radiology Department, Derriford Hospital, Plymouth (United Kingdom); Mukonoweshuro, W. [Radiology Department, Derriford Hospital, Plymouth (United Kingdom)]. E-mail: William.mukonoweshuro@phnt.swest.nhs.uk

    2007-01-15

    Meningiomas are the commonest primary, non-glial intracranial tumours. The diagnosis is often correctly predicted from characteristic imaging appearances. This paper presents some examples of atypical imaging appearances that may cause diagnostic confusion.

  5. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  6. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A.

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to “mind”. However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the “classical” definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm

  7. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    Science.gov (United States)

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system. Copyright © 2015 the authors 0270-6474/15/356918-13$15.00/0.

  8. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Johan L M Björkegren

    2014-02-01

    Full Text Available Plasma cholesterol lowering (PCL slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80% and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-Apob (100/100 Mttp (flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.

  9. Common modulation of limbic network activation underlies musical emotions as they unfold.

    Science.gov (United States)

    Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma

    2016-11-01

    Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. 40 CFR 179.45 - Appearance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Appearance. 179.45 Section 179.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS FORMAL EVIDENTIARY PUBLIC HEARING Participation and Appearance; Conduct § 179.45 Appearance. (a) A party to a hearing may...

  11. 8 CFR 244.8 - Appearance.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Appearance. 244.8 Section 244.8 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS TEMPORARY PROTECTED STATUS FOR NATIONALS OF DESIGNATED STATES § 244.8 Appearance. The applicant may be required to appear in person before an...

  12. 36 CFR 1150.14 - Appearance.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Appearance. 1150.14 Section... PRACTICE AND PROCEDURES FOR COMPLIANCE HEARINGS Parties, Complainants, Participants § 1150.14 Appearance.... (d) Withdrawal of appearance of any representative is effective when a written notice of withdrawal...

  13. Real-Time Analysis of an Active Distribution Network - Coordinated Frequency Control for Islanding Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae

    and require a transition from today’s passive distribution networks to future active distribution networks (ADNs) which utilizes ad-vanced operation and control strategies in order to improve power supply reliability, and realize the potential of DG to provide system support. The presence of DERs within...... to the islanding operation and reliable operation of the islanded sys-tem. The goal of this Ph.D project is to develop effective frequency control strategies for the islanding operation of ADNs. The developed control strategies are comprised of a primary frequency control scenario with a battery energy storage...... regulation performance is highly improved with fuzzy logic control (FLC) when the system enters into islanding operation. Lastly, an intelligent multi-agent based secondary frequency control strategy for the islanding operation of ADN is proposed. A complete software-in-the-loop (SIL) simula-tion is carried...

  14. Overdominant Effect of a CHRNA4 Polymorphism on Cingulo-Opercular Network Activity and Cognitive Control.

    Science.gov (United States)

    Sadaghiani, Sepideh; Ng, Bernard; Altmann, Andre; Poline, Jean-Baptiste; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Burke Quinlan, Erin; Conrod, Patricia; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Garavan, Hugh; Gowland, Penny; Gallinat, Jürgen; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Lemaitre, Hervé; Nees, Frauke; Papadopoulos Orfanos, Dimitri; Paus, Tomáš; Poustka, Luise; Millenet, Sabina; Fröhner, Juliane H; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Napolioni, Valerio; Greicius, Michael

    2017-10-04

    The nicotinic system plays an important role in cognitive control and is implicated in several neuropsychiatric conditions. However, the contributions of genetic variability in this system to individuals' cognitive control abilities are poorly understood and the brain processes that mediate such genetic contributions remain largely unidentified. In this first large-scale neuroimaging genetics study of the human nicotinic receptor system (two cohorts, males and females, fMRI total N = 1586, behavioral total N = 3650), we investigated a common polymorphism of the high-affinity nicotinic receptor α4β2 (rs1044396 on the CHRNA4 gene) previously implicated in behavioral and nicotine-related studies (albeit with inconsistent major/minor allele impacts). Based on our prior neuroimaging findings, we expected this polymorphism to affect neural activity in the cingulo-opercular (CO) network involved in core cognitive control processes including maintenance of alertness. Consistent across the cohorts, all cortical areas of the CO network showed higher activity in heterozygotes compared with both types of homozygotes during cognitive engagement. This inverted U-shaped relation reflects an overdominant effect; that is, allelic interaction (cumulative evidence p = 1.33 * 10(-5)). Furthermore, heterozygotes performed more accurately in behavioral tasks that primarily depend on sustained alertness. No effects were observed for haplotypes of the surrounding CHRNA4 region, supporting a true overdominant effect at rs1044396. As a possible mechanism, we observed that this polymorphism is an expression quantitative trait locus modulating CHRNA4 expression levels. This is the first report of overdominance in the nicotinic system. These findings connect CHRNA4 genotype, CO network activation, and sustained alertness, providing insights into how genetics shapes individuals' cognitive control abilities.SIGNIFICANCE STATEMENT The nicotinic acetylcholine system plays a central role in

  15. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms.

    Science.gov (United States)

    Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi

    2017-05-01

    We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp+) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp+ in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp+ or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp+ group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp+. In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp+. Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Inefficient preparatory fMRI-BOLD network activations predict working memory dysfunctions in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Anja eBaenninger

    2016-03-01

    Full Text Available Patients with schizophrenia show abnormal dynamics and structure of temporally coherent networks (TCNs assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia.Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 & load 5 in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN, dorsal attention network (dAN, left and right working memory networks (WMNs – and three EEG bands – theta, alpha, and beta.In healthy controls, there was a load dependent inverse relation between DMN and frontal-midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task.Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback targeting pre-states could be beneficial as task performance relies on the preparatory state of the brain.

  17. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks.

    Science.gov (United States)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013)]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012)]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  18. Rules of engagement: factors that regulate activity-dependent synaptic plasticity during neural network development.

    Science.gov (United States)

    Stoneham, Emily T; Sanders, Erin M; Sanyal, Mohima; Dumas, Theodore C

    2010-10-01

    Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.

  19. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks

    Science.gov (United States)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013), 10.1038/srep01783]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012), 10.1038/nphys2162]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  20. From baseline to epileptiform activity: A path to synchronized rhythmicity in large-scale neural networks

    Science.gov (United States)

    Shusterman, Vladimir; Troy, William C.

    2008-06-01

    In large-scale neural networks in the brain the emergence of global behavioral patterns, manifested by electroencephalographic activity, is driven by the self-organization of local neuronal groups into synchronously functioning ensembles. However, the laws governing such macrobehavior and its disturbances, in particular epileptic seizures, are poorly understood. Here we use a mean-field population network model to describe a state of baseline physiological activity and the transition from the baseline state to rhythmic epileptiform activity. We describe principles which explain how this rhythmic activity arises in the form of spatially uniform self-sustained synchronous oscillations. In addition, we show how the rate of migration of the leading edge of the synchronous oscillations can be theoretically predicted, and compare the accuracy of this prediction with that measured experimentally using multichannel electrocorticographic recordings obtained from a human subject experiencing epileptic seizures. The comparison shows that the experimentally measured rate of migration of the leading edge of synchronous oscillations is within the theoretically predicted range of values. Computer simulations have been performed to investigate the interactions between different regions of the brain and to show how organization in one spatial region can promote or inhibit organization in another. Our theoretical predictions are also consistent with the results of functional magnetic resonance imaging (fMRI), in particular with observations that lower-frequency electroencephalographic (EEG) rhythms entrain larger areas of the brain than higher-frequency rhythms. These findings advance the understanding of functional behavior of interconnected populations and might have implications for the analysis of diverse classes of networks.

  1. An Evaluation of Best Effort Traffic Management of Server and Agent-Based Active Network Management (SAAM) Architecture

    National Research Council Canada - National Science Library

    Ayvat, Birol

    2003-01-01

    The Server and Agent-based Active Network Management (SAAM) architecture was initially designed to work with the next generation Internet where increasingly sophisticated applications will require QoS guarantees...

  2. Domoic acid disrupts the activity and connectivity of neuronal networks in organotypic brain slice cultures.

    Science.gov (United States)

    Hiolski, E M; Ito, S; Beggs, J M; Lefebvre, K A; Litke, A M; Smith, D R

    2016-09-01

    Domoic acid is a neurotoxin produced by algae and is found in seafood during harmful algal blooms. As a glutamate agonist, domoic acid inappropriately stimulates excitatory activity in neurons. At high doses, this leads to seizures and brain lesions, but it is unclear how lower, asymptomatic exposures disrupt neuronal activity. Domoic acid has been detected in an increasing variety of species across a greater geographical range than ever before, making it critical to understand the potential health impacts of low-level exposure on vulnerable marine mammal and human populations. To determine whether prolonged domoic acid exposure altered neuronal activity in hippocampal networks, we used a custom-made 512 multi-electrode array with high spatial and temporal resolution to record extracellular potentials (spikes) in mouse organotypic brain slice cultures. We identified individual neurons based on spike waveform and location, and measured the activity and functional connectivity within the neuronal networks of brain slice cultures. Domoic acid exposure significantly altered neuronal spiking activity patterns, and increased functional connectivity within exposed cultures, in the absence of overt cellular or neuronal toxicity. While the overall spiking activity of neurons in domoic acid-exposed cultures was comparable to controls, exposed neurons spiked significantly more often in bursts. We also identified a subset of neurons that were electrophysiologically silenced in exposed cultures, and putatively identified those neurons as fast-spiking inhibitory neurons. These results provide evidence that domoic acid affects neuronal activity in the absence of cytotoxicity, and suggest that neurodevelopmental exposure to domoic acid may alter neurological function in the absence of clinical symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The CT appearance of intraoral chewing gum

    Energy Technology Data Exchange (ETDEWEB)

    Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2008-12-15

    When imaged, intraoral chewing gum has the potential to be misdiagnosed. Chewing gum has a characteristic appearance on CT: it is ovoid in shape, hyperdense, and has small internal locules of air. Reports have described the appearance of gum on radiographs and abdominal CT images; however, no reports could be found detailing its appearance within the mouth. This report describes the appearance of intraoral chewing gum as well as the properties of the gum that lead to this appearance. Because of the potential for misdiagnosis, screening for intraoral foreign bodies should be considered prior to imaging. (orig.)

  4. A network of networks.

    Science.gov (United States)

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more

  5. Spatialising the contentious politics of ADHD: networks and scalar strategies in health social movement activism.

    Science.gov (United States)

    Edwards, Claire

    2014-09-01

    This paper explores the spatial dynamics of health social movement activism in the context of a specific condition, Attention Deficit Hyperactivity Disorder (ADHD). Deploying qualitative research conducted with Irish ADHD organisations, it examines how place and space affect activist networks and the dilemmas that emerge when local 'mobilisations' converge at national and transnational levels. ADHD activism in Ireland has been predominantly localist in orientation, but certain organisations have shifted their activism to the European scale as a means of gaining further political and epistemic recognition for the condition. The paper suggests that health social movement studies would benefit from an engagement with the geographies of inter-scalar relations in analysing organisations׳ action repertoires. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimal Allocation of Wind Turbines in Active Distribution Networks by Using Multi-Period Optimal Power Flow and Genetic Algorithms

    DEFF Research Database (Denmark)

    Siano, P.; Chen, Peiyuan; Chen, Zhe

    2012-01-01

    In order to achieve an effective reduction of green house gas emissions, the future electrical distribution networks will need to accommodate higher amount of renewable energy based on distributed generation such as Wind Turbines. This will require a re-evaluation and most likely a revision...... a hybrid optimization method that aims of maximizing the Net Present Value related to the Investment made by Wind Turbines developers in an active distribution network. The proposed network combines a Genetic Algorithm with a multi-period optimal power flow. The method, integrating active management...

  7. A Two-Stage Robust Optimization for Centralized-Optimal Dispatch of Photovoltaic Inverters in Active Distribution Networks

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Yang, Yongheng

    2017-01-01

    Optimally dispatching Photovoltaic (PV) inverters is an efficient way to avoid overvoltage in active distribution networks, which may occur in the case of PV generation surplus load demand. Typically, the dispatching optimization objective is to identify critical PV inverters that have the most...... significant impact on the network voltage level. Following, it ensures the optimal set-points of both active power and reactive power for the selected inverters, guaranteeing the entire system operating constraints (e.g., the network voltage magnitude) within reasonable ranges. However, the intermittent...

  8. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  9. Predicting the activity phase of a follower neuron with A-current in an inhibitory network.

    Science.gov (United States)

    Zhang, Yu; Bose, Amitabha; Nadim, Farzan

    2008-09-01

    The transient potassium A-current is present in most neurons and plays an important role in determining the timing of action potentials. We examine the role of the A-current in the activity phase of a follower neuron in a rhythmic feed-forward inhibitory network with a reduced three-variable model and conduct experiments to verify the usefulness of our model. Using geometric analysis of dynamical systems, we explore the factors that determine the onset of activity in a follower neuron following release from inhibition. We first analyze the behavior of the follower neuron in a single cycle and find that the phase plane structure of the model can be used to predict the potential behaviors of the follower neuron following release from inhibition. We show that, depending on the relative scales of the inactivation time constant of the A-current and the time constant of the recovery variable, the follower neuron may or may not reach its active state following inhibition. Our simple model is used to derive a recursive set of equations to predict the contribution of the A-current parameters in determining the activity phase of a follower neuron as a function of the duration and frequency of the inhibitory input it receives. These equations can be used to demonstrate the dependence of activity phase on the period and duty cycle of the periodic inhibition, as seen by comparing the predictions of the model with the activity of the pyloric constrictor (PY) neurons in the crustacean pyloric network.

  10. Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation.

    Science.gov (United States)

    Vilne, Baiba; Skogsberg, Josefin; Foroughi Asl, Hassan; Talukdar, Husain Ahammad; Kessler, Thorsten; Björkegren, Johan L M; Schunkert, Heribert

    2017-12-01

    Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation. To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e. the so called Reversa mouse model), we performed time-resolved analyses of mitochondrial transcriptome in the aortic arch employing a systems-level network approach. During hypercholesterolemia, we observed a massive down-regulation (>28%) of mitochondrial genes, specifically at the time of rapid atherosclerotic lesion expansion and foam cell formation, i.e. between 30 and 40 weeks of age. Both phenomena - down-regulation of mitochondrial genes and lesion expansion - were largely reversible by genetically lowering plasma cholesterol (by >80%, from 427 to 54 ± 31 mg/L) at 30 weeks. Co-expression network analysis revealed that both mitochondrial signature genes were highly connected in two modules, negatively correlating with lesion size and supported as causal for coronary artery disease (CAD) in humans, as expression-associated single nucleotide polymorphisms (eSNPs) representing their genes overlapped markedly with established disease risk loci. Within these modules, we identified the transcription factor estrogen related receptor (ERR)-α and its co-factors PGC1-α and -β, i.e. two members of the peroxisome proliferator-activated receptor γ co-activator 1 family of transcription regulators, as key regulatory genes. Together, these factors are known as major orchestrators of mitochondrial biogenesis and antioxidant responses. Using a network approach, we demonstrate how hypercholesterolemia could hamper mitochondrial activity during atherosclerosis progression and pinpoint potential therapeutic targets to counteract these processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons .

    Directory of Open Access Journals (Sweden)

    Dan eShlosberg

    2012-02-01

    Full Text Available Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO fluorescent indicator DAF-2DA. However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity.Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4X objective. Histochemistry for NADPH diaphorase, a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during and after illumination confirmed the selective damage to non fast-spiking interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs was significantly reduced at distances of 300-400 m from the stimulation, but not when inhibition was non-selectively weakened with the GABAA blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  12. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data.

    Science.gov (United States)

    Puentes-Mestril, Carlos; Aton, Sara J

    2017-01-01

    Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY-namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.

  13. Anti-glycated activity prediction of polysaccharides from two guava fruits using artificial neural networks.

    Science.gov (United States)

    Yan, Chunyan; Lee, Jinsheng; Kong, Fansheng; Zhang, Dezhi

    2013-10-15

    High-efficiency ultrasonic treatment was used to extract the polysaccharides of Psidium guajava (PPG) and Psidium littorale (PPL). The aims of this study were to compare polysaccharide activities from these two guavas, as well as to investigate the relationship between ultrasonic conditions and anti-glycated activity. A mathematical model of anti-glycated activity was constructed with the artificial neural network (ANN) toolbox of MATLAB software. Response surface plots showed the correlation between ultrasonic conditions and bioactivity. The optimal ultrasonic conditions of PPL for the highest anti-glycated activity were predicted to be 256 W, 60 °C, and 12 min, and the predicted activity was 42.2%. The predicted highest anti-glycated activity of PPG was 27.2% under its optimal predicted ultrasonic condition. The experimental result showed that PPG and PPL possessed anti-glycated and antioxidant activities, and those of PPL were greater. The experimental data also indicated that ANN had good prediction and optimization capability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Active volcanoes observed through Art: the contribution offered by the social networks

    Science.gov (United States)

    Neri, Marco; Neri, Emilia

    2015-04-01

    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  15. Establishing a network of specialist Porphyria centres - effects on diagnostic activities and services.

    Science.gov (United States)

    Tollånes, Mette C; Aarsand, Aasne K; Villanger, Jørild Haugen; Støle, Egil; Deybach, Jean-Charles; Marsden, Joanne; To-Figueras, Jordi; Sandberg, Sverre

    2012-12-10

    The porphyrias are a heterogeneous group of rare metabolic diseases. The full spectrum of porphyria diagnostics is usually performed by specialized porphyria laboratories or centres. The European Porphyria Initiative (EPI), a collaborative network of porphyria centres formed in 2001, evolved in 2007 into the European Porphyria Network (EPNET), where participating centres are required to adhere to agreed quality criteria. The aim of this study was to examine the state and distribution of porphyria diagnostic services in 2009 and to explore potential effects of increased international collaboration in the field of these rare diseases in the period 2006-2009. Data on laboratory, diagnostic and clinical activities and services reported to EPI/EPNET in yearly activity reports during 2006 through 2009 were compared between reporting centres, and possible time trends explored. Thirty-five porphyria centres from 22 countries, five of which were non-European associate EPNET members, filed one or more activity reports to EPI/EPNET during the study period. Large variations between centres were observed in the analytical repertoire offered, numbers of analyses performed and type and number of staff engaged. The proportion of centres fulfilling the minimum criteria set by EPNET to be classified as a specialist porphyria centre increased from 80% to 94% during the study period. Porphyria services are unevenly distributed, and some areas are probably still lacking in specialized porphyria services altogether. However, improvements in the quality of diagnostic services provided by porphyria centres participating in EPI/EPNET were observed during 2006 through 2009.

  16. Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant.

    Science.gov (United States)

    O'Donnell, John P; Marsh, Heather M; Sondermann, Holger; Sevier, Carolyn S

    2018-02-20

    The ATPase domain of members of the 70 kDa heat shock protein (Hsp70) family shows a high degree of sequence, structural, and functional homology across species. A broadly conserved residue within the Hsp70 ATPase domain that captured our attention is an unpaired cysteine, positioned proximal to the site of nucleotide binding. Prior studies of several Hsp70 family members show this cysteine is not required for Hsp70 ATPase activity, yet select amino acid replacements of the cysteine can dramatically alter ATP hydrolysis. Moreover, post-translational modification of the cysteine has been reported to limit ATP hydrolysis for several Hsp70s. To better understand the underlying mechanism for how perturbation of this noncatalytic residue modulates Hsp70 function, we determined the structure for a cysteine-to-tryptophan mutation in the constitutively expressed, mammalian Hsp70 family member Hsc70. Our work reveals that the steric hindrance produced by a cysteine-to-tryptophan mutation disrupts the hydrogen-bond network within the active site, resulting in a loss of proper catalytic magnesium coordination. We propose that a similarly altered active site is likely observed upon post-translational oxidation. We speculate that the subtle changes we detect in the hydrogen-bonding network may relate to the previously reported observation that cysteine oxidation can influence Hsp70 interdomain communication.

  17. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks.

    Science.gov (United States)

    Wei, Hairong; Yordanov, Yordan S; Georgieva, Tatyana; Li, Xiang; Busov, Victor

    2013-10-01

    We show a distinct and previously poorly characterized response of poplar (Populus tremula × Populus alba) roots to low nitrogen (LN), which involves activation of root growth and significant transcriptome reprogramming. Analysis of the temporal patterns of enriched ontologies among the differentially expressed genes revealed an ordered assembly of functionally cohesive biological events that aligned well with growth and morphological responses. A core set of 28 biological processes was significantly enriched across the whole studied period and 21 of these were also enriched in the roots of Arabidopsis thaliana during the LN response. More than half (15) of the 28 processes belong to gene ontology (GO) terms associated with signaling and signal transduction pathways, suggesting the presence of conserved signaling mechanisms triggered by LN. A reconstruction of genetic regulatory network analysis revealed a sub-network centered on a PtaNAC1 (P. tremula × alba NAM, ATAF, CUC 1) transcription factor. PtaNAC1 root-specific up-regulation increased root biomass and significantly changed the expression of the connected hub genes specifically under LN. Our results provide evidence that the root response to LN involves hierarchically structured genetic networks centered on key regulatory factors. Targeting these factors via genetic engineering or breeding approaches can allow dynamic adjustment of root architecture in response to variable nitrogen availabilities in the soil. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Language disorders and their meanings: the effects of a speech-language pathology network activity

    Directory of Open Access Journals (Sweden)

    Rosana Carla do Nascimento Givigi

    2015-03-01

    Full Text Available This study follows the epistemological assumptions of the Brazilian Interactionism, articulated with the Discourse Analysis and Meaning Network. The main purpose was to analyze the effects of the intervention work with children, their families and schools. The intervention aimed at the construction of language and the modification of the meanings attached to these subjects. The methodological device used clinical-qualitative and action research. Five children with language disorders aged 0 to 5 years, their families and schools participated in this two-year study. The procedures were distinct for the different networks: child, family, school. The speech therapy sessions were performed weekly and were based on the Interactionist approach. Interviews with the families were conducted, as well as meetings with the group of parents. At school, the weekly visits used the collaborative action research perspective. The main results were modifications in the children’s behaviour; modification of the meanings given to language disorders; more communicative attempts; more efficient interactions; and collaborative work in schools. The idea of human development based on a historical and cultural process of significations was the guideline of the study. It was possible to verify that, after the network activity, there was a gradual modification of the meanings of language disorders in parents, educational agents and children. Actual life conditions and discursive practices are interwoven throughout time, enabling to reflect on the dynamics of relationships and developing processes.

  19. Active and dynamic information fusion for multisensor systems with dynamic Bayesian networks.

    Science.gov (United States)

    Zhang, Yongmian; Ji, Qiang

    2006-04-01

    Many information fusion applications are often characterized by a high degree of complexity because: (1) data are often acquired from sensors of different modalities and with different degrees of uncertainty; (2) decisions must be made efficiently; and (3) the world situation evolves over time. To address these issues, we propose an information fusion framework based on dynamic Bayesian networks to provide active, dynamic, purposive and sufficing information fusion in order to arrive at a reliable conclusion with reasonable time and limited resources. The proposed framework is suited to applications where the decision must be made efficiently from dynamically available information of diverse and disparate sources.

  20. Application of an artificial neural network for evaluation of activity concentration exemption limits in NORM industry.

    Science.gov (United States)

    Wiedner, Hannah; Peyrés, Virginia; Crespo, Teresa; Mejuto, Marcos; García-Toraño, Eduardo; Maringer, Franz Josef

    2017-08-01

    NORM emits many different gamma energies that have to be analysed by an expert. Alternatively, artificial neural networks (ANNs) can be used. These mathematical software tools can generalize "knowledge" gained from training datasets, applying it to new problems. No expert knowledge of gamma-ray spectrometry is needed by the end-user. In this work an ANN was created that is able to decide from the raw gamma-ray spectrum if the activity concentrations in a sample are above or below the exemption limits. Copyright © 2017 Elsevier Ltd. All rights reserved.