WorldWideScience

Sample records for netlogo agent-based models

  1. OPAL Netlogo Land Condition Model

    Science.gov (United States)

    2014-08-15

    ER D C/ CE RL T R- 14 -1 2 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) OPAL Netlogo Land Condition Model...Fulton, Natalie Myers, Scott Tweddale, Dick Gebhart, Ryan Busby, Anne Dain-Owens, and Heidi Howard August 2014 OPAL team measuring above and...online library at http://acwc.sdp.sirsi.net/client/default. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CERL TR-14-12

  2. A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling

    Science.gov (United States)

    Jaxa-Rozen, M.

    2016-12-01

    The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).

  3. Agent-Based Models in Social Physics

    Science.gov (United States)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  4. An Extensible NetLogo Model for Visualizing Message Routing Protocols

    Science.gov (United States)

    2017-08-01

    the hard sciences to the social sciences to computer-generated art. NetLogo represents the world as a set of...describe the model is shown here; for the supporting methods , refer to the source code. Approved for public release; distribution is unlimited. 4 iv...if ticks - last-inject > time-to-inject [inject] if run# > #runs [stop] end Next, we present some basic statistics collected for the

  5. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  6. Validating agent oriented methodology (AOM) for netlogo modelling and simulation

    Science.gov (United States)

    WaiShiang, Cheah; Nissom, Shane; YeeWai, Sim; Sharbini, Hamizan

    2017-10-01

    AOM (Agent Oriented Modeling) is a comprehensive and unified agent methodology for agent oriented software development. AOM methodology was proposed to aid developers with the introduction of technique, terminology, notation and guideline during agent systems development. Although AOM methodology is claimed to be capable of developing a complex real world system, its potential is yet to be realized and recognized by the mainstream software community and the adoption of AOM is still at its infancy. Among the reason is that there are not much case studies or success story of AOM. This paper presents two case studies on the adoption of AOM for individual based modelling and simulation. It demonstrate how the AOM is useful for epidemiology study and ecological study. Hence, it further validate the AOM in a qualitative manner.

  7. Using Model Replication to Improve the Reliability of Agent-Based Models

    Science.gov (United States)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  8. R Marries NetLogo: Introduction to the RNetLogo Package

    Directory of Open Access Journals (Sweden)

    Jan C Thiele

    2014-06-01

    Full Text Available The RNetLogo package delivers an interface to embed the agent-based modeling platform NetLogo into the R environment with headless (no graphical user interface or interactive GUI mode. It provides functions to load models, execute commands, push values, and to get values from NetLogo reporters. Such a seamless integration of a widely used agent-based modeling platform with a well-known statistical computing and graphics environment opens up various possibilities. For example, it enables the modeler to design simulation experiments, store simulation results, and analyze simulation output in a more systematic way. It can therefore help close the gaps in agent-based modeling regarding standards of description and analysis. After a short overview of the agent-based modeling approach and the software used here, the paper delivers a step-by-step introduction to the usage of the RNetLogo package by examples.

  9. Agent-based modeling of sustainable behaviors

    CERN Document Server

    Sánchez-Maroño, Noelia; Fontenla-Romero, Oscar; Polhill, J; Craig, Tony; Bajo, Javier; Corchado, Juan

    2017-01-01

    Using the O.D.D. (Overview, Design concepts, Detail) protocol, this title explores the role of agent-based modeling in predicting the feasibility of various approaches to sustainability. The chapters incorporated in this volume consist of real case studies to illustrate the utility of agent-based modeling and complexity theory in discovering a path to more efficient and sustainable lifestyles. The topics covered within include: households' attitudes toward recycling, designing decision trees for representing sustainable behaviors, negotiation-based parking allocation, auction-based traffic signal control, and others. This selection of papers will be of interest to social scientists who wish to learn more about agent-based modeling as well as experts in the field of agent-based modeling.

  10. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  11. EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes

    Science.gov (United States)

    Wagh, Aditi; Wilensky, Uri

    2018-04-01

    Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.

  12. Agent-based modelling of cholera diffusion

    NARCIS (Netherlands)

    Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.

    2016-01-01

    This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse

  13. Improving Agent Based Modeling of Critical Incidents

    Directory of Open Access Journals (Sweden)

    Robert Till

    2010-04-01

    Full Text Available Agent Based Modeling (ABM is a powerful method that has been used to simulate potential critical incidents in the infrastructure and built environments. This paper will discuss the modeling of some critical incidents currently simulated using ABM and how they may be expanded and improved by using better physiological modeling, psychological modeling, modeling the actions of interveners, introducing Geographic Information Systems (GIS and open source models.

  14. Agent Based Modelling for Social Simulation

    NARCIS (Netherlands)

    Smit, S.K.; Ubink, E.M.; Vecht, B. van der; Langley, D.J.

    2013-01-01

    This document is the result of an exploratory project looking into the status of, and opportunities for Agent Based Modelling (ABM) at TNO. The project focussed on ABM applications containing social interactions and human factors, which we termed ABM for social simulation (ABM4SS). During the course

  15. Agent-Based Modeling in Systems Pharmacology.

    Science.gov (United States)

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  16. Agent Based Modeling Applications for Geosciences

    Science.gov (United States)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  17. Agent Based Modelling for Social Simulation

    OpenAIRE

    Smit, S.K.; Ubink, E.M.; Vecht, B. van der; Langley, D.J.

    2013-01-01

    This document is the result of an exploratory project looking into the status of, and opportunities for Agent Based Modelling (ABM) at TNO. The project focussed on ABM applications containing social interactions and human factors, which we termed ABM for social simulation (ABM4SS). During the course of this project two workshops were organized. At these workshops, a wide range of experts, both ABM experts and domain experts, worked on several potential applications of ABM. The results and ins...

  18. Multiscale agent-based cancer modeling.

    Science.gov (United States)

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  19. Econophysics of agent-based models

    CERN Document Server

    Aoyama, Hideaki; Chakrabarti, Bikas; Chakraborti, Anirban; Ghosh, Asim

    2014-01-01

    The primary goal of this book is to present the research findings and conclusions of physicists, economists, mathematicians and financial engineers working in the field of "Econophysics" who have undertaken agent-based modelling, comparison with empirical studies and related investigations. Most standard economic models assume the existence of the representative agent, who is “perfectly rational” and applies the utility maximization principle when taking action. One reason for this is the desire to keep models mathematically tractable: no tools are available to economists for solving non-linear models of heterogeneous adaptive agents without explicit optimization. In contrast, multi-agent models, which originated from statistical physics considerations, allow us to go beyond the prototype theories of traditional economics involving the representative agent. This book is based on the Econophys-Kolkata VII Workshop, at which many such modelling efforts were presented. In the book, leading researchers in the...

  20. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  1. Agent Based Modeling as an Educational Tool

    Science.gov (United States)

    Fuller, J. H.; Johnson, R.; Castillo, V.

    2012-12-01

    Motivation is a key element in high school education. One way to improve motivation and provide content, while helping address critical thinking and problem solving skills, is to have students build and study agent based models in the classroom. This activity visually connects concepts with their applied mathematical representation. "Engaging students in constructing models may provide a bridge between frequently disconnected conceptual and mathematical forms of knowledge." (Levy and Wilensky, 2011) We wanted to discover the feasibility of implementing a model based curriculum in the classroom given current and anticipated core and content standards.; Simulation using California GIS data ; Simulation of high school student lunch popularity using aerial photograph on top of terrain value map.

  2. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  3. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  4. Agent Based Reasoning in Multilevel Flow Modeling

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2012-01-01

    to launch the MFM Workbench into an agent based environment, which can complement disadvantages of the original software. The agent-based MFM Workbench is centered on a concept called “Blackboard System” and use an event based mechanism to arrange the reasoning tasks. This design will support the new...

  5. Agent-based modeling in ecological economics.

    Science.gov (United States)

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  6. Agent Based Model of Livestock Movements

    Science.gov (United States)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  7. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  8. Validating agent based models through virtual worlds.

    Energy Technology Data Exchange (ETDEWEB)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  9. Agent-based models of financial markets

    Energy Technology Data Exchange (ETDEWEB)

    Samanidou, E [Department of Economics, University of Kiel, Olshausenstrasse 40, D-24118 Kiel (Germany); Zschischang, E [HSH Nord Bank, Portfolio Mngmt. and Inv., Martensdamm 6, D-24103 Kiel (Germany); Stauffer, D [Institute for Theoretical Physics, Cologne University, D-50923 Koeln (Germany); Lux, T [Department of Economics, University of Kiel, Olshausenstrasse 40, D-24118 Kiel (Germany)

    2007-03-15

    This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we

  10. Agent-based models of financial markets

    Science.gov (United States)

    Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T.

    2007-03-01

    This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont

  11. Agent-based models of financial markets

    International Nuclear Information System (INIS)

    Samanidou, E; Zschischang, E; Stauffer, D; Lux, T

    2007-01-01

    This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont

  12. An Agent-Based Modeling Framework for Simulating Human Exposure to Environmental Stresses in Urban Areas

    Directory of Open Access Journals (Sweden)

    Liang Emlyn Yang

    2018-04-01

    Full Text Available Several approaches have been used to assess potential human exposure to environmental stresses and achieve optimal results under various conditions, such as for example, for different scales, groups of people, or points in time. A thorough literature review in this paper identifies the research gap regarding modeling approaches for assessing human exposure to environment stressors, and it indicates that microsimulation tools are becoming increasingly important in human exposure assessments of urban environments, in which each person is simulated individually and continuously. The paper further describes an agent-based model (ABM framework that can dynamically simulate human exposure levels, along with their daily activities, in urban areas that are characterized by environmental stresses such as air pollution and heat stress. Within the framework, decision-making processes can be included for each individual based on rule-based behavior in order to achieve goals under changing environmental conditions. The ideas described in this paper are implemented in a free and open source NetLogo platform. A basic modeling scenario of the ABM framework in Hamburg, Germany, demonstrates its utility in various urban environments and individual activity patterns, as well as its portability to other models, programs, and frameworks. The prototype model can potentially be extended to support environmental incidence management through exploring the daily routines of different groups of citizens, and comparing the effectiveness of different strategies. Further research is needed to fully develop an operational version of the model.

  13. An Active Learning Exercise for Introducing Agent-Based Modeling

    Science.gov (United States)

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  14. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Science.gov (United States)

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  15. An Exploratory Study of the Butterfly Effect Using Agent-Based Modeling

    Science.gov (United States)

    Khasawneh, Mahmoud T.; Zhang, Jun; Shearer, Nevan E. N.; Rodriquez-Velasquez, Elkin; Bowling, Shannon R.

    2010-01-01

    This paper provides insights about the behavior of chaotic complex systems, and the sensitive dependence of the system on the initial starting conditions. How much does a small change in the initial conditions of a complex system affect it in the long term? Do complex systems exhibit what is called the "Butterfly Effect"? This paper uses an agent-based modeling approach to address these questions. An existing model from NetLogo library was extended in order to compare chaotic complex systems with near-identical initial conditions. Results show that small changes in initial starting conditions can have a huge impact on the behavior of chaotic complex systems. The term the "butterfly effect" is attributed to the work of Edward Lorenz [1]. It is used to describe the sensitive dependence of the behavior of chaotic complex systems on the initial conditions of these systems. The metaphor refers to the notion that a butterfly flapping its wings somewhere may cause extreme changes in the ecological system's behavior in the future, such as a hurricane.

  16. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    Science.gov (United States)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  17. Simulating Spatial Growth Patterns in Developing Countries: an Agent Based Modelling Approach. A Case of Shama in the Western Region of Ghana

    Science.gov (United States)

    Inkoom, J. N.

    2011-12-01

    In Sub-Saharan Africa, rapid urban growth is characterized by prolific expansion of unplanned (informal) structures, and unguided spatial expansion. These unguided expansions by human agents have outstripped the regulatory capacities of Central and Local government. Governmental institutions in finding solutions to the unguided expansion in unplanned use of land have to call for the modelling of what influences the spatial decision and role of human agents in the growth of informal settlement. The objective of the study is to simulate spatial growth pattern of settlements in the Shama district using an agent based model. The study was conducted within a framework of NetLogo. The NetLogo assisted to incorporate and simulate driving forces that affect location decision-making by households and the growth of informal settlement. A survey was conducted to obtain household location decision preferences. The development of unplanned settlement has been a function of land price, proximity to economic centre's, household economic potential, and the location decision-making patterns of households. The exploratory analysis found particularly that majority of spontaneous development took place on areas liable to floods suggesting that some structures fall outside the required building regulations. The application of the proposed model indicates its potential to improve urban planning policies and decision-making processes in emerging cities of developing countries. Also, the result of the simulation suggests potential preferential location for residential development. The research justifies an approach in the area of simulating urban dynamics with agent-based models.

  18. Towards Agent-Based Model Specification in Smart Grid: A Cognitive Agent-based Computing Approach

    OpenAIRE

    Akram, Waseem; Niazi, Muaz A.; Iantovics, Laszlo Barna

    2017-01-01

    A smart grid can be considered as a complex network where each node represents a generation unit or a consumer. Whereas links can be used to represent transmission lines. One way to study complex systems is by using the agent-based modeling (ABM) paradigm. An ABM is a way of representing a complex system of autonomous agents interacting with each other. Previously, a number of studies have been presented in the smart grid domain making use of the ABM paradigm. However, to the best of our know...

  19. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  20. Agent-based Modeling Methodology for Analyzing Weapons Systems

    Science.gov (United States)

    2015-03-26

    technique involve model structure, system representation and the degree of validity, coupled with the simplicity, of the overall model. ABM is best suited... system representation of the air combat system . We feel that a simulation model that combines ABM with equation-based representation of weapons and...AGENT-BASED MODELING METHODOLOGY FOR ANALYZING WEAPONS SYSTEMS THESIS Casey D. Connors, Major, USA

  1. A review of Agent Based Modeling for agricultural policy evaluation

    NARCIS (Netherlands)

    Kremmydas, Dimitris; Athanasiadis, I.N.; Rozakis, Stelios

    2018-01-01

    Farm level scale policy analysis is receiving increased attention due to a changing agricultural policy orientation. Agent based models (ABM) are farm level models that have appeared in the end of 1990's, having several differences from traditional farm level models, like the consideration of

  2. Identification of walking human model using agent-based modelling

    Science.gov (United States)

    Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir

    2018-03-01

    The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.

  3. Agent-based models in economics a toolkit

    CERN Document Server

    Fagiolo, Giorgio; Gallegati, Mauro; Richiardi, Matteo; Russo, Alberto

    2018-01-01

    In contrast to mainstream economics, complexity theory conceives the economy as a complex system of heterogeneous interacting agents characterised by limited information and bounded rationality. Agent Based Models (ABMs) are the analytical and computational tools developed by the proponents of this emerging methodology. Aimed at students and scholars of contemporary economics, this book includes a comprehensive toolkit for agent-based computational economics, now quickly becoming the new way to study evolving economic systems. Leading scholars in the field explain how ABMs can be applied fruitfully to many real-world economic examples and represent a great advancement over mainstream approaches. The essays discuss the methodological bases of agent-based approaches and demonstrate step-by-step how to build, simulate and analyse ABMs and how to validate their outputs empirically using the data. They also present a wide set of applications of these models to key economic topics, including the business cycle, lab...

  4. Structuring Qualitative Data for Agent-Based Modelling

    NARCIS (Netherlands)

    Ghorbani, Amineh; Dijkema, Gerard P.J.; Schrauwen, Noortje

    2015-01-01

    Using ethnography to build agent-based models may result in more empirically grounded simulations. Our study on innovation practice and culture in the Westland horticulture sector served to explore what information and data from ethnographic analysis could be used in models and how. MAIA, a

  5. Dissemination of Cultural Norms and Values: Agent-Based Modeling

    Directory of Open Access Journals (Sweden)

    Denis Andreevich Degterev

    2016-12-01

    Full Text Available This article shows how agent-based modeling allows us to explore the mechanisms of the dissemination of cultural norms and values both within one country and in the whole world. In recent years, this type of simulation is particularly prevalent in the analysis of international relations, becoming more popular than the system dynamics and discrete event simulation. The use of agent-based modeling in the analysis of international relations is connected with the agent-structure problem in international relations. Structure and agents act as interdependent and dynamically changing in the process of interaction between entities. Agent-structure interaction could be modeled by means of the theory of complex adaptive systems with the use of agent-based modeling techniques. One of the first examples of the use of agent-based modeling in political science is a model of racial segregation T. Shellinga. On the basis of this model, the author shows how the change in behavioral patterns at micro-level impacts on the macro-level. Patterns are changing due to the dynamics of cultural norms and values, formed by mass-media and other social institutes. The author shows the main areas of modern application of agent-based modeling in international studies including the analysis of ethnic conflicts, the formation of international coalitions. Particular attention is paid to Robert Axelrod approach based on the use of genetic algorithms to the spread of cultural norms and values. Agent-based modeling shows how to how to create such conditions that the norms that originally are not shared by a significant part of the population, eventually spread everywhere. Practical application of these algorithms is shown by the author of the article on the example of the situation in Ukraine in 2015-2016. The article also reveals the mechanisms of international spread of cultural norms and values. The main think-tanks using agent-based modeling in international studies are

  6. A technology path to tactical agent-based modeling

    Science.gov (United States)

    James, Alex; Hanratty, Timothy P.

    2017-05-01

    Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.

  7. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    Science.gov (United States)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  8. Agent-Based Modeling: A Powerful Tool for Tourism Researchers

    NARCIS (Netherlands)

    Nicholls, Sarah; Amelung, B.; Student, Jillian

    2017-01-01

    Agent-based modeling (ABM) is a way of representing complex systems of autonomous agents or actors, and of simulating the multiple potential outcomes of these agents’ behaviors and interactions in the form of a range of alternatives or futures. Despite the complexity of the tourism system, and the

  9. An agent-based model for diffusion of electric vehicles

    NARCIS (Netherlands)

    Kangur, Ayla; Jager, Wander; Verbrugge, Rineke; Bockarjova, Marija

    2017-01-01

    The transition from fuel cars to electric cars is a large-scale process involving many interactions between consumers and other stakeholders over decades. To explore how policies may interact with consumer behavior over such a long time period, we developed an agent-based social simulation model. In

  10. The fractional volatility model: An agent-based interpretation

    Science.gov (United States)

    Vilela Mendes, R.

    2008-06-01

    Based on the criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, some features of the model are reviewed and extended to account for leverage effects. Using agent-based models, one tries to find which agent strategies and (or) properties of the financial institutions might be responsible for the features of the fractional volatility model.

  11. Pynetlogo : Linking netlogo with python

    NARCIS (Netherlands)

    Jaxa-Rozen, M.; Kwakkel, J.H.

    2018-01-01

    Methods for testing and analyzing agent-based models have drawn increasing attention in the literature, in the context of efforts to establish standard frameworks for the development and documentation of models. This process can benefit from the use of established software environments for data

  12. An Agent Based Collaborative Simplification of 3D Mesh Model

    Science.gov (United States)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  13. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    Science.gov (United States)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  14. Agent-based modeling and simulation Part 3 : desktop ABMS.

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C. M.; North, M. J.; Decision and Information Sciences

    2007-01-01

    Agent-based modeling and simulation (ABMS) is a new approach to modeling systems comprised of autonomous, interacting agents. ABMS promises to have far-reaching effects on the way that businesses use computers to support decision-making and researchers use electronic laboratories to support their research. Some have gone so far as to contend that ABMS 'is a third way of doing science,' in addition to traditional deductive and inductive reasoning (Axelrod 1997b). Computational advances have made possible a growing number of agent-based models across a variety of application domains. Applications range from modeling agent behavior in the stock market, supply chains, and consumer markets, to predicting the spread of epidemics, the threat of bio-warfare, and the factors responsible for the fall of ancient civilizations. This tutorial describes the theoretical and practical foundations of ABMS, identifies toolkits and methods for developing agent models, and illustrates the development of a simple agent-based model of shopper behavior using spreadsheets.

  15. A strategy learning model for autonomous agents based on classification

    Directory of Open Access Journals (Sweden)

    Śnieżyński Bartłomiej

    2015-09-01

    Full Text Available In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process

  16. Stability of subsystem solutions in agent-based models

    Science.gov (United States)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  17. Financial Regulation in an Agent Based Macroeconomic Model

    OpenAIRE

    Riccetti, Luca; Russo, Alberto; Mauro, Gallegati

    2013-01-01

    Starting from the agent-based decentralized matching macroeconomic model proposed in Riccetti et al. (2012), we explore the effects of banking regulation on macroeconomic dynamics. In particular, we study the overall credit exposure and the lending concentration towards a single counterparty, finding that the portfolio composition seems to be more relevant than the overall exposure for banking stability, even if both features are very important. We show that a too tight regulation is dangerou...

  18. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  19. Can agent based models effectively reduce fisheries management implementation uncertainty?

    Science.gov (United States)

    Drexler, M.

    2016-02-01

    Uncertainty is an inherent feature of fisheries management. Implementation uncertainty remains a challenge to quantify often due to unintended responses of users to management interventions. This problem will continue to plague both single species and ecosystem based fisheries management advice unless the mechanisms driving these behaviors are properly understood. Equilibrium models, where each actor in the system is treated as uniform and predictable, are not well suited to forecast the unintended behaviors of individual fishers. Alternatively, agent based models (AMBs) can simulate the behaviors of each individual actor driven by differing incentives and constraints. This study evaluated the feasibility of using AMBs to capture macro scale behaviors of the US West Coast Groundfish fleet. Agent behavior was specified at the vessel level. Agents made daily fishing decisions using knowledge of their own cost structure, catch history, and the histories of catch and quota markets. By adding only a relatively small number of incentives, the model was able to reproduce highly realistic macro patterns of expected outcomes in response to management policies (catch restrictions, MPAs, ITQs) while preserving vessel heterogeneity. These simulations indicate that agent based modeling approaches hold much promise for simulating fisher behaviors and reducing implementation uncertainty. Additional processes affecting behavior, informed by surveys, are continually being added to the fisher behavior model. Further coupling of the fisher behavior model to a spatial ecosystem model will provide a fully integrated social, ecological, and economic model capable of performing management strategy evaluations to properly consider implementation uncertainty in fisheries management.

  20. Complexity and agent-based modelling in urban research

    DEFF Research Database (Denmark)

    Fertner, Christian

    influence on the bigger system. Traditional scientific methods or theories often tried to simplify, not accounting complex relations of actors and decision-making. The introduction of computers in simulation made new approaches in modelling, as for example agent-based modelling (ABM), possible, dealing......Urbanisation processes are results of a broad variety of actors or actor groups and their behaviour and decisions based on different experiences, knowledge, resources, values etc. The decisions done are often on a micro/individual level but resulting in macro/collective behaviour. In urban research...

  1. HPC for ABM using Netlogo

    OpenAIRE

    Tashakor, Ghazal; Luque, Emilio; Suppi, Remo

    2017-01-01

    The modeling of large-scale stochastic systems of heterogeneous individuals and their interactions, where multiple behaviors exist, requires a large number of scenarios and repetitions of simulation experiments. In these areas, the agent-based simulation (ABM) is the common tool and the High-Performance Computing can provide an adequate infrastructure for this type of simulations. The present work shows the methodology and the tools developed to allow the execution of multiple simulation scen...

  2. Empirical agent-based modelling challenges and solutions

    CERN Document Server

    Barreteau, Olivier

    2014-01-01

    This instructional book showcases techniques to parameterise human agents in empirical agent-based models (ABM). In doing so, it provides a timely overview of key ABM methodologies and the most innovative approaches through a variety of empirical applications.  It features cutting-edge research from leading academics and practitioners, and will provide a guide for characterising and parameterising human agents in empirical ABM.  In order to facilitate learning, this text shares the valuable experiences of other modellers in particular modelling situations. Very little has been published in the area of empirical ABM, and this contributed volume will appeal to graduate-level students and researchers studying simulation modeling in economics, sociology, ecology, and trans-disciplinary studies, such as topics related to sustainability. In a similar vein to the instruction found in a cookbook, this text provides the empirical modeller with a set of 'recipes'  ready to be implemented. Agent-based modeling (AB...

  3. Markov chain aggregation for agent-based models

    CERN Document Server

    Banisch, Sven

    2016-01-01

    This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting “micro-chain” including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the upd...

  4. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    Directory of Open Access Journals (Sweden)

    Bo Li

    2015-01-01

    Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.

  5. Modelling of robotic work cells using agent based-approach

    Science.gov (United States)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  6. Strengthening Theoretical Testing in Criminology Using Agent-based Modeling.

    Science.gov (United States)

    Johnson, Shane D; Groff, Elizabeth R

    2014-07-01

    The Journal of Research in Crime and Delinquency ( JRCD ) has published important contributions to both criminological theory and associated empirical tests. In this article, we consider some of the challenges associated with traditional approaches to social science research, and discuss a complementary approach that is gaining popularity-agent-based computational modeling-that may offer new opportunities to strengthen theories of crime and develop insights into phenomena of interest. Two literature reviews are completed. The aim of the first is to identify those articles published in JRCD that have been the most influential and to classify the theoretical perspectives taken. The second is intended to identify those studies that have used an agent-based model (ABM) to examine criminological theories and to identify which theories have been explored. Ecological theories of crime pattern formation have received the most attention from researchers using ABMs, but many other criminological theories are amenable to testing using such methods. Traditional methods of theory development and testing suffer from a number of potential issues that a more systematic use of ABMs-not without its own issues-may help to overcome. ABMs should become another method in the criminologists toolbox to aid theory testing and falsification.

  7. Climate Shocks and Migration: An Agent-Based Modeling Approach

    Science.gov (United States)

    Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-01-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725

  8. Agent-based modeling of noncommunicable diseases: a systematic review.

    Science.gov (United States)

    Nianogo, Roch A; Arah, Onyebuchi A

    2015-03-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application.

  9. A Multi Agent Based Model for Airport Service Planning

    Directory of Open Access Journals (Sweden)

    W.H. Ip

    2010-09-01

    Full Text Available Aviation industry is highly dynamic and demanding in nature that time and safety are the two most important factors while one of the major sources of delay is aircraft on ground because of it complexity, a lot of machinery like vehicles are involved and lots of communication are involved. As one of the aircraft ground services providers in Hong Kong International Airport, China Aircraft Services Limited (CASL aims to increase competitiveness by better its service provided while minimizing cost is also needed. One of the ways is to optimize the number of maintenance vehicles allocated in order to minimize chance of delay and also operating costs. In the paper, an agent-based model is proposed for support decision making in vehicle allocation. The overview of the aircrafts ground services procedures is firstly mentioned with different optimization methods suggested by researchers. Then, the agent-based approach is introduced and in the latter part of report and a multi-agent system is built and proposed which is decision supportive for CASL in optimizing the maintenance vehicles' allocation. The application provides flexibility for inputting number of different kinds of vehicles, simulation duration and aircraft arrival rate in order to simulation different scenarios which occurs in HKIA.

  10. Agent-Based Computational Modeling of Cell Culture ...

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  11. Statistical Agent Based Modelization of the Phenomenon of Drug Abuse

    Science.gov (United States)

    di Clemente, Riccardo; Pietronero, Luciano

    2012-07-01

    We introduce a statistical agent based model to describe the phenomenon of drug abuse and its dynamical evolution at the individual and global level. The agents are heterogeneous with respect to their intrinsic inclination to drugs, to their budget attitude and social environment. The various levels of drug use were inspired by the professional description of the phenomenon and this permits a direct comparison with all available data. We show that certain elements have a great importance to start the use of drugs, for example the rare events in the personal experiences which permit to overcame the barrier of drug use occasionally. The analysis of how the system reacts to perturbations is very important to understand its key elements and it provides strategies for effective policy making. The present model represents the first step of a realistic description of this phenomenon and can be easily generalized in various directions.

  12. Hypercompetitive Environments: An Agent-based model approach

    Science.gov (United States)

    Dias, Manuel; Araújo, Tanya

    Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.

  13. An agent-based model for energy service companies

    International Nuclear Information System (INIS)

    Robinson, Marguerite; Varga, Liz; Allen, Peter

    2015-01-01

    Highlights: • An agent-based model for household energy efficiency upgrades is considered. • Energy service companies provide an alternative to traditional utility providers. • Household self-financing is a limiting factor to widespread efficiency upgrading. • Longer term service contracts can lead to reduced household energy costs. • Future energy price increases enable service providers to retain their customer base. - Abstract: The residential housing sector is a major consumer of energy accounting for approximately one third of carbon emissions in the United Kingdom. Achieving a sustainable, low-carbon infrastructure necessitates a reduced and more efficient use of domestic energy supplies. Energy service companies offer an alternative to traditional providers, which supply a single utility product to satisfy the unconstrained demand of end users, and have been identified as a potentially important actor in sustainable future economies. An agent-based model is developed to examine the potential of energy service companies to contribute to the large scale upgrading of household energy efficiency, which would ultimately lead to a more sustainable and secure energy infrastructure. The migration of households towards energy service companies is described by an attractiveness array, through which potential customers can evaluate the future benefits, in terms of household energy costs, of changing provider. It is shown that self-financing is a limiting factor to the widespread upgrading of residential energy efficiency. Greater reductions in household energy costs could be achieved by committing to longer term contracts, allowing upgrade costs to be distributed over greater time intervals. A steadily increasing cost of future energy usage lends an element of stability to the market, with energy service companies displaying the ability to retain customers on contract expiration. The model highlights how a greater focus on the provision of energy services, as

  14. Agent-based Modelling, a new kind of research

    DEFF Research Database (Denmark)

    Held, Fabian P.; Wilkinson, Ian F.; Marks, Robert E.

    2014-01-01

    guidelines to help plan and structure the development of a theory about the causes of such a phenomenon in conjunction with a matching ABM. We argue that research about complex social phenomena is still largely fundamental research and therefore an iterative and cyclical development process of both theory......We discuss the use of Agent-based Modelling for the development and testing of theories about emergent social phenomena in marketing and the social sciences in general. We address both theoretical aspects about the types of phenomena that are suitably addressed with this approach and practical...... development. The main goal of this paper was to make research on complex social systems more accessible and help anticipate and structure the research process....

  15. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  16. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8 th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on natural selection implemented in a charter school of a major California city during spring semester of 2009. Eight 8th grade students, two boys and six girls, participated in this study. All of them were low socioeconomic status (SES). English was a second language for all of them, but they had been identified as fluent English speakers at least a year before the study. None of them had learned either natural selection or programming before the study. The study spanned over 7 weeks and was comprised of two study phases. In phase one the subject students learned natural selection in science classroom and how to do programming in NetLogo, an ABPM tool, in a computer lab; in phase two, the subject students were asked to program a simulation of adaptation based on the natural selection model in NetLogo. Both qualitative and quantitative data were collected in this study. The data resources included (1) pre and post test questionnaire, (2) student in-class worksheet, (3) programming planning sheet, (4) code-conception matching sheet, (5) student NetLogo projects, (6) videotaped programming processes, (7) final interview, and (8) investigator's field notes. Both qualitative and quantitative approaches were applied to analyze the gathered data. The findings suggested that students made progress on understanding adaptation phenomena and natural selection at the end of ABPM-supported MBI learning but the progress was limited. These students still held some misconceptions in their conceptual models, such as the idea that animals need to "learn" to adapt into the environment. Besides, their models of natural selection appeared to be

  17. Evaluating Water Demand Using Agent-Based Modeling

    Science.gov (United States)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  18. Improving Agent Based Models and Validation through Data Fusion.

    Science.gov (United States)

    Laskowski, Marek; Demianyk, Bryan C P; Friesen, Marcia R; McLeod, Robert D; Mukhi, Shamir N

    2011-01-01

    This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level.

  19. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  20. Dynamic calibration of agent-based models using data assimilation.

    Science.gov (United States)

    Ward, Jonathan A; Evans, Andrew J; Malleson, Nicolas S

    2016-04-01

    A widespread approach to investigating the dynamical behaviour of complex social systems is via agent-based models (ABMs). In this paper, we describe how such models can be dynamically calibrated using the ensemble Kalman filter (EnKF), a standard method of data assimilation. Our goal is twofold. First, we want to present the EnKF in a simple setting for the benefit of ABM practitioners who are unfamiliar with it. Second, we want to illustrate to data assimilation experts the value of using such methods in the context of ABMs of complex social systems and the new challenges these types of model present. We work towards these goals within the context of a simple question of practical value: how many people are there in Leeds (or any other major city) right now? We build a hierarchy of exemplar models that we use to demonstrate how to apply the EnKF and calibrate these using open data of footfall counts in Leeds.

  1. E-laboratories : agent-based modeling of electricity markets

    International Nuclear Information System (INIS)

    North, M.; Conzelmann, G.; Koritarov, V.; Macal, C.; Thimmapuram, P.; Veselka, T.

    2002-01-01

    Electricity markets are complex adaptive systems that operate under a wide range of rules that span a variety of time scales. These rules are imposed both from above by society and below by physics. Many electricity markets are undergoing or are about to undergo a transition from centrally regulated systems to decentralized markets. Furthermore, several electricity markets have recently undergone this transition with extremely unsatisfactory results, most notably in California. These high stakes transitions require the introduction of largely untested regulatory structures. Suitable laboratories that can be used to test regulatory structures before they are applied to real systems are needed. Agent-based models can provide such electronic laboratories or ''e-laboratories.'' To better understand the requirements of an electricity market e-laboratory, a live electricity market simulation was created. This experience helped to shape the development of the Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential as an e-laboratory, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices

  2. Agent-based modelling of consumer energy choices

    Science.gov (United States)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  3. An Agent Based Model of Household Water Use

    Directory of Open Access Journals (Sweden)

    Clinton J. Andrews

    2013-07-01

    Full Text Available Households consume a significant fraction of total potable water production. Strategies to improve the efficiency of water use tend to emphasize technological interventions to reduce or shift water demand. Behavioral water use reduction strategies can also play an important role, but a flexible framework for exploring the “what-ifs” has not been available. This paper introduces such a framework, presenting an agent-based model of household water-consuming behavior. The model simulates hourly water-using activities of household members within a rich technological and behavioral context, calibrated with appropriate data. Illustrative experiments compare the resulting water usage of U.S. and Dutch households and their associated water-using technologies, different household types (singles, families with children, and retired couples, different water metering regimes, and educational campaigns. All else equal, Dutch and metered households use less water. Retired households use more water because they are more often at home. Water-saving educational campaigns are effective for the part of the population that is receptive. Important interactions among these factors, both technological and behavioral, highlight the value of this framework for integrated analysis of the human-technology-water system.

  4. Optimizing agent-based transmission models for infectious diseases.

    Science.gov (United States)

    Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan

    2015-06-02

    Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.

  5. Calibrating emergent phenomena in stock markets with agent based models.

    Science.gov (United States)

    Fievet, Lucas; Sornette, Didier

    2018-01-01

    Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data.

  6. Calibrating emergent phenomena in stock markets with agent based models

    Science.gov (United States)

    Sornette, Didier

    2018-01-01

    Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data. PMID:29499049

  7. Validation techniques of agent based modelling for geospatial simulations

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS, biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI’s ArcGIS, OpenMap, GeoTools, etc for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  8. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    Directory of Open Access Journals (Sweden)

    Tatiana Shashkova

    Full Text Available Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes.In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial

  9. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  10. A SIMULATION OF CONTRACT FARMING USING AGENT BASED MODELING

    Directory of Open Access Journals (Sweden)

    Yuanita Handayati

    2016-12-01

    Full Text Available This study aims to simulate the effects of contract farming and farmer commitment to contract farming on supply chain performance by using agent based modeling as a methodology. Supply chain performance is represented by profits and service levels. The simulation results indicate that farmers should pay attention to customer requirements and plan their agricultural activities in order to fulfill these requirements. Contract farming helps farmers deal with demand and price uncertainties. We also find that farmer commitment is crucial to fulfilling contract requirements. This study contributes to this field from a conceptual as well as a practical point of view. From the conceptual point of view, our simulation results show that different levels of farmer commitment have an impact on farmer performance when implementing contract farming. From a practical point of view, the uncertainty faced by farmers and the market can be managed by implementing cultivation and harvesting scheduling, information sharing, and collective learning as ways of committing to contract farming.

  11. Using the Agent-Based Modeling in Economic Field

    Directory of Open Access Journals (Sweden)

    Nora Mihail

    2006-12-01

    Full Text Available The last ten years of the XX century has been the witnesses of the apparition of a new scientific field, which is usually defined as the study of “Complex adaptive systems”. This field, generic named Complexity Sciences, shares its subject, the general proprieties of complex systems across traditional disciplinary boundaries, with cybernetics and general systems theory. But the development of Complexity Sciences approaches is determined by the extensive use of Agent-Based-Models (ABM as a research tool and an emphasis on systems, such as markets, populations or ecologies, which are less integrated or “organized” than the ones, such as companies and economies, intensively studied by the traditional disciplines. For ABM, a complex system is a system of individual agents who have the freedom to act in ways that are not always totally predictable, and whose actions are interconnected such that one agent’s actions changes the context (environment for other agents. These are many examples of such complex systems: the stock market, the human body immune system, a business organization, an institution, a work-team, a family etc.

  12. An Agent-Based Model of Evolving Community Flood Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D

    2017-11-17

    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  13. A Systematic Review of Agent-Based Modelling and Simulation Applications in the Higher Education Domain

    Science.gov (United States)

    Gu, X.; Blackmore, K. L.

    2015-01-01

    This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…

  14. Using stylized agent-based models for population-environment research: A case study from the Galápagos Islands.

    Science.gov (United States)

    Miller, Brian W; Breckheimer, Ian; McCleary, Amy L; Guzmán-Ramirez, Liza; Caplow, Susan C; Jones-Smith, Jessica C; Walsh, Stephen J

    2010-05-01

    Agent Based Models (ABMs) are powerful tools for population-environment research but are subject to trade-offs between model complexity and abstraction. This study strikes a compromise between abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to explore policy scenarios in a setting that is facing substantial conservation and development challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC) dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We implement the model using the NetLogo software platform, a free program that requires relatively little programming experience. The landscape is composed of a satellite-derived distribution of a problematic invasive species (common guava) and a stylized representation of the Galápagos National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The agent module is based on publicly available data and household interviews, and represents the primary livelihoods of the population in the Galápagos Islands - tourism, fisheries, and agriculture. We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive guava and assess the resulting population and land cover dynamics. Findings suggest that spatially explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research, as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing alternative scenarios, and (3) uncovering critical data gaps.

  15. New approaches in agent-based modeling of complex financial systems

    Science.gov (United States)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2017-12-01

    Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

  16. Moral Guilt : An Agent-Based Model Analysis

    OpenAIRE

    Gaudou , Benoit; Lorini , Emiliano; Mayor , Eunate

    2013-01-01

    International audience; In this article we analyze the influence of a concrete moral emotion (i.e. moral guilt) on strategic decision making. We present a normal form Prisoner’s Dilemma with a moral component. We assume that agents evaluate the game’s outcomes with respect to their ideality degree (i.e. how much a given outcome conforms to the player’s moral values), based on two proposed notions on ethical preferences: Harsanyi’s and Rawls’. Based on such game, we construct and agent-based m...

  17. An Agent Based Modelling Approach for Multi-Stakeholder Analysis of City Logistics Solutions

    NARCIS (Netherlands)

    Anand, N.

    2015-01-01

    This thesis presents a comprehensive framework for multi-stakeholder analysis of city logistics solutions using agent based modeling. The framework describes different stages for the systematic development of an agent based model for the city logistics domain. The framework includes a

  18. Spatial agent-based models for socio-ecological systems: challenges and prospects

    NARCIS (Netherlands)

    de Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, S.R.

    2013-01-01

    Departing from the comprehensive reviews carried out in the field, we identify the key challenges that agent-based methodology faces when modeling coupled socio-ecological systems. Focusing primarily on the papers presented in this thematic issue, we review progress in spatial agent-based models

  19. Agent-Based Modeling for Testing and Designing Novel Decentralized Command and Control System Paradigms

    National Research Council Canada - National Science Library

    Bonabeau, Eric; Hunt, Carl W; Gaudiano, Paolo

    2003-01-01

    Agent-based modeling (ABM) is a recent simulation modeling technique that consists of modeling a system from the bottom up, capturing the interactions taking place between the system's constituent units...

  20. Sensitivity Analysis of an Agent-Based Model of Culture's Consequences for Trade

    NARCIS (Netherlands)

    Burgers, S.L.G.E.; Jonker, C.M.; Hofstede, G.J.; Verwaart, D.

    2010-01-01

    This paper describes the analysis of an agent-based model’s sensitivity to changes in parameters that describe the agents’ cultural background, relational parameters, and parameters of the decision functions. As agent-based models may be very sensitive to small changes in parameter values, it is of

  1. Derivation of Continuum Models from An Agent-based Cancer Model: Optimization and Sensitivity Analysis.

    Science.gov (United States)

    Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank

    2017-01-01

    Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Brief introductory guide to agent-based modeling and an illustration from urban health research

    Directory of Open Access Journals (Sweden)

    Amy H. Auchincloss

    2015-11-01

    Full Text Available Abstract There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.

  3. Brief introductory guide to agent-based modeling and an illustration from urban health research.

    Science.gov (United States)

    Auchincloss, Amy H; Garcia, Leandro Martin Totaro

    2015-11-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.

  4. A Computational Agent-Based Modeling Approach for Competitive Wireless Service Market

    KAUST Repository

    Douglas, C C; Hyoseop Lee,; Wonsuck Lee,

    2011-01-01

    Using an agent-based modeling method, we study market dynamism with regard to wireless cellular services that are in competition for a greater market share and profit. In the proposed model, service providers and consumers are described as agents

  5. Practicality of Agent-Based Modeling of Civil Violence: an Assessment

    OpenAIRE

    Thron, Christopher; Jackson, Elizabeth

    2015-01-01

    Joshua Epstein (2002) proposed a simple agent-based model to describe the formation and evolution of spontaneous civil violence (such as riots or violent demonstrations). In this paper we study the practical applicability of Epstein's model.

  6. An Evolutionary, Agent-Based Model to Aid in Computer Intrusion Detection and Prevention

    National Research Council Canada - National Science Library

    Shargel, Ben; Bonabeau, Eric; Budynek, Julien; Gaudiano, Paolo

    2005-01-01

    We have developed a realistic agent-based simulation model of hacker behavior. In the model, hacker scripts are generated using a simple but powerful hacker grammar that has the potential to cover all possible hacker scripts...

  7. Agent-Based Model of Price Competition and Product Differentiation on Congested Networks

    OpenAIRE

    Lei Zhang; David Levinson; Shanjiang Zhu

    2007-01-01

    Using consistent agent-based techniques, this research models the decision-making processes of users and infrastructure owner/operators to explore the welfare consequence of price competition, capacity choice, and product differentiation on congested transportation networks. Component models include: (1) An agent-based travel demand model wherein each traveler has learning capabilities and unique characteristics (e.g. value of time); (2) Econometric facility provision cost models; and (3) Rep...

  8. 基于Netlogo平台的PROT项目融资管理仿真模型研究%Research on Simulation Model of PROT Project Financing Based on Netlogo

    Institute of Scientific and Technical Information of China (English)

    王艳伟; 黄宜

    2016-01-01

    PROT project financing is a complex and dynamic process.It is difficult to use the conventional meth-od to describe it vividly and clearly.The internal mechanism of PROT project cannot be explored.This paper at-tempts to use the netlogo simulation tool and means of system entropy to dynamically simulate,and to establish PROT project financing management simulation model based on netlogo.The simulation model can describe the change of the system entropy and the income status of the interests real-time dynamically,so as to promote the PROT project financing completed scientific and reasonable successfully.%PROT项目融资管理过程是一个复杂的、动态的多方博弈的过程,很难通过常规的研究方法全面而形象的将其清晰描述,也无法深入探究PROT项目管理的内在机理。本文尝试利用netl-ogo仿真工具,借助系统熵进行动态仿真模拟,建立基于netlogo的PROT项目融资管理仿真模型。通过该仿真模型能够实时动态的描述系统熵的变化以及各利益主体的收益状况,从而促进PROT项目科学合理的顺利完成。

  9. Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models

    NARCIS (Netherlands)

    Jensen, T.; Chappin, E.J.L.

    2016-01-01

    Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which

  10. An agent-based model for integrated emotion regulation and contagion in socially affected decision making

    OpenAIRE

    Manzoor, A.; Treur, J.

    2015-01-01

    This paper addresses an agent-based computational social agent model for the integration of emotion regulation, emotion contagion and decision making in a social context. The model integrates emotion-related valuing, in order to analyse the role of emotions in socially affected decision making. The agent-based model is illustrated for the interaction between two persons. Simulation experiments for different kinds of scenarios help to understand how decisions can be affected by regulating the ...

  11. Agent-based game theory modeling for driverless vehicles at intersections.

    Science.gov (United States)

    2013-02-01

    This report presents three research efforts that were published in various journals. The first research effort presents a reactive-driving agent based algorithm for modeling driver left turn gap acceptance behavior at signalized intersections. This m...

  12. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  13. Conceptual Framework for Agent-Based Modeling of Customer-Oriented Supply Networks

    OpenAIRE

    Solano-Vanegas , Clara ,; Carrillo-Ramos , Angela; Montoya-Torres , Jairo ,

    2015-01-01

    Part 3: Collaboration Frameworks; International audience; Supply Networks (SN) are complex systems involving the interaction of different actors, very often, with different objectives and goals. Among the different existing modeling approaches, agent-based systems can properly represent the autonomous behavior of SN links and, simultaneously, observe the general response of the system as a result of individual actions. Most of research using agent-based modeling in SN focuses on production is...

  14. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    OpenAIRE

    Bo Li; Duoyong Sun; Renqi Zhu; Ze Li

    2015-01-01

    Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...

  15. Between Complexity and Parsimony: Can Agent-Based Modelling Resolve the Trade-off

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Malawska, Anna Katarzyna

    2013-01-01

    to BR- based policy studies would be to couple research on bounded ra-tionality with agent-based modeling. Agent-based models (ABMs) are computational models for simulating the behavior and interactions of any number of decision makers in a dynamic system. Agent-based models are better suited than...... are general equilibrium models for capturing behavior patterns of complex systems. ABMs may have the potential to represent complex systems without oversimplifying them. At the same time, research in bounded rationality and behavioral economics has already yielded many insights that could inform the modeling......While Herbert Simon espoused development of general models of behavior, he also strongly advo-cated that these models be based on realistic assumptions about humans and therefore reflect the complexity of human cognition and social systems (Simon 1997). Hence, the model of bounded rationality...

  16. An Agent-Based Approach to Modeling Online Social Influence

    NARCIS (Netherlands)

    Maanen, P.P. van; Vecht, B. van der

    2013-01-01

    The aim of this study is to better understand social influence in online social media. Therefore, we propose a method in which we implement, validate and improve an individual behavior model. The behavior model is based on three fundamental behavioral principles of social influence from the

  17. An agent-based model for diffusion of electric vehicles

    NARCIS (Netherlands)

    Kangur, A.; Bockarjova, M.; Jager, W.; Verbrugge, R.

    2017-01-01

    The transition from fuel cars to electric cars is a large-scale process involving many interactions between consumers and other stakeholders over decades. To explore how policies may interfere with consumer behavior over such a long time period, we developed a social simulation model. In this model,

  18. An agent-based dialogical model with fuzzy attitudes

    NARCIS (Netherlands)

    Dykstra, Piter; Jager, Wander; Elsenbroich, Corinna; Verbrugge, Rineke; De Lavalette, Gerard Renardel

    2015-01-01

    We present DIAL, a model of group dynamics and opinion dynamics. It features dialogues, in which agents gamble about reputation points. Intra-group radicalisation of opinions appears to be an emergent phenomenon. We position this model within the theoretical literature on opinion dynamics and social

  19. A Large Scale, High Resolution Agent-Based Insurgency Model

    Science.gov (United States)

    2013-09-30

    CUDA) is NVIDIA Corporation’s software development model for General Purpose Programming on Graphics Processing Units (GPGPU) ( NVIDIA Corporation ...Conference. Argonne National Laboratory, Argonne, IL, October, 2005. NVIDIA Corporation . NVIDIA CUDA Programming Guide 2.0 [Online]. NVIDIA Corporation

  20. Validation techniques of agent based modelling for geospatial simulations

    OpenAIRE

    Darvishi, M.; Ahmadi, G.

    2014-01-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent...

  1. An agent based model of the evolution of supplier networks

    DEFF Research Database (Denmark)

    Earnest, David C.; Wilkinson, Ian F.

    2018-01-01

    , in industries characterized by highly specialized training, plants and machinery dedicated to specific products and other high product-specific transaction costs, we should observe more specialization at low levels of product complexity but less at high levels. The model contributes to our understanding...

  2. Capturing socio-technical systems with agent-based modelling

    NARCIS (Netherlands)

    Van Dam, K.H.

    2009-01-01

    What is a suitable modelling approach for socio-technical systems? The answer to this question is of great importance to decision makers in large scale interconnected network systems. The behaviour of these systems is determined by many actors, situated in a dynamic, multi-actor, multi-objective and

  3. Emergence of heterogeneity in an agent-based model

    OpenAIRE

    Abdullah, Wan Ahmad Tajuddin Wan

    2002-01-01

    We study an interacting agent model of a game-theoretical economy. The agents play a minority-subsequently-majority game and they learn, using backpropagation networks, to obtain higher payoffs. We study the relevance of heterogeneity to performance, and how heterogeneity emerges.

  4. An agent-based computational model for tuberculosis spreading on age-structured populations

    Science.gov (United States)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  5. Bridging the Gap between ABM and MAS: A Disaster-Rescue Simulation Using Jason and NetLogo

    Directory of Open Access Journals (Sweden)

    Wulfrano Arturo Luna-Ramirez

    2018-04-01

    Full Text Available An agent is an autonomous computer system situated in an environment to fulfill a design objective. Multi-Agent Systems aim to solve problems in a flexible and robust way by assembling sets of agents interacting in cooperative or competitive ways for the sake of possibly common objectives. Multi-Agent Systems have been applied to several domains ranging from many industrial sectors, e-commerce, health and even entertainment. Agent-Based Modeling, a sort of Multi-Agent Systems, is a technique used to study complex systems in a wide range of domains. A natural or social system can be represented, modeled and explained through a simulation based on agents and interactions. Such a simulation can comprise a variety of agent architectures like reactive and cognitive agents. Despite cognitive agents being highly relevant to simulate social systems due their capability of modelling aspects of human behaviour ranging from individuals to crowds, they still have not been applied extensively. A challenging and socially relevant domain are the Disaster-Rescue simulations that can benefit from using cognitive agents to develop a realistic simulation. In this paper, a Multi-Agent System applied to the Disaster-Rescue domain involving cognitive agents based on the Belief–Desire–Intention architecture is presented. The system aims to bridge the gap in combining Agent-Based Modelling and Multi-Agent Systems approaches by integrating two major platforms in the field of Agent-Based Modeling and Belief-Desire Intention multi-agent systems, namely, NetLogo and Jason.

  6. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  7. An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention

    Science.gov (United States)

    Hu, Xiaolin; Puddy, Richard W.

    This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.

  8. Agent-based models for higher-order theory of mind

    NARCIS (Netherlands)

    de Weerd, Harmen; Verbrugge, Rineke; Verheij, Bart; Kamiński, Bogumił; Koloch, Grzegorz

    2014-01-01

    Agent-based models are a powerful tool for explaining the emergence of social phenomena in a society. In such models, individual agents typically have little cognitive ability. In this paper, we model agents with the cognitive ability to make use of theory of mind. People use this ability to reason

  9. Toward Agent-Based Models of the Development And Evolution of Business Relations and Networks

    Science.gov (United States)

    Wilkinson, Ian F.; Marks, Robert E.; Young, Louise

    Firms achieve competitive advantage in part through the development of cooperative relations with other firms and organisations. We describe a program of research designed to map and model the development of cooperative inter-firm relations, including the processes and paths by which firms may evolve from adversarial to more cooperative relations. Narrative-event-history methods will be used to develop stylised histories of the emergence of business relations in various contexts and to identify relevant causal mechanisms to be included in the agent-based models of relationship and network evolution. The relationship histories will provide the means of assuring the agent-based models developed.

  10. Towards a standard model for research in agent-based modeling and simulation

    Directory of Open Access Journals (Sweden)

    Nuno Fachada

    2015-11-01

    Full Text Available Agent-based modeling (ABM is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as an independent decision-making agent. ABMs are very sensitive to implementation details. Thus, it is very easy to inadvertently introduce changes which modify model dynamics. Such problems usually arise due to the lack of transparency in model descriptions, which constrains how models are assessed, implemented and replicated. In this paper, we present PPHPC, a model which aims to serve as a standard in agent based modeling research, namely, but not limited to, conceptual model specification, statistical analysis of simulation output, model comparison and parallelization studies. This paper focuses on the first two aspects (conceptual model specification and statistical analysis of simulation output, also providing a canonical implementation of PPHPC. The paper serves as a complete reference to the presented model, and can be used as a tutorial for simulation practitioners who wish to improve the way they communicate their ABMs.

  11. Consentaneous agent-based and stochastic model of the financial markets.

    Science.gov (United States)

    Gontis, Vygintas; Kononovicius, Aleksejus

    2014-01-01

    We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation.

  12. Evaluating urban parking policies with agent-based model of driver parking behavior

    NARCIS (Netherlands)

    Martens, C.J.C.M.; Benenson, I.

    2008-01-01

    This paper presents an explicit agent-based model of parking search in a city. In the model, “drivers” drive toward their destination, search for parking, park, remain at the parking place, and leave. The city’s infrastructure is represented by a high-resolution geographic information system (GIS)

  13. Land-use change arising from rural land exchange : an agent-based simulation model

    NARCIS (Netherlands)

    Bakker, Martha M.; Alam, Shah Jamal; van Dijk, Jerry|info:eu-repo/dai/nl/29612642X; Rounsevell, Mark D. A.

    Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing

  14. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    Science.gov (United States)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  15. An agent-based model for integrated emotion regulation and contagion in socially affected decision making

    NARCIS (Netherlands)

    Manzoor, A.; Treur, J.

    2015-01-01

    This paper addresses an agent-based computational social agent model for the integration of emotion regulation, emotion contagion and decision making in a social context. The model integrates emotion-related valuing, in order to analyse the role of emotions in socially affected decision making. The

  16. Lapse of time effects on tax evasion in an agent-based econophysics model

    Science.gov (United States)

    Seibold, Götz; Pickhardt, Michael

    2013-05-01

    We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.

  17. Russian and Foreign Experience of Integration of Agent-Based Models and Geographic Information Systems

    Directory of Open Access Journals (Sweden)

    Konstantin Anatol’evich Gulin

    2016-11-01

    Full Text Available The article provides an overview of the mechanisms of integration of agent-based models and GIS technology developed by Russian and foreign researchers. The basic framework of the article is based on critical analysis of domestic and foreign literature (monographs, scientific articles. The study is based on the application of universal scientific research methods: system approach, analysis and synthesis, classification, systematization and grouping, generalization and comparison. The article presents theoretical and methodological bases of integration of agent-based models and geographic information systems. The concept and essence of agent-based models are explained; their main advantages (compared to other modeling methods are identified. The paper characterizes the operating environment of agents as a key concept in the theory of agent-based modeling. It is shown that geographic information systems have a wide range of information resources for calculations, searching, modeling of the real world in various aspects, acting as an effective tool for displaying the agents’ operating environment and allowing to bring the model as close as possible to the real conditions. The authors also focus on a wide range of possibilities for various researches in different spatial and temporal contexts. Comparative analysis of platforms supporting the integration of agent-based models and geographic information systems has been carried out. The authors give examples of complex socio-economic models: the model of a creative city, humanitarian assistance model. In the absence of standards for research results description, the authors focus on the models’ elements such as the characteristics of the agents and their operation environment, agents’ behavior, rules of interaction between the agents and the external environment. The paper describes the possibilities and prospects of implementing these models

  18. Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling

    Science.gov (United States)

    Campbell, Kenyth

    2012-01-01

    The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.

  19. Review of the systems biology of the immune system using agent-based models.

    Science.gov (United States)

    Shinde, Snehal B; Kurhekar, Manish P

    2018-06-01

    The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.

  20. Agent-based modeling as a tool for program design and evaluation.

    Science.gov (United States)

    Lawlor, Jennifer A; McGirr, Sara

    2017-12-01

    Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Linking agent-based models and stochastic models of financial markets.

    Science.gov (United States)

    Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H Eugene

    2012-05-29

    It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that "fat" tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting.

  2. Numerical Problems and Agent-Based Models for a Mass Transfer Course

    Science.gov (United States)

    Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.

    2009-01-01

    Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…

  3. An agent-based model on disease management in potato cultivation in the Netherlands

    NARCIS (Netherlands)

    Pacilly, F.C.A.; Hofstede, G.J.; Groot, J.C.J.; Lammerts Van Bueren, E.

    2015-01-01

    In this project the host-pathogen system of potato (Solanum tuberosum) - late blight (Phytophthora infestans) was analysed as a model system to study management of crop-disease interactions. Resistant cultivars play an important role in sustainable management of the disease. We used an agent-based

  4. Investment in the future electricity system - An agent-based modelling approach

    NARCIS (Netherlands)

    Kraan, O.; Kramer, G. J.; Nikolic, I.

    2018-01-01

    Now that renewable technologies are both technically and commercially mature, the imperfect rational behaviour of investors becomes a critical factor in the future success of the energy transition. Here, we take an agent-based approach to model investor decision making in the electricity sector

  5. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    Science.gov (United States)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  6. Modeling investor sentiment and overconfidence in an agent-based stock market

    NARCIS (Netherlands)

    Lovric, M.; Kaymak, U.; Spronk, J.

    2010-01-01

    Agent-based stock markets as bottom-up models of financial markets allow us to study the link between individual investor behavior and aggregate market phenomena, and as such are a useful tool for investigating the implications of behavioral finance and investor psychology. In this paper we want to

  7. An agent-based information management model of the Chinese pig sector

    NARCIS (Netherlands)

    Osinga, S.A.; Kramer, M.R.; Hofstede, G.J.; Roozmand, O.; Beulens, A.J.M.

    2010-01-01

    This paper investigates the effect of a selected top-down measure (what-if scenario) on actual agent behaviour and total system behaviour by means of an agent-based simulation model, when agents’ behaviour cannot fully be managed because the agents are autonomous. The Chinese pork sector serves as

  8. Targeting and timing promotional activities : An agent-based model for the takeoff of new products

    NARCIS (Netherlands)

    Delre, S. A.; Jager, W.; Bijmolt, T. H. A.; Janssen, M. A.

    Many marketing efforts focus on promotional activities that support the launch of new products. Promotional strategies may play a crucial role in the early stages of the product life cycle, and determine to a large extent the diffusion of a new product. This paper proposes an agent-based model to

  9. Agent-Based Modeling of Consumer Decision making Process Based on Power Distance and Personality

    NARCIS (Netherlands)

    Roozmand, O.; Ghasem-Aghaee, N.; Hofstede, G.J.; Nematbakhsh, M.A.; Baraani, A.; Verwaart, T.

    2011-01-01

    Simulating consumer decision making processes involves different disciplines such as: sociology, social psychology, marketing, and computer science. In this paper, we propose an agent-based conceptual and computational model of consumer decision-making based on culture, personality and human needs.

  10. Easing the adoption of agent-based modelling (ABM) in tourism research

    NARCIS (Netherlands)

    Johnson, Peter; Nicholls, Sarah; Student, Jillian; Amelung, Bas; Baggio, Rodolfo; Balbi, Stefano; Boavida-Portugal, Ines; Jong, de Eline; Hofstede, G.J.; Lamers, M.A.J.; Pons, Marc; Steiger, Robert

    2017-01-01

    Agent-based modelling (ABM) is an emerging approach in tourism research. Despite the natural fit between theories of tourism as a complex, interconnected system, and the generative approach supported in ABM, there has been only limited integration within mainstream tourism research. This research

  11. An agent-based approach to model land-use change at a regional scale

    NARCIS (Netherlands)

    Valbuena, D.F.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A.

    2010-01-01

    Land-use/cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. A common approach to analyse and simulate LUCC as the result of individual decisions is agent-based modelling (ABM). However, ABM is often applied to simulate processes at local

  12. An Agent-Based Dynamic Model of Politics, Fertility and Economic Development

    Directory of Open Access Journals (Sweden)

    Zining Yang

    2016-08-01

    Full Text Available In the political economy of development, government policy choices at a single point in time can dramatically affect a country's development path by impacting fertility, economic and political decisions across generations. Combining system dynamics and agent-based modeling approaches in a complex adaptive system, a simulation framework of the Politics of Fertility and Economic Development (POFED is formalized to understand the relationship between politics, economic, and demography change at both macro and micro levels. First, a new political capacity measurement is used; and the system dynamics model is validated with the latest data. Second, the endogenous attributes are fused with non-cooperative game theory in an agent-based framework to simulate the interactive political economic dynamics of individual intra-societal transactions. Finally, macro and micro levels are connected with policy levers of political capacity and political instability by merging system dynamics and agent-based components. This paper also explores the agent-based model's behavioral dynamics via simulation methods to identify paths towards economic development and political stability. This model demonstrates micro level human agency can act, react and interact, thus driving macro level dynamics, while macro structures provide political, social and economic environments that constrain or incentivize micro level human behavior.

  13. Examining the Resilience of Crop Production, Livestock Carrying Capacity, and Woodland Density in a Rural Zimbabwean Socio-Ecological System Using Agent-Based Models Representing Human Management Decisions

    Science.gov (United States)

    Eitzel Solera, M. V.; Neves, K.; Veski, A.; Solera, J.; Omoju, O. E.; Mawere Ndlovu, A.; Wilson, K.

    2016-12-01

    As climate change increases the pressures on arid ecosystems by changing timing and amount of rainfall, understanding the ways in which human management choices affect the resilience of these systems becomes key to their sustainability. On marginal farmland in Mazvihwa, Midlands Province, the historical carrying capacity of livestock has been consistently surprisingly high. We explore this phenomenon by building an agent-based model in NetLogo from a wealth of long-term data generated by the community-based participatory research team of The Muonde Trust, a Zimbabwean non-governmental organization. We combine the accumulated results of 35 years of indigenous and local knowledge with national datasets such as rainfall records. What factors keep the carrying capacity high? What management choices can maintain crops, livestock, and woodland at levels necessary for the community's survival? How do these choices affect long-term sustainability, and does increasing resilience at one scale reduce resilience at another scale? We use our agent-based model to explore the feedbacks between crops, livestock, and woodland and the impacts of various human choices as well as temporal and spatial ecological variation. By testing different scenarios, we disentangle the complex interactions between these components. We find that some factors out of the community's control can strongly affect the sustainability of the system through times of drought, and that supplementary feed may maintain livestock potentially at the expense of other resources. The challenges to resilience encountered by the farmers in Mazvihwa are not unique - many indigenous and rural people face drought and the legacies of colonialism, which contribute to lowered resilience to external challenges such as climate change, epidemics, and political instability. Using the agent-based model as a tool for synthesis and exploration initiates discussion about resilience-enhancing management choices for Mazvihwa's farmer-researchers.

  14. Investigating immune system aging: system dynamics and agent-based modeling

    OpenAIRE

    Figueredo, Grazziela; Aickelin, Uwe

    2010-01-01

    System dynamics and agent based simulation models can\\ud both be used to model and understand interactions of entities within a population. Our modeling work presented here is concerned with understanding the suitability of the different types of simulation for the immune system aging problems and comparing their results. We are trying to answer questions such as: How fit is the immune system given a certain age? Would an immune boost be of therapeutic value, e.g. to improve the effectiveness...

  15. A framework to specify agent-based models in geographic sciences

    OpenAIRE

    Grueau, Cédric; Araújo, João

    2015-01-01

    Agent-Based Modeling (ABM) and simulation have gained popularity in the Geographic Information Systems (GIS) domain. Despite the increasing number of models built by experts and users, it remains challenging for users to specify their models in a manner in which one can understand it. This constraint represents an inhibition to the development and acceptance of the ABM approach. In this paper, we raise the questions that need to be answered in order to cope with ABM specification issues. We r...

  16. An Agent-Based Model of New Venture Creation: Conceptual Design for Simulating Entrepreneurship

    Science.gov (United States)

    Provance, Mike; Collins, Andrew; Carayannis, Elias

    2012-01-01

    There is a growing debate over the means by which regions can foster the growth of entrepreneurial activity in order to stimulate recovery and growth of their economies. On one side, agglomeration theory suggests the regions grow because of strong clusters that foster knowledge spillover locally; on the other side, the entrepreneurial action camp argues that innovative business models are generated by entrepreneurs with unique market perspectives who draw on knowledge from more distant domains. We will show you the design for a novel agent-based model of new venture creation that will demonstrate the relationship between agglomeration and action. The primary focus of this model is information exchange as the medium for these agent interactions. Our modeling and simulation study proposes to reveal interesting relationships in these perspectives, offer a foundation on which these disparate theories from economics and sociology can find common ground, and expand the use of agent-based modeling into entrepreneurship research.

  17. An agent-based model of signal transduction in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Jameson Miller

    2010-05-01

    Full Text Available We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  18. An agent-based model of signal transduction in bacterial chemotaxis.

    Science.gov (United States)

    Miller, Jameson; Parker, Miles; Bourret, Robert B; Giddings, Morgan C

    2010-05-13

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  19. Developing an agent-based model on how different individuals solve complex problems

    Directory of Open Access Journals (Sweden)

    Ipek Bozkurt

    2015-01-01

    Full Text Available Purpose: Research that focuses on the emotional, mental, behavioral and cognitive capabilities of individuals has been abundant within disciplines such as psychology, sociology, and anthropology, among others. However, when facing complex problems, a new perspective to understand individuals is necessary. The main purpose of this paper is to develop an agent-based model and simulation to gain understanding on the decision-making and problem-solving abilities of individuals. Design/Methodology/approach: The micro-level analysis modeling and simulation paradigm Agent-Based Modeling Through the use of Agent-Based Modeling, insight is gained on how different individuals with different profiles deal with complex problems. Using previous literature from different bodies of knowledge, established theories and certain assumptions as input parameters, a model is built and executed through a computer simulation. Findings: The results indicate that individuals with certain profiles have better capabilities to deal with complex problems. Moderate profiles could solve the entire complex problem, whereas profiles within extreme conditions could not. This indicates that having a strong predisposition is not the ideal way when approaching complex problems, and there should always be a component from the other perspective. The probability that an individual may use these capabilities provided by the opposite predisposition provides to be a useful option. Originality/value: The originality of the present research stems from how individuals are profiled, and the model and simulation that is built to understand how they solve complex problems. The development of the agent-based model adds value to the existing body of knowledge within both social sciences, and modeling and simulation.

  20. Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System

    Directory of Open Access Journals (Sweden)

    S. M. Niaz Arifin

    2015-05-01

    Full Text Available A landscape epidemiology modeling framework is presented which integrates the simulation outputs from an established spatial agent-based model (ABM of malaria with a geographic information system (GIS. For a study area in Kenya, five landscape scenarios are constructed with varying coverage levels of two mosquito-control interventions. For each scenario, maps are presented to show the average distributions of three output indices obtained from the results of 750 simulation runs. Hot spot analysis is performed to detect statistically significant hot spots and cold spots. Additional spatial analysis is conducted using ordinary kriging with circular semivariograms for all scenarios. The integration of epidemiological simulation-based results with spatial analyses techniques within a single modeling framework can be a valuable tool for conducting a variety of disease control activities such as exploring new biological insights, monitoring epidemiological landscape changes, and guiding resource allocation for further investigation.

  1. Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation

    Science.gov (United States)

    Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.

    2014-12-01

    Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.

  2. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  3. A critical survey of agent-based wholesale electricity market models

    International Nuclear Information System (INIS)

    Weidlich, Anke; Veit, Daniel

    2008-01-01

    The complexity of electricity markets calls for rich and flexible modeling techniques that help to understand market dynamics and to derive advice for the design of appropriate regulatory frameworks. Agent-Based Computational Economics (ACE) is a fairly young research paradigm that offers methods for realistic electricity market modeling. A growing number of researchers have developed agent-based models for simulating electricity markets. The diversity of approaches makes it difficult to overview the field of ACE electricity research; this literature survey should guide the way through and describe the state-of-the-art of this research area. In a conclusive summary, shortcomings of existing approaches and open issues that should be addressed by ACE electricity researchers are critically discussed. (author)

  4. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    Science.gov (United States)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  5. An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy.

    Directory of Open Access Journals (Sweden)

    Theodore Eugene Day

    Full Text Available Agent-based models are valuable for examining systems where large numbers of discrete individuals interact with each other, or with some environment. Diabetic Veterans seeking eye care at a Veterans Administration hospital represent one such cohort.The objective of this study was to develop an agent-based template to be used as a model for a patient with diabetic retinopathy (DR. This template may be replicated arbitrarily many times in order to generate a large cohort which is representative of a real-world population, upon which in-silico experimentation may be conducted.Agent-based template development was performed in java-based computer simulation suite AnyLogic Professional 6.6. The model was informed by medical data abstracted from 535 patient records representing a retrospective cohort of current patients of the VA St. Louis Healthcare System Eye clinic. Logistic regression was performed to determine the predictors associated with advancing stages of DR. Predicted probabilities obtained from logistic regression were used to generate the stage of DR in the simulated cohort.The simulated cohort of DR patients exhibited no significant deviation from the test population of real-world patients in proportion of stage of DR, duration of diabetes mellitus (DM, or the other abstracted predictors. Simulated patients after 10 years were significantly more likely to exhibit proliferative DR (P<0.001.Agent-based modeling is an emerging platform, capable of simulating large cohorts of individuals based on manageable data abstraction efforts. The modeling method described may be useful in simulating many different conditions where course of disease is described in categorical stages.

  6. Simulating GenCo bidding strategies in electricity markets with an agent-based model

    International Nuclear Information System (INIS)

    Botterud, Audun; Thimmapuram, Prakash R.; Yamakado, Malo

    2005-01-01

    In this paper we use an agent-based simulation model, EMCAS, to analyze market power in electricity markets. We focus on the effect of congestion management on the ability of generating companies (GenCos) to raise prices beyond competitive levels. An 11-node test power system is used to compare a market design based on locational marginal pricing with a market design that uses system marginal pricing and congestion management by counter trading. Bidding strategies based on both physical and economic withholding are compared to a base case with production cost bidding. The results show that unilateral market power is exercised under both pricing mechanisms. However, the largest changes in consumer costs and GenCo profits due to strategic bidding occur under the locational marginal pricing scheme. The analysis also illustrates that agent-based modeling can contribute important insights into the complex interactions between the participants in transmission-constrained electricity markets. (Author)

  7. Mobile Agent-Based Software Systems Modeling Approaches: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Aissam Belghiat

    2016-06-01

    Full Text Available Mobile agent-based applications are special type of software systems which take the advantages of mobile agents in order to provide a new beneficial paradigm to solve multiple complex problems in several fields and areas such as network management, e-commerce, e-learning, etc. Likewise, we notice lack of real applications based on this paradigm and lack of serious evaluations of their modeling approaches. Hence, this paper provides a comparative study of modeling approaches of mobile agent-based software systems. The objective is to give the reader an overview and a thorough understanding of the work that has been done and where the gaps in the research are.

  8. MULTI AGENT-BASED ENVIRONMENTAL LANDSCAPE (MABEL) - AN ARTIFICIAL INTELLIGENCE SIMULATION MODEL: SOME EARLY ASSESSMENTS

    OpenAIRE

    Alexandridis, Konstantinos T.; Pijanowski, Bryan C.

    2002-01-01

    The Multi Agent-Based Environmental Landscape model (MABEL) introduces a Distributed Artificial Intelligence (DAI) systemic methodology, to simulate land use and transformation changes over time and space. Computational agents represent abstract relations among geographic, environmental, human and socio-economic variables, with respect to land transformation pattern changes. A multi-agent environment is developed providing task-nonspecific problem-solving abilities, flexibility on achieving g...

  9. An Agent-Based Dynamic Model of Politics, Fertility and Economic Development

    OpenAIRE

    Zining Yang

    2016-01-01

    In the political economy of development, government policy choices at a single point in time can dramatically affect a country's development path by impacting fertility, economic and political decisions across generations. Combining system dynamics and agent-based modeling approaches in a complex adaptive system, a simulation framework of the Politics of Fertility and Economic Development (POFED) is formalized to understand the relationship between politics, economic, and demography change at...

  10. Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    OpenAIRE

    Li, X.; Upadhyay, A.K.; Bullock, A.J.; Dicolandrea, T.; Xu, J.; Binder, R.L.; Robinson, M.K.; Finlay, D.R.; Mills, K.J.; Bascom, C.C.; Kelling, C.K.; Isfort, R.J.; Haycock, J.W.; MacNeil, S.; Smallwood, R.H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epiderm...

  11. CASCADE: An Agent Based Framework For Modeling The Dynamics Of Smart Electricity Systems

    OpenAIRE

    Rylatt, R. M.; Gammon, Rupert; Boait, Peter John; Varga, L.; Allen, P.; Savill, M.; Snape, J. Richard; Lemon, Mark; Ardestani, B. M.; Pakka, V. H.; Fletcher, G.; Smith, S.; Fan, D.; Strathern, M.

    2013-01-01

    Collaborative project with Cranfield University The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent socia...

  12. Money-Scape: A Generic Agent-Based Model of Corruption

    OpenAIRE

    Hokky Situngkir

    2004-01-01

    There has been a lot of works on corruption cases. We must think that corruption is a cultural aspect in a social life. We cannot separate the corruption with the cultural system where the corruption raised. Indonesia has been recorded to be one of the countries of the worst economic and political system on corruption case. The paper is introducing the usage of agent based simulation for analyzing the corruption specifically in Indonesia as the biggest corruption level. The model showed is na...

  13. A review of agent-based models for forecasting the deployment of distributed generation in energy systems

    NARCIS (Netherlands)

    Veneman, J.F.; Oey, M.A.; Kortmann, L.J.; Brazier, F.M.; De Vries, L.J.

    2011-01-01

    Agent-based models are seeing increasing use in the study of distributed generation (DG) deployment. Researchers and decision makers involved in the implementation of DG have been lacking a concise overview of why they should consider using agent-based modeling (ABM) for forecasting purposes. Since

  14. Simulating Transport and Land Use Interdependencies for Strategic Urban Planning—An Agent Based Modelling Approach

    Directory of Open Access Journals (Sweden)

    Nam Huynh

    2015-10-01

    Full Text Available Agent based modelling has been widely accepted as a promising tool for urban planning purposes thanks to its capability to provide sophisticated insights into the social behaviours and the interdependencies that characterise urban systems. In this paper, we report on an agent based model, called TransMob, which explicitly simulates the mutual dynamics between demographic evolution, transport demands, housing needs and the eventual change in the average satisfaction of the residents of an urban area. The ability to reproduce such dynamics is a unique feature that has not been found in many of the like agent based models in the literature. TransMob, is constituted by six major modules: synthetic population, perceived liveability, travel diary assignment, traffic micro-simulator, residential location choice, and travel mode choice. TransMob is used to simulate the dynamics of a metropolitan area in South East of Sydney, Australia, in 2006 and 2011, with demographic evolution. The results are favourably compared against survey data for the area in 2011, therefore validating the capability of TransMob to reproduce the observed complexity of an urban area. We also report on the application of TransMob to simulate various hypothetical scenarios of urban planning policies. We conclude with discussions on current limitations of TransMob, which serve as suggestions for future developments.

  15. Agent-based modeling and simulation of clean heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya

    2011-03-15

    A sound climate policy encouraging clean energy investment is important to mitigate global warming. Previous research has demonstrated that consumer choice indeed plays an important role in adoption of sustainable technologies. This thesis strives to gain a better understanding of consumers' decision-making on heating systems and to explore the potential application of agent-based modeling (ABM) in exploring mechanism underlying adoption in which heating system adoption by Norwegian households is taken up as a case study. An interdisciplinary approach, applying various established theories including those of psychology, is applied to create a model for consumer behavior and implement this behavior in an Agent-Based Model (ABM) to simulate heating technology diffusion. A mail-survey, carried out in autumn 2008, is a means to collect information for parameterizing the agent-based model, for gaining empirical facts, and for validating the developed model at micro-level. Survey sample consisted of 1500 Norwegian households drawn from population register and 1500 wood pellet users in Norway. The response rates were 10.3% and 34.6% for population sample and wood pellet sample respectively. This study is divided into two parts; empirical analysis and agent-based simulation. The empirical analysis aims at fully understanding the important aspects of adoption decision and their implications, in order to assist simulation. The analysis particularly contributes to the identification of differences/similarities between adopters and non adopters of wood pellet heating with respects to some key points of adoption derived from different theories, psychological factors underlying the adoption-decision of wood pellet heating, and the rationales underlying Norwegian households' decisions regarding their future heating system. The simulation study aims at exploring the mechanism of heterogeneous household decision-making giving rise to the diffusion of heating systems, and

  16. An Adaptive Agent-Based Model of Homing Pigeons: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Francis Oloo

    2017-01-01

    Full Text Available Conventionally, agent-based modelling approaches start from a conceptual model capturing the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the end” to validate the conceptual understanding. In today’s data rich era, there are suggestions that models should be data-driven. Data-driven workflows are common in mathematical models. However, their application to agent-based models is still in its infancy. Integration of real-time sensor data into modelling workflows opens up the possibility of comparing simulations against real data during the model run. Calibration and validation procedures thus become automated processes that are iteratively executed during the simulation. We hypothesize that incorporation of real-time sensor data into agent-based models improves the predictive ability of such models. In particular, that such integration results in increasingly well calibrated model parameters and rule sets. In this contribution, we explore this question by implementing a flocking model that evolves in real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness of candidate parameters. As a result, the model was able to accurately simulate the relative-turn angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops, which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.

  17. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome.

    Science.gov (United States)

    O'Sullivan, David; Evans, Tom; Manson, Steven; Metcalf, Sara; Ligmann-Zielinska, Arika; Bone, Chris

    In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances - in terms of model complexity, model evaluation, and model structure - can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from 'yet another model' to doing better science with models.

  18. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  19. Diffusion and Aggregation in an Agent Based Model of Stock Market Fluctuations

    Science.gov (United States)

    Castiglione, Filippo

    We describe a new model to simulate the dynamic interactions between market price and the decisions of two different kind of traders. They possess spatial mobility allowing to group together to form coalitions. Each coalition follows a strategy chosen from a proportional voting ``dominated'' by a leader's decision. The interplay of both kind of agents gives rise to complex price dynamics that is consistent with the main stylized facts of financial time series. The present model incorporates many features of other known models and is meant to be the first step toward the construction of an agent-based model that uses more realistic markets rules, strategies, and information structures.

  20. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    Science.gov (United States)

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  1. A mathematical framework for agent based models of complex biological networks.

    Science.gov (United States)

    Hinkelmann, Franziska; Murrugarra, David; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2011-07-01

    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models, it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis. This mathematical framework can also accommodate other model types such as Boolean networks and the more general logical models, as well as Petri nets.

  2. The Simulation of Financial Markets by Agent-Based Mix-Game Models

    OpenAIRE

    Chengling Gou

    2006-01-01

    This paper studies the simulation of financial markets using an agent-based mix-game model which is a variant of the minority game (MG). It specifies the spectra of parameters of mix-game models that fit financial markets by investigating the dynamic behaviors of mix-game models under a wide range of parameters. The main findings are (a) in order to approach efficiency, agents in a real financial market must be heterogeneous, boundedly rational and subject to asymmetric information; (b) an ac...

  3. The Simulation of Financial Markets by an Agent-Based Mix-Game Model

    OpenAIRE

    Chengling Gou

    2006-01-01

    This paper studies the simulation of financial markets using an agent-based mix-game model which is a variant of the minority game (MG). It specifies the spectra of parameters of mix-game models that fit financial markets by investigating the dynamic behaviors of mix-game models under a wide range of parameters. The main findings are (a) in order to approach efficiency, agents in a real financial market must be heterogeneous, boundedly rational and subject to asymmetric information; (b) an ac...

  4. An agent-based computational model of the spread of tuberculosis

    International Nuclear Information System (INIS)

    De Espíndola, Aquino L; Bauch, Chris T; Troca Cabella, Brenno C; Martinez, Alexandre Souto

    2011-01-01

    In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed

  5. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    Science.gov (United States)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  6. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    International Nuclear Information System (INIS)

    Lu, Yunfan; Wang, Jun; Niu, Hongli

    2015-01-01

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model

  7. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunfan, E-mail: yunfanlu@yeah.net; Wang, Jun; Niu, Hongli

    2015-06-12

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model.

  8. Modeling Oil Exploration and Production: Resource-Constrained and Agent-Based Approaches

    International Nuclear Information System (INIS)

    Jakobsson, Kristofer

    2010-05-01

    Energy is essential to the functioning of society, and oil is the single largest commercial energy source. Some analysts have concluded that the peak in oil production is soon about to happen on the global scale, while others disagree. Such incompatible views can persist because the issue of 'peak oil' cuts through the established scientific disciplines. The question is: what characterizes the modeling approaches that are available today, and how can they be further developed to improve a trans-disciplinary understanding of oil depletion? The objective of this thesis is to present long-term scenarios of oil production (Paper I) using a resource-constrained model; and an agent-based model of the oil exploration process (Paper II). It is also an objective to assess the strengths, limitations, and future development potentials of resource-constrained modeling, analytical economic modeling, and agent-based modeling. Resource-constrained models are only suitable when the time frame is measured in decades, but they can give a rough indication of which production scenarios are reasonable given the size of the resource. However, the models are comprehensible, transparent and the only feasible long-term forecasting tools at present. It is certainly possible to distinguish between reasonable scenarios, based on historically observed parameter values, and unreasonable scenarios with parameter values obtained through flawed analogy. The economic subfield of optimal depletion theory is founded on the notion of rational economic agents, and there is a causal relation between decisions made at the micro-level and the macro-result. In terms of future improvements, however, the analytical form considerably restricts the versatility of the approach. Agent-based modeling makes it feasible to combine economically motivated agents with a physical environment. An example relating to oil exploration is given in Paper II, where it is shown that the exploratory activities of individual

  9. Agent-Based Approach for Modelling the Labour Migration from China to Russia

    Directory of Open Access Journals (Sweden)

    Valeriy Leonidovich Makarov

    2017-06-01

    Full Text Available The article describes the process of labour migration from China to Russia and shows its modelling using the agent-based approach. This approach allows us to simulate an artificial society in a computer program taking into account the diversity of individuals under consideration, as well as to model a set of laws and rules of conduct that make up the institutional environment in which the members of this society live. A brief review and analysis of agent-based migration models presented in the foreign literature are given. The agent-based model of labour migration from China to Russia developed by the Central Economic Mathematical Institute of the Russian Academy of Sciences simulates human behaviour close to reality, which is based on their internal purposes, determining the agents choice of territory as a place of residence. Therefore, at the development of the agents of the model and their behaviour algorithms, as well as the organization of the environment in which they exist and interact, the main characteristics of the population of two neighbouring countries and their demographic processes have been considered. Using the model, two experiments have been conducted. The purpose of the first of them was to assess the effect of depreciation of the rubble against the yuan on the overall indexes of labour migration, as well as its structure. In the second experiment, the procedure of the search of the information by agents for the migratory decision-making was changing. Namely, all generalizing information on the average salary by types of activity and skill level of employees, both in China and Russia, became available to all agents irrespective of their qualification level.

  10. A Model of Rapid Radicalization Behavior Using Agent-Based Modeling and Quorum Sensing

    Science.gov (United States)

    Schwartz, Noah; Drucker, Nick; Campbell, Kenyth

    2012-01-01

    Understanding the dynamics of radicalization, especially rapid radicalization, has become increasingly important to US policy in the past several years. Traditionally, radicalization is considered a slow process, but recent social and political events demonstrate that the process can occur quickly. Examining this rapid process, in real time, is impossible. However, recreating an event using modeling and simulation (M&S) allows researchers to study some of the complex dynamics associated with rapid radicalization. We propose to adapt the biological mechanism of quorum sensing as a tool to explore, or possibly explain, rapid radicalization. Due to the complex nature of quorum sensing, M&S allows us to examine events that we could not otherwise examine in real time. For this study, we employ Agent Based Modeling (ABM), an M&S paradigm suited to modeling group behavior. The result of this study was the successful creation of rapid radicalization using quorum sensing. The Battle of Mogadishu was the inspiration for this model and provided the testing conditions used to explore quorum sensing and the ideas behind rapid radicalization. The final product has wider applicability however, using quorum sensing as a possible tool for examining other catalytic rapid radicalization events.

  11. Hierarchical Agent-Based Integrated Modelling Approach for Microgrids with Adoption of EVs and HRES

    Directory of Open Access Journals (Sweden)

    Peng Han

    2014-01-01

    Full Text Available The large adoption of electric vehicles (EVs, hybrid renewable energy systems (HRESs, and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.

  12. Walk This Way: Improving Pedestrian Agent-Based Models through Scene Activity Analysis

    Directory of Open Access Journals (Sweden)

    Andrew Crooks

    2015-09-01

    Full Text Available Pedestrian movement is woven into the fabric of urban regions. With more people living in cities than ever before, there is an increased need to understand and model how pedestrians utilize and move through space for a variety of applications, ranging from urban planning and architecture to security. Pedestrian modeling has been traditionally faced with the challenge of collecting data to calibrate and validate such models of pedestrian movement. With the increased availability of mobility datasets from video surveillance and enhanced geolocation capabilities in consumer mobile devices we are now presented with the opportunity to change the way we build pedestrian models. Within this paper we explore the potential that such information offers for the improvement of agent-based pedestrian models. We introduce a Scene- and Activity-Aware Agent-Based Model (SA2-ABM, a method for harvesting scene activity information in the form of spatiotemporal trajectories, and incorporate this information into our models. In order to assess and evaluate the improvement offered by such information, we carry out a range of experiments using real-world datasets. We demonstrate that the use of real scene information allows us to better inform our model and enhance its predictive capabilities.

  13. Uses of Agent-Based Modeling for Health Communication: the TELL ME Case Study.

    Science.gov (United States)

    Barbrook-Johnson, Peter; Badham, Jennifer; Gilbert, Nigel

    2017-08-01

    Government communication is an important management tool during a public health crisis, but understanding its impact is difficult. Strategies may be adjusted in reaction to developments on the ground and it is challenging to evaluate the impact of communication separately from other crisis management activities. Agent-based modeling is a well-established research tool in social science to respond to similar challenges. However, there have been few such models in public health. We use the example of the TELL ME agent-based model to consider ways in which a non-predictive policy model can assist policy makers. This model concerns individuals' protective behaviors in response to an epidemic, and the communication that influences such behavior. Drawing on findings from stakeholder workshops and the results of the model itself, we suggest such a model can be useful: (i) as a teaching tool, (ii) to test theory, and (iii) to inform data collection. We also plot a path for development of similar models that could assist with communication planning for epidemics.

  14. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    Science.gov (United States)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land

  15. Controlling for false negatives in agent-based models

    DEFF Research Database (Denmark)

    Secchi, Davide; Seri, Raffaello

    2017-01-01

    This article is concerned with the study of statistical power in agent-based modeling (ABM). After an overview of classic statistics theory on how to interpret Type-II error (whose occurrence is also referred to as a false negative) and power, the manuscript presents a study on ABM simulation art...... of simulation runs to reach an appropriate level of power. The study concludes with the importance for organizational behavior scholars to perform their models in an attempt to reach a power of 0.95 or higher at the 0.01 significance level....

  16. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  17. Dosage and dose schedule screening of drug combinations in agent-based models reveals hidden synergies

    Directory of Open Access Journals (Sweden)

    Lisa Corina Barros de Andrade e Sousa1

    2016-01-01

    Full Text Available The fungus Candida albicans is the most common causative agent of human fungal infections and better drugs or drug combination strategies are urgently needed. Here, we present an agent-based model of the interplay of C. albicans with the host immune system and with the microflora of the host. We took into account the morphological change of C. albicans from the yeast to hyphae form and its dynamics during infection. The model allowed us to follow the dynamics of fungal growth and morphology, of the immune cells and of microflora in different perturbing situations. We specifically focused on the consequences of microflora reduction following antibiotic treatment. Using the agent-based model, different drug types have been tested for their effectiveness, namely drugs that inhibit cell division and drugs that constrain the yeast-to-hyphae transition. Applied individually, the division drug turned out to successfully decrease hyphae while the transition drug leads to a burst in hyphae after the end of the treatment. To evaluate the effect of different drug combinations, doses, and schedules, we introduced a measure for the return to a healthy state, the infection score. Using this measure, we found that the addition of a transition drug to a division drug treatment can improve the treatment reliability while minimizing treatment duration and drug dosage. In this work we present a theoretical study. Although our model has not been calibrated to quantitative experimental data, the technique of computationally identifying synergistic treatment combinations in an agent based model exemplifies the importance of computational techniques in translational research.

  18. Is the person-situation debate important for agent-based modeling and vice-versa?

    Directory of Open Access Journals (Sweden)

    Katarzyna Sznajd-Weron

    Full Text Available Agent-based models (ABM are believed to be a very powerful tool in the social sciences, sometimes even treated as a substitute for social experiments. When building an ABM we have to define the agents and the rules governing the artificial society. Given the complexity and our limited understanding of the human nature, we face the problem of assuming that either personal traits, the situation or both have impact on the social behavior of agents. However, as the long-standing person-situation debate in psychology shows, there is no consensus as to the underlying psychological mechanism and the important question that arises is whether the modeling assumptions we make will have a substantial influence on the simulated behavior of the system as a whole or not.Studying two variants of the same agent-based model of opinion formation, we show that the decision to choose either personal traits or the situation as the primary factor driving social interactions is of critical importance. Using Monte Carlo simulations (for Barabasi-Albert networks and analytic calculations (for a complete graph we provide evidence that assuming a person-specific response to social influence at the microscopic level generally leads to a completely different and less realistic aggregate or macroscopic behavior than an assumption of a situation-specific response; a result that has been reported by social psychologists for a range of experimental setups, but has been downplayed or ignored in the opinion dynamics literature.This sensitivity to modeling assumptions has far reaching consequences also beyond opinion dynamics, since agent-based models are becoming a popular tool among economists and policy makers and are often used as substitutes of real social experiments.

  19. Agent-Based and Macroscopic Modeling of the Complex Socio-Economic Systems

    Directory of Open Access Journals (Sweden)

    Aleksejus Kononovičius

    2013-08-01

    Full Text Available Purpose – The focus of this contribution is the correspondence between collective behavior and inter-individual interactions in the complex socio-economic systems. Currently there is a wide selection of papers proposing various models for the both collective behavior and inter-individual interactions in the complex socio-economic systems. Yet the papers directly relating these two concepts are still quite rare. By studying this correspondence we discuss a cutting edge approach to the modeling of complex socio-economic systems. Design/methodology/approach – The collective behavior is often modeled using stochastic and ordinary calculus, while the inter-individual interactions are modeled using agent-based models. In order to obtain the ideal model, one should start from these frameworks and build a bridge to reach another. This is a formidable task, if we consider the top-down approach, namely starting from the collective behavior and moving towards inter-individual interactions. The bottom-up approach also fails, if complex inter-individual interaction models are considered, yet in this case we can start with simple models and increase the complexity as needed. Findings – The bottom-up approach, considering simple agent-based herding model as a model for the inter-individual interactions, allows us to derive certain macroscopic models of the complex socio-economic systems from the agent-based perspective. This provides interesting insights into the collective behavior patterns observed in the complex socio-economic systems. Research limitations/implications –The simplicity of the agent-based herding model might be considered to be somewhat limiting. Yet this simplicity implies that the model is highly universal. It reproduces universal features of social behavior and also can be further extended to fit different socio-economic scenarios. Practical implications – Insights provided in this contribution might be used to modify existing

  20. An Agent-Based Model of Farmer Decision Making in Jordan

    Science.gov (United States)

    Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim

    2016-04-01

    We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.

  1. Intelligent judgements over health risks in a spatial agent-based model.

    Science.gov (United States)

    Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana

    2018-03-20

    Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of

  2. Using data-driven agent-based models for forecasting emerging infectious diseases

    Directory of Open Access Journals (Sweden)

    Srinivasan Venkatramanan

    2018-03-01

    Full Text Available Producing timely, well-informed and reliable forecasts for an ongoing epidemic of an emerging infectious disease is a huge challenge. Epidemiologists and policy makers have to deal with poor data quality, limited understanding of the disease dynamics, rapidly changing social environment and the uncertainty on effects of various interventions in place. Under this setting, detailed computational models provide a comprehensive framework for integrating diverse data sources into a well-defined model of disease dynamics and social behavior, potentially leading to better understanding and actions. In this paper, we describe one such agent-based model framework developed for forecasting the 2014–2015 Ebola epidemic in Liberia, and subsequently used during the Ebola forecasting challenge. We describe the various components of the model, the calibration process and summarize the forecast performance across scenarios of the challenge. We conclude by highlighting how such a data-driven approach can be refined and adapted for future epidemics, and share the lessons learned over the course of the challenge. Keywords: Emerging infectious diseases, Agent-based models, Simulation optimization, Bayesian calibration, Ebola

  3. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    Science.gov (United States)

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  4. Simulating the elimination of sleeping sickness with an agent-based model

    Directory of Open Access Journals (Sweden)

    Grébaut Pascal

    2016-01-01

    Full Text Available Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon, in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP. Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci.

  5. "Economic microscope": The agent-based model set as an instrument in an economic system research

    Science.gov (United States)

    Berg, D. B.; Zvereva, O. M.; Akenov, Serik

    2017-07-01

    To create a valid model of a social or economic system one must consider a lot of parameters, conditions and restrictions. Systems and, consequently, the corresponding models are proved to be very complicated. The problem of such system model engineering can't be solved only with mathematical methods usage. The decision could be found in computer simulation. Simulation does not reject mathematical methods, mathematical expressions could become the foundation for a computer model. In these materials the set of agent-based computer models is under discussion. All the set models simulate productive agents communications, but every model is geared towards the specific goal, and, thus, has its own algorithm and its own peculiarities. It is shown that computer simulation can discover new features of the agents' behavior that can not be obtained by analytical solvation of mathematical equations and thus plays the role of some kind of economic microscope.

  6. Technology assessment in energy landscapes. Agent-based modeling of energy conflicts

    International Nuclear Information System (INIS)

    Scheffran, Juergen; Link, P. Michael; Shaaban, Mostafa; Suesser, Diana

    2017-01-01

    The risks and conflicts of the fossil-nuclear age are in contrast to the effects of renewable energies which appear in a largely positive light. However, the transformation towards a low-carbon energy supply creates new energy landscapes with a high demand for suitable land areas - which may also provoke energy conflicts. Technology assessment can contribute to reducing such energy conflicts and increasing public acceptance by using spatial agent-based models that represent dynamic decisions and interactions of stakeholders regarding energy alternatives and land-use options. Northern Germany serves as a case study region where farmers and communities are local actors of the energy transition.

  7. Questioning the quantity equation using an agent-based computational model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2000-01-01

    by Stutzel (1954), argues that the functional relationship may as well be negative. Even focusing the money needed to carry out transactions, there is no immediate answer to the question of the functional relationship between trade turnover and money demand. An agent-based computational model is used......In the literature we find two opposing hypotheses relating the volume of money to the volume of transactions or national income. The classic hypothesis, implicitly entailed in the quantity equation, argues that this relation must be positive, while an opposing hypothesis, most strongly presented...

  8. Multi-agent based modeling for electric vehicle integration in a distribution network operation

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Lind, Morten

    2016-01-01

    The purpose of this paper is to present a multi-agent based modeling technology for simulating and operating a hierarchical energy management of a power distribution system with focus on EVs integration. The proposed multi-agent system consists of four types of agents: i) Distribution system...... operator (DSO) technical agent and ii) DSO market agents that both belong to the top layer of the hierarchy and their roles are to manage the distribution network by avoiding grid congestions and using congestion prices to coordinate the energy scheduled; iii) Electric vehicle virtual power plant agents...

  9. Investigation of the blockchain systems’ scalability features using the agent based modelling

    OpenAIRE

    Šulnius, Aleksas

    2017-01-01

    Investigation of the BlockChain Systems’ Scalability Features using the Agent Based Modelling. BlockChain currently is in the spotlight of all the FinTech industry. This technology is being called revolutionary, ground breaking, disruptive and even the WEB 3.0. On the other hand it is widely agreed that the BlockChain is in its early stages of development. In its current state BlockChain is in similar position that the Internet was in the early nineties. In order for this technology to gain m...

  10. Using an Agent-Based Modeling Simulation and Game to Teach Socio-Scientific Topics

    Directory of Open Access Journals (Sweden)

    Lori L. Scarlatos

    2014-02-01

    Full Text Available In our modern world, where science, technology and society are tightly interwoven, it is essential that all students be able to evaluate scientific evidence and make informed decisions. Energy Choices, an agent-based simulation with a multiplayer game interface, was developed as a learning tool that models the interdependencies between the energy choices that are made, growth in local economies, and climate change on a global scale. This paper presents the results of pilot testing Energy Choices in two different settings, using two different modes of delivery.

  11. An agent-based model of centralized institutions, social network technology, and revolution.

    Science.gov (United States)

    Makowsky, Michael D; Rubin, Jared

    2013-01-01

    This paper sheds light on the general mechanisms underlying large-scale social and institutional change. We employ an agent-based model to test the impact of authority centralization and social network technology on preference falsification and institutional change. We find that preference falsification is increasing with centralization and decreasing with social network range. This leads to greater cascades of preference revelation and thus more institutional change in highly centralized societies and this effect is exacerbated at greater social network ranges. An empirical analysis confirms the connections that we find between institutional centralization, social radius, preference falsification, and institutional change.

  12. Agent Based Fuzzy T-S Multi-Model System and Its Applications

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2015-11-01

    Full Text Available Based on the basic concepts of agent and fuzzy T-S model, an agent based fuzzy T-S multi-model (ABFT-SMM system is proposed in this paper. Different from the traditional method, the parameters and the membership value of the agent can be adjusted along with the process. In this system, each agent can be described as a dynamic equation, which can be seen as the local part of the multi-model, and it can execute the task alone or collaborate with other agents to accomplish a fixed goal. It is proved in this paper that the agent based fuzzy T-S multi-model system can approximate any linear or nonlinear system at arbitrary accuracy. The applications to the benchmark problem of chaotic time series prediction, water heater system and waste heat utilizing process illustrate the viability and the efficiency of the mentioned approach. At the same time, the method can be easily used to a number of engineering fields, including identification, nonlinear control, fault diagnostics and performance analysis.

  13. Introducing spatial information into predictive NF-kappaB modelling--an agent-based approach.

    Directory of Open Access Journals (Sweden)

    Mark Pogson

    2008-06-01

    Full Text Available Nature is governed by local interactions among lower-level sub-units, whether at the cell, organ, organism, or colony level. Adaptive system behaviour emerges via these interactions, which integrate the activity of the sub-units. To understand the system level it is necessary to understand the underlying local interactions. Successful models of local interactions at different levels of biological organisation, including epithelial tissue and ant colonies, have demonstrated the benefits of such 'agent-based' modelling. Here we present an agent-based approach to modelling a crucial biological system--the intracellular NF-kappaB signalling pathway. The pathway is vital to immune response regulation, and is fundamental to basic survival in a range of species. Alterations in pathway regulation underlie a variety of diseases, including atherosclerosis and arthritis. Our modelling of individual molecules, receptors and genes provides a more comprehensive outline of regulatory network mechanisms than previously possible with equation-based approaches. The method also permits consideration of structural parameters in pathway regulation; here we predict that inhibition of NF-kappaB is directly affected by actin filaments of the cytoskeleton sequestering excess inhibitors, therefore regulating steady-state and feedback behaviour.

  14. Agent-based modeling of the energy network for hybrid cars

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2015-01-01

    Highlights: • An approach to represent and calculate multicarrier energy networks has been developed. • It provides a modeling method based on agents, for multicarrier energy networks. • It allows the system representation on a single sheet. • Energy flows circulating in the system can be observed dynamically during simulation. • The method is technology independent. - Abstract: Studies in complex energy networks devoted to the modeling of electrical power grids, were extended in previous work, where a computational multi-layered ontology, implemented using agent-based methods, was adopted. This structure is compatible with recently introduced Multiplex Networks which using Multi-linear Algebra generalize some of classical results for single-layer networks, to multilayer networks in steady state. Static results do not assist overly in understanding dynamic networks in which the values of the variables in the nodes and edges can change suddenly, driven by events, and even where new nodes or edges may appear or disappear, also because of other events. To address this gap, a computational agent-based model is developed to extend the multi-layer and multiplex approaches. In order to demonstrate the benefits of a dynamical extension, a model of the energy network in a hybrid car is presented as a case study

  15. Spatial Planning and Policy Evaluation in an Urban Conurbation: a Regional Agent-Based Economic Model

    Directory of Open Access Journals (Sweden)

    Luzius Stricker

    2017-03-01

    Full Text Available This paper studies different functions and relations between 45 agglomerated municipalities in southern Switzerland (Ticino, using a territorial agent-based model. Our research adopts a bottom-up approach to urban systems, considering the agglomeration mechanism and effects of different regional and urban policies, and simulates the individual actions of diverse agents on a real city using an Agent-based model (ABM. Simulating the individual actions of diverse agents on a real city and measuring the resulting system behaviour and outcomes over time, they effectively provide a good test bed for evaluating the impact of different policies. The database is created merging the Swiss official secondary data for one reference year (2011 with Eurostat and OECD-Regpat. The results highlight that the understanding of municipalities’ functions on the territory appears to be essential for designing a solid institutional agglomeration (or city. From a methodological point of view, we contribute to improve the application of territorial ABM. Finally, our results provide a robust base to evaluate in a dynamic way various political interventions, in order to ensure a sustainable development of the agglomeration and the surrounding territories. Applying the analyses and the model on a larger scale, including further regions and conurbations, and including more indicators and variables, to obtain a more detailed and characteristic model, will constitute a further step of the research.

  16. Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs

    International Nuclear Information System (INIS)

    Kowalska-Pyzalska, Anna; Maciejowska, Katarzyna; Suszczyński, Karol; Sznajd-Weron, Katarzyna; Weron, Rafał

    2014-01-01

    Using an agent-based modeling approach we study the temporal dynamics of consumer opinions regarding switching to dynamic electricity tariffs and the actual decisions to switch. We assume that the decision to switch is based on the unanimity of τ past opinions. The resulting model offers a hypothetical, yet plausible explanation of why there is such a big discrepancy between consumer opinions, as measured by market surveys, and the actual participation in pilot programs and the adoption of dynamic tariffs. We argue that due to the high indifference level in today's retail electricity markets, customer opinions are very unstable and change frequently. The conducted simulation study shows that reducing the indifference level can result in narrowing the intention–behavior gap. A similar effect can be achieved by decreasing the decision time that a consumer takes to make a decision. - Highlights: • We propose an agent-based model to study the adoption of dynamic electricity tariffs. • The decision to change the tariff is based on the unanimity of τ past opinions. • The model explains why the empirically observed intention–behavior gap exists. • The adoption of dynamic tariffs is impossible due to the high level of indifference in today's societies. • Reducing the indifference level or decreasing the decision time can result in narrowing the gap

  17. A Computational Agent-Based Modeling Approach for Competitive Wireless Service Market

    KAUST Repository

    Douglas, C C

    2011-04-01

    Using an agent-based modeling method, we study market dynamism with regard to wireless cellular services that are in competition for a greater market share and profit. In the proposed model, service providers and consumers are described as agents who interact with each other and actively participate in an economically well-defined marketplace. Parameters of the model are optimized using the Levenberg-Marquardt method. The quantitative prediction capabilities of the proposed model are examined through data reproducibility using past data from the U.S. and Korean wireless service markets. Finally, we investigate a disruptive market event, namely the introduction of the iPhone into the U.S. in 2007 and the resulting changes in the modeling parameters. We predict and analyze the impacts of the introduction of the iPhone into the Korean wireless service market assuming a release date of 2Q09 based on earlier data. © 2011 IEEE.

  18. Group-Wise Herding Behavior in Financial Markets: An Agent-Based Modeling Approach

    Science.gov (United States)

    Kim, Minsung; Kim, Minki

    2014-01-01

    In this paper, we shed light on the dynamic characteristics of rational group behaviors and the relationship between monetary policy and economic units in the financial market by using an agent-based model (ABM), the Hurst exponent, and the Shannon entropy. First, an agent-based model is used to analyze the characteristics of the group behaviors at different levels of irrationality. Second, the Hurst exponent is applied to analyze the characteristics of the trend-following irrationality group. Third, the Shannon entropy is used to analyze the randomness and unpredictability of group behavior. We show that in a system that focuses on macro-monetary policy, steep fluctuations occur, meaning that the medium-level irrationality group has the highest Hurst exponent and Shannon entropy among all of the groups. However, in a system that focuses on micro-monetary policy, all group behaviors follow a stable trend, and the medium irrationality group thus remains stable, too. Likewise, in a system that focuses on both micro- and macro-monetary policies, all groups tend to be stable. Consequently, we find that group behavior varies across economic units at each irrationality level for micro- and macro-monetary policy in the financial market. Together, these findings offer key insights into monetary policy. PMID:24714635

  19. iCrowd: agent-based behavior modeling and crowd simulator

    Science.gov (United States)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  20. Encouraging Sustainable Transport Choices in American Households: Results from an Empirically Grounded Agent-Based Model

    Directory of Open Access Journals (Sweden)

    Davide Natalini

    2013-12-01

    Full Text Available The transport sector needs to go through an extended process of decarbonisation to counter the threat of climate change. Unfortunately, the International Energy Agency forecasts an enormous growth in the number of cars and greenhouse gas emissions by 2050. Two issues can thus be identified: (1 the need for a new methodology that could evaluate the policy performances ex-ante and (2 the need for more effective policies. To help address these issues, we developed an Agent-Based Model called Mobility USA aimed at: (1 testing whether this could be an effective approach in analysing ex-ante policy implementation in the transport sector; and (2 evaluating the effects of alternative policy scenarios on commuting behaviours in the USA. Particularly, we tested the effects of two sets of policies, namely market-based and preference-change ones. The model results suggest that this type of agent-based approach will provide a useful tool for testing policy interventions and their effectiveness.

  1. Agent-Based Model of Information Security System: Architecture and Formal Framework for Coordinated Intelligent Agents Behavior Specification

    National Research Council Canada - National Science Library

    Gorodetski, Vladimir

    2001-01-01

    The contractor will research and further develop the technology supporting an agent-based architecture for an information security system and a formal framework to specify a model of distributed knowledge...

  2. CystiSim - an agent-based model for Taenia solium transmission and control

    DEFF Research Database (Denmark)

    Braae, Uffe Christian; Devleesschauwer, Brecht; Gabriël, Sarah

    2016-01-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission...... interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes...... and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts...

  3. A Risk Assessment Example for Soil Invertebrates Using Spatially Explicit Agent-Based Models

    DEFF Research Database (Denmark)

    Reed, Melissa; Alvarez, Tania; Chelinho, Sonia

    2016-01-01

    Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier...... population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different...... application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed “overall”], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover...

  4. Agent-based modeling: a new approach for theory building in social psychology.

    Science.gov (United States)

    Smith, Eliot R; Conrey, Frederica R

    2007-02-01

    Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.

  5. Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges.

    Science.gov (United States)

    Klabunde, Anna; Willekens, Frans

    We review agent-based models (ABM) of human migration with respect to their decision-making rules. The most prominent behavioural theories used as decision rules are the random utility theory, as implemented in the discrete choice model, and the theory of planned behaviour. We identify the critical choices that must be made in developing an ABM, namely the modelling of decision processes and social networks. We also discuss two challenges that hamper the widespread use of ABM in the study of migration and, more broadly, demography and the social sciences: (a) the choice and the operationalisation of a behavioural theory (decision-making and social interaction) and (b) the selection of empirical evidence to validate the model. We offer advice on how these challenges might be overcome.

  6. The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as

  7. An agent-based simulation model to study accountable care organizations.

    Science.gov (United States)

    Liu, Pai; Wu, Shinyi

    2016-03-01

    Creating accountable care organizations (ACOs) has been widely discussed as a strategy to control rapidly rising healthcare costs and improve quality of care; however, building an effective ACO is a complex process involving multiple stakeholders (payers, providers, patients) with their own interests. Also, implementation of an ACO is costly in terms of time and money. Immature design could cause safety hazards. Therefore, there is a need for analytical model-based decision-support tools that can predict the outcomes of different strategies to facilitate ACO design and implementation. In this study, an agent-based simulation model was developed to study ACOs that considers payers, healthcare providers, and patients as agents under the shared saving payment model of care for congestive heart failure (CHF), one of the most expensive causes of sometimes preventable hospitalizations. The agent-based simulation model has identified the critical determinants for the payment model design that can motivate provider behavior changes to achieve maximum financial and quality outcomes of an ACO. The results show nonlinear provider behavior change patterns corresponding to changes in payment model designs. The outcomes vary by providers with different quality or financial priorities, and are most sensitive to the cost-effectiveness of CHF interventions that an ACO implements. This study demonstrates an increasingly important method to construct a healthcare system analytics model that can help inform health policy and healthcare management decisions. The study also points out that the likely success of an ACO is interdependent with payment model design, provider characteristics, and cost and effectiveness of healthcare interventions.

  8. CystiSim - An Agent-Based Model for Taenia solium Transmission and Control.

    Science.gov (United States)

    Braae, Uffe Christian; Devleesschauwer, Brecht; Gabriël, Sarah; Dorny, Pierre; Speybroeck, Niko; Magnussen, Pascal; Torgerson, Paul; Johansen, Maria Vang

    2016-12-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities-pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential

  9. CystiSim – An Agent-Based Model for Taenia solium Transmission and Control

    Science.gov (United States)

    Gabriël, Sarah; Dorny, Pierre; Speybroeck, Niko; Magnussen, Pascal; Torgerson, Paul; Johansen, Maria Vang

    2016-01-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities—pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential

  10. Agent-based model with asymmetric trading and herding for complex financial systems.

    Science.gov (United States)

    Chen, Jun-Jie; Zheng, Bo; Tan, Lei

    2013-01-01

    For complex financial systems, the negative and positive return-volatility correlations, i.e., the so-called leverage and anti-leverage effects, are particularly important for the understanding of the price dynamics. However, the microscopic origination of the leverage and anti-leverage effects is still not understood, and how to produce these effects in agent-based modeling remains open. On the other hand, in constructing microscopic models, it is a promising conception to determine model parameters from empirical data rather than from statistical fitting of the results. To study the microscopic origination of the return-volatility correlation in financial systems, we take into account the individual and collective behaviors of investors in real markets, and construct an agent-based model. The agents are linked with each other and trade in groups, and particularly, two novel microscopic mechanisms, i.e., investors' asymmetric trading and herding in bull and bear markets, are introduced. Further, we propose effective methods to determine the key parameters in our model from historical market data. With the model parameters determined for six representative stock-market indices in the world, respectively, we obtain the corresponding leverage or anti-leverage effect from the simulation, and the effect is in agreement with the empirical one on amplitude and duration. At the same time, our model produces other features of the real markets, such as the fat-tail distribution of returns and the long-term correlation of volatilities. We reveal that for the leverage and anti-leverage effects, both the investors' asymmetric trading and herding are essential generation mechanisms. Among the six markets, however, the investors' trading is approximately symmetric for the five markets which exhibit the leverage effect, thus contributing very little. These two microscopic mechanisms and the methods for the determination of the key parameters can be applied to other complex

  11. Agent-based model with asymmetric trading and herding for complex financial systems.

    Directory of Open Access Journals (Sweden)

    Jun-Jie Chen

    Full Text Available BACKGROUND: For complex financial systems, the negative and positive return-volatility correlations, i.e., the so-called leverage and anti-leverage effects, are particularly important for the understanding of the price dynamics. However, the microscopic origination of the leverage and anti-leverage effects is still not understood, and how to produce these effects in agent-based modeling remains open. On the other hand, in constructing microscopic models, it is a promising conception to determine model parameters from empirical data rather than from statistical fitting of the results. METHODS: To study the microscopic origination of the return-volatility correlation in financial systems, we take into account the individual and collective behaviors of investors in real markets, and construct an agent-based model. The agents are linked with each other and trade in groups, and particularly, two novel microscopic mechanisms, i.e., investors' asymmetric trading and herding in bull and bear markets, are introduced. Further, we propose effective methods to determine the key parameters in our model from historical market data. RESULTS: With the model parameters determined for six representative stock-market indices in the world, respectively, we obtain the corresponding leverage or anti-leverage effect from the simulation, and the effect is in agreement with the empirical one on amplitude and duration. At the same time, our model produces other features of the real markets, such as the fat-tail distribution of returns and the long-term correlation of volatilities. CONCLUSIONS: We reveal that for the leverage and anti-leverage effects, both the investors' asymmetric trading and herding are essential generation mechanisms. Among the six markets, however, the investors' trading is approximately symmetric for the five markets which exhibit the leverage effect, thus contributing very little. These two microscopic mechanisms and the methods for the

  12. Information driving force and its application in agent-based modeling

    Science.gov (United States)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  13. Agent-Based Model Approach to Complex Phenomena in Real Economy

    Science.gov (United States)

    Iyetomi, H.; Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Souma, W.

    An agent-based model for firms' dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents are described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the ``profit maximization" principle is suppressed by a concept of ``going concern". Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms' decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms' dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.

  14. Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection

    Directory of Open Access Journals (Sweden)

    Juan Alegre-Sanahuja

    2014-01-01

    Full Text Available In the last years the number of malware Apps that the users download to their devices has risen. In this paper, we propose an agent-based model to quantify the Android malware infection evolution, modeling the behavior of the users and the different markets where the users may download Apps. The model predicts the number of infected smartphones depending on the type of malware. Additionally, we will estimate the cost that the users should afford when the malware is in their devices. We will be able to analyze which part is more critical: the users, giving indiscriminate permissions to the Apps or not protecting their devices with antivirus software, or the Android platform, due to the vulnerabilities of the Android devices that permit their rooted. We focus on the community of Valencia, Spain, although the obtained results can be extrapolated to other places where the number of Android smartphones remains fairly stable.

  15. Bounded Rational Managers Struggle with Talent Management - An Agent-based Modelling Approach

    DEFF Research Database (Denmark)

    Adamsen, Billy; Thomsen, Svend Erik

    This study applies an agent-based modeling approach to explore some aspects of an important managerial task: finding and cultivating talented individuals capable of creating value for their organization at some future state. Given that the term talent in talent management is an empty signifier...... and its denotative meaning floating, we propose that bounded rational managers base their decisions on a simple heuristic, i.e. selecting and cultivating individuals so that their capabilities resemble their own capabilities the most (Adamsen 2015). We model the consequences of this talent management...... heuristic by varying the capabilities of today’s managers, which in turn impact which individuals will be selected as talent. We model the average level of capabilities and the distribution thereof in the sample where managers identify and select individuals from. We consider varying degrees of path...

  16. An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

    Science.gov (United States)

    Gidden, Matthew J.

    Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

  17. Using Agent-Based Models in the Analysis and Forecast of Socio-Economic Development of Territories

    Directory of Open Access Journals (Sweden)

    Vitalii Nikolaevich Makoveev

    2016-11-01

    Full Text Available The purpose of the paper is to study the essence of agent-based modeling, defining its features and prospects of usage in the modeling of socio-economic development of territories and systematization of domestic and foreign approaches to the development of prototypes for agent-based models of territories. Information basis for the research comprised the works on agent-based modeling by Russian and foreign scholars, especially articles and monographs of scientists of the Central Economics and Mathematics Institute under the Russian Academy of Sciences, papers presented in an international journal The Journal of Artificial Societies and Social Simulation and other sources available on the Internet. The article presents theoretical and methodological foundations of agent-based models of territories. The author considers the concepts of “agent-based modeling” and “agent” and defines specifics of agent-based models in comparison with other types of simulation modeling. The paper also describes major stages of building agent-based models for territories and considers qualification requirements to a modeling subject. Furthermore, it reviews Russian and foreign approaches to the development of prototypes for agent-based models of territories. It has been determined that most of them deal with the modeling of spatial, territorial and socio-economic development of regions, cities and municipal entities. Agents in such models are presented by households, residents of regions and cities, enterprises and organizations operating in their territory, and public administration authorities (their inclusion in the model makes it possible to test different options of management impacts on territories by changing the model parameters, for instance, the introduction of certain prohibitions and quotas, issuance of permits, distribution of financial resources, etc.. At the end of the paper, the author formulates major conclusions. He shows the complexity faced

  18. Study of the attractor structure of an agent-based sociological model

    Energy Technology Data Exchange (ETDEWEB)

    Timpanaro, Andre M; Prado, Carmen P C, E-mail: timpa@if.usp.br, E-mail: prado@if.usp.br [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-03-01

    The Sznajd model is a sociophysics model that is based in the Potts model, and used for describing opinion propagation in a society. It employs an agent-based approach and interaction rules favouring pairs of agreeing agents. It has been successfully employed in modeling some properties and scale features of both proportional and majority elections (see for instance the works of A. T. Bernardes and R. N. Costa Filho), but its stationary states are always consensus states. In order to explain more complicated behaviours, we have modified the bounded confidence idea (introduced before in other opinion models, like the Deffuant model), with the introduction of prejudices and biases (we called this modification confidence rules), and have adapted it to the discrete Sznajd model. This generalized Sznajd model is able to reproduce almost all of the previous versions of the Sznajd model, by using appropriate choices of parameters. We solved the attractor structure of the resulting model in a mean-field approach and made Monte Carlo simulations in a Barabasi-Albert network. These simulations show great similarities with the mean-field, for the tested cases of 3 and 4 opinions. The dynamical systems approach that we devised allows for a deeper understanding of the potential of the Sznajd model as an opinion propagation model and can be easily extended to other models, like the voter model. Our modification of the bounded confidence rule can also be readily applied to other opinion propagation models.

  19. Simulating the Reproductive Behavior of a Region’s Population with an Agent-Based Model

    Directory of Open Access Journals (Sweden)

    Valeriy Leonidovich Makarov

    2015-09-01

    Full Text Available The research analyses the impact of the inequality of demographic transition on socio-demographic characteristics of the regional population and on the dynamics of these characteristics. The study was conducted with the help of computer-based experiments (simulations, which was run on the original agent-based model. The model is an artificial society, and personal characteristics of its members are set so that they could represent age-demographic structure of a simulate region. The agents are divided into two subgroups, which differ in their reproductive strategy. The first group has traditional strategy with high birth rate. The second group has considerably lower birth rate, observed in the modern developed societies. The model uses stochastic approaches to imitate the principle processes of population growth: mortality and morbidity. Mortality is set according to age-sex specific mortality coefficients, which do not differ across the population as a whole. New agents (child births appear as a choice of agents – women of reproductive age, and the choice depends on the subgroup. The overall age and social structure of the region is aggregated across individual agents. A number of experiments has been carried out with the model utilization. This allowed forecasting the size and structure of the population of a given region. The results of the experiments have revealed that despite its simplicity, the developed agent-based model well predicts the initial conditions in the region (e.g. age-demographic and social structure. The model shows good fit in terms of estimating the dynamics of major characteristics of the population.

  20. Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling

    Science.gov (United States)

    Wagh, Aditi

    Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both

  1. Carbon emissions trading scheme exploration in China: A multi-agent-based model

    International Nuclear Information System (INIS)

    Tang, Ling; Wu, Jiaqian; Yu, Lean; Bao, Qin

    2015-01-01

    To develop a low-carbon economy, China launched seven pilot programs for carbon emissions trading (CET) in 2011 and plans to establish a nationwide CET mechanism in 2015. This paper formulated a multi-agent-based model to investigate the impacts of different CET designs in order to find the most appropriate one for China. The proposed bottom-up model includes all main economic agents in a general equilibrium framework. The simulation results indicate that (1) CET would effectively reduce carbon emissions, with a certain negative impact on the economy, (2) as for allowance allocation, the grandfathering rule is relatively moderate, while the benchmarking rule is more aggressive, (3) as for the carbon price, when the price level in the secondary CET market is regulated to be around RMB 40 per metric ton, a satisfactory emission mitigation effect can be obtained, (4) the penalty rate is suggested to be carefully designed to balance the economy development and mitigation effect, and (5) subsidy policy for energy technology improvement can effectively reduce carbon emissions without an additional negative impact on the economy. The results also indicate that the proposed novel model is a promising tool for CET policy making and analyses. -- Highlights: •A multi-agent-based model is proposed for carbon emissions trading (CET) in China. •Three agents are included: government, firms in different sectors and households. •The impacts of CET on the economy and environment in China are analyzed. •Different CET designs are simulated to find an appropriate policy for China. •Results confirm the effectiveness of the model and give helpful insights into CET design

  2. A spatial web/agent-based model to support stakeholders' negotiation regarding land development.

    Science.gov (United States)

    Pooyandeh, Majeed; Marceau, Danielle J

    2013-11-15

    Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second

  3. Uncertainty analysis in agent-based modelling and consequential life cycle assessment coupled models : a critical review

    NARCIS (Netherlands)

    Baustert, P.M.; Benetto, E.

    2017-01-01

    The evolution of life cycle assessment (LCA) from a merely comparative tool for the assessment of products to a policy analysis tool proceeds by incorporating increasingly complex modelling approaches. In more recent studies of complex systems, such as the agriculture sector or mobility, agent-based

  4. Risk, individual differences, and environment: an Agent-Based Modeling approach to sexual risk-taking.

    Science.gov (United States)

    Nagoski, Emily; Janssen, Erick; Lohrmann, David; Nichols, Eric

    2012-08-01

    Risky sexual behaviors, including the decision to have unprotected sex, result from interactions between individuals and their environment. The current study explored the use of Agent-Based Modeling (ABM)-a methodological approach in which computer-generated artificial societies simulate human sexual networks-to assess the influence of heterogeneity of sexual motivation on the risk of contracting HIV. The models successfully simulated some characteristics of human sexual systems, such as the relationship between individual differences in sexual motivation (sexual excitation and inhibition) and sexual risk, but failed to reproduce the scale-free distribution of number of partners observed in the real world. ABM has the potential to inform intervention strategies that target the interaction between an individual and his or her social environment.

  5. Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling

    Science.gov (United States)

    Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735

  6. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.

    Science.gov (United States)

    Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.

  7. A review of agent-based modeling approach in the supply chain collaboration context

    Science.gov (United States)

    Arvitrida, N. I.

    2018-04-01

    Collaboration is considered as the key aspect of supply chain management (SCM) success. This issue has been addressed by many studies in recent years, but there are still few research employs agent-based modeling (ABM) approach to study business partnerships in SCM. This paper reviews the use of ABM in modeling collaboration in supply chains and inform the scope of ABM application in the existing literature. The review reveals that ABM can be an effective tool to address various aspects in supply chain relationships, but its applications in SCM studies are still limited. Moreover, where ABM is applied in the SCM context, most of the studies focus on software architecture rather than analyzing the supply chain issues. This paper also provides insights to SCM researchers about the opportunity uses of ABM in studying complexity in supply chain collaboration.

  8. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    Science.gov (United States)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  9. Quantitative Analysis of Intra Urban Growth Modeling using socio economic agents by combining cellular automata model with agent based model

    Science.gov (United States)

    Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.

    2017-12-01

    Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes

  10. Agent-Based Modeling of Taxi Behavior Simulation with Probe Vehicle Data

    Directory of Open Access Journals (Sweden)

    Saurav Ranjit

    2018-05-01

    Full Text Available Taxi behavior is a spatial–temporal dynamic process involving discrete time dependent events, such as customer pick-up, customer drop-off, cruising, and parking. Simulation models, which are a simplification of a real-world system, can help understand the effects of change of such dynamic behavior. In this paper, agent-based modeling and simulation is proposed, that describes the dynamic action of an agent, i.e., taxi, governed by behavior rules and properties, which emulate the taxi behavior. Taxi behavior simulations are fundamentally done for optimizing the service level for both taxi drivers as well as passengers. Moreover, simulation techniques, as such, could be applied to another field of application as well, where obtaining real raw data are somewhat difficult due to privacy issues, such as human mobility data or call detail record data. This paper describes the development of an agent-based simulation model which is based on multiple input parameters (taxi stay point cluster; trip information (origin and destination; taxi demand information; free taxi movement; and network travel time that were derived from taxi probe GPS data. As such, agent’s parameters were mapped into grid network, and the road network, for which the grid network was used as a base for query/search/retrieval of taxi agent’s parameters, while the actual movement of taxi agents was on the road network with routing and interpolation. The results obtained from the simulated taxi agent data and real taxi data showed a significant level of similarity of different taxi behavior, such as trip generation; trip time; trip distance as well as trip occupancy, based on its distribution. As for efficient data handling, a distributed computing platform for large-scale data was used for extracting taxi agent parameter from the probe data by utilizing both spatial and non-spatial indexing technique.

  11. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    Science.gov (United States)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  12. Physics and financial economics (1776–2014): puzzles, Ising and agent-based models

    International Nuclear Information System (INIS)

    Sornette, Didier

    2014-01-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets. (key issues reviews)

  13. Optimal harvesting for a predator-prey agent-based model using difference equations.

    Science.gov (United States)

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  14. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    Science.gov (United States)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  15. [Methodological novelties applied to the anthropology of food: agent-based models and social networks analysis].

    Science.gov (United States)

    Díaz Córdova, Diego

    2016-01-01

    The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.

  16. The Evolution of ICT Markets: An Agent-Based Model on Complex Networks

    Science.gov (United States)

    Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li

    Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.

  17. Agent-based models for the emergence and evolution of grammar.

    Science.gov (United States)

    Steels, Luc

    2016-08-19

    Human languages are extraordinarily complex adaptive systems. They feature intricate hierarchical sound structures, are able to express elaborate meanings and use sophisticated syntactic and semantic structures to relate sound to meaning. What are the cognitive mechanisms that speakers and listeners need to create and sustain such a remarkable system? What is the collective evolutionary dynamics that allows a language to self-organize, become more complex and adapt to changing challenges in expressive power? This paper focuses on grammar. It presents a basic cycle observed in the historical language record, whereby meanings move from lexical to syntactic and then to a morphological mode of expression before returning to a lexical mode, and discusses how we can discover and validate mechanisms that can cause these shifts using agent-based models.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  18. Data Provenance for Agent-Based Models in a Distributed Memory

    Directory of Open Access Journals (Sweden)

    Delmar B. Davis

    2018-04-01

    Full Text Available Agent-Based Models (ABMs assist with studying emergent collective behavior of individual entities in social, biological, economic, network, and physical systems. Data provenance can support ABM by explaining individual agent behavior. However, there is no provenance support for ABMs in a distributed setting. The Multi-Agent Spatial Simulation (MASS library provides a framework for simulating ABMs at fine granularity, where agents and spatial data are shared application resources in a distributed memory. We introduce a novel approach to capture ABM provenance in a distributed memory, called ProvMASS. We evaluate our technique with traditional data provenance queries and performance measures. Our results indicate that a configurable approach can capture provenance that explains coordination of distributed shared resources, simulation logic, and agent behavior while limiting performance overhead. We also show the ability to support practical analyses (e.g., agent tracking and storage requirements for different capture configurations.

  19. Projecting Sexual and Injecting HIV Risks into Future Outcomes with Agent-Based Modeling

    Science.gov (United States)

    Bobashev, Georgiy V.; Morris, Robert J.; Zule, William A.

    Longitudinal studies of health outcomes for HIV could be very costly cumbersome and not representative of the risk population. Conversely, cross-sectional approaches could be representative but rely on the retrospective information to estimate prevalence and incidence. We present an Agent-based Modeling (ABM) approach where we use behavioral data from a cross-sectional representative study and project the behavior into the future so that the risks of acquiring HIV could be studied in a dynamical/temporal sense. We show how the blend of behavior and contact network factors (sexual, injecting) play the role in the risk of future HIV acquisition and time till obtaining HIV. We show which subjects are the most likely persons to get HIV in the next year, and whom they are likely to infect. We examine how different behaviors are related to the increase or decrease of HIV risks and how to estimate the quantifiable risk measures such as survival HIV free.

  20. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  1. Improving rural electricity system planning: An agent-based model for stakeholder engagement and decision making

    International Nuclear Information System (INIS)

    Alfaro, Jose F.; Miller, Shelie; Johnson, Jeremiah X.; Riolo, Rick R.

    2017-01-01

    Energy planners in regions with low rates of electrification face complex and high-risk challenges in selecting appropriate generating technologies and grid centralization. To better inform such processes, we present an Agent-Based Model (ABM) that facilitates engagement with stakeholders. This approach evaluates long-term plans using the cost of delivered electricity, resource mix, jobs and economic stimulus created within communities, and decentralized generation mix of the system, with results provided in a spatially-resolved format. This approach complements existing electricity planning methods (e.g., Integrated Resource Planning) by offering novel evaluation criteria based on typical stakeholder preferences. We demonstrate the utility of this approach with a case study based on a “blank-slate” scenario, which begins without generation or transmission infrastructure, for the long-term rural renewable energy plans of Liberia, West Africa. We consider five electrification strategies: prioritizing larger populations, deploying large resources, creating jobs, providing economic stimulus, and step-wise cost minimization. Through the case study we demonstrate how this approach can be used to engage stakeholders, supplement more established energy planning tools, and illustrate the effects of stakeholder decisions and preferences on the performance of the system. - Highlights: • An Agent Based Model, BABSTER, for electrification planning is presented. • BABSTER provides a highly engaging spatially resolved interface. • Allows flexible investigation of decision strategies with real-world incentives. • We show that decision strategies directly impact centralization and resource choice. • It is illustrated through the case study of Liberia, West Africa.

  2. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    Science.gov (United States)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  3. An agent-based hydroeconomic model to evaluate water policies in Jordan

    Science.gov (United States)

    Yoon, J.; Gorelick, S.

    2014-12-01

    Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.

  4. An agent-based model for emotion contagion and competition in online social media

    Science.gov (United States)

    Fan, Rui; Xu, Ke; Zhao, Jichang

    2018-04-01

    Recent studies suggest that human emotions diffuse in not only real-world communities but also online social media. However, a comprehensive model that considers up-to-date findings and multiple online social media mechanisms is still missing. To bridge this vital gap, an agent-based model, which concurrently considers emotion influence and tie strength preferences, is presented to simulate the emotion contagion and competition. Our model well reproduces patterns observed in the empirical data, like anger's preference on weak ties, anger-dominated users' high vitalities and angry tweets' short retweet intervals, and anger's competitiveness in negative events. The comparison with a previously presented baseline model further demonstrates its effectiveness in modeling online emotion contagion. It is also surprisingly revealed by our model that as the ratio of anger approaches joy with a gap less than 12%, anger will eventually dominate the online social media and arrives the collective outrage in the cyber space. The critical gap disclosed here can be indeed warning signals at early stages for outrage control. Our model would shed lights on the study of multiple issues regarding emotion contagion and competition in terms of computer simulations.

  5. A standard protocol for describing individual-based and agent-based models

    Science.gov (United States)

    Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen, Sigrunn; Ginot, Vincent; Giske, Jarl; Goss-Custard, John; Grand, Tamara; Heinz, Simone K.; Huse, Geir; Huth, Andreas; Jepsen, Jane U.; Jorgensen, Christian; Mooij, Wolf M.; Muller, Birgit; Pe'er, Guy; Piou, Cyril; Railsback, Steven F.; Robbins, Andrew M.; Robbins, Martha M.; Rossmanith, Eva; Ruger, Nadja; Strand, Espen; Souissi, Sami; Stillman, Richard A.; Vabo, Rune; Visser, Ute; DeAngelis, Donald L.

    2006-01-01

    Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers.

  6. SIMULATING AN EVOLUTIONARY MULTI-AGENT BASED MODEL OF THE STOCK MARKET

    Directory of Open Access Journals (Sweden)

    Diana MARICA

    2015-08-01

    Full Text Available The paper focuses on artificial stock market simulations using a multi-agent model incorporating 2,000 heterogeneous agents interacting on the artificial market. The agents interaction is due to trading activity on the market through a call auction trading mechanism. The multi-agent model uses evolutionary techniques such as genetic programming in order to generate an adaptive and evolving population of agents. Each artificial agent is endowed with wealth and a genetic programming induced trading strategy. The trading strategy evolves and adapts to the new market conditions through a process called breeding, which implies that at each simulation step, new agents with better trading strategies are generated by the model, from recombining the best performing trading strategies and replacing the agents which have the worst performing trading strategies. The simulation model was build with the help of the simulation software Altreva Adaptive Modeler which offers a suitable platform for financial market simulations of evolutionary agent based models, the S&P500 composite index being used as a benchmark for the simulation results.

  7. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  8. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    Science.gov (United States)

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3

  9. Dynamics of bloggers’ communities: Bipartite networks from empirical data and agent-based modeling

    Science.gov (United States)

    Mitrović, Marija; Tadić, Bosiljka

    2012-11-01

    We present an analysis of the empirical data and the agent-based modeling of the emotional behavior of users on the Web portals where the user interaction is mediated by posted comments, like Blogs and Diggs. We consider the dataset of discussion-driven popular Diggs, in which all comments are screened by machine-learning emotion detection in the text, to determine positive and negative valence (attractiveness and aversiveness) of each comment. By mapping the data onto a suitable bipartite network, we perform an analysis of the network topology and the related time-series of the emotional comments. The agent-based model is then introduced to simulate the dynamics and to capture the emergence of the emotional behaviors and communities. The agents are linked to posts on a bipartite network, whose structure evolves through their actions on the posts. The emotional states (arousal and valence) of each agent fluctuate in time, subject to the current contents of the posts to which the agent is exposed. By an agent’s action on a post its current emotions are transferred to the post. The model rules and the key parameters are inferred from the considered empirical data to ensure their realistic values and mutual consistency. The model assumes that the emotional arousal over posts drives the agent’s action. The simulations are preformed for the case of constant flux of agents and the results are analyzed in full analogy with the empirical data. The main conclusions are that the emotion-driven dynamics leads to long-range temporal correlations and emergent networks with community structure, that are comparable with the ones in the empirical system of popular posts. In view of pure emotion-driven agents actions, this type of comparisons provide a quantitative measure for the role of emotions in the dynamics on real blogs. Furthermore, the model reveals the underlying mechanisms which relate the post popularity with the emotion dynamics and the prevalence of negative

  10. Combining integrated river modelling and agent based social simulation for river management; The case study of the Grensmaas project

    NARCIS (Netherlands)

    Valkering, P.; Krywkow, Jorg; Rotmans, J.; van der Veen, A.; Douben, N.; van Os, A.G.

    2003-01-01

    In this paper we present a coupled Integrated River ModelAgent Based Social Simulation model (IRM-ABSS) for river management. The models represent the case of the ongoing river engineering project “Grensmaas”. In the ABSS model stakeholders are represented as computer agents negotiating a river

  11. Use of agent-based modelling in emergency management under a range of flood hazards

    Directory of Open Access Journals (Sweden)

    Tagg Andrew

    2016-01-01

    Full Text Available The Life Safety Model (LSM was developed some 15 years ago, originally for dam break assessments and for informing reservoir evacuation and emergency plans. Alongside other technological developments, the model has evolved into a very useful agent-based tool, with many applications for a range of hazards and receptor behaviour. HR Wallingford became involved in its use in 2006, and is now responsible for its technical development and commercialisation. Over the past 10 years the model has been applied to a range of flood hazards, including coastal surge, river flood, dam failure and tsunami, and has been verified against historical events. Commercial software licences are being used in Canada, Italy, Malaysia and Australia. A core group of LSM users and analysts has been specifying and delivering a programme of model enhancements. These include improvements to traffic behaviour at intersections, new algorithms for sheltering in high-rise buildings, and the addition of monitoring points to allow detailed analysis of vehicle and pedestrian movement. Following user feedback, the ability of LSM to handle large model ‘worlds’ and hydrodynamic meshes has been improved. Recent developments include new documentation, performance enhancements, better logging of run-time events and bug fixes. This paper describes some of the recent developments and summarises some of the case study applications, including dam failure analysis in Japan and mass evacuation simulation in England.

  12. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    Science.gov (United States)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  13. Agent based models of language competition: macroscopic descriptions and order–disorder transitions

    International Nuclear Information System (INIS)

    Vazquez, F; Castelló, X; San Miguel, M

    2010-01-01

    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language X or language Y, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the bilinguals model, where the presence of bilinguals facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly connected than in fully connected networks, and that the dominance of just one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus

  14. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    Science.gov (United States)

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  15. Mesoscopic effects in an agent-based bargaining model in regular lattices.

    Science.gov (United States)

    Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo

    2011-03-09

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.

  16. Mesoscopic effects in an agent-based bargaining model in regular lattices.

    Directory of Open Access Journals (Sweden)

    David J Poza

    Full Text Available The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.

  17. An agent-based model of cattle grazing toxic Geyer's larkspur.

    Science.gov (United States)

    Jablonski, Kevin E; Boone, Randall B; Meiman, Paul J

    2018-01-01

    By killing cattle and otherwise complicating management, the many species of larkspur (Delphinium spp.) present a serious, intractable, and complex challenge to livestock grazing management in the western United States. Among the many obstacles to improving our understanding of cattle-larkspur dynamics has been the difficulty of testing different grazing management strategies in the field, as the risk of dead animals is too great. Agent-based models (ABMs) provide an effective method of testing alternate management strategies without risk to livestock. ABMs are especially useful for modeling complex systems such as livestock grazing management, and allow for realistic bottom-up encoding of cattle behavior. Here, we introduce a spatially-explicit, behavior-based ABM of cattle grazing in a pasture with a dangerous amount of Geyer's larkspur (D. geyeri). This model tests the role of herd cohesion and stocking density in larkspur intake, finds that both are key drivers of larkspur-induced toxicosis, and indicates that alteration of these factors within realistic bounds can mitigate risk. Crucially, the model points to herd cohesion, which has received little attention in the discipline, as playing an important role in lethal acute toxicosis. As the first ABM to model grazing behavior at realistic scales, this study also demonstrates the tremendous potential of ABMs to illuminate grazing management dynamics, including fundamental aspects of livestock behavior amidst ecological heterogeneity.

  18. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.

    Science.gov (United States)

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.

  19. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    Science.gov (United States)

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2017-10-01

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  20. Stimulating household flood risk mitigation investments through insurance and subsidies: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen

    2015-04-01

    In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.

  1. An agent-based model of cellular dynamics and circadian variability in human endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tung T Nguyen

    Full Text Available As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.

  2. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Sharpanskykh, Alexei; Kirwan, Barry

    2011-01-01

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  3. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    Science.gov (United States)

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  4. Effects of Heterogeneity in Residential Preferences on an Agent-Based Model of Urban Sprawl

    Directory of Open Access Journals (Sweden)

    Daniel G. Brown

    2006-06-01

    Full Text Available The ability of agent-based models (ABMs to represent heterogeneity in the characteristics and behaviors of actors enables analyses about the implications of this heterogeneity for system behavior. The importance of heterogeneity in the specification of ABMs, however, creates new demands for empirical support. An earlier analysis of a survey of residential preferences within southeastern Michigan revealed seven groups of residents with similar preferences on similar characteristics of location. In this paper, we present an ABM that represents the process of residential development within an urban system and run it for a hypothetical pattern of environmental variation. Residential locations are selected by residential agents, who evaluate locations on the basis of preference for nearness to urban services, including jobs, aesthetic quality of the landscape, and their similarity to their neighbors. We populate our ABM with a population of residential preferences drawn from the survey results in five different ways: (1 preferences drawn at random; (2 equal preferences based on the mean from the entire survey sample; (3 preferences drawn from a single distribution, whose mean and standard deviation are derived from the survey sample; (4 equal preferences within each of seven groups, based on the group means; and (5 preferences drawn from distributions for each of seven groups, defined by group means and standard deviations. Model sensitivity analysis, based on multiple runs of our model under each case, revealed that adding heterogeneity to agents has a significant effect on model outcomes, measured by aggregate patterns of development sprawl and clustering.

  5. The Hunt Opinion Model-An Agent Based Approach to Recurring Fashion Cycles.

    Science.gov (United States)

    Apriasz, Rafał; Krueger, Tyll; Marcjasz, Grzegorz; Sznajd-Weron, Katarzyna

    2016-01-01

    We study a simple agent-based model of the recurring fashion cycles in the society that consists of two interacting communities: "snobs" and "followers" (or "opinion hunters", hence the name of the model). Followers conform to all other individuals, whereas snobs conform only to their own group and anticonform to the other. The model allows to examine the role of the social structure, i.e. the influence of the number of inter-links between the two communities, as well as the role of the stability of links. The latter is accomplished by considering two versions of the same model-quenched (parameterized by fraction L of fixed inter-links) and annealed (parameterized by probability p that a given inter-link exists). Using Monte Carlo simulations and analytical treatment (the latter only for the annealed model), we show that there is a critical fraction of inter-links, above which recurring cycles occur. For p ≤ 0.5 we derive a relation between parameters L and p that allows to compare both models and show that the critical value of inter-connections, p*, is the same for both versions of the model (annealed and quenched) but the period of a fashion cycle is shorter for the quenched model. Near the critical point, the cycles are irregular and a change of fashion is difficult to predict. For the annealed model we also provide a deeper theoretical analysis. We conjecture on topological grounds that the so-called saddle node heteroclinic bifurcation appears at p*. For p ≥ 0.5 we show analytically the existence of the second critical value of p, for which the system undergoes Hopf's bifurcation.

  6. The Hunt Opinion Model-An Agent Based Approach to Recurring Fashion Cycles.

    Directory of Open Access Journals (Sweden)

    Rafał Apriasz

    Full Text Available We study a simple agent-based model of the recurring fashion cycles in the society that consists of two interacting communities: "snobs" and "followers" (or "opinion hunters", hence the name of the model. Followers conform to all other individuals, whereas snobs conform only to their own group and anticonform to the other. The model allows to examine the role of the social structure, i.e. the influence of the number of inter-links between the two communities, as well as the role of the stability of links. The latter is accomplished by considering two versions of the same model-quenched (parameterized by fraction L of fixed inter-links and annealed (parameterized by probability p that a given inter-link exists. Using Monte Carlo simulations and analytical treatment (the latter only for the annealed model, we show that there is a critical fraction of inter-links, above which recurring cycles occur. For p ≤ 0.5 we derive a relation between parameters L and p that allows to compare both models and show that the critical value of inter-connections, p*, is the same for both versions of the model (annealed and quenched but the period of a fashion cycle is shorter for the quenched model. Near the critical point, the cycles are irregular and a change of fashion is difficult to predict. For the annealed model we also provide a deeper theoretical analysis. We conjecture on topological grounds that the so-called saddle node heteroclinic bifurcation appears at p*. For p ≥ 0.5 we show analytically the existence of the second critical value of p, for which the system undergoes Hopf's bifurcation.

  7. Buying on margin, selling short in an agent-based market model

    Science.gov (United States)

    Zhang, Ting; Li, Honggang

    2013-09-01

    Credit trading, or leverage trading, which includes buying on margin and selling short, plays an important role in financial markets, where agents tend to increase their leverages for increased profits. This paper presents an agent-based asset market model to study the effect of the permissive leverage level on traders’ wealth and overall market indicators. In this model, heterogeneous agents can assume fundamental value-converging expectations or trend-persistence expectations, and their effective demands of assets depend both on demand willingness and wealth constraints, where leverage can relieve the wealth constraints to some extent. The asset market price is determined by a market maker, who watches the market excess demand, and is influenced by noise factors. By simulations, we examine market results for different leverage ratios. At the individual level, we focus on how the leverage ratio influences agents’ wealth accumulation. At the market level, we focus on how the leverage ratio influences changes in the asset price, volatility, and trading volume. Qualitatively, our model provides some meaningful results supported by empirical facts. More importantly, we find a continuous phase transition as we increase the leverage threshold, which may provide a further prospective of credit trading.

  8. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  9. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    Science.gov (United States)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  10. Agent-based model with multi-level herding for complex financial systems

    Science.gov (United States)

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-02-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.

  11. Reverse engineering a social agent-based hidden markov model--visage.

    Science.gov (United States)

    Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A

    2008-12-01

    We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.

  12. Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources

    Science.gov (United States)

    Al-Amin, S.

    2015-12-01

    Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.

  13. Using Agent-Based Modeling to Assess Liquidity Mismatch in Open-End Bond Funds

    Directory of Open Access Journals (Sweden)

    Donald J. Berndt

    2017-12-01

    Full Text Available In this paper, we introduce a small-scale heterogeneous agent-based model of the US corporate bond market. The model includes a realistic micro-grounded ecology of investors that trade a set of bonds through dealers. Using the model, we simulate market dynamics that emerge from agent behaviors in response to basic exogenous factors (such as interest rate shocks and the introduction of regulatory policies and constraints. A first experiment focuses on the liquidity transformation provided by mutual funds and investigates the conditions under which redemption-driven bond sales may trigger market instability. We simulate the effects of increasing mutual fund market shares in the presence of market-wide repricing of risk (in the form of a 100 basis point increase in the expected returns. The simulations highlight robust-yet-fragile aspects of the growing liquidity transformation provided by mutual funds, with an inflection point beyond which redemption-driven negative feedback loops trigger market instability.

  14. Using Agent-Based Models to Develop Public Policy about Food Behaviours: Future Directions and Recommendations

    Directory of Open Access Journals (Sweden)

    Philippe J. Giabbanelli

    2017-01-01

    Full Text Available Most adults are overweight or obese in many western countries. Several population-level interventions on the physical, economical, political, or sociocultural environment have thus attempted to achieve a healthier weight. These interventions have involved different weight-related behaviours, such as food behaviours. Agent-based models (ABMs have the potential to help policymakers evaluate food behaviour interventions from a systems perspective. However, fully realizing this potential involves a complex procedure starting with obtaining and analyzing data to populate the model and eventually identifying more efficient cross-sectoral policies. Current procedures for ABMs of food behaviours are mostly rooted in one technique, often ignore the food environment beyond home and work, and underutilize rich datasets. In this paper, we address some of these limitations to better support policymakers through two contributions. First, via a scoping review, we highlight readily available datasets and techniques to deal with these limitations independently. Second, we propose a three steps’ process to tackle all limitations together and discuss its use to develop future models for food behaviours. We acknowledge that this integrated process is a leap forward in ABMs. However, this long-term objective is well-worth addressing as it can generate robust findings to effectively inform the design of food behaviour interventions.

  15. Technological progress and effects of (supra) regional innovation and production collaboration. An agent-based model simulation study.

    NARCIS (Netherlands)

    Vermeulen, B.; Pyka, A.; Serguieva, A.; Maringer, D.; Palade, V.; Almeida, R.J.

    2014-01-01

    We provide a novel technology development model in which economic agents search for transformations to build artifacts. Using this technology development model, we conduct an agent-based model simulation study on the effect of (supra-)regional collaboration in production and innovation on

  16. Evolutionary Agent-based Models to design distributed water management strategies

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a

  17. Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics

    Science.gov (United States)

    Saeedi, Sara

    2018-06-01

    With the advancement of computational modeling and simulation (M&S) methods as well as data collection technologies, urban dynamics modeling substantially improved over the last several decades. The complex urban dynamics processes are most effectively modeled not at the macro-scale, but following a bottom-up approach, by simulating the decisions of individual entities, or residents. Agent-based modeling (ABM) provides the key to a dynamic M&S framework that is able to integrate socioeconomic with environmental models, and to operate at both micro and macro geographical scales. In this study, a multi-agent system is proposed to simulate residential dynamics by considering spatiotemporal land use changes. In the proposed ABM, macro-scale land use change prediction is modeled by Artificial Neural Network (ANN) and deployed as the agent environment and micro-scale residential dynamics behaviors autonomously implemented by household agents. These two levels of simulation interacted and jointly promoted urbanization process in an urban area of Tehran city in Iran. The model simulates the behavior of individual households in finding ideal locations to dwell. The household agents are divided into three main groups based on their income rank and they are further classified into different categories based on a number of attributes. These attributes determine the households' preferences for finding new dwellings and change with time. The ABM environment is represented by a land-use map in which the properties of the land parcels change dynamically over the simulation time. The outputs of this model are a set of maps showing the pattern of different groups of households in the city. These patterns can be used by city planners to find optimum locations for building new residential units or adding new services to the city. The simulation results show that combining macro- and micro-level simulation can give full play to the potential of the ABM to understand the driving

  18. Optimization and Control of Agent-Based Models in Biology: A Perspective.

    Science.gov (United States)

    An, G; Fitzpatrick, B G; Christley, S; Federico, P; Kanarek, A; Neilan, R Miller; Oremland, M; Salinas, R; Laubenbacher, R; Lenhart, S

    2017-01-01

    Agent-based models (ABMs) have become an increasingly important mode of inquiry for the life sciences. They are particularly valuable for systems that are not understood well enough to build an equation-based model. These advantages, however, are counterbalanced by the difficulty of analyzing and using ABMs, due to the lack of the type of mathematical tools available for more traditional models, which leaves simulation as the primary approach. As models become large, simulation becomes challenging. This paper proposes a novel approach to two mathematical aspects of ABMs, optimization and control, and it presents a few first steps outlining how one might carry out this approach. Rather than viewing the ABM as a model, it is to be viewed as a surrogate for the actual system. For a given optimization or control problem (which may change over time), the surrogate system is modeled instead, using data from the ABM and a modeling framework for which ready-made mathematical tools exist, such as differential equations, or for which control strategies can explored more easily. Once the optimization problem is solved for the model of the surrogate, it is then lifted to the surrogate and tested. The final step is to lift the optimization solution from the surrogate system to the actual system. This program is illustrated with published work, using two relatively simple ABMs as a demonstration, Sugarscape and a consumer-resource ABM. Specific techniques discussed include dimension reduction and approximation of an ABM by difference equations as well systems of PDEs, related to certain specific control objectives. This demonstration illustrates the very challenging mathematical problems that need to be solved before this approach can be realistically applied to complex and large ABMs, current and future. The paper outlines a research program to address them.

  19. Patterns of Use of an Agent-Based Model and a System Dynamics Model: The Application of Patterns of Use and the Impacts on Learning Outcomes

    Science.gov (United States)

    Thompson, Kate; Reimann, Peter

    2010-01-01

    A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…

  20. Modelling and simulation of electrical energy systems through a complex systems approach using agent-based models

    Energy Technology Data Exchange (ETDEWEB)

    Kremers, Enrique

    2013-10-01

    Complexity science aims to better understand the processes of both natural and man-made systems which are composed of many interacting entities at different scales. A disaggregated approach is proposed for simulating electricity systems, by using agent-based models coupled to continuous ones. The approach can help in acquiring a better understanding of the operation of the system itself, e.g. on emergent phenomena or scale effects; as well as in the improvement and design of future smart grids.

  1. AJAN TABANLI MODELLEME VE HESAPLAMALI İKTİSAT - AGENT-BASED MODELLING AND COMPUTATIONAL ECONOMICS

    Directory of Open Access Journals (Sweden)

    Emrah KELEŞ

    2014-07-01

    Full Text Available ÖzetRasyonellik ve homojenlik varsayımları ile iktisadi ajanlar arasındaki etkileşimi göz ardı eden temsiliajan yaklaşımı, dinamik stokastik genel denge modellerine dayanan yerleşik iktisada duyulan güveninazalmasına yol açmıştır. 1990’ların sonlarından itibaren ajan tabanlı hesaplamalı yaklaşım finansal iktisat,endüstriyel organizasyon, makro iktisat, politik iktisat ve iktiadi ağ oluşumu başta olmak üzere sosyalbilimlerde yaygınlaşmaya başlamıştır. Son olarak 2008 küresel finansal kriz yerleşik, iktisadın dahayüksek sesle tartışılmasına ve ajan tabanlı yaklaşımın daha çok benimsenmesine neden olmuştur. Bu yeniyaklaşım araştırmacılara pasif haldeki fiziksel varlıklardan durumları, inanışları ve davranış kuralları olanaktif karar alıcılara kadar çeşitli ajanların bulunduğu yapay bir dünya kurmalarına imkân vermektedir.Bu yapay dünyalarda ajanların birbirleriyle ya da çevreleriyle etkileşimi onların adaptif (uyarlanabilirolmasına ve kompleks adaptif bir sistem meydana getirmelerine izin vermektedir. Bu çalışmada, ajantabanlı yaklaşımın temel unsurlarının incelenmesi ve DSGE modellerine göre üstünlüklerinin gösterilmesiamaçlanmıştır.AbstractAssumptions of rationality and homogeneity, and framework of representative agent that rule out interactionsbetween agents have led to a decline in confidence to mainstream economics based on dynamicstochastic equilibrium models. Starting from late 1990s, agent-based computational approach has becomeincreasingly popular in social sciences, especially in financial economics, industrial organization, macroeconomics,political economy, and economic network formation. Finally, 2008 global financial crisis hascaused mainstream to be argued loudly and agent-based approach to be adopted more. This new approachenables researchers to construct artificial worlds where various agents ranging from passive entities to active

  2. AJAN TABANLI MODELLEME VE HESAPLAMALI İKTİSAT - AGENT-BASED MODELLING AND COMPUTATIONAL ECONOMICS

    Directory of Open Access Journals (Sweden)

    Emrah KELEŞ

    2014-08-01

    Full Text Available ÖzetRasyonellik ve homojenlik varsayımları ile iktisadi ajanlar arasındaki etkileşimi göz ardı eden temsiliajan yaklaşımı, dinamik stokastik genel denge modellerine dayanan yerleşik iktisada duyulan güveninazalmasına yol açmıştır. 1990’ların sonlarından itibaren ajan tabanlı hesaplamalı yaklaşım finansal iktisat,endüstriyel organizasyon, makro iktisat, politik iktisat ve iktiadi ağ oluşumu başta olmak üzere sosyalbilimlerde yaygınlaşmaya başlamıştır. Son olarak 2008 küresel finansal kriz yerleşik, iktisadın dahayüksek sesle tartışılmasına ve ajan tabanlı yaklaşımın daha çok benimsenmesine neden olmuştur. Bu yeniyaklaşım araştırmacılara pasif haldeki fiziksel varlıklardan durumları, inanışları ve davranış kuralları olanaktif karar alıcılara kadar çeşitli ajanların bulunduğu yapay bir dünya kurmalarına imkân vermektedir.Bu yapay dünyalarda ajanların birbirleriyle ya da çevreleriyle etkileşimi onların adaptif (uyarlanabilirolmasına ve kompleks adaptif bir sistem meydana getirmelerine izin vermektedir. Bu çalışmada, ajantabanlı yaklaşımın temel unsurlarının incelenmesi ve DSGE modellerine göre üstünlüklerinin gösterilmesiamaçlanmıştır.AbstractAssumptions of rationality and homogeneity, and framework of representative agent that rule out interactionsbetween agents have led to a decline in confidence to mainstream economics based on dynamicstochastic equilibrium models. Starting from late 1990s, agent-based computational approach has becomeincreasingly popular in social sciences, especially in financial economics, industrial organization, macroeconomics,political economy, and economic network formation. Finally, 2008 global financial crisis hascaused mainstream to be argued loudly and agent-based approach to be adopted more. This new approachenables researchers to construct artificial worlds where various agents ranging from passive entities to active

  3. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Eppstein, Margaret J.; Grover, David K.; Marshall, Jeffrey S.; Rizzo, Donna M.

    2011-01-01

    A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries. - Highlights: → We model consumer agents to study potential market penetration of PHEVs. → The model accounts for spatial, social, and media effects. → We identify interactions among potential leverage points that could inform policy. → Consumer access to expected lifetime fuel costs may enhance PHEV market penetration. → Increasing PHEV battery range has synergistic effects on fleet efficiency.

  4. Towards an Agent Based Framework for Modelling Smart Self-Sustainable Systems

    Directory of Open Access Journals (Sweden)

    Igor Tomičić

    2015-01-01

    Full Text Available Self-sustainability is a property of a system; a system is considered to be self-sustainable if it can sustain itself without external support in an observed period of time. If this property is mapped to a human settlement in context of resources (water, energy, food, etc., it would describe a human settlement which is independent of external resources (like the national electrical grid or a central water distribution system, where such external resources are either not available, or not desirable. This article contributes to presenting the state-of-the-art overview of self-sustainability-related research. While self-sustainability as in the above described form was not a direct subject of research, there are several fields which are either related to, or could be of significant value to the self-sustainability research in this context. The extensive literature overview also showed no frameworks for modeling self sustainable systems in the context of human settlements. Herein a motivation for using agent-based modeling and simulation techniques will be given.

  5. Invited Commentary: Agent-Based Models-Bias in the Face of Discovery.

    Science.gov (United States)

    Keyes, Katherine M; Tracy, Melissa; Mooney, Stephen J; Shev, Aaron; Cerdá, Magdalena

    2017-07-15

    Agent-based models (ABMs) have grown in popularity in epidemiologic applications, but the assumptions necessary for valid inference have only partially been articulated. In this issue, Murray et al. (Am J Epidemiol. 2017;186(2):131-142) provided a much-needed analysis of the consequence of some of these assumptions, comparing analysis using an ABM to a similar analysis using the parametric g-formula. In particular, their work focused on the biases that can arise in ABMs that use parameters drawn from distinct populations whose causal structures and baseline outcome risks differ. This demonstration of the quantitative issues that arise in transporting effects between populations has implications not only for ABMs but for all epidemiologic applications, because making use of epidemiologic results requires application beyond a study sample. Broadly, because health arises within complex, dynamic, and hierarchical systems, many research questions cannot be answered statistically without strong assumptions. It will require every tool in our store of methods to properly understand population dynamics if we wish to build an evidence base that is adequate for action. Murray et al.'s results provide insight into these assumptions that epidemiologists can use when selecting a modeling approach. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Auke Hoekstra

    2017-01-01

    Full Text Available The energy domain is still dominated by equilibrium models that underestimate both the dangers and opportunities related to climate change. In reality, climate and energy systems contain tipping points, feedback loops, and exponential developments. This paper describes how to create realistic energy transition management models: quantitative models that can discover profitable pathways from fossil fuels to renewable energy. We review the literature regarding agent-based economics, disruptive innovation, and transition management and determine the following requirements. Actors must be detailed, heterogeneous, interacting, learning, and strategizing. Technology should be represented as a detailed and heterogeneous portfolio that can develop in a bottom-up manner, using endogenous feedback loops. Assumptions about discount rates and the social cost of carbon should be configurable. The model should contain interactions between the global, national, local, and individual level. A review of modelling techniques shows that equilibrium models are unsuitable and that system dynamics and discrete event simulation are too limited. The agent-based approach is found to be uniquely suited for the complex adaptive sociotechnical systems that must be modelled. But the choice for agent-based models does not mean a rejection of other approaches because they can be accommodated within the agent-based framework. We conclude with practical guidelines.

  7. How Transparent About its Inflation Target Should a Central Bank be? An Agent-Based Model Assessment

    NARCIS (Netherlands)

    Salle, I.; Sénégas, M.A.; Yıldızoğlu, M.

    2013-01-01

    This paper revisits the benefits of explicitly announcing an inflation target for the con- duct of monetary policy in the framework of an agent-based model (ABM). This framework offers a flexible tool for modeling heterogeneity among individual agents and their bounded rationality, and to emphasize,

  8. Health behavior change in advance care planning: an agent-based model

    Directory of Open Access Journals (Sweden)

    Natalie C. Ernecoff

    2016-02-01

    Full Text Available Abstract Background A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1 the rates at which individuals complete the process, 2 how individuals respond to barriers, facilitators, and behavioral variables, and 3 the interactions between these variables. Methods We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. Results We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Conclusions Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating

  9. Simulation of the Role of Government in Spatial Agent-Based Model

    Directory of Open Access Journals (Sweden)

    Viktor Ivanovich Suslov

    2016-09-01

    Full Text Available The paper describes the further development of an agent-based multiregional input-output model of the Russian economy. We consider the idea of incorporating the government into the model and analyze the results of experimental calculations for the conditional example of spatial economy. New agents are included into the model such as the federal and regional governments, pension fund and also the state enterprises producing public goods at the federal and regional levels. The government sets four types of taxes (personal and business income taxes, VAT and payroll taxes, ensures the provision of public goods and provides social, investment and interbudgetary transfers to households, firms and budgets. Social transfers consist of social assistance and unemployment benefits. The utility functions of households are expanded by the terms associated with national and regional public goods. The budget policy is designed in accordance with the maximization of isoelastic function of social welfare that formalizes the choice between the different concepts of social justice. The Gini index is used for the monitoring the inequality of income distribution. The results of experimental calculations present the convergence of the new version of the model to the state of quasi-equilibrium. The special attention is paid an optimal level of the taxation maximizing the social welfare function. Four variants of the optimal tax rates are defined: for three major taxes at a fixed proportion of rates and for each of the tax separately at zero rates of two other taxes. The further directions of modelling are identified, they allow to investigate the spatial development of the Russian economy taking into account the decision-making by private agents in responding to government policies.

  10. Health behavior change in advance care planning: an agent-based model.

    Science.gov (United States)

    Ernecoff, Natalie C; Keane, Christopher R; Albert, Steven M

    2016-02-29

    A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP) behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM) allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1) the rates at which individuals complete the process, 2) how individuals respond to barriers, facilitators, and behavioral variables, and 3) the interactions between these variables. We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating longitudinal data to capture behavioral dynamics.

  11. Linking Cognitive and Social Aspects of Sound Change Using Agent-Based Modeling.

    Science.gov (United States)

    Harrington, Jonathan; Kleber, Felicitas; Reubold, Ulrich; Schiel, Florian; Stevens, Mary

    2018-03-26

    The paper defines the core components of an interactive-phonetic (IP) sound change model. The starting point for the IP-model is that a phonological category is often skewed phonetically in a certain direction by the production and perception of speech. A prediction of the model is that sound change is likely to come about as a result of perceiving phonetic variants in the direction of the skew and at the probabilistic edge of the listener's phonological category. The results of agent-based computational simulations applied to the sound change in progress, /u/-fronting in Standard Southern British, were consistent with this hypothesis. The model was extended to sound changes involving splits and mergers by using the interaction between the agents to drive the phonological reclassification of perceived speech signals. The simulations showed no evidence of any acoustic change when this extended model was applied to Australian English data in which /s/ has been shown to retract due to coarticulation in /str/ clusters. Some agents nevertheless varied in their phonological categorizations during interaction between /str/ and /ʃtr/: This vacillation may represent the potential for sound change to occur. The general conclusion is that many types of sound change are the outcome of how phonetic distributions are oriented with respect to each other, their association to phonological classes, and how these types of information vary between speakers that happen to interact with each other. Copyright © 2018 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  12. Stochastic agent-based modeling of tuberculosis in Canadian Indigenous communities

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Tuite

    2017-01-01

    Full Text Available Abstract Background In Canada, active tuberculosis (TB disease rates remain disproportionately higher among the Indigenous population, especially among the Inuit in the north. We used mathematical modeling to evaluate how interventions might enhance existing TB control efforts in a region of Nunavut. Methods We developed a stochastic, agent-based model of TB transmission that captured the unique household and community structure. Evaluated interventions included: (i rapid treatment of active cases; (ii rapid contact tracing; (iii expanded screening programs for latent TB infection (LTBI; and (iv reduced household density. The outcomes of interest were incident TB infections and total diagnosed active TB disease over a 10- year time period. Results Model-projected incidence in the absence of additional interventions was highly variable (range: 33–369 cases over 10 years. Compared to the ‘no additional intervention’ scenario, reducing the time between onset of active TB disease and initiation of treatment reduced both the number of new TB infections (47% reduction, relative risk of TB = 0.53 and diagnoses of active TB disease (19% reduction, relative risk of TB = 0.81. Expanding general population screening was also projected to reduce the burden of TB, although these findings were sensitive to assumptions around the relative amount of transmission occurring outside of households. Other potential interventions examined in the model (school-based screening, rapid contact tracing, and reduced household density were found to have limited effectiveness. Conclusions In a region of northern Canada experiencing a significant TB burden, more rapid treatment initiation in active TB cases was the most impactful intervention evaluated. Mathematical modeling can provide guidance for allocation of limited resources in a way that minimizes disease transmission and protects population health.

  13. Fortune Favours the Bold: An Agent-Based Model Reveals Adaptive Advantages of Overconfidence in War

    Science.gov (United States)

    Johnson, Dominic D. P.; Weidmann, Nils B.; Cederman, Lars-Erik

    2011-01-01

    Overconfidence has long been considered a cause of war. Like other decision-making biases, overconfidence seems detrimental because it increases the frequency and costs of fighting. However, evolutionary biologists have proposed that overconfidence may also confer adaptive advantages: increasing ambition, resolve, persistence, bluffing opponents, and winning net payoffs from risky opportunities despite occasional failures. We report the results of an agent-based model of inter-state conflict, which allows us to evaluate the performance of different strategies in competition with each other. Counter-intuitively, we find that overconfident states predominate in the population at the expense of unbiased or underconfident states. Overconfident states win because: (1) they are more likely to accumulate resources from frequent attempts at conquest; (2) they are more likely to gang up on weak states, forcing victims to split their defences; and (3) when the decision threshold for attacking requires an overwhelming asymmetry of power, unbiased and underconfident states shirk many conflicts they are actually likely to win. These “adaptive advantages” of overconfidence may, via selection effects, learning, or evolved psychology, have spread and become entrenched among modern states, organizations and decision-makers. This would help to explain the frequent association of overconfidence and war, even if it no longer brings benefits today. PMID:21731627

  14. Mechanisms of self-organization and finite size effects in a minimal agent based model

    International Nuclear Information System (INIS)

    Alfi, V; Cristelli, M; Pietronero, L; Zaccaria, A

    2009-01-01

    We present a detailed analysis of the self-organization phenomenon in which the stylized facts originate from finite size effects with respect to the number of agents considered and disappear in the limit of an infinite population. By introducing the possibility that agents can enter or leave the market depending on the behavior of the price, it is possible to show that the system self-organizes in a regime with a finite number of agents which corresponds to the stylized facts. The mechanism for entering or leaving the market is based on the idea that a too stable market is unappealing for traders, while the presence of price movements attracts agents to enter and speculate on the market. We show that this mechanism is also compatible with the idea that agents are scared by a noisy and risky market at shorter timescales. We also show that the mechanism for self-organization is robust with respect to variations of the exit/entry rules and that the attempt to trigger the system to self-organize in a region without stylized facts leads to an unrealistic dynamics. We study the self-organization in a specific agent based model but we believe that the basic ideas should be of general validity

  15. Agent Based Modeling of Atherosclerosis: A Concrete Help in Personalized Treatments

    Science.gov (United States)

    Pappalardo, Francesco; Cincotti, Alessandro; Motta, Alfredo; Pennisi, Marzio

    Atherosclerosis, a pathology affecting arterial blood vessels, is one of most common diseases of the developed countries. We present studies on the increased atherosclerosis risk using an agent based model of atherogenesis that has been previously validated using clinical data. It is well known that the major risk in atherosclerosis is the persistent high level of low density lipoprotein (LDL) concentration. However, it is not known if short period of high LDL concentration can cause irreversible damage and if reduction of the LDL concentration (either by life style or drug) can drastically or partially reduce the already acquired risk. We simulated four different clinical situations in a large set of virtual patients (200 per clinical scenario). In the first one the patients lifestyle maintains the concentration of LDL in a no risk range. This is the control case simulation. The second case is represented by patients having high level of LDL with a delay to apply appropriate treatments; The third scenario is characterized by patients with high LDL levels treated with specific drugs like statins. Finally we simulated patients that are characterized by several oxidative events (smoke, sedentary life style, assumption of alcoholic drinks and so on so forth) that effective increase the risk of LDL oxidation. Those preliminary results obviously need to be clinically investigated. It is clear, however, that SimAthero has the power to concretely help medical doctors and clinicians in choosing personalized treatments for the prevention of the atherosclerosis damages.

  16. Agent-Based Modeling of China's Rural-Urban Migration and Social Network Structure.

    Science.gov (United States)

    Fu, Zhaohao; Hao, Lingxin

    2018-01-15

    We analyze China's rural-urban migration and endogenous social network structures using agent-based modeling. The agents from census micro data are located in their rural origin with an empirical-estimated prior propensity to move. The population-scale social network is a hybrid one, combining observed family ties and locations of the origin with a parameter space calibrated from census, survey and aggregate data and sampled using a stepwise Latin Hypercube Sampling method. At monthly intervals, some agents migrate and these migratory acts change the social network by turning within-nonmigrant connections to between-migrant-nonmigrant connections, turning local connections to nonlocal connections, and adding among-migrant connections. In turn, the changing social network structure updates migratory propensities of those well-connected nonmigrants who become more likely to move. These two processes iterate over time. Using a core-periphery method developed from the k -core decomposition method, we identify and quantify the network structural changes and map these changes with the migration acceleration patterns. We conclude that network structural changes are essential for explaining migration acceleration observed in China during the 1995-2000 period.

  17. Coevolution in management fashion: an agent-based model of consultant-driven innovation.

    Science.gov (United States)

    Strang, David; David, Robert J; Akhlaghpour, Saeed

    2014-07-01

    The rise of management consultancy has been accompanied by increasingly marked faddish cycles in management techniques, but the mechanisms that underlie this relationship are not well understood. The authors develop a simple agent-based framework that models innovation adoption and abandonment on both the supply and demand sides. In opposition to conceptions of consultants as rhetorical wizards who engineer waves of management fashion, firms and consultants are treated as boundedly rational actors who chase the secrets of success by mimicking their highest-performing peers. Computational experiments demonstrate that consultant-driven versions of this dynamic in which the outcomes of firms are strongly conditioned by their choice of consultant are robustly faddish. The invasion of boom markets by low-quality consultants undercuts popular innovations while simultaneously restarting the fashion cycle by prompting the flight of high-quality consultants into less densely occupied niches. Computational experiments also indicate conditions involving consultant mobility, aspiration levels, mimic probabilities, and client-provider matching that attenuate faddishness.

  18. Agent-based modeling of China's rural-urban migration and social network structure

    Science.gov (United States)

    Fu, Zhaohao; Hao, Lingxin

    2018-01-01

    We analyze China's rural-urban migration and endogenous social network structures using agent-based modeling. The agents from census micro data are located in their rural origin with an empirical-estimated prior propensity to move. The population-scale social network is a hybrid one, combining observed family ties and locations of the origin with a parameter space calibrated from census, survey and aggregate data and sampled using a stepwise Latin Hypercube Sampling method. At monthly intervals, some agents migrate and these migratory acts change the social network by turning within-nonmigrant connections to between-migrant-nonmigrant connections, turning local connections to nonlocal connections, and adding among-migrant connections. In turn, the changing social network structure updates migratory propensities of those well-connected nonmigrants who become more likely to move. These two processes iterate over time. Using a core-periphery method developed from the k-core decomposition method, we identify and quantify the network structural changes and map these changes with the migration acceleration patterns. We conclude that network structural changes are essential for explaining migration acceleration observed in China during the 1995-2000 period.

  19. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  20. Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks

    Directory of Open Access Journals (Sweden)

    Andreas Koulouris

    2013-01-01

    Full Text Available This article investigates the Multiple Equilibria Regulation (MER model, i.e., an agent-based simulation model, to represent opinion dynamics in social networks. It relies on a small set of micro-prerequisites (intra-individual balance and confidence bound, leading to emergence of (nonstationary macro-outcomes. These outcomes may refer to consensus, polarization or fragmentation of opinions about taxation (e.g., congestion pricing or other policy measures, according to the way communication is structured. In contrast with other models of opinion dynamics, it allows for the impact of both the regulation of intra-personal discrepancy and the interpersonal variability of opinions on social learning and network dynamics. Several simulation experiments are presented to demonstrate, through the MER model, the role of different network structures (complete, star, cellular automata, small-world and random graphs on opinion formation dynamics and the overall evolution of the system. The findings can help to identify specific topological characteristics, such as density, number of neighbourhoods and critical nodes-agents, that affect the stability and system dynamics. This knowledge can be used to better organize the information diffusion and learning in the community, enhance the predictability of outcomes and manage possible conflicts. It is shown that a small-world organization, which depicts more realistic aspects of real-life and virtual social systems, provides increased predictability and stability towards a less fragmented and more manageable grouping of opinions, compared to random networks. Such macro-level organizations may be enhanced with use of web-based technologies to increase the density of communication and public acceptability of policy measures.

  1. Vascular Adaptation: Pattern Formation and Cross Validation between an Agent Based Model and a Dynamical System.

    Science.gov (United States)

    Garbey, Marc; Casarin, Stefano; Berceli, Scott A

    2017-09-21

    Myocardial infarction is the global leading cause of mortality (Go et al., 2014). Coronary artery occlusion is its main etiology and it is commonly treated by Coronary Artery Bypass Graft (CABG) surgery (Wilson et al, 2007). The long-term outcome remains unsatisfactory (Benedetto, 2016) as the graft faces the phenomenon of restenosis during the post-surgery, which consists of re-occlusion of the lumen and usually requires secondary intervention even within one year after the initial surgery (Harskamp, 2013). In this work, we propose an extensive study of the restenosis phenomenon by implementing two mathematical models previously developed by our group: a heuristic Dynamical System (DS) (Garbey and Berceli, 2013), and a stochastic Agent Based Model (ABM) (Garbey et al., 2015). With an extensive use of the ABM, we retrieved the pattern formations of the cellular events that mainly lead the restenosis, especially focusing on mitosis in intima, caused by alteration in shear stress, and mitosis in media, fostered by alteration in wall tension. A deep understanding of the elements at the base of the restenosis is indeed crucial in order to improve the final outcome of vein graft bypass. We also turned the ABM closer to the physiological reality by abating its original assumption of circumferential symmetry. This allowed us to finely replicate the trigger event of the restenosis, i.e. the loss of the endothelium in the early stage of the post-surgical follow up (Roubos et al., 1995) and to simulate the encroachment of the lumen in a fashion aligned with histological evidences (Owens et al., 2015). Finally, we cross-validated the two models by creating an accurate matching procedure. In this way we added the degree of accuracy given by the ABM to a simplified model (DS) that can serve as powerful predictive tool for the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression

    Energy Technology Data Exchange (ETDEWEB)

    Dutta-Moscato, Joyeeta [Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh, Pittsburgh, PA (United States); Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Solovyev, Alexey [Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Mathematics, University of Pittsburgh, Pittsburgh, PA (United States); Mi, Qi [Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA (United States); Nishikawa, Taichiro [McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA (United States); Soto-Gutierrez, Alejandro [McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Pathology, University of Pittsburgh, Pittsburgh, PA (United States); Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA (United States); Fox, Ira J. [McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA (United States); Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA (United States); Vodovotz, Yoram, E-mail: vodovotzy@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA (United States); Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States)

    2014-05-30

    Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl{sub 4}). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl{sub 4}-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl{sub 4}-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant

  3. An agent-based simulation model for Clostridium difficile infection control.

    Science.gov (United States)

    Codella, James; Safdar, Nasia; Heffernan, Rick; Alagoz, Oguzhan

    2015-02-01

    Control of Clostridium difficile infection (CDI) is an increasingly difficult problem for health care institutions. There are commonly recommended strategies to combat CDI transmission, such as oral vancomycin for CDI treatment, increased hand hygiene with soap and water for health care workers, daily environmental disinfection of infected patient rooms, and contact isolation of diseased patients. However, the efficacy of these strategies, particularly for endemic CDI, has not been well studied. The objective of this research is to develop a valid, agent-based simulation model (ABM) to study C. difficile transmission and control in a midsized hospital. We develop an ABM of a midsized hospital with agents such as patients, health care workers, and visitors. We model the natural progression of CDI in a patient using a Markov chain and the transmission of CDI through agent and environmental interactions. We derive input parameters from aggregate patient data from the 2007-2010 Wisconsin Hospital Association and published medical literature. We define a calibration process, which we use to estimate transition probabilities of the Markov model by comparing simulation results to benchmark values found in published literature. In a comparison of CDI control strategies implemented individually, routine bleach disinfection of CDI-positive patient rooms provides the largest reduction in nosocomial asymptomatic colonization (21.8%) and nosocomial CDIs (42.8%). Additionally, vancomycin treatment provides the largest reduction in relapse CDIs (41.9%), CDI-related mortalities (68.5%), and total patient length of stay (21.6%). We develop a generalized ABM for CDI control that can be customized and further expanded to specific institutions and/or scenarios. Additionally, we estimate transition probabilities for a Markov model of natural CDI progression in a patient through calibration. © The Author(s) 2014.

  4. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  5. A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression

    International Nuclear Information System (INIS)

    Dutta-Moscato, Joyeeta; Solovyev, Alexey; Mi, Qi; Nishikawa, Taichiro; Soto-Gutierrez, Alejandro; Fox, Ira J.; Vodovotz, Yoram

    2014-01-01

    Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl 4 ). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl 4 -treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl 4 -injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into

  6. Is the whole the sum of its parts? Agent-based modelling of wastewater treatment systems.

    Science.gov (United States)

    Schuler, A J; Majed, N; Bucci, V; Hellweger, F L; Tu, Y; Gu, A Z

    2011-01-01

    Agent-based models (ABMS) simulate individual units within a system, such as the bacteria in a biological wastewater treatment system. This paper outlines past, current and potential future applications of ABMs to wastewater treatment. ABMs track heterogeneities within microbial populations, and this has been demonstrated to yield different predictions of bulk behaviors than the conventional, "lumped" approaches for enhanced biological phosphorus removal (EBPR) completely mixed reactors systems. Current work included the application of the ABM approach to bacterial adaptation/evolution, using the model system of individual EBPR bacteria that are allowed to evolve a kinetic parameter (maximum glycogen storage) in a competitive environment. The ABM approach was successfully implemented to a simple anaerobic-aerobic system and it was found the differing initial states converged to the same optimal solution under uncertain hydraulic residence times associated with completely mixed hydraulics. In another study, an ABM was developed and applied to simulate the heterogeneity in intracellular polymer storage compounds, including polyphosphate (PP), in functional microbial populations in enhanced biological phosphorus removal (EBPR) process. The simulation results were compared to the experimental measurements of single-cell abundance of PP in polyphosphate accumulating organisms (PAOs), performed using Raman microscopy. The model-predicted heterogeneity was generally consistent with observations, and it was used to investigate the relative contribution of external (different life histories) and internal (biological) mechanisms leading to heterogeneity. In the future, ABMs could be combined with computational fluid dynamics (CFD) models to understand incomplete mixing, more intracellular states and mechanisms can be incorporated, and additional experimental verification is needed.

  7. An agent-based model of leukocyte transendothelial migration during atherogenesis.

    Directory of Open Access Journals (Sweden)

    Rita Bhui

    2017-05-01

    Full Text Available A vast amount of work has been dedicated to the effects of hemodynamics and cytokines on leukocyte adhesion and trans-endothelial migration (TEM and subsequent accumulation of leukocyte-derived foam cells in the artery wall. However, a comprehensive mechanobiological model to capture these spatiotemporal events and predict the growth and remodeling of an atherosclerotic artery is still lacking. Here, we present a multiscale model of leukocyte TEM and plaque evolution in the left anterior descending (LAD coronary artery. The approach integrates cellular behaviors via agent-based modeling (ABM and hemodynamic effects via computational fluid dynamics (CFD. In this computational framework, the ABM implements the diffusion kinetics of key biological proteins, namely Low Density Lipoprotein (LDL, Tissue Necrosis Factor alpha (TNF-α, Interlukin-10 (IL-10 and Interlukin-1 beta (IL-1β, to predict chemotactic driven leukocyte migration into and within the artery wall. The ABM also considers wall shear stress (WSS dependent leukocyte TEM and compensatory arterial remodeling obeying Glagov's phenomenon. Interestingly, using fully developed steady blood flow does not result in a representative number of leukocyte TEM as compared to pulsatile flow, whereas passing WSS at peak systole of the pulsatile flow waveform does. Moreover, using the model, we have found leukocyte TEM increases monotonically with decreases in luminal volume. At critical plaque shapes the WSS changes rapidly resulting in sudden increases in leukocyte TEM suggesting lumen volumes that will give rise to rapid plaque growth rates if left untreated. Overall this multi-scale and multi-physics approach appropriately captures and integrates the spatiotemporal events occurring at the cellular level in order to predict leukocyte transmigration and plaque evolution.

  8. Perception Modelling of Visitors in Vargas Museum Using Agent-Based Simulation and Visibility Analysis

    Science.gov (United States)

    Carcellar, B. G., III

    2017-10-01

    Museum exhibit management is one of the usual undertakings of museum facilitators. Art works must be strategically placed to achieve maximum viewing from the visitors. The positioning of the artworks also highly influences the quality of experience of the visitors. One solution in such problems is to utilize GIS and Agent-Based Modelling (ABM). In ABM, persistent interacting objects are modelled as agents. These agents are given attributes and behaviors that describe their properties as well as their motion. In this study, ABM approach that incorporates GIS is utilized to perform analyticcal assessment on the placement of the artworks in the Vargas Museum. GIS serves as the backbone for the spatial aspect of the simulation such as the placement of the artwork exhibits, as well as possible obstructions to perception such as the columns, walls, and panel boards. Visibility Analysis is also done to the model in GIS to assess the overall visibility of the artworks. The ABM is done using the initial GIS outputs and GAMA, an open source ABM software. Visitors are modelled as agents, moving inside the museum following a specific decision tree. The simulation is done in three use cases: the 10 %, 20 %, and 30 % chance of having a visitor in the next minute. For the case of the said museum, the 10 % chance is determined to be the closest simulation case to the actual and the recommended minimum time to achieve a maximum artwork perception is 1 hour and 40 minutes. Initial assessment of the results shows that even after 3 hours of simulation, small parts of the exhibit show lack of viewers, due to its distance from the entrance. A more detailed decision tree for the visitor agents can be incorporated to have a more realistic simulation.

  9. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Science.gov (United States)

    Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E

    2012-01-01

    Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  10. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Directory of Open Access Journals (Sweden)

    David Gurarie

    Full Text Available BACKGROUND: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. CONCLUSIONS/SIGNIFICANCE: Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  11. Equation-free analysis of agent-based models and systematic parameter determination

    Science.gov (United States)

    Thomas, Spencer A.; Lloyd, David J. B.; Skeldon, Anne C.

    2016-12-01

    Agent based models (ABM)s are increasingly used in social science, economics, mathematics, biology and computer science to describe time dependent systems in circumstances where a description in terms of equations is difficult. Yet few tools are currently available for the systematic analysis of ABM behaviour. Numerical continuation and bifurcation analysis is a well-established tool for the study of deterministic systems. Recently, equation-free (EF) methods have been developed to extend numerical continuation techniques to systems where the dynamics are described at a microscopic scale and continuation of a macroscopic property of the system is considered. To date, the practical use of EF methods has been limited by; (1) the over-head of application-specific implementation; (2) the laborious configuration of problem-specific parameters; and (3) large ensemble sizes (potentially) leading to computationally restrictive run-times. In this paper we address these issues with our tool for the EF continuation of stochastic systems, which includes algorithms to systematically configuration problem specific parameters and enhance robustness to noise. Our tool is generic and can be applied to any 'black-box' simulator and determines the essential EF parameters prior to EF analysis. Robustness is significantly improved using our convergence-constraint with a corrector-repeat (C3R) method. This algorithm automatically detects outliers based on the dynamics of the underlying system enabling both an order of magnitude reduction in ensemble size and continuation of systems at much higher levels of noise than classical approaches. We demonstrate our method with application to several ABM models, revealing parameter dependence, bifurcation and stability analysis of these complex systems giving a deep understanding of the dynamical behaviour of the models in a way that is not otherwise easily obtainable. In each case we demonstrate our systematic parameter determination stage for

  12. An integrated framework of agent-based modelling and robust optimization for microgrid energy management

    International Nuclear Information System (INIS)

    Kuznetsova, Elizaveta; Li, Yan-Fu; Ruiz, Carlos; Zio, Enrico

    2014-01-01

    Highlights: • Microgrid composed of a train station, wind power plant and district is investigated. • Each player is modeled as an individual agent aiming at a particular goal. • Prediction Intervals quantify the uncertain operational and environmental parameters. • Optimal goal-directed actions planning is achieved with robust optimization. • Optimization framework improves system reliability and decreases power imbalances. - Abstract: A microgrid energy management framework for the optimization of individual objectives of microgrid stakeholders is proposed. The framework is exemplified by way of a microgrid that is connected to an external grid via a transformer and includes the following players: a middle-size train station with integrated photovoltaic power production system, a small energy production plant composed of urban wind turbines, and a surrounding district including residences and small businesses. The system is described by Agent-Based Modelling (ABM), in which each player is modelled as an individual agent aiming at a particular goal, (i) decreasing its expenses for power purchase or (ii) increasing its revenues from power selling. The context in which the agents operate is uncertain due to the stochasticity of operational and environmental parameters, and the technical failures of the renewable power generators. The uncertain operational and environmental parameters of the microgrid are quantified in terms of Prediction Intervals (PIs) by a Non-dominated Sorting Genetic Algorithm (NSGA-II) – trained Neural Network (NN). Under these uncertainties, each agent is seeking for optimal goal-directed actions planning by Robust Optimization (RO). The developed framework is shown to lead to an increase in system performance, evaluated in terms of typical reliability (adequacy) indicators for energy systems, such as Loss of Load Expectation (LOLE) and Loss of Expected Energy (LOEE), in comparison with optimal planning based on expected values of

  13. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hao Bai

    2014-04-01

    Full Text Available In the presence of oxygen (O2 the model bacterium Escherichia coli is able to conserve energy by aerobic respiration. Two major terminal oxidases are involved in this process - Cyo has a relatively low affinity for O2 but is able to pump protons and hence is energetically efficient; Cyd has a high affinity for O2 but does not pump protons. When E. coli encounters environments with different O2 availabilities, the expression of the genes encoding the alternative terminal oxidases, the cydAB and cyoABCDE operons, are regulated by two O2-responsive transcription factors, ArcA (an indirect O2 sensor and FNR (a direct O2 sensor. It has been suggested that O2-consumption by the terminal oxidases located at the cytoplasmic membrane significantly affects the activities of ArcA and FNR in the bacterial nucleoid. In this study, an agent-based modeling approach has been taken to spatially simulate the uptake and consumption of O2 by E. coli and the consequent modulation of ArcA and FNR activities based on experimental data obtained from highly controlled chemostat cultures. The molecules of O2, transcription factors and terminal oxidases are treated as individual agents and their behaviors and interactions are imitated in a simulated 3-D E. coli cell. The model implies that there are two barriers that dampen the response of FNR to O2, i.e. consumption of O2 at the membrane by the terminal oxidases and reaction of O2 with cytoplasmic FNR. Analysis of FNR variants suggested that the monomer-dimer transition is the key step in FNR-mediated repression of gene expression.

  14. Agent Based Modeling and Simulation of Pedestrian Crowds In Panic Situations

    KAUST Repository

    Alrashed, Mohammed

    2016-11-01

    The increasing occurrence of panic stampedes during mass events has motivated studying the impact of panic on crowd dynamics and the simulation of pedestrian flows in panic situations. The lack of understanding of panic stampedes still causes hundreds of fatalities each year, not to mention the scarce methodical studies of panic behavior capable of envisaging such crowd dynamics. Under those circumstances, there are thousands of fatalities and twice that many of injuries every year caused be crowd stampede worldwide, despite the tremendous efforts of crowd control and massive numbers of safekeeping forces. Pedestrian crowd dynamics are generally predictable in high-density crowds where pedestrians cannot move freely and thus gives rise to self-propelling interactions between pedestrians. Although every pedestrian has personal preferences, the motion dynamics can be modeled as a social force in such crowds. These forces are representations of internal preferences and objectives to perform certain actions or movements. The corresponding forces can be controlled for each individual to represent a different variety of behaviors that can be associated with panic situations such as escaping danger, clustering, and pushing. In this thesis, we use an agent-based model of pedestrian behavior in panic situations to predict the collective human behavior in such crowd dynamics. The proposed simulations suggests a practical way to alleviate fatalities and minimize the evacuation time in panic situations. Moreover, we introduce contagious panic and pushing behavior, resulting in a more realistic crowd dynamics model. The proposed methodology describes the intensity and spread of panic for each individual as a function of distances between pedestrians.

  15. Effects of naloxone distribution to likely bystanders: Results of an agent-based model.

    Science.gov (United States)

    Keane, Christopher; Egan, James E; Hawk, Mary

    2018-05-01

    Opioid overdose deaths in the US rose dramatically in the past 16 years, creating an urgent national health crisis with no signs of immediate relief. In 2017, the President of the US officially declared the opioid epidemic to be a national emergency and called for additional resources to respond to the crisis. Distributing naloxone to community laypersons and people at high risk for opioid overdose can prevent overdose death, but optimal distribution methods have not yet been pinpointed. We conducted a sequential exploratory mixed methods design using qualitative data to inform an agent-based model to improve understanding of effective community-based naloxone distribution to laypersons to reverse opioid overdose. The individuals in the model were endowed with cognitive and behavioral variables and accessed naloxone via community sites such as pharmacies, hospitals, and urgent-care centers. We compared overdose deaths over a simulated 6-month period while varying the number of distribution sites (0, 1, and 10) and number of kits given to individuals per visit (1 versus 10). Specifically, we ran thirty simulations for each of thirteen distribution models and report average overdose deaths for each. The baseline comparator was no naloxone distribution. Our simulations explored the effects of distribution through syringe exchange sites with and without secondary distribution, which refers to distribution of naloxone kits by laypersons within their social networks and enables ten additional laypersons to administer naloxone to reverse opioid overdose. Our baseline model with no naloxone distribution predicted there would be 167.9 deaths in a six month period. A single distribution site, even with 10 kits picked up per visit, decreased overdose deaths by only 8.3% relative to baseline. However, adding secondary distribution through social networks to a single site resulted in 42.5% fewer overdose deaths relative to baseline. That is slightly higher than the 39

  16. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  17. Diffusion of a Sustainable Farming Technique in Sri Lanka: An Agent-Based Modeling Approach

    Science.gov (United States)

    Jacobi, J. H.; Gilligan, J. M.; Carrico, A. R.; Truelove, H. B.; Hornberger, G.

    2012-12-01

    We live in a changing world - anthropogenic climate change is disrupting historic climate patterns and social structures are shifting as large scale population growth and massive migrations place unprecedented strain on natural and social resources. Agriculture in many countries is affected by these changes in the social and natural environments. In Sri Lanka, rice farmers in the Mahaweli River watershed have seen increases in temperature and decreases in precipitation. In addition, a government led resettlement project has altered the demographics and social practices in villages throughout the watershed. These changes have the potential to impact rice yields in a country where self-sufficiency in rice production is a point of national pride. Studies of the climate can elucidate physical effects on rice production, while research on social behaviors can illuminate the influence of community dynamics on agricultural practices. Only an integrated approach, however, can capture the combined and interactive impacts of these global changes on Sri Lankan agricultural. As part of an interdisciplinary team, we present an agent-based modeling (ABM) approach to studying the effects of physical and social changes on farmers in Sri Lanka. In our research, the diffusion of a sustainable farming technique, the system of rice intensification (SRI), throughout a farming community is modeled to identify factors that either inhibit or promote the spread of a more sustainable approach to rice farming. Inputs into the ABM are both physical and social and include temperature, precipitation, the Palmer Drought Severity Index (PDSI), community trust, and social networks. Outputs from the ABM demonstrate the importance of meteorology and social structure on the diffusion of SRI throughout a farming community.

  18. Agent-based modelling in applied ethology: an exploratory case study of behavioural dynamics in tail biting in pigs

    NARCIS (Netherlands)

    Boumans, I.J.M.M.; Hofstede, G.J.; Bolhuis, J.E.; Boer, de I.J.M.; Bokkers, E.A.M.

    2016-01-01

    Understanding behavioural dynamics in pigs is important to assess pig welfare in current intensive pig production systems. Agent-based modelling (ABM) is an approach to gain insight into behavioural dynamics in pigs, but its use in applied ethology and animal welfare science has been limited so far.

  19. Integration of Life Cycle Assessment Into Agent-Based Modeling : Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikoli?, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  20. Theoretical foundations of human decision-making in agent-based land use models – A review

    NARCIS (Netherlands)

    Groeneveld, Geert J.; Müller, B.; Buchmann, C.M.; Dressler, Gunnar; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.; Lauf, T.; Liebelt, V.; Nolzen, H.; Pannicke, N.; Schulze, J.; Weise, H.; Schwarz, N.

    2017-01-01

    Recent reviews stated that the complex and context-dependent nature of human decision-making resulted in ad-hoc representations of human decision in agent-based land use change models (LUCC ABMs) and that these representations are often not explicitly grounded in theory. However, a systematic survey

  1. Methods for Model-Based Reasoning within Agent-Based Ambient Intelligence Applications

    NARCIS (Netherlands)

    Bosse, T.; Both, F.; Gerritsen, C.; Hoogendoorn, M.; Treur, J.

    2012-01-01

    Within agent-based Ambient Intelligence applications agents react to humans based on information obtained by sensoring and their knowledge about human functioning. Appropriate types of reactions depend on the extent to which an agent understands the human and is able to interpret the available

  2. Data-driven Travel Demand Modelling and Agent-based Traffic Simulation in Amsterdam Urban Area

    NARCIS (Netherlands)

    Melnikov, V.R.; Krzhizhanovskaya, V.V.; Lees, M.H.; Boukhanovsky, A.V.

    2016-01-01

    The goal of this project is the development of a large-scale agent-based traffic simulation system for Amsterdam urban area, validated on sensor data and adjusted for decision support in critical situations and for policy making in sustainable city development, emission control and electric car

  3. Use of Agent Based Modelling to Investigate the Dynamics of Slum ...

    African Journals Online (AJOL)

    Urban planners and policy makers face challenges in effective management of slum ... slum characteristics using various remote sensing and artificial intelligence ... an empirically informed agent based prototype that can simulate future patterns ... The study incorporates physical, environmental, social and economic factors ...

  4. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    Science.gov (United States)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  5. Agent Based Model in SAS Environment for Rail Transit System Alignment Determination

    Directory of Open Access Journals (Sweden)

    I Made Indradjaja Brunner

    2018-04-01

    Full Text Available Transit system had been proposed for the urban area of Honolulu. One consideration to be determined is the alignment of the transit system. Decision to set the transit alignment will have influences on which areas will be served, who will be benefiting, as well as who will be impacted. Inputs for the decision usually conducted through public meetings, where community members are shown numbers of maps with pre-set routes. That approach could lead to a rather subjective decision by the community members. This paper attempts to discuss the utilization of grid map in determining the best alignment for rail transit system in Honolulu, Hawaii. It tries to use a more objective approach using various data derived from thematic maps. Overlaid maps are aggregated into a uniform 0.1-square mile vector based grid map system in GIS environment. The large dataset in the GIS environment is analyzed and manipulated using SAS software. The SAS procedure is applied to select the location of the alignment using a rational and deterministic approach. Grid cells that are superior compared to the others are selected based on several predefined criteria. Location of the dominant cells indicates possible transit alignment. The SAS procedure is designed to allow a transient vector called the GUIDE (Grid Unit with Intelligent Directional Expertise agent to analyze several cells at its vicinity and to move towards a cell with the highest value. Each time the agent landed on a cell, it left a mark. The chain of those marks shows location for the transit alignment. This study shows that the combination of ArcGIS and SAS allows a robust analysis of spatial data and manipulation of its datasets, which can be used to run a simulation mimicking the Agent-Based Modelling. This study also opens up further study possibilities by increasing number of factors analyzed by the agent, as well as creating a composite value of multi-factors.

  6. Quantifying human behavior uncertainties in a coupled agent-based model for water resources management

    Science.gov (United States)

    Hyun, J. Y.; Yang, Y. C. E.; Tidwell, V. C.; Macknick, J.

    2017-12-01

    Modeling human behaviors and decisions in water resources management is a challenging issue due to its complexity and uncertain characteristics that affected by both internal (such as stakeholder's beliefs on any external information) and external factors (such as future policies and weather/climate forecast). Stakeholders' decision regarding how much water they need is usually not entirely rational in the real-world cases, so it is not quite suitable to model their decisions with a centralized (top-down) approach that assume everyone in a watershed follow the same order or pursue the same objective. Agent-based modeling (ABM) uses a decentralized approach (bottom-up) that allow each stakeholder to make his/her own decision based on his/her own objective and the belief of information acquired. In this study, we develop an ABM which incorporates the psychological human decision process by the theory of risk perception. The theory of risk perception quantifies human behaviors and decisions uncertainties using two sequential methodologies: the Bayesian Inference and the Cost-Loss Problem. The developed ABM is coupled with a regulation-based water system model: Riverware (RW) to evaluate different human decision uncertainties in water resources management. The San Juan River Basin in New Mexico (Figure 1) is chosen as a case study area, while we define 19 major irrigation districts as water use agents and their primary decision is to decide the irrigated area on an annual basis. This decision will be affected by three external factors: 1) upstream precipitation forecast (potential amount of water availability), 2) violation of the downstream minimum flow (required to support ecosystems), and 3) enforcement of a shortage sharing plan (a policy that is currently undertaken in the region for drought years). Three beliefs (as internal factors) that correspond to these three external factors will also be considered in the modeling framework. The objective of this study is

  7. Optimizing the structure of the natural gas market using an agent-based modeling framework

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, M.

    2010-01-14

    The overall research question guiding this study is as follows: what is the optimal structure of the natural gas market, considering both the degrees of affordability and supply security resulting from this structure? The sub-questions are: How can the concepts of supply security and affordability be usefully defined? (Chapter 2); What should a modeling framework for analyzing the natural gas market with regard to these concepts look like? (Chapters 3 and 4); What general conclusions can be drawn on the basis of this framework? (Chapter 5); What is the effect of liberalization on the Dutch natural gas market? (Chapter 6); What are the possible effects of current trends unfolding in the Dutch natural gas market? (Chapter 7). The framework constructed in this study implicitly contains the necessary elements for deriving a sustainability indicator too. However, to limit the scope of the study, sustainability will not be analyzed explicitly. Chapter 2 provides an introductory description of the natural gas market. Starting from a description of the natural gas value chain, the process of liberalization is described as a change in the organization of the value chain. In addition, the concepts of affordability and supply security are discussed and appropriate quantitative indicators for both objectives are identified. In Chapter 3, a survey of existing gas market models is performed. On the basis of this survey, a classification system for natural gas market models is developed. Furthermore, the characteristics of a modeling framework fit for the purpose of this study are derived. In Chapter 4, a general, quantitative framework for natural gas market modeling is developed on the basis of agent-based computational economics. The model's structure, its dynamics, output and data requirements are described. Furthermore, the properties of each agent are explored, and the possibilities for model verification and validation are outlined. Chapter 5 provides a number of

  8. Optimizing the structure of the natural gas market using an agent-based modeling framework

    International Nuclear Information System (INIS)

    Van Benthem, M.

    2010-01-01

    The overall research question guiding this study is as follows: what is the optimal structure of the natural gas market, considering both the degrees of affordability and supply security resulting from this structure? The sub-questions are: How can the concepts of supply security and affordability be usefully defined? (Chapter 2); What should a modeling framework for analyzing the natural gas market with regard to these concepts look like? (Chapters 3 and 4); What general conclusions can be drawn on the basis of this framework? (Chapter 5); What is the effect of liberalization on the Dutch natural gas market? (Chapter 6); What are the possible effects of current trends unfolding in the Dutch natural gas market? (Chapter 7). The framework constructed in this study implicitly contains the necessary elements for deriving a sustainability indicator too. However, to limit the scope of the study, sustainability will not be analyzed explicitly. Chapter 2 provides an introductory description of the natural gas market. Starting from a description of the natural gas value chain, the process of liberalization is described as a change in the organization of the value chain. In addition, the concepts of affordability and supply security are discussed and appropriate quantitative indicators for both objectives are identified. In Chapter 3, a survey of existing gas market models is performed. On the basis of this survey, a classification system for natural gas market models is developed. Furthermore, the characteristics of a modeling framework fit for the purpose of this study are derived. In Chapter 4, a general, quantitative framework for natural gas market modeling is developed on the basis of agent-based computational economics. The model's structure, its dynamics, output and data requirements are described. Furthermore, the properties of each agent are explored, and the possibilities for model verification and validation are outlined. Chapter 5 provides a number of

  9. Using an agent-based model to analyze the dynamic communication network of the immune response

    Directory of Open Access Journals (Sweden)

    Doolittle John

    2011-01-01

    loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies.

  10. On Religion and Language Evolutions Seen Through Mathematical and Agent Based Models

    Science.gov (United States)

    Ausloos, M.

    Religions and languages are social variables, like age, sex, wealth or political opinions, to be studied like any other organizational parameter. In fact, religiosity is one of the most important sociological aspects of populations. Languages are also obvious characteristics of the human species. Religions, languages appear though also disappear. All religions and languages evolve and survive when they adapt to the society developments. On the other hand, the number of adherents of a given religion, or the number of persons speaking a language is not fixed in time, - nor space. Several questions can be raised. E.g. from a oscopic point of view : How many religions/languages exist at a given time? What is their distribution? What is their life time? How do they evolve? From a "microscopic" view point: can one invent agent based models to describe oscopic aspects? Do simple evolution equations exist? How complicated must be a model? These aspects are considered in the present note. Basic evolution equations are outlined and critically, though briefly, discussed. Similarities and differences between religions and languages are summarized. Cases can be illustrated with historical facts and data. It is stressed that characteristic time scales are different. It is emphasized that "external fields" are historically very relevant in the case of religions, rending the study more " interesting" within a mechanistic approach based on parity and symmetry of clusters concepts. Yet the modern description of human societies through networks in reported simulations is still lacking some mandatory ingredients, i.e. the non scalar nature of the nodes, and the non binary aspects of nodes and links, though for the latter this is already often taken into account, including directions. From an analytical point of view one can consider a population independently of the others. It is intuitively accepted, but also found from the statistical analysis of the frequency distribution that an

  11. Assessing the Effectiveness of Payments for Ecosystem Services: an Agent-Based Modeling Approach

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2014-03-01

    Full Text Available Payments for ecosystem services (PES have increasingly been implemented to protect and restore ecosystems worldwide. The effectiveness of conservation investments in PES may differ under alternative policy scenarios and may not be sustainable because of uncertainties in human responses to policies and dynamic human-nature interactions. To assess the impacts of these interactions on the effectiveness of PES programs, we developed a spatially explicit agent-based model: human and natural interactions under policies (HANIP. We used HANIP to study the effectiveness of China's Natural Forest Conservation Program (NFCP and alternative policy scenarios in a coupled human-nature system, China's Wolong Nature Reserve, where indigenous people's use of fuelwood affects forests. We estimated the effects of the current NFCP, which provides a cash payment, and an alternative payment scenario that provides an electricity payment by comparing forest dynamics under these policies to forest dynamics under a scenario in which no payment is provided. In 2007, there were 337 km² of forests in the study area of 515 km². Under the baseline projection in which no payment is provided, the forest area is expected to be 234 km² in 2030. Under the current NFCP, there are likely to be 379 km² of forests in 2030, or an increase of 145 km² of forests to the baseline projection. If the cash payment is replaced with an electricity payment, there are likely to be 435 km² of forests in 2030, or an increase of 201 km² of forests to the baseline projection. However, the effectiveness of the NFCP may be threatened by the behavior of newly formed households if they are not included in the payment scheme. In addition, the effects of socio-demographic factors on forests will also differ under different policy scenarios. Human and natural interactions under policies (HANIP and its modeling framework may also be used to assess the effectiveness of many other PES programs around

  12. Simulating Land-Use Change using an Agent-Based Land Transaction Model

    Science.gov (United States)

    Bakker, M. M.; van Dijk, J.; Alam, S. J.

    2013-12-01

    In the densely populated cultural landscapes of Europe, the vast majority of all land is owned by private parties, be it farmers (the majority), nature organizations, property developers, or citizens. Therewith, the vast majority of all land-use change arises from land transactions between different owner types: successful farms expand at the expense of less successful farms, and meanwhile property developers, individual citizens, and nature organizations also actively purchase land. These land transactions are driven by specific properties of the land, by governmental policies, and by the (economic) motives of both buyers and sellers. Climate/global change can affect these drivers at various scales: at the local scale changes in hydrology can make certain land less or more desirable; at the global scale the agricultural markets will affect motives of farmers to buy or sell land; while at intermediate (e.g. provincial) scales property developers and nature conservationists may be encouraged or discouraged to purchase land. The cumulative result of all these transactions becomes manifest in changing land-use patterns, and consequent environmental responses. Within the project Climate Adaptation for Rural Areas an agent-based land-use model was developed that explores the future response of individual land users to climate change, within the context of wider global change (i.e. policy and market change). It simulates the exchange of land among farmers and between farmers and nature organizations and property developers, for a specific case study area in the east of the Netherlands. Results show that local impacts of climate change can result in a relative stagnation in the land market in waterlogged areas. Furthermore, the increase in dairying at the expense of arable cultivation - as has been observed in the area in the past - is slowing down as arable produce shows a favourable trend in the agricultural world market. Furthermore, budgets for nature managers are

  13. Impact of different policies on unhealthy dietary behaviors in an urban adult population: an agent-based simulation model.

    Science.gov (United States)

    Zhang, Donglan; Giabbanelli, Philippe J; Arah, Onyebuchi A; Zimmerman, Frederick J

    2014-07-01

    Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems.

  14. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    Science.gov (United States)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development

  15. Modelling and Simulating Complex Systems in Biology: introducing NetBioDyn : A Pedagogical and Intuitive Agent-Based Software

    OpenAIRE

    Ballet, Pascal; Rivière, Jérémy; Pothet, Alain; Théron, Michaël; Pichavant, Karine; Abautret, Frank; Fronville, Alexandra; Rodin, Vincent

    2017-01-01

    International audience; Modelling and teaching complex biological systems is a difficult process. Multi-Agent Based Simulations (MABS) have proved to be an appropriate approach both in research and education when dealing with such systems including emergent, self-organizing phenomena. This chapter presents NetBioDyn, an original software aimed at biologists (students, teachers, researchers) to easily build and simulate complex biological mechanisms observed in multicellular and molecular syst...

  16. Enhancing Transportation Education through On-line Simulation using an Agent-Based Demand and Assignment Model

    OpenAIRE

    Shanjiang Zhu; Feng Xie; David Levinson

    2005-01-01

    This research explores the effectiveness of using simulation as a tool for enhancing classroom learning in the Civil Engineering Department of the University of Minnesota at Twin Cities. The authors developed a modern transportation planning software package, Agent-based Demand and Assignment Model (ADAM), that is consistent with our present understanding of travel behavior, that is platform independent, and that is easy to learn and is thus usable by students. An in-class project incorporate...

  17. Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments

    Science.gov (United States)

    Xin, Chen; Huang, Ji-Ping

    2017-12-01

    Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like "intelligence" remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents' intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.

  18. Recent progress in econophysics: Chaos, leverage,and business cycles as revealed by agent-based modeling and human experiments

    Institute of Scientific and Technical Information of China (English)

    Chen Xin; Ji-Ping Huang

    2017-01-01

    Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics.Agent-based modeling has been in development for over 20 years,but how to design virtual agents with high levels of human-like "intelligence" remains a challenge.On the other hand,experimental econophysics is an emerging field;however,there is a lack of experience and paradigms related to the field.Here,we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos,leverage,and business cycles.We also review the principles behind assessments of agents' intelligence levels,and some relevant designs for human experiments.The main theme of this review is to show that by combining theory,agent-based modeling,and controlled human experiments,one can garner more reliable and credible results on account of a better verification of theory;accordingly,this way,a wider range of economic and financial problems and phenomena can be studied.

  19. The comparison of the use of holonic and agent-based methods in modelling of manufacturing systems

    Science.gov (United States)

    Foit, K.; Banaś, W.; Gwiazda, A.; Hryniewicz, P.

    2017-08-01

    The rapid evolution in the field of industrial automation and manufacturing is often called the 4th Industry Revolution. Worldwide availability of the internet access contributes to the competition between manufacturers, gives the opportunity for buying materials, parts and for creating the partnership networks, like cloud manufacturing, grid manufacturing (MGrid), virtual enterprises etc. The effect of the industry evolution is the need to search for new solutions in the field of manufacturing systems modelling and simulation. During the last decade researchers have developed the agent-based approach of modelling. This methodology have been taken from the computer science, but was adapted to the philosophy of industrial automation and robotization. The operation of the agent-based system depends on the simultaneous acting of different agents that may have different roles. On the other hand, there is the holon-based approach that uses the structures created by holons. It differs from the agent-based structure in some aspects, while the other ones are quite similar in both methodologies. The aim of this paper is to present the both methodologies and discuss the similarities and the differences. This may could help to select the optimal method of modelling, according to the considered problem and software resources.

  20. Opening the black box—Development, testing and documentation of a mechanistically rich agent-based model

    DEFF Research Database (Denmark)

    Topping, Chris J.; Høye, Toke; Olesen, Carsten Riis

    2010-01-01

    Although increasingly widely used in biology, complex adaptive simulation models such as agent-based models have been criticised for being difficult to communicate and test. This study demonstrates the application of pattern-oriented model testing, and a novel documentation procedure to present...... accessible description of the processes included in the model. Application of the model to a comprehensive historical data set supported the hypothesis that interference competition is the primary population regulating factor in the absence of mammal predators in the brown hare, and that the effect works...

  1. Agent-Based Modelling applied to 5D model of the HIV infection

    Directory of Open Access Journals (Sweden)

    Toufik Laroum

    2016-12-01

    The simplest model was the 3D mathematical model. But the complexity of this phenomenon and the diversity of cells and actors which affect its evolution requires the use of new approaches such as multi-agents approach that we have applied in this paper. The results of our simulator on the 5D model are promising because they are consistent with biological knowledge’s. Therefore, the proposed approach is well appropriate to the study of population dynamics in general and could help to understand and predict the dynamics of HIV infection.

  2. Modeling interdependent socio-technical networks: The smart grid—an agent-based modeling approach

    NARCIS (Netherlands)

    Worm, D.; Langley, D.J.; Becker, J.

    2014-01-01

    The aim of this paper is to improve scientific modeling of interdependent socio-technical networks. In these networks the interplay between technical or infrastructural elements on the one hand and social and behavioral aspects on the other hand, plays an important role. Examples include electricity

  3. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Science.gov (United States)

    Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.

  4. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Directory of Open Access Journals (Sweden)

    Christian Bongiorno

    Full Text Available We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i in the presence of perfect forecast ability of controllers, and (ii in the presence of some degree of uncertainty in flight trajectory forecast.

  5. Agent-based Modeling Simulation Analysis on the Regulation of Institutional Investor's Encroachment Behavior in Stock Market

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-05-01

    Full Text Available Purpose: This study explores the effective regulation of institutional investor's encroachment behavior in stock market. Given the theoretical and practical importance, the present study examines the effect of the self-adaptive regulation strategy (adjusting the regulation factors such as punishment and the probability of investigating successfully in time for the sake of the small & medium-sized investor protection.Design/methodology/approach: This study was carried out through game theory and agent-based modeling simulation. Firstly, a dynamic game model was built to search the core factors of regulation and the equilibrium paths. Secondly, an agent-based modeling simulation model was built in Swarm to extend the game model. Finally, a simulation experiment (using virtual parameter values was performed to examine the effect of regulation strategy obtained form game model.Findings: The results of this study showed that the core factors of avoiding the institutional investor's encroachment behavior are the punishment and the probability of investigating successfully of the regulator. The core factors embody as the self-adaptability and the capability of regulator. If the regulator can adjust the regulation factors in time, the illegal behaviors will be avoided effectively.Research limitations/implications: The simulation experiment in this paper was performed with virtual parameter values. Although the results of experiment showed the effect of self-adaptive regulation, there are still some differences between simulation experiment and real market situation.Originality/value: The purpose of this study is to investigate an effective regulation strategy of institutional investor's encroachment behavior in stock market in order to maintain market order and protect the benefits of investors. Base on the game model and simulation model, a simulation experiment was preformed and the result showed that the self-adaptive regulation would be effective

  6. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection.

    Science.gov (United States)

    Peer, Xavier; An, Gary

    2014-10-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of

  7. Linking Bayesian and agent-based models to simulate complex social-ecological systems in semi-arid regions

    Directory of Open Access Journals (Sweden)

    Aloah J Pope

    2015-08-01

    Full Text Available Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions in the Rio Sonora Watershed. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent’s water demand. Changes in depth-to-groundwater feedback to influence agent behavior, as well as determine unique vegetation classes within the riparian corridor. Each vegetation class then provides varying stakeholder-defined quality values of ecosystem services. Using this modeling approach allowed us to examine effects on both the ecological and social system of semi-arid riparian corridors under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.

  8. Numeric, Agent-based or System dynamics model? Which modeling approach is the best for vast population simulation?

    Science.gov (United States)

    Cimler, Richard; Tomaskova, Hana; Kuhnova, Jitka; Dolezal, Ondrej; Pscheidl, Pavel; Kuca, Kamil

    2018-02-01

    Alzheimer's disease is one of the most common mental illnesses. It is posited that more than 25 % of the population is affected by some mental disease during their lifetime. Treatment of each patient draws resources from the economy concerned. Therefore, it is important to quantify the potential economic impact. Agent-based, system dynamics and numerical approaches to dynamic modeling of the population of the European Union and its patients with Alzheimer's disease are presented in this article. Simulations, their characteristics, and the results from different modeling tools are compared. The results of these approaches are compared with EU population growth predictions from the statistical office of the EU by Eurostat. The methodology of a creation of the models is described and all three modeling approaches are compared. The suitability of each modeling approach for the population modeling is discussed. In this case study, all three approaches gave us the results corresponding with the EU population prediction. Moreover, we were able to predict the number of patients with AD and, based on the modeling method, we were also able to monitor different characteristics of the population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Analysis Evacuation Route for KM Zahro Express on Fire Condition using Agent Based Modeling and Fire Dynamics Simulatior

    Directory of Open Access Journals (Sweden)

    Trika Pitana

    2017-09-01

    Full Text Available Safety is the thing that needs to be preferred by users of transport, passengers should also understand about safety procedures and evacuation procedures in the means of transport. There have been many accidents that happen in the world of transport, particularly in the shipping world, from 2010 to 2016 is no more than 50 accidents of ships in accordance with the cause recorded by KNKT (Komisi Nasional Keselamatan Transportasi. On this research was discussed the evacuation time on the ship KM Zahro express that occurred earlier in the year 2017 in the Kepulauan Seribu, DKI Jakarta. Almost all passenger dead caused by fire from power source in engine room. This thesis will explaine about evacuation time and dangers from fire that interfere the process of evacuation. The methods used are Agent Based Modeling and Simulation (ABMS and Fire Dynamics Simulator (FDS for modeling fire simulation. Agent-Based Modeling software (pathfinder and Fire Dynamics Simulator software (pyrosim are used to calculate time evacuation in normal condition and fire condition of KM Zahro Express. Agent-Based Modeling and Simulator (ABMS is a modeling method that aims to model complex problems based on real cases. Agent-Based Modeling and Simulator (ABMS is designed to model a place that has a seat, path, exit door, humans, and others. Pyrosim is a graphical user interface for the Fire Dynamics Simulator (FDS. FDS models can predict smoke, temperature, carbon monoxide, and other substances during fires.  In this case the existing models can be used to plan and prepare an emergency if unwanted things happen. As well as using basic rules which refer to the Safety Of Life At Sea (SOLAS and International Maritime Organization (IMO. Result of Evacuation simulation calculation on emergency conditions (two rear exit doors will be closed that match at actually condition is 29,783 minutes (respon is not taken in this simulation, calculation results obtained from simulation of

  10. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  11. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    Science.gov (United States)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  12. Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data

    Science.gov (United States)

    Alfarano, Simone; Lux, Thomas; Wagner, Friedrich

    2006-10-01

    Following Alfarano et al. [Estimation of agent-based models: the case of an asymmetric herding model, Comput. Econ. 26 (2005) 19-49; Excess volatility and herding in an artificial financial market: analytical approach and estimation, in: W. Franz, H. Ramser, M. Stadler (Eds.), Funktionsfähigkeit und Stabilität von Finanzmärkten, Mohr Siebeck, Tübingen, 2005, pp. 241-254], we consider a simple agent-based model of a highly stylized financial market. The model takes Kirman's ant process [A. Kirman, Epidemics of opinion and speculative bubbles in financial markets, in: M.P. Taylor (Ed.), Money and Financial Markets, Blackwell, Cambridge, 1991, pp. 354-368; A. Kirman, Ants, rationality, and recruitment, Q. J. Econ. 108 (1993) 137-156] of mimetic contagion as its starting point, but allows for asymmetry in the attractiveness of both groups. Embedding the contagion process into a standard asset-pricing framework, and identifying the abstract groups of the herding model as chartists and fundamentalist traders, a market with periodic bubbles and bursts is obtained. Taking stock of the availability of a closed-form solution for the stationary distribution of returns for this model, we can estimate its parameters via maximum likelihood. Expanding our earlier work, this paper presents pertinent estimates for the Australian dollar/US dollar exchange rate and the Australian stock market index. As it turns out, our model indicates dominance of fundamentalist behavior in both the stock and foreign exchange market.

  13. Agent based models for testing city evacuation strategies under a flood event as strategy to reduce flood risk

    Science.gov (United States)

    Medina, Neiler; Sanchez, Arlex; Nokolic, Igor; Vojinovic, Zoran

    2016-04-01

    This research explores the uses of Agent Based Models (ABM) and its potential to test large scale evacuation strategies in coastal cities at risk from flood events due to extreme hydro-meteorological events with the final purpose of disaster risk reduction by decreasing human's exposure to the hazard. The first part of the paper corresponds to the theory used to build the models such as: Complex adaptive systems (CAS) and the principles and uses of ABM in this field. The first section outlines the pros and cons of using AMB to test city evacuation strategies at medium and large scale. The second part of the paper focuses on the central theory used to build the ABM, specifically the psychological and behavioral model as well as the framework used in this research, specifically the PECS reference model is cover in this section. The last part of this section covers the main attributes or characteristics of human beings used to described the agents. The third part of the paper shows the methodology used to build and implement the ABM model using Repast-Symphony as an open source agent-based modelling and simulation platform. The preliminary results for the first implementation in a region of the island of Sint-Maarten a Dutch Caribbean island are presented and discussed in the fourth section of paper. The results obtained so far, are promising for a further development of the model and its implementation and testing in a full scale city

  14. An Agent-Based Model for Addressing the Impact of a Disaster on Access to Primary Care Services.

    Science.gov (United States)

    Guclu, Hasan; Kumar, Supriya; Galloway, David; Krauland, Mary; Sood, Rishi; Bocour, Angelica; Hershey, Tina Batra; van Nostrand, Elizabeth; Potter, Margaret

    2016-06-01

    Hurricane Sandy in the Rockaways, Queens, forced residents to evacuate and primary care providers to close or curtail operations. A large deficit in primary care access was apparent in the immediate aftermath of the storm. Our objective was to build a computational model to aid responders in planning to situate primary care services in a disaster-affected area. Using an agent-based modeling platform, HAZEL, we simulated the Rockaways population, its evacuation behavior, and primary care providers' availability in the aftermath of Hurricane Sandy. Data sources for this model included post-storm and community health surveys from New York City, a survey of the Rockaways primary care providers, and research literature. The model then tested geospatially specific interventions to address storm-related access deficits. The model revealed that areas of high primary care access deficit were concentrated in the eastern part of the Rockaways. Placing mobile health clinics in the most populous census tracts reduced the access deficit significantly, whereas increasing providers' capacity by 50% reduced the deficit to a lesser degree. An agent-based model may be a useful tool to have in place so that policy makers can conduct scenario-based analyses to plan interventions optimally in the event of a disaster. (Disaster Med Public Health Preparedness. 2016;10:386-393).

  15. ENGAGING YOUTH THROUGH SPATIAL SOCIO-TECHNICAL STORYTELLING, PARTICIPATORY GIS, AGENT-BASED MODELING, ONLINE GEOGAMES AND ACTION PROJECTS

    Directory of Open Access Journals (Sweden)

    A. Poplin

    2017-09-01

    Full Text Available The main goal of this paper is to present the conceptual framework for engaging youth in urban planning activities that simultaneously create locally meaningful positive change. The framework for engaging youth interlinks the use of IT tools such as geographic information systems (GIS, agent-based modelling (ABM, online serious games, and mobile participatory geographic information systems with map-based storytelling and action projects. We summarize the elements of our framework and the first results gained in the program Community Growers established in a neighbourhood community of Des Moines, the capital of Iowa, USA. We conclude the paper with a discussion and future research directions.

  16. Reducing Moose-Vehicle Collisions through Salt Pool Removal and Displacement: an Agent-Based Modeling Approach

    OpenAIRE

    Paul D. Grosman; Jochen A. G. Jaeger; Pascale M. Biron; Christian Dussault; Jean-Pierre Ouellet

    2009-01-01

    Between 1990 and 2002, more than 200 moose-vehicle collisions occurred each year in Quebec, including about 50/yr in the Laurentides Wildlife Reserve. One cause is the presence of roadside salt pools that attract moose near roads in the spring and summer. Using the computer simulation technique of agent-based modeling, this study investigated whether salt pool removal and displacement, i.e., a compensatory salt pool set up 100 to 1500 m away from the road shoulder, would reduce the number of ...

  17. Agent-Based Modelling of the Evolution of the Russian Party System Based on Pareto and Hotelling Distributions. Part II

    Directory of Open Access Journals (Sweden)

    Владимир Геннадьевич Иванов

    2015-12-01

    Full Text Available The given article presents research of the evolution of the Russian party system. The chosen methodology is based on the heuristic potential of agent-based modelling. The author analyzes various scenarios of parties’ competition (applying Pareto distribution in connection with recent increase of the number of political parties. In addition, the author predicts the level of ideological diversity of the parties’ platforms (applying the principles of Hotelling distribution in order to evaluate their potential competitiveness in the struggle for voters.

  18. Germanic Settlement Structure in the Middle Danube Region as a Complex System of Agent-Based Modeling

    Czech Academy of Sciences Publication Activity Database

    Vlach, Marek

    2015-01-01

    Roč. 42, č. 1 (2015), s. 741-748 ISSN 0323-9535. [International Congress of Roman Frontier Studies /22./. Ruse, 06.09.2012-11.09.2012] R&D Projects: GA ČR GA404/09/1054 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M300011201 Program:M Institutional support: RVO:68081758 Keywords : Roman period * Middle Danube region * Germanic settlement structure * Agent Based Modeling * archaeological demography Subject RIV: AC - Archeology, Anthropology, Ethnology

  19. Analysis of Interactions of Key Stakeholders on B2C e-Markets - Agent Based Modelling and Simulation Approach

    Directory of Open Access Journals (Sweden)

    Marković Aleksandar

    2016-05-01

    Full Text Available Background/purpose: This paper discusses the application of ABMS - agent-based modelling and simulation in the analysis of customer behaviour on B2C e-commerce websites as well as in the analysis of various business decisions upon the effects of on-line sales. The continuous development and dynamics in the field of e-commerce requires application of advanced decision-making tools. These tools must be able to process, in a short time period, a large amount of data generated by the e-commerce systems and enable the use of acquired data for making quality business decisions.

  20. Engaging Youth Through Spatial Socio-Technical Storytelling, Participatory GIS, Agent-Based Modeling, Online Geogames and Action Projects

    Science.gov (United States)

    Poplin, A.; Shenk, L.; Krejci, C.; Passe, U.

    2017-09-01

    The main goal of this paper is to present the conceptual framework for engaging youth in urban planning activities that simultaneously create locally meaningful positive change. The framework for engaging youth interlinks the use of IT tools such as geographic information systems (GIS), agent-based modelling (ABM), online serious games, and mobile participatory geographic information systems with map-based storytelling and action projects. We summarize the elements of our framework and the first results gained in the program Community Growers established in a neighbourhood community of Des Moines, the capital of Iowa, USA. We conclude the paper with a discussion and future research directions.

  1. Case Study for the Return on Investment of Internet of Things Using Agent-Based Modelling and Data Science

    Directory of Open Access Journals (Sweden)

    Charles Houston

    2017-01-01

    Full Text Available As technology advances towards new paradigms such as the Internet of Things, there is a desire among business leaders for a reliable method to determine the value of supporting these ventures. Traditional simulation and analysis techniques cannot model the complex systems inherent in fields such as infrastructure asset management, or suffer from a lack of data on which to build a prediction. Agent-based modelling, through an integration with data science, presents an attractive simulation method to capture these underlying complexities and provide a solution. The aim of this work is to investigate this integration as a refined process for answering practical business questions. A specific case study is addressed to assess the return on investment of installing condition monitoring sensors on lift assets in a London Underground station. An agent-based model is developed for this purpose, supported by analysis from historical data. The simulation results demonstrate how returns can be achieved and highlight features induced as a result of stochasticity in the model. Suggestions of future research paths are additionally outlined.

  2. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  3. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    Energy Technology Data Exchange (ETDEWEB)

    Agusdinata, Datu Buyung, E-mail: bagusdinata@niu.edu; Amouie, Mahbod [Northern Illinois University, Department of Industrial & Systems Engineering and Environment, Sustainability, & Energy Institute (United States); Xu, Tao [Northern Illinois University, Department of Chemistry and Biochemistry (United States)

    2015-01-15

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd{sup 2+} ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd{sup 2+} ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd{sup 2+} ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd{sup 2+} ions and complexity of tracking of individual atoms of Cd at the same time.

  4. Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States

    Science.gov (United States)

    Manson, Steven M.; Evans, Tom

    2007-01-01

    We combine mixed-methods research with integrated agent-based modeling to understand land change and economic decision making in the United States and Mexico. This work demonstrates how sustainability science benefits from combining integrated agent-based modeling (which blends methods from the social, ecological, and information sciences) and mixed-methods research (which interleaves multiple approaches ranging from qualitative field research to quantitative laboratory experiments and interpretation of remotely sensed imagery). We test assumptions of utility-maximizing behavior in household-level landscape management in south-central Indiana, linking parcel data, land cover derived from aerial photography, and findings from laboratory experiments. We examine the role of uncertainty and limited information, preferences, differential demographic attributes, and past experience and future time horizons. We also use evolutionary programming to represent bounded rationality in agriculturalist households in the southern Yucatán of Mexico. This approach captures realistic rule of thumb strategies while identifying social and environmental factors in a manner similar to econometric models. These case studies highlight the role of computational models of decision making in land-change contexts and advance our understanding of decision making in general. PMID:18093928

  5. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    International Nuclear Information System (INIS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd 2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd 2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd 2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd 2+ ions and complexity of tracking of individual atoms of Cd at the same time

  6. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Directory of Open Access Journals (Sweden)

    Francesco Pizzitutti

    Full Text Available Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  7. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F

    2018-01-01

    Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  8. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  9. The role of research efficiency in the evolution of scientific productivity and impact: An agent-based model

    International Nuclear Information System (INIS)

    You, Zhi-Qiang; Han, Xiao-Pu; Hadzibeganovic, Tarik

    2016-01-01

    We introduce an agent-based model to investigate the effects of production efficiency (PE) and hot field tracing capability (HFTC) on productivity and impact of scientists embedded in a competitive research environment. Agents compete to publish and become cited by occupying the nodes of a citation network calibrated by real-world citation datasets. Our Monte-Carlo simulations reveal that differences in individual performance are strongly related to PE, whereas HFTC alone cannot provide sustainable academic careers under intensely competitive conditions. Remarkably, the negative effect of high competition levels on productivity can be buffered by elevated research efficiency if simultaneously HFTC is sufficiently low. - Highlights: • We study the role of production efficiency (PE) and research topic selectivity in the evolution of performance in academia. • In our model, agents compete to publish and become cited by occupying the nodes of an artificial citation network. • Our agent-based model is calibrated by using datasets from the APS journals and the arxiv.org online preprint repository. • Individual performance is strongly affected by PE, whereas topic selectivity cannot significantly enhance academic success. • With even minimal reductions of research efficiency gaps, fairly profound boosts of scientific careers can be achieved.

  10. The role of research efficiency in the evolution of scientific productivity and impact: An agent-based model

    Energy Technology Data Exchange (ETDEWEB)

    You, Zhi-Qiang [Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121 (China); Institute of Information Economy and Alibaba Business College, Hangzhou Normal University, Hangzhou 311121 (China); Han, Xiao-Pu, E-mail: xp@hznu.edu.cn [Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121 (China); Institute of Information Economy and Alibaba Business College, Hangzhou Normal University, Hangzhou 311121 (China); Hadzibeganovic, Tarik, E-mail: tarik.hadzibeganovic@gmail.com [Department of Psychology, University of Graz, 8010 Graz (Austria)

    2016-02-22

    We introduce an agent-based model to investigate the effects of production efficiency (PE) and hot field tracing capability (HFTC) on productivity and impact of scientists embedded in a competitive research environment. Agents compete to publish and become cited by occupying the nodes of a citation network calibrated by real-world citation datasets. Our Monte-Carlo simulations reveal that differences in individual performance are strongly related to PE, whereas HFTC alone cannot provide sustainable academic careers under intensely competitive conditions. Remarkably, the negative effect of high competition levels on productivity can be buffered by elevated research efficiency if simultaneously HFTC is sufficiently low. - Highlights: • We study the role of production efficiency (PE) and research topic selectivity in the evolution of performance in academia. • In our model, agents compete to publish and become cited by occupying the nodes of an artificial citation network. • Our agent-based model is calibrated by using datasets from the APS journals and the arxiv.org online preprint repository. • Individual performance is strongly affected by PE, whereas topic selectivity cannot significantly enhance academic success. • With even minimal reductions of research efficiency gaps, fairly profound boosts of scientific careers can be achieved.

  11. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. BROA: An agent-based model to recommend relevant Learning Objects from Repository Federations adapted to learner profile

    Directory of Open Access Journals (Sweden)

    Paula A. Rodríguez

    2013-03-01

    Full Text Available Learning Objects (LOs are distinguished from traditional educational resources for their easy and quickly availability through Web-based repositories, from which they are accessed through their metadata. In addition, having a user profile allows an educational recommender system to help the learner to find the most relevant LOs based on their needs and preferences. The aim of this paper is to propose an agent-based model so-called BROA to recommend relevant LOs recovered from Repository Federations as well as LOs adapted to learner profile. The model proposed uses both role and service models of GAIA methodology, and the analysis models of the MAS-CommonKADS methodology. A prototype was built based on this model and validated to obtain some assessing results that are finally presented.

  13. An Agent-Based Computational Model for China’s Stock Market and Stock Index Futures Market

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Xu

    2014-01-01

    Full Text Available This study presents an agent-based computational cross market model for Chinese equity market structure, which includes both stocks and CSI 300 index futures. In this model, we design several stocks and one index future to simulate this structure. This model allows heterogeneous investors to make investment decisions with restrictions including wealth, market trading mechanism, and risk management. Investors’ demands and order submissions are endogenously determined. Our model successfully reproduces several key features of the Chinese financial markets including spot-futures basis distribution, bid-ask spread distribution, volatility clustering, and long memory in absolute returns. Our model can be applied in cross market risk control, market mechanism design, and arbitrage strategies analysis.

  14. Integrating an agent-based model into a large-scale hydrological model for evaluating drought management in California

    Science.gov (United States)

    Sheffield, J.; He, X.; Wada, Y.; Burek, P.; Kahil, M.; Wood, E. F.; Oppenheimer, M.

    2017-12-01

    California has endured record-breaking drought since winter 2011 and will likely experience more severe and persistent drought in the coming decades under changing climate. At the same time, human water management practices can also affect drought frequency and intensity, which underscores the importance of human behaviour in effective drought adaptation and mitigation. Currently, although a few large-scale hydrological and water resources models (e.g., PCR-GLOBWB) consider human water use and management practices (e.g., irrigation, reservoir operation, groundwater pumping), none of them includes the dynamic feedback between local human behaviors/decisions and the natural hydrological system. It is, therefore, vital to integrate social and behavioral dimensions into current hydrological modeling frameworks. This study applies the agent-based modeling (ABM) approach and couples it with a large-scale hydrological model (i.e., Community Water Model, CWatM) in order to have a balanced representation of social, environmental and economic factors and a more realistic representation of the bi-directional interactions and feedbacks in coupled human and natural systems. In this study, we focus on drought management in California and considers two types of agents, which are (groups of) farmers and state management authorities, and assumed that their corresponding objectives are to maximize the net crop profit and to maintain sufficient water supply, respectively. Farmers' behaviors are linked with local agricultural practices such as cropping patterns and deficit irrigation. More precisely, farmers' decisions are incorporated into CWatM across different time scales in terms of daily irrigation amount, seasonal/annual decisions on crop types and irrigated area as well as the long-term investment of irrigation infrastructure. This simulation-based optimization framework is further applied by performing different sets of scenarios to investigate and evaluate the effectiveness

  15. Exploration of agent of change’s role in biodiesel energy transition process using agent-based model

    Science.gov (United States)

    Hidayatno, A.; Vicky, L. R.; Destyanto, A. R.

    2017-11-01

    As the world’s largest Crude Palm Oil (CPO) producer, Indonesia uses CPO as raw material for biodiesel. A number of policies have been designed by the Indonesian government to support adoption of biodiesel. However, the role of energy alternatives faced complex problems. Agent-based modeling can be applied to predict the impact of policies on the actors in the business process to acquire a rich discernment of the behavior and decision making by the biodiesel industries. This study evaluates government policy by attending at the adoption of the biodiesel industry in the tender run by a government with the intervention of two policy options biodiesel energy utilization by developing an agent-based model. The simulation result show that the policy of adding the biodiesel plant installed capacity has a good impact in increasing the production capacity and vendor adoption in the tender. Even so, the government should consider the cost to be incurred and the profits for vendors, so the biodiesel production targets can be successfully fulfilled.

  16. Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model

    International Nuclear Information System (INIS)

    Silvia, Chris; Krause, Rachel M.

    2016-01-01

    Heightened concern regarding climate change and energy independence has increased interest in plug-in electric vehicles as one means to address these challenges and governments at all levels have considered policy interventions to encourage their adoption. This paper develops an agent-based model that simulates the introduction of four policy scenarios aimed at promoting electric vehicle adoption in an urban community and compares them against a baseline. These scenarios include reducing vehicle purchase price via subsidies, expanding the local public charging network, increasing the number and visibility of fully battery electric vehicles (BEVs) on the roadway through government fleet purchases, and a hybrid mix of these three approaches. The results point to the effectiveness of policy options that increased awareness of BEV technology. Specifically, the hybrid policy alternative was the most successful in encouraging BEV adoption. This policy increases the visibility and familiarity of BEV technology in the community and may help counter the idea that BEVs are not a viable alternative to gasoline-powered vehicles. - Highlights: •Various policy interventions to encourage electric vehicle adoption are examined. •An agent based model is used to simulate individual adoption decisions. •Policies that increase the familiarity of electric vehicles are most effective.

  17. MODELING OF INVESTMENT STRATEGIES IN STOCKS MARKETS: AN APPROACH FROM MULTI AGENT BASED SIMULATION AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    ALEJANDRO ESCOBAR

    2010-01-01

    Full Text Available This paper presents a simulation model of a complex system, in this case a financial market, using a MultiAgent Based Simulation approach. Such model takes into account microlevel aspects like the Continuous Double Auction mechanism, which is widely used within stock markets, as well as investor agents reasoning who participate looking for profits. To model such reasoning several variables were considered including general stocks information like profitability and volatility, but also some agent's aspects like their risk tendency. All these variables are incorporated throughout a fuzzy logic approach trying to represent in a faithful manner the kind of reasoning that nonexpert investors have, including a stochastic component in order to model human factors.

  18. Analysis of Food Hub Commerce and Participation Using Agent-Based Modeling: Integrating Financial and Social Drivers.

    Science.gov (United States)

    Krejci, Caroline C; Stone, Richard T; Dorneich, Michael C; Gilbert, Stephen B

    2016-02-01

    Factors influencing long-term viability of an intermediated regional food supply network (food hub) were modeled using agent-based modeling techniques informed by interview data gathered from food hub participants. Previous analyses of food hub dynamics focused primarily on financial drivers rather than social factors and have not used mathematical models. Based on qualitative and quantitative data gathered from 22 customers and 11 vendors at a midwestern food hub, an agent-based model (ABM) was created with distinct consumer personas characterizing the range of consumer priorities. A comparison study determined if the ABM behaved differently than a model based on traditional economic assumptions. Further simulation studies assessed the effect of changes in parameters, such as producer reliability and the consumer profiles, on long-term food hub sustainability. The persona-based ABM model produced different and more resilient results than the more traditional way of modeling consumers. Reduced producer reliability significantly reduced trade; in some instances, a modest reduction in reliability threatened the sustainability of the system. Finally, a modest increase in price-driven consumers at the outset of the simulation quickly resulted in those consumers becoming a majority of the overall customer base. Results suggest that social factors, such as desire to support the community, can be more important than financial factors. An ABM of food hub dynamics, based on human factors data gathered from the field, can be a useful tool for policy decisions. Similar approaches can be used for modeling customer dynamics with other sustainable organizations. © 2015, Human Factors and Ergonomics Society.

  19. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    Science.gov (United States)

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  20. Mitigation of short-term disturbance negative impacts in the agent-based model of a production companies network

    Science.gov (United States)

    Shevchuk, G. K.; Berg, D. B.; Zvereva, O. M.; Medvedeva, M. A.

    2017-11-01

    This article is devoted to the study of a supply chain disturbance impact on manufacturing volumes in a production system network. Each network agent's product can be used as a resource by other system agents (manufacturers). A supply chain disturbance can lead to operating cease of the entire network. Authors suggest using of short-term partial resources reservation to mitigate negative consequences of such disturbances. An agent-based model with a reservation algorithm compatible with strategies for resource procurement in terms of financial constraints was engineered. This model works in accordance with the static input-output Leontief 's model. The results can be used for choosing the ways of system's stability improving, and protecting it from various disturbances and imbalance.

  1. A method for evaluating cognitively informed micro-targeted campaign strategies: An agent-based model proof of principle.

    Science.gov (United States)

    Madsen, Jens Koed; Pilditch, Toby D

    2018-01-01

    In political campaigns, perceived candidate credibility influences the persuasiveness of messages. In campaigns aiming to influence people's beliefs, micro-targeted campaigns (MTCs) that target specific voters using their psychological profile have become increasingly prevalent. It remains open how effective MTCs are, notably in comparison to population-targeted campaign strategies. Using an agent-based model, the paper applies recent insights from cognitive models of persuasion, extending them to the societal level in a novel framework for exploring political campaigning. The paper provides an initial treatment of the complex dynamics of population level political campaigning in a psychologically informed manner. Model simulations show that MTCs can take advantage of the psychology of the electorate by targeting voters favourable disposed towards the candidate. Relative to broad campaigning, MTCs allow for efficient and adaptive management of complex campaigns. Findings show that disliked MTC candidates can beat liked population-targeting candidates, pointing to societal questions concerning campaign regulations.

  2. Environmental Sustainability and Effects on Urban Micro Region using Agent-Based Modeling of Urbanisation in Select Major Indian Cities

    Science.gov (United States)

    Aithal, B. H.

    2015-12-01

    Abstract: Urbanisation has gained momentum with globalization in India. Policy decisions to set up commercial, industrial hubs have fuelled large scale migration, added with population upsurge has contributed to the fast growing urban region that needs to be monitored in order to design sustainable urban cities. Unplanned urbanization have resulted in the growth of peri-urban region referred to as urban sprawl, are often devoid of basic amenities and infrastructure leading to large scale environmental problems that are evident. Remote sensing data acquired through space borne sensors at regular interval helps in understanding urban dynamics aided by Geoinformatics which has proved very effective in mapping and monitoring for sustainable urban planning. Cellular automata (CA) is a robust approach for the spatially explicit simulation of land-use land cover dynamics. CA uses rules, states, conditions that are vital factors in modelling urbanisation. This communication effectively introduces simulation assistances of CA with the agent based modelling supported by its fuzzy characteristics and weightages through analytical hierarchal process (AHP). This has been done considering perceived agents such as industries, natural resource etc. Respective agent's role in development of a particular regions into an urban area has been examined with weights and its influence of each of these agents based on its characteristics functions. Validation was performed obtaining a high kappa coefficient indicating the quality and the allocation performance of the model & validity of the model to predict future projections. The prediction using the proposed model was performed for 2030. Further environmental sustainability of each of these cities are explored such as water features, environment, greenhouse gas emissions, effects on human human health etc., Modeling suggests trend of various land use classes transformation with the spurt in urban expansions based on specific regions and

  3. Toward an agent-based patient-physician model for the adoption of continuous glucose monitoring technology.

    Science.gov (United States)

    Verella, J Tipan; Patek, Stephen D

    2009-03-01

    Health care is a major component of the U.S. economy, and tremendous research and development efforts are directed toward new technologies in this arena. Unfortunately few tools exist for predicting outcomes associated with new medical products, including whether new technologies will find widespread use within the target population. Questions of technology adoption are rife within the diabetes technology community, and we particularly consider the long-term prognosis for continuous glucose monitoring (CGM) technology. We present an approach to the design and analysis of an agent model that describes the process of CGM adoption among patients with type 1 diabetes mellitus (T1DM), their physicians, and related stakeholders. We particularly focus on patient-physician interactions, with patients discovering CGM technology through word-of-mouth communication and through advertising, applying pressure to their physicians in the context of CGM device adoption, and physicians, concerned about liability, looking to peers for a general level of acceptance of the technology before recommending CGM to their patients. Repeated simulation trials of the agent-based model show that the adoption process reflects the heterogeneity of the adopting community. We also find that the effect of the interaction between patients and physicians is agents. Each physician, say colored by the nature of the environment as defined by the model parameters. We find that, by being able to represent the diverse perspectives of different types of stakeholders, agent-based models can offer useful insights into the adoption process. Models of this sort may eventually prove to be useful in helping physicians, other health care providers, patient advocacy groups, third party payers, and device manufacturers understand the impact of their decisions about new technologies. (c) 2009 Diabetes Technology Society.

  4. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jonathan; Enderling, Heiko; Becker-Weimann, Sabine; Pham, Christopher; Polyzos, Aris; Chen, Chen-Yi; Costes, Sylvain V

    2011-02-18

    We introduce an agent-based model of epithelial cell morphogenesis to explore the complex interplay between apoptosis, proliferation, and polarization. By varying the activity levels of these mechanisms we derived phenotypic transition maps of normal and aberrant morphogenesis. These maps identify homeostatic ranges and morphologic stability conditions. The agent-based model was parameterized and validated using novel high-content image analysis of mammary acini morphogenesis in vitro with focus on time-dependent cell densities, proliferation and death rates, as well as acini morphologies. Model simulations reveal apoptosis being necessary and sufficient for initiating lumen formation, but cell polarization being the pivotal mechanism for maintaining physiological epithelium morphology and acini sphericity. Furthermore, simulations highlight that acinus growth arrest in normal acini can be achieved by controlling the fraction of proliferating cells. Interestingly, our simulations reveal a synergism between polarization and apoptosis in enhancing growth arrest. After validating the model with experimental data from a normal human breast line (MCF10A), the system was challenged to predict the growth of MCF10A where AKT-1 was overexpressed, leading to reduced apoptosis. As previously reported, this led to non growth-arrested acini, with very large sizes and partially filled lumen. However, surprisingly, image analysis revealed a much lower nuclear density than observed for normal acini. The growth kinetics indicates that these acini grew faster than the cells comprising it. The in silico model could not replicate this behavior, contradicting the classic paradigm that ductal carcinoma in situ is only the result of high proliferation and low apoptosis. Our simulations suggest that overexpression of AKT-1 must also perturb cell-cell and cell-ECM communication, reminding us that extracellular context can dictate cellular behavior.

  5. Analysis of Customer Behaviour and Online Retailers Strategies Using the Agent-Based Simulation

    Directory of Open Access Journals (Sweden)

    Sava Čavoški

    2015-02-01

    Full Text Available This paper discusses the application of ABMS – agent-based modelling and simulation in the analysis of customer behaviour on B2C e-commerce websites as well as in the analysis of various business decisions upon the effects of on-line sales. By linking the areas of modelling based on agents and electronic commerce, this paper addresses the new opportunities for a quality assessment of consumer behaviour and reasons explaining this behaviour in e-commerce. The interactions of agents that make up this model are sublimated in the utility function that provides the basis for decision-making in the model. The rules of behaviour and interactions, included in the model through the utility function, denote the complexity of the decision-making process which occurs in evaluation and purchase of products in the part of B2C e-commerce. The simulation model implemented in the software NetLogo enables the monitoring of all interactions between the consumers (ConsumerAgents, seller-Internet sites (SellerAgents and advertisement agents (BannerAgents by generating the indicators of B2C site business performance.

  6. The potential of agent-based modelling for verification of people trajectories based on smartphone sensor data

    International Nuclear Information System (INIS)

    Hillen, F; Ehlers, M; Höfle, B; Reinartz, P

    2014-01-01

    In this paper the potential of smartphone sensor data for verification of people trajectories derived from airborne remote sensing data are investigated and discussed based on simulated test recordings in the city of Osnabrueck, Germany. For this purpose, the airborne imagery is simulated by images taken from a high building with a typical single lens reflex camera. The smartphone data required for the analysis of the potential is simultaneously recorded by test persons on the ground. In a second step, the quality of the smartphone sensor data is evaluated regarding the integration into simulation and modelling approaches. In this context we studied the potential of the agent-based modelling technique concerning the verification of people trajectories

  7. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Moyo

    2018-03-01

    Full Text Available Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.

  8. Towards a dynamic assessment of raw materials criticality: Linking agent-based demand — With material flow supply modelling approaches

    International Nuclear Information System (INIS)

    Knoeri, Christof; Wäger, Patrick A.; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-01-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a ‘snapshot’ of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. - Highlights: ► Current criticality assessment methods provide a ‘snapshot’ at one point in time. ► They do not account for dynamic interactions between demand and supply. ► We propose a conceptual framework to overcomes these limitations. ► The framework integrates an agent-based behaviour model with a dynamic material flow model. ► The approach proposed makes

  9. Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    International Nuclear Information System (INIS)

    Busch, Jonathan; Roelich, Katy; Bale, Catherine S.E.; Knoeri, Christof

    2017-01-01

    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Techno-economic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure. - Highlights: • Energy policy should account for diverse actor motivations and capabilities. • Project development is a multi-stage process, not a one-off event. • Participatory agent-based modelling can inform policy that accounts for complexity. • Policy should take a portfolio approach to providing support. • Local authorities have an important strategic role in local infrastructure.

  10. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    Science.gov (United States)

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  11. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  12. Approach and development strategy for an agent-based model of economic confidence.

    Energy Technology Data Exchange (ETDEWEB)

    Sprigg, James A.; Pryor, Richard J.; Jorgensen, Craig Reed

    2004-08-01

    We are extending the existing features of Aspen, a powerful economic modeling tool, and introducing new features to simulate the role of confidence in economic activity. The new model is built from a collection of autonomous agents that represent households, firms, and other relevant entities like financial exchanges and governmental authorities. We simultaneously model several interrelated markets, including those for labor, products, stocks, and bonds. We also model economic tradeoffs, such as decisions of households and firms regarding spending, savings, and investment. In this paper, we review some of the basic principles and model components and describe our approach and development strategy for emulating consumer, investor, and business confidence. The model of confidence is explored within the context of economic disruptions, such as those resulting from disasters or terrorist events.

  13. Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems

    Science.gov (United States)

    Rimer, S.; Mullapudi, A. M.; Kerkez, B.

    2017-12-01

    The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting

  14. Agent-Based Models and Optimal Control in Biology: A Discrete Approach

    Science.gov (United States)

    2012-01-01

    alive. Thus, the rules are reminiscent of a population whose survival is affected by under- and overpopulation . If we now initialize this “Game” by...helpful in models consisting of many agents of the same type, or many agents that follow the same set of rules. In modeling seasonal animal migration

  15. Biomimetic agent based modelling using male Frog calling behaviour as a case study

    DEFF Research Database (Denmark)

    Jørgensen, Søren V.; Demazeau, Yves; Christensen-Dalsgaard, Jakob

    2014-01-01

    by individuals to generate their observed population behaviour. A number of existing agent-modelling frameworks are considered, but none have the ability to handle large numbers of time-dependent event-generating agents; hence the construction of a new tool, RANA. The calling behaviour of the Puerto Rican Tree...... Frog, E. coqui, is implemented as a case study for the presentation and discussion of the tool, and results from this model are presented. RANA, in its present stage of development, is shown to be able to handle the problem of modelling calling frogs, and several fruitful extensions are proposed...

  16. Theory of agent-based market models with controlled levels of greed and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, P; Coolen, A C C [Department of Mathematics, King' s College London, The Strand, London WC2R 2LS (United Kingdom)], E-mail: panagiotis.2.papadopoulos@kcl.ac.uk, E-mail: ton.coolen@kcl.ac.uk

    2010-01-15

    We use generating functional analysis to study minority-game-type market models with generalized strategy valuation updates that control the psychology of agents' actions. The agents' choice between trend-following and contrarian trading, and their vigor in each, depends on the overall state of the market. Even in 'fake history' models, the theory now involves an effective overall bid process (coupled to the effective agent process) which can exhibit profound remanence effects and new phase transitions. For some models the bid process can be solved directly, others require Maxwell-construction-type approximations.

  17. Theory of agent-based market models with controlled levels of greed and anxiety

    International Nuclear Information System (INIS)

    Papadopoulos, P; Coolen, A C C

    2010-01-01

    We use generating functional analysis to study minority-game-type market models with generalized strategy valuation updates that control the psychology of agents' actions. The agents' choice between trend-following and contrarian trading, and their vigor in each, depends on the overall state of the market. Even in 'fake history' models, the theory now involves an effective overall bid process (coupled to the effective agent process) which can exhibit profound remanence effects and new phase transitions. For some models the bid process can be solved directly, others require Maxwell-construction-type approximations.

  18. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    Science.gov (United States)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  19. Modeling urban expansion policy scenarios using an agent-based approach for Guangzhou Metropolitan Region of China

    Directory of Open Access Journals (Sweden)

    Guangjin Tian

    2014-09-01

    Full Text Available Policy makers and the human decision processes of urban planning have an impact on urban expansion. The behaviors and decision modes of regional authority, real estate developer, resident, and farmer agents and their interactions can be simulated by the analytical hierarchy process (AHP method. The driving factors are regressed with urban dynamics instead of static land-use types. Agents' behaviors and decision modes have an impact on the urban dynamic pattern by adjusting parameter weights. We integrate an agent-based model (ABM with AHP to investigate a complex decision-making process and future urban dynamic processes. Three policy scenarios for baseline development, rapid development, and green land protection have been applied to predict the future development patterns of the Guangzhou metropolitan region. A future policy scenario analysis can help policy makers to understand the possible results. These individuals can adjust their policies and decisions according to their different objectives.

  20. Independence and interdependence in collective decision making: an agent-based model of nest-site choice by honeybee swarms

    Science.gov (United States)

    List, Christian; Elsholtz, Christian; Seeley, Thomas D.

    2008-01-01

    Condorcet's jury theorem shows that when the members of a group have noisy but independent information about what is best for the group as a whole, majority decisions tend to outperform dictatorial ones. When voting is supplemented by communication, however, the resulting interdependencies between decision makers can strengthen or undermine this effect: they can facilitate information pooling, but also amplify errors. We consider an intriguing non-human case of independent information pooling combined with communication: the case of nest-site choice by honeybee (Apis mellifera) swarms. It is empirically well documented that when there are different nest sites that vary in quality, the bees usually choose the best one. We develop a new agent-based model of the bees' decision process and show that its remarkable reliability stems from a particular interplay of independence and interdependence between the bees. PMID:19073474

  1. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Joshua; Hope, Michael; Ley, Hubert; Sokolov, Vadim; Xu, Bo; Zhang, Kuilin

    2016-03-01

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typically done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.

  2. Personality and Cultural Modeling for Agent-Based Representation of a Terrorist Cell, Phase 1

    National Research Council Canada - National Science Library

    Hogan, C. M; Van Houten, Robert A; La, Nini

    2003-01-01

    This report describes the research into the use of personality, cultural and socio-political modeling in order to provide a robust asymmetric opponent for Military Operation in Urban Terrain training...

  3. Agent Based Modeling and Simulation of Pedestrian Crowds In Panic Situations

    KAUST Repository

    Alrashed, Mohammed

    2016-01-01

    to self-propelling interactions between pedestrians. Although every pedestrian has personal preferences, the motion dynamics can be modeled as a social force in such crowds. These forces are representations of internal preferences and objectives to perform

  4. Citizenship and Power in an Agent-based Model of Tax Compliance with Public Expenditure

    OpenAIRE

    Paolo Pellizzari; Dino Rizzi

    2012-01-01

    In this paper we present a model of tax compliance with heterogeneous agents who maximize their individual utility based on income and the conjectured level of per capita public expenditure. We formally include psychological drivers in this model. These drivers affect individual behavior, such as risk aversion, together with appreciation of public expenditure, expectations about peers� compliance and a natural inclination to comply, all of which we summarize in a quality termed �citizenship�....

  5. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  6. A Procedure for Building Product Models in Intelligent Agent-based OperationsManagement

    DEFF Research Database (Denmark)

    Hvam, Lars; Riis, Jesper; Malis, Martin

    2003-01-01

    This article presents a procedure for building product models to support the specification processes dealing with sales, design of product variants and production preparation. The procedure includes, as the first phase, an analysis and redesign of the business processes that are to be supported b...

  7. An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks.

    Science.gov (United States)

    Getz, Wayne M; Carlson, Colin; Dougherty, Eric; Porco Francis, Travis C; Salter, Richard

    2016-04-01

    The winter 2014-15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R 0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a 'send unvaccinated students home' policy in low coverage counties is extremely effective at shutting down outbreaks of measles.

  8. Agent-Based Modeling of Collaborative Problem Solving. Research Report. ETS RR-16-27

    Science.gov (United States)

    Bergner, Yoav; Andrews, Jessica J.; Zhu, Mengxiao; Gonzales, Joseph E.

    2016-01-01

    Collaborative problem solving (CPS) is a critical competency in a variety of contexts, including the workplace, school, and home. However, only recently have assessment and curriculum reformers begun to focus to a greater extent on the acquisition and development of CPS skill. One of the major challenges in psychometric modeling of CPS is…

  9. An analytic method for agent-based modeling of spatially inhomogeneous disease dynamics

    NARCIS (Netherlands)

    Bock, W.; Fattler, T.; Rodiah, I.; Tse, O.T.C.; Villagonzalo, C.D.; Esguerra, J.P.H.; Soriano, M.N.; Bornales, J.B.; Carpio-Bernido, M.V.; Bernido, C.C.

    2017-01-01

    In this article we set up a microscopic model for the spread of an infectious disease based on configuration space analysis. Using the so-called Vlasov scaling we obtained the corresponding mesoscopic (kinetic) equations, describing the density of susceptible and infected individuals (particles) in

  10. Agent-based model of intermittent renewables : Simulating emerging changes in energy markets in transition

    NARCIS (Netherlands)

    Chappin, E.J.L.; Viebahn, P.; Richstein, J.C.; Lechtenböhmer, S.; Nebel, A.

    2012-01-01

    The energy transition is taking shape in the German and, to a lesser extent also its neighbouring electricity markets. We have proposed adaptations to an existing model to represent the increasing shares of intermittent renewables, that may alter the structure of the market and the viability of

  11. Agent-Based Modeling and Analysis of Socio-Technical Systems

    NARCIS (Netherlands)

    Sharpanskykh, O.

    2011-01-01

    Socio-technical systems are characterized by high structural and behavioral complexities, which impede understanding and modeling of such systems. In particular, reciprocal relations between diverse local system processes that determine global system dynamics are not well understood. In this article

  12. Heuristics, Interactions, and Status Hierarchies: An Agent-Based Model of Deference Exchange

    Science.gov (United States)

    Manzo, Gianluca; Baldassarri, Delia

    2015-01-01

    Since Merton's classical analysis of cumulative advantage in science, it has been observed that status hierarchies display a sizable disconnect between actors' quality and rank and that they become increasingly asymmetric over time, without, however, turning into winner-take-all structures. In recent years, formal models of status hierarchies…

  13. An Agent-Based Model for Optimization of Road Width and Public Transport Frequency

    Directory of Open Access Journals (Sweden)

    Mark E. Koryagin

    2015-04-01

    Full Text Available An urban passenger transportation problem is studied. Municipal authorities and passengers are regarded as participants in the passenger transportation system. The municipal authorities have to optimise road width and public transport frequency. The road consists of a dedicated bus lane and lanes for passenger cars. The car travel time depends on the number of road lanes and passengers’ choice of travel mode. The passengers’ goal is to minimize total travel costs, including time value. The passengers try to find the optimal ratio between public transport and cars. The conflict between municipal authorities and the passengers is described as a game theoretic model. The existence of Nash equilibrium in the model is proved. The numerical example shows the influence of the value of time and intensity of passenger flow on the equilibrium road width and public transport frequency.

  14. Statistical mechanics of competitive resource allocation using agent-based models

    Science.gov (United States)

    Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.

    2015-01-01

    Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.

  15. A stochastic agent-based model of pathogen propagation in dynamic multi-relational social networks

    Science.gov (United States)

    Khan, Bilal; Dombrowski, Kirk; Saad, Mohamed

    2015-01-01

    We describe a general framework for modeling and stochastic simulation of epidemics in realistic dynamic social networks, which incorporates heterogeneity in the types of individuals, types of interconnecting risk-bearing relationships, and types of pathogens transmitted across them. Dynamism is supported through arrival and departure processes, continuous restructuring of risk relationships, and changes to pathogen infectiousness, as mandated by natural history; dynamism is regulated through constraints on the local agency of individual nodes and their risk behaviors, while simulation trajectories are validated using system-wide metrics. To illustrate its utility, we present a case study that applies the proposed framework towards a simulation of HIV in artificial networks of intravenous drug users (IDUs) modeled using data collected in the Social Factors for HIV Risk survey. PMID:25859056

  16. Agent-based model of the effect of globalization on inequality and class mobility

    Science.gov (United States)

    Evers, Joep H. M.; Iron, David; Kolokolnikov, Theodore; Rumsey, John

    2017-12-01

    We consider a variant of the Bouchaud-Mézard model for wealth distribution in a society which incorporates the interaction radius between the agents, to model the extent of globalization in a society. The wealth distribution depends critically on the extent of this interaction. When interaction is relatively local, a small cluster of individuals emerges which accumulate most of the society's wealth. In this regime, the society is highly stratified with little or no class mobility. As the interaction is increased, the number of wealthy agents decreases, but the overall inequality rises as the freed-up wealth is transferred to the remaining wealthy agents. However when the interaction exceeds a certain critical threshold, the society becomes highly mobile resulting in a much lower economic inequality (low Gini index). This is consistent with the Kuznets upside-down U shaped inequality curve hypothesis.

  17. Estimation of Financial Agent-Based Models with Simulated Maximum Likelihood

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Jiří; Baruník, Jozef

    2017-01-01

    Roč. 85, č. 1 (2017), s. 21-45 ISSN 0165-1889 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : heterogeneous agent model, * simulated maximum likelihood * switching Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 1.000, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kukacka-0478481.pdf

  18. Developing an Agent-Based Model to Simulate Urban Land-Use Expansion (Case Study: Qazvin)

    OpenAIRE

    F. Nourian; A. A. Alesheikh; F. Hosseinali

    2012-01-01

    Extended abstract1-IntroductionUrban land-use expansion is a challenging issue in developing countries. Increases in population as well as the immigration from the villages to the cities are the two major factors for that phenomenon. Those factors have reduced the influence of efforts that try to limit the cities’ boundaries. Thus, spatial planners always look for the models that simulate the expansion of urban land-uses and enable them to prevent unbalanced expansions of cities and guide the...

  19. Modelling the impact of beliefs and communication on attitude dynamics : a cognitive agent-based approach

    OpenAIRE

    Brousmiche, Kei-Leo; Kant, Jean-Daniel; Sabouret, Nicolas; Fournier, Stephane; Prenot-Guinard, Francois

    2014-01-01

    In the context of military training for stabilization operation of a crisis zone with civilian population, understanding the formation of attitude and its dynamics is a key issue. This paper presents a multi-agent model for simulating attitude formation and change based on individual’s perception of information and its diffusion through communication. We represent the attitude as object-evaluation associations of varying strength proposed by Fazio [1]. Individuals observe military operations....

  20. Implementation of an Agent-Based Parallel Tissue Modelling Framework for the Intel MIC Architecture

    Directory of Open Access Journals (Sweden)

    Maciej Cytowski

    2017-01-01

    Full Text Available Timothy is a novel large scale modelling framework that allows simulating of biological processes involving different cellular colonies growing and interacting with variable environment. Timothy was designed for execution on massively parallel High Performance Computing (HPC systems. The high parallel scalability of the implementation allows for simulations of up to 109 individual cells (i.e., simulations at tissue spatial scales of up to 1 cm3 in size. With the recent advancements of the Timothy model, it has become critical to ensure appropriate performance level on emerging HPC architectures. For instance, the introduction of blood vessels supplying nutrients to the tissue is a very important step towards realistic simulations of complex biological processes, but it greatly increased the computational complexity of the model. In this paper, we describe the process of modernization of the application in order to achieve high computational performance on HPC hybrid systems based on modern Intel® MIC architecture. Experimental results on the Intel Xeon Phi™ coprocessor x100 and the Intel Xeon Phi processor x200 are presented.

  1. Agent-based models for latent liquidity and concave price impact

    Science.gov (United States)

    Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe

    2014-04-01

    We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011), 10.1103/PhysRevX.1.021006], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.

  2. Parochial Altruists or Ideologues? An Agent Based Model of Commitment to Self Sacrifice

    Directory of Open Access Journals (Sweden)

    Giti Zahedzadeh

    2015-09-01

    Full Text Available 'What motivates suicide attackers remains an open question. From an evolutionary perspective, commitment to suicide missions is puzzling since such behavior is fitness reducing. We model suicide terrorism by drawing on two fundamental human motivations: altruism and selfishness. Martyrdom can be viewed as altruistic- benefiting group members at a cost to oneself, as well as selfish- ideological belief in a profitable afterlife. Our simulations identify that some degree of both behaviors are essential in order to facilitate a commitment to sacrifice. Thus, manipulations of ideology and altruism can tip the threshold and set the agents on the path of martyrdom. '

  3. Flexibility of wages and macroeconomic instability in an agent-based computational model with endogenous money

    OpenAIRE

    Pascal Seppecher

    2010-01-01

    This article has been published in a revised form in Macroeconomic Dynamics [http://dx.doi.org/10.1017/S1365100511000447]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works.; International audience; We present a model of a dynamic and complex economy in which the creation and the destruction of money result from interactions between multiple and heterogeneous agents. In the baseline scenario, we observe t...

  4. The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates.

    Science.gov (United States)

    Lum, Kristian; Swarup, Samarth; Eubank, Stephen; Hawdon, James

    2014-09-06

    We build an agent-based model of incarceration based on the susceptible-infected-suspectible (SIS) model of infectious disease propagation. Our central hypothesis is that the observed racial disparities in incarceration rates between Black and White Americans can be explained as the result of differential sentencing between the two demographic groups. We demonstrate that if incarceration can be spread through a social influence network, then even relatively small differences in sentencing can result in large disparities in incarceration rates. Controlling for effects of transmissibility, susceptibility and influence network structure, our model reproduces the observed large disparities in incarceration rates given the differences in sentence lengths for White and Black drug offenders in the USA without extensive parameter tuning. We further establish the suitability of the SIS model as applied to incarceration by demonstrating that the observed structural patterns of recidivism are an emergent property of the model. In fact, our model shows a remarkably close correspondence with California incarceration data. This work advances efforts to combine the theories and methods of epidemiology and criminology.

  5. Multi-Agent Based Microscopic Simulation Modeling for Urban Traffic Flow

    Directory of Open Access Journals (Sweden)

    Xianyan Kuang

    2014-10-01

    Full Text Available Traffic simulation plays an important role in the evaluation of traffic decisions. The movement of vehicles essentially is the operating process of drivers, in order to reproduce the urban traffic flow from the micro-aspect on computer, this paper establishes an urban traffic flow microscopic simulation system (UTFSim based on multi-agent. The system is seen as an intelligent virtual environment system (IVES, and the four-layer structure of it is built. The road agent, vehicle agent and signal agent are modeled. The concept of driving trajectory which is divided into LDT (Lane Driving Trajectory and VDDT (Vehicle Dynamic Driving Trajectory is introduced. The “Link-Node” road network model is improved. The driving behaviors including free driving, following driving, lane changing, slowing down, vehicle stop, etc. are analyzed. The results of the signal control experiments utilizing the UTFSim developed in the platform of Visual Studio. NET indicates that it plays a good performance and can be used in the evaluation of traffic management and control.

  6. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.

    Science.gov (United States)

    Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D

    2014-09-12

    A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection. Copyright © 2014, American Association for the Advancement of Science.

  7. SASAgent: an agent based architecture for search, retrieval and composition of scientific models.

    Science.gov (United States)

    Felipe Mendes, Luiz; Silva, Laryssa; Matos, Ely; Braga, Regina; Campos, Fernanda

    2011-07-01

    Scientific computing is a multidisciplinary field that goes beyond the use of computer as machine where researchers write simple texts, presentations or store analysis and results of their experiments. Because of the huge hardware/software resources invested in experiments and simulations, this new approach to scientific computing currently adopted by research groups is well represented by e-Science. This work aims to propose a new architecture based on intelligent agents to search, recover and compose simulation models, generated in the context of research projects related to biological domain. The SASAgent architecture is described as a multi-tier, comprising three main modules, where CelO ontology satisfies requirements put by e-science projects mainly represented by the semantic knowledge base. Preliminary results suggest that the proposed architecture is promising to achieve requirements found in e-Science projects, considering mainly the biological domain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    Science.gov (United States)

    Kanta, L.; Berglund, E. Z.; Soh, M. H.

    2017-12-01

    Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden

  9. Memory Transmission in Small Groups and Large Networks: An Agent-Based Model.

    Science.gov (United States)

    Luhmann, Christian C; Rajaram, Suparna

    2015-12-01

    The spread of social influence in large social networks has long been an interest of social scientists. In the domain of memory, collaborative memory experiments have illuminated cognitive mechanisms that allow information to be transmitted between interacting individuals, but these experiments have focused on small-scale social contexts. In the current study, we took a computational approach, circumventing the practical constraints of laboratory paradigms and providing novel results at scales unreachable by laboratory methodologies. Our model embodied theoretical knowledge derived from small-group experiments and replicated foundational results regarding collaborative inhibition and memory convergence in small groups. Ultimately, we investigated large-scale, realistic social networks and found that agents are influenced by the agents with which they interact, but we also found that agents are influenced by nonneighbors (i.e., the neighbors of their neighbors). The similarity between these results and the reports of behavioral transmission in large networks offers a major theoretical insight by linking behavioral transmission to the spread of information. © The Author(s) 2015.

  10. A three-state kinetic agent-based model to analyze tax evasion dynamics

    Science.gov (United States)

    Crokidakis, Nuno

    2014-11-01

    In this work we study the problem of tax evasion on a fully-connected population. For this purpose, we consider that the agents may be in three different states, namely honest tax payers, tax evaders and undecided, that are individuals in an intermediate class among honests and evaders. Every individual can change his/her state following a kinetic exchange opinion dynamics, where the agents interact by pairs with competitive negative (with probability q) and positive (with probability 1-q) couplings, representing agreement/disagreement between pairs of agents. In addition, we consider the punishment rules of the Zaklan econophysics model, for which there is a probability pa of an audit each agent is subject to in every period and a length of time k detected tax evaders remain honest. Our results suggest that below the critical point qc=1/4 of the opinion dynamics the compliance is high, and the punishment rules have a small effect in the population. On the other hand, for q>qc the tax evasion can be considerably reduced by the enforcement mechanism. We also discuss the impact of the presence of the undecided agents in the evolution of the system.

  11. Agent-based models of strategies for the emergence and evolution of grammatical agreement.

    Directory of Open Access Journals (Sweden)

    Katrien Beuls

    Full Text Available Grammatical agreement means that features associated with one linguistic unit (for example number or gender become associated with another unit and then possibly overtly expressed, typically with morphological markers. It is one of the key mechanisms used in many languages to show that certain linguistic units within an utterance grammatically depend on each other. Agreement systems are puzzling because they can be highly complex in terms of what features they use and how they are expressed. Moreover, agreement systems have undergone considerable change in the historical evolution of languages. This article presents language game models with populations of agents in order to find out for what reasons and by what cultural processes and cognitive strategies agreement systems arise. It demonstrates that agreement systems are motivated by the need to minimize combinatorial search and semantic ambiguity, and it shows, for the first time, that once a population of agents adopts a strategy to invent, acquire and coordinate meaningful markers through social learning, linguistic self-organization leads to the spontaneous emergence and cultural transmission of an agreement system. The article also demonstrates how attested grammaticalization phenomena, such as phonetic reduction and conventionalized use of agreement markers, happens as a side effect of additional economizing principles, in particular minimization of articulatory effort and reduction of the marker inventory. More generally, the article illustrates a novel approach for studying how key features of human languages might emerge.

  12. An agent-based simulation model of patient choice of health care providers in accountable care organizations.

    Science.gov (United States)

    Alibrahim, Abdullah; Wu, Shinyi

    2018-03-01

    Accountable care organizations (ACO) in the United States show promise in controlling health care costs while preserving patients' choice of providers. Understanding the effects of patient choice is critical in novel payment and delivery models like ACO that depend on continuity of care and accountability. The financial, utilization, and behavioral implications associated with a patient's decision to forego local health care providers for more distant ones to access higher quality care remain unknown. To study this question, we used an agent-based simulation model of a health care market composed of providers able to form ACO serving patients and embedded it in a conditional logit decision model to examine patients capable of choosing their care providers. This simulation focuses on Medicare beneficiaries and their congestive heart failure (CHF) outcomes. We place the patient agents in an ACO delivery system model in which provider agents decide if they remain in an ACO and perform a quality improving CHF disease management intervention. Illustrative results show that allowing patients to choose their providers reduces the yearly payment per CHF patient by $320, reduces mortality rates by 0.12 percentage points and hospitalization rates by 0.44 percentage points, and marginally increases provider participation in ACO. This study demonstrates a model capable of quantifying the effects of patient choice in a theoretical ACO system and provides a potential tool for policymakers to understand implications of patient choice and assess potential policy controls.

  13. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    Science.gov (United States)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  14. A Q-learning agent-based model for the analysis of the power market dynamics

    International Nuclear Information System (INIS)

    Tellidou, A.; Bakirtzis, A.

    2006-01-01

    The introduction of deregulation in the electricity sector resulted in a different way of thinking and acting on the part of producers. Power suppliers strive to maximize their profit and their utilization rate through a bidding process. According to the pricing system, the competition conditions, the demand side bidding, and the available information, they develop different bidding strategies in order to exploit every possible advantage. This paper presents the Q-Learning algorithm in order to model the bidding strategy of suppliers in electricity auctions. The study examined players' behaviour in the spot market and the change in their policy under different conditions of demand. The Q-learning algorithm considers a novel approach to the definition of states and actions. States are not defined exclusively, as states of the environment, but rather, are different for each agent and relative to the impact the environment has on the agent. Actions are not represented by the price the agent bids, but by the variation between the previous and the new bid price. Market structure was described in this paper and the supplier's bidding problem was formulated in terms of Q-learning. A description of the test system was presented and the parameter selection of the algorithm, as well as the presentation and the results of four case study simulations were discussed. The Q-learning algorithm in supplier bidding strategy showed very promising results. it was suggested that the research should be expanded to include more producers or tests of transmission systems. 9 refs., 2 tabs., 6 figs

  15. Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem

    Science.gov (United States)

    Faroqi, H.; Mesgari, M.-S.

    2015-12-01

    During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  16. AGENT-BASED CROWD SIMULATION CONSIDERING EMOTION CONTAGION FOR EMERGENCY EVACUATION PROBLEM

    Directory of Open Access Journals (Sweden)

    H. Faroqi

    2015-12-01

    Full Text Available During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  17. Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration

    Directory of Open Access Journals (Sweden)

    Marc Deissenroth

    2017-01-01

    Full Text Available The ongoing deployment of renewable energy sources (RES calls for an enhanced integration of RES into energy markets, accompanied by a new set of regulations. In Germany, for instance, the feed-in tariff legislation for renewables has been successively replaced by first optional and then obligatory marketing of RES on competitive wholesale markets. This paper introduces an agent-based model that allows studying the impact of changing energy policy instruments on the economic performance of RES operators and marketers. The model structure, its components, and linkages are presented in detail; an additional case study demonstrates the capability of our sociotechnical model. We find that changes in the political framework cannot be mapped directly to RES operators as behaviour of intermediary market actors has to be considered as well. Characteristics and strategies of intermediaries are thus an important factor for successful RES marketing and further deployment. It is shown that the model is able to assess the emergence and stability of market niches.

  18. Policy Research Using Agent-Based Modeling to Assess Future Impacts of Urban Expansion into Farmlands and Forests

    Directory of Open Access Journals (Sweden)

    Michael R. Guzy

    2008-06-01

    Full Text Available The expansion of urban land uses into farmlands and forests requires an assessment of future ecological impacts. Spatially explicit agent-based models can represent the changes in resilience and ecological services that result from different land-use policies. When modeling complex adaptive systems, both the methods used to interpret results and the standards of rigor used to judge adequacy are complicated and require additional research. Recent studies suggest that it would be appropriate to use these models as an extension of exploratory analysis. This type of analysis generates ensembles of alternate plausible representations of future system conditions. User expertise steers interactive, stepwise system exploration toward inductive reasoning about potential changes to the system. In this study, we develop understanding of the potential alternative futures for a social-ecological system by way of successive simulations that test variations in the types and numbers of policies. The model addresses the agricultural-urban interface and the preservation of ecosystem services. The landscape analyzed is at the junction of the McKenzie and Willamette Rivers adjacent to the cities of Eugene and Springfield in Lane County, Oregon. Our exploration of alternative future scenarios suggests that policies that constrain urban growth and create incentives for farming and forest enterprises to preserve and enhance habitat can protect ecosystem resilience and services.

  19. Using uncertainty and sensitivity analyses in socioecological agent-based models to improve their analytical performance and policy relevance.

    Science.gov (United States)

    Ligmann-Zielinska, Arika; Kramer, Daniel B; Spence Cheruvelil, Kendra; Soranno, Patricia A

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system.

  20. Using uncertainty and sensitivity analyses in socioecological agent-based models to improve their analytical performance and policy relevance.

    Directory of Open Access Journals (Sweden)

    Arika Ligmann-Zielinska

    Full Text Available Agent-based models (ABMs have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1 efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2 conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system.

  1. An Agent-based Model for Groundwater Allocation and Management at the Bakken Shale in Western North Dakota

    Science.gov (United States)

    Lin, T.; Lin, Z.; Lim, S.

    2017-12-01

    We present an integrated modeling framework to simulate groundwater level change under the dramatic increase of hydraulic fracturing water use in the Bakken Shale oil production area. The framework combines the agent-based model (ABM) with the Fox Hills-Hell Creek (FH-HC) groundwater model. In development of the ABM, institution theory is used to model the regulation policies from the North Dakota State Water Commission, while evolutionary programming and cognitive maps are used to model the social structure that emerges from the behavior of competing individual water businesses. Evolutionary programming allows individuals to select an appropriate strategy when annually applying for potential water use permits; whereas cognitive maps endow agent's ability and willingness to compete for more water sales. All agents have their own influence boundaries that inhibit their competitive behavior toward their neighbors but not to non-neighbors. The decision-making process is constructed and parameterized with both quantitative and qualitative information, i.e., empirical water use data and knowledge gained from surveys with stakeholders. By linking institution theory, evolutionary programming, and cognitive maps, our approach addresses a higher complexity of the real decision making process. Furthermore, this approach is a new exploration for modeling the dynamics of Coupled Human and Natural System. After integrating ABM with the FH-HC model, drought and limited water accessibility scenarios are simulated to predict FH-HC ground water level changes in the future. The integrated modeling framework of ABM and FH-HC model can be used to support making scientifically sound policies in water allocation and management.

  2. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque.

    Science.gov (United States)

    Head, David A; Marsh, Phil D; Devine, Deirdre A

    2014-01-01

    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments.

  3. Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion

    International Nuclear Information System (INIS)

    Faber, Albert; Valente, Marco; Janssen, Peter

    2010-01-01

    Micro-cogeneration (micro-CHP) is a new technology at the household level, producing electricity in cogeneration with domestic heating, thereby increasing the overall efficiency of domestic energy production. We have developed a prototypical agent-based simulation model for energy technologies competing for demand at the consumer level. The model is specifically geared towards the competition between micro-CHP and incumbent condensing boilers. In the model, both technologies compete on purchase price and costs of usage, to which various (types of) consumers decide on the installation of either technology. Simulations with various gas and electricity prices show that micro-CHP diffusion could be seriously inhibited if demand for natural gas decreases, e.g. due to insulation measures. Further simulations explore various subsidy schemes. A subsidy for purchase is only found to be effective within a limited range of Euro 1400-3250. A subsidy based on decreasing price difference between the competing technologies is much more cost effective than fixed purchase subsidies. Simulations of a subsidy scheme for usage show that a fast market penetration can be reached, but this does not yet take full advantage of technological progress in terms of decreasing CO 2 emissions. Selection of the most effective scheme thus depends on the policy criteria assumed.

  4. Dynamic impact of social stratification and social influence on smoking prevalence by gender: An agent-based model.

    Science.gov (United States)

    Chao, Dingding; Hashimoto, Hideki; Kondo, Naoki

    2015-12-01

    Smoking behavior is tightly related to socioeconomic status and gender, though the dynamic and non-linear association of smoking prevalence across socioeconomic status and gender groups has not been fully examined. With a special focus on gender-bound differences in the susceptibility to social influence of surrounding others' behaviors, we developed an agent-based model to explore how socioeconomic disparity between and within gender groups affects changes in smoking prevalence. Our developed base model reasonably reproduced the actual trend changes by gender groups over the past 5 years in Japan. Counterfactual experiments with the developed model revealed that closing within- and between-gender disparities in socioeconomic status had a limited impact on reducing smoking prevalence. To the contrary, greater socioeconomic disparity facilitated the reduction in prevalence among males, but it impeded that reduction in females. The counterfactual scenario with equalizing gender-bound susceptibility to social influence among women to men's level showed a dramatic reduction in female prevalence without changing the reduction in male prevalence. Simulation results may provide alternative explanation of the growing disparity in smoking prevalence despite improved welfare equality observed in many developed countries, and suggest that redistribution policies may have side effects of widening health gap. Instead, social policy to reduce social pressures to smoking and support interventions to enhance resilience to the pressure targeting the vulnerable population (in this study, women) would be a more effective strategy in combating the tobacco epidemic and closing the health gap. Copyright © 2015. Published by Elsevier Ltd.

  5. Investigating Impacts of Alternative Crop Market Scenarios on Land Use Change with an Agent-Based Model

    Directory of Open Access Journals (Sweden)

    Deng Ding

    2015-11-01

    Full Text Available We developed an agent-based model (ABM to simulate farmers’ decisions on crop type and fertilizer application in response to commodity and biofuel crop prices. Farm profit maximization constrained by farmers’ profit expectations for land committed to biofuel crop production was used as the decision rule. Empirical parameters characterizing farmers’ profit expectations were derived from an agricultural landowners and operators survey and integrated in the ABM. The integration of crop production cost models and the survey information in the ABM is critical to producing simulations that can provide realistic insights into agricultural land use planning and policy making. Model simulations were run with historical market prices and alternative market scenarios for corn price, soybean to corn price ratio, switchgrass price, and switchgrass to corn stover ratio. The results of the comparison between simulated cropland percentage and crop rotations with satellite-based land cover data suggest that farmers may be underestimating the effects that continuous corn production has on yields. The simulation results for alternative market scenarios based on a survey of agricultural land owners and operators in the Clear Creek Watershed in eastern Iowa show that farmers see cellulosic biofuel feedstock production in the form of perennial grasses or corn stover as a more risky enterprise than their current crop production systems, likely because of market and production risks and lock in effects. As a result farmers do not follow a simple farm-profit maximization rule.

  6. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling.

    Science.gov (United States)

    Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T

    2016-04-22

    Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment.

  7. Designing an Agent-Based Model for Childhood Obesity Interventions: A Case Study of ChildObesity180.

    Science.gov (United States)

    Hennessy, Erin; Ornstein, Joseph T; Economos, Christina D; Herzog, Julia Bloom; Lynskey, Vanessa; Coffield, Edward; Hammond, Ross A

    2016-01-07

    Complex systems modeling can provide useful insights when designing and anticipating the impact of public health interventions. We developed an agent-based, or individual-based, computation model (ABM) to aid in evaluating and refining implementation of behavior change interventions designed to increase physical activity and healthy eating and reduce unnecessary weight gain among school-aged children. The potential benefits of applying an ABM approach include estimating outcomes despite data gaps, anticipating impact among different populations or scenarios, and exploring how to expand or modify an intervention. The practical challenges inherent in implementing such an approach include data resources, data availability, and the skills and knowledge of ABM among the public health obesity intervention community. The aim of this article was to provide a step-by-step guide on how to develop an ABM to evaluate multifaceted interventions on childhood obesity prevention in multiple settings. We used data from 2 obesity prevention initiatives and public-use resources. The details and goals of the interventions, overview of the model design process, and generalizability of this approach for future interventions is discussed.

  8. Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation.

    Science.gov (United States)

    Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto

    2016-07-01

    The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling

    Directory of Open Access Journals (Sweden)

    Sangmi Shin

    2016-04-01

    Full Text Available Recently, commercial unmanned aerial systems (UAS have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment.

  10. The necessary burden of involving stakeholders in agent-based modelling for education and decision-making

    Science.gov (United States)

    Bommel, P.; Bautista Solís, P.; Leclerc, G.

    2016-12-01

    We implemented a participatory process with water stakeholders for improving resilience to drought at watershed scale, and for reducing water pollution disputes in drought prone Northwestern Costa Rica. The purpose is to facilitate co-management in a rural watershed impacted by recurrent droughts related to ENSO. The process involved designing "ContaMiCuenca", a hybrid agent-based model where users can specify the decisions of their agents. We followed a Companion Modeling approach (www.commod.org) and organized 10 workshops that included research techniques such as participatory diagnostics, actor-resources-interaction and UML diagrams, multi-agents model design, and interactive simulation sessions. We collectively assessed the main water issues in the watershed, prioritized their importance, defined the objectives of the process, and pilot-tested ContaMiCuenca for environmental education with adults and children. Simulation sessions resulted in debates about the need to improve the model accuracy, arguably more relevant for decision-making. This helped identify sensible knowledge gaps in the groundwater pollution and aquifer dynamics that need to be addressed in order to improve our collective learning. Significant mismatches among participants expectations, objectives, and agendas considerably slowed down the participatory process. The main issue may originate in participants expecting technical solutions from a positivist science, as constantly promoted in the region by dole-out initiatives, which is incompatible with the constructivist stance of participatory modellers. This requires much closer interaction of community members with modellers, which may be hard to attain in the current research practice and institutional context. Nevertheless, overcoming these constraints is necessary for a true involvement of water stakeholders to achieve community-based decisions that facilitate integrated water management. Our findings provide significant guidance for

  11. Agent-Based Modeling of Day-Ahead Real Time Pricing in a Pool-Based Electricity Market

    Directory of Open Access Journals (Sweden)

    Sh. Yousefi

    2011-09-01

    Full Text Available In this paper, an agent-based structure of the electricity retail market is presented based on which day-ahead (DA energy procurement for customers is modeled. Here, we focus on operation of only one Retail Energy Provider (REP agent who purchases energy from DA pool-based wholesale market and offers DA real time tariffs to a group of its customers. As a model of customer response to the offered real time prices, an hourly acceptance function is proposed in order to represent the hourly changes in the customer’s effective demand according to the prices. Here, Q-learning (QL approach is applied in day-ahead real time pricing for the customers enabling the REP agent to discover which price yields the most benefit through a trial-and-error search. Numerical studies are presented based on New England day-ahead market data which include comparing the results of RTP based on QL approach with that of genetic-based pricing.

  12. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.

    Science.gov (United States)

    Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-09-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Examining Social Adaptations in a Volatile Landscape in Northern Mongolia via the Agent-Based Model Ger Grouper

    Directory of Open Access Journals (Sweden)

    Julia K. Clark

    2015-03-01

    Full Text Available The environment of the mountain-steppe-taiga of northern Mongolia is often characterized as marginal because of the high altitude, highly variable precipitation levels, low winter temperatures, and periodic droughts coupled with severe winter storms (known as dzuds. Despite these conditions, herders have inhabited this landscape for thousands of years, and hunter-gatherer-fishers before that. One way in which the risks associated with such a challenging and variable landscape are mitigated is through social networks and inter-family cooperation. We present an agent-based simulation, Ger Grouper, to examine how households have mitigated these risks through cooperation. The Ger Grouper simulation takes into account locational decisions of households, looks at fission/fusion dynamics of households and how those relate to environmental pressures, and assesses how degrees of relatedness can influence sharing of resources during harsh winters. This model, coupled with the traditional archaeological and ethnographic methods, helps shed light on the links between early Mongolian pastoralist adaptations and the environment. While preliminary results are promising, it is hoped that further development of this model will be able to characterize changing land-use patterns as social and political networks developed.

  15. Towards a complex systems approach in sports injury research: simulating running-related injury development with agent-based modelling.

    Science.gov (United States)

    Hulme, Adam; Thompson, Jason; Nielsen, Rasmus Oestergaard; Read, Gemma J M; Salmon, Paul M

    2018-06-18

    There have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research. Agent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various 'athlete management tools'. The findings confirmed that building weekly running distances over time, even within the reported ACWR 'sweet spot', will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a 'hard ceiling' dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads. The presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.

    Science.gov (United States)

    Reinhardt, James W; Gooch, Keith J

    2014-02-01

    Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix

  17. Land Use Change on Household Farms in the Ecuadorian Amazon: Design and Implementation of an Agent-Based Model.

    Science.gov (United States)

    Mena, Carlos F; Walsh, Stephen J; Frizzelle, Brian G; Xiaozheng, Yao; Malanson, George P

    2011-01-01

    This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.

  18. MODELLING TEMPORAL SCHEDULE OF URBAN TRAINS USING AGENT-BASED SIMULATION AND NSGA2-BASED MULTIOBJECTIVE OPTIMIZATION APPROACHES

    Directory of Open Access Journals (Sweden)

    M. Sahelgozin

    2015-12-01

    Full Text Available Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  19. An Empirical Agent-Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework.

    Science.gov (United States)

    Kandiah, Venu; Binder, Andrew R; Berglund, Emily Z

    2017-10-01

    Water reuse can serve as a sustainable alternative water source for urban areas. However, the successful implementation of large-scale water reuse projects depends on community acceptance. Because of the negative perceptions that are traditionally associated with reclaimed water, water reuse is often not considered in the development of urban water management plans. This study develops a simulation model for understanding community opinion dynamics surrounding the issue of water reuse, and how individual perceptions evolve within that context, which can help in the planning and decision-making process. Based on the social amplification of risk framework, our agent-based model simulates consumer perceptions, discussion patterns, and their adoption or rejection of water reuse. The model is based on the "risk publics" model, an empirical approach that uses the concept of belief clusters to explain the adoption of new technology. Each household is represented as an agent, and parameters that define their behavior and attributes are defined from survey data. Community-level parameters-including social groups, relationships, and communication variables, also from survey data-are encoded to simulate the social processes that influence community opinion. The model demonstrates its capabilities to simulate opinion dynamics and consumer adoption of water reuse. In addition, based on empirical data, the model is applied to investigate water reuse behavior in different regions of the United States. Importantly, our results reveal that public opinion dynamics emerge differently based on membership in opinion clusters, frequency of discussion, and the structure of social networks. © 2017 Society for Risk Analysis.

  20. Modeling the 2014 Ebola Virus Epidemic - Agent-Based Simulations, Temporal Analysis and Future Predictions for Liberia and Sierra Leone.

    Science.gov (United States)

    Siettos, Constantinos; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2015-03-09

    We developed an agent-based model to investigate the epidemic dynamics of Ebola virus disease (EVD) in Liberia and Sierra Leone from May 27 to December 21, 2014. The dynamics of the agent-based simulator evolve on small-world transmission networks of sizes equal to the population of each country, with adjustable densities to account for the effects of public health intervention policies and individual behavioral responses to the evolving epidemic. Based on time series of the official case counts from the World Health Organization (WHO), we provide estimates for key epidemiological variables by employing the so-called Equation-Free approach. The underlying transmission networks were characterized by rather random structures in the two countries with densities decreasing by ~19% from the early (May 27-early August) to the last period (mid October-December 21). Our estimates for the values of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate, are very close to the ones reported by the WHO Ebola response team during the early period of the epidemic (until September 14) that were calculated based on clinical data. Specifically, regarding the effective reproductive number Re, our analysis suggests that until mid October, Re was above 2.3 in both countries; from mid October to December 21, Re dropped well below unity in Liberia, indicating a saturation of the epidemic, while in Sierra Leone it was around 1.9, indicating an ongoing epidemic. Accordingly, a ten-week projection from December 21 estimated that the epidemic will fade out in Liberia in early March; in contrast, our results flashed a note of caution for Sierra Leone since the cumulative number of cases could reach as high as 18,000, and the number of deaths might exceed 5,000, by early March 2015. However, by processing the reported data of the very last period (December 21, 2014-January 18, 2015), we obtained more optimistic estimates indicative of a remission of

  1. Assortative mating and the reversal of gender inequality in education in europe: an agent-based model.

    Directory of Open Access Journals (Sweden)

    André Grow

    Full Text Available While men have always received more education than women in the past, this gender imbalance in education has turned around in large parts of the world. In many countries, women now excel men in terms of participation and success in higher education. This implies that, for the first time in history, there are more highly educated women than men reaching the reproductive ages and looking for a partner. We develop an agent-based computational model that explicates the mechanisms that may have linked the reversal of gender inequality in education with observed changes in educational assortative mating. Our model builds on the notion that individuals search for spouses in a marriage market and evaluate potential candidates based on preferences. Based on insights from earlier research, we assume that men and women prefer partners with similar educational attainment and high earnings prospects, that women tend to prefer men who are somewhat older than themselves, and that men prefer women who are in their mid-twenties. We also incorporate the insight that the educational system structures meeting opportunities on the marriage market. We assess the explanatory power of our model with systematic computational experiments, in which we simulate marriage market dynamics in 12 European countries among individuals born between 1921 and 2012. In these experiments, we make use of realistic agent populations in terms of educational attainment and earnings prospects and validate model outcomes with data from the European Social Survey. We demonstrate that the observed changes in educational assortative mating can be explained without any change in male or female preferences. We argue that our model provides a useful computational laboratory to explore and quantify the implications of scenarios for the future.

  2. Assortative mating and the reversal of gender inequality in education in europe: an agent-based model.

    Science.gov (United States)

    Grow, André; Van Bavel, Jan

    2015-01-01

    While men have always received more education than women in the past, this gender imbalance in education has turned around in large parts of the world. In many countries, women now excel men in terms of participation and success in higher education. This implies that, for the first time in history, there are more highly educated women than men reaching the reproductive ages and looking for a partner. We develop an agent-based computational model that explicates the mechanisms that may have linked the reversal of gender inequality in education with observed changes in educational assortative mating. Our model builds on the notion that individuals search for spouses in a marriage market and evaluate potential candidates based on preferences. Based on insights from earlier research, we assume that men and women prefer partners with similar educational attainment and high earnings prospects, that women tend to prefer men who are somewhat older than themselves, and that men prefer women who are in their mid-twenties. We also incorporate the insight that the educational system structures meeting opportunities on the marriage market. We assess the explanatory power of our model with systematic computational experiments, in which we simulate marriage market dynamics in 12 European countries among individuals born between 1921 and 2012. In these experiments, we make use of realistic agent populations in terms of educational attainment and earnings prospects and validate model outcomes with data from the European Social Survey. We demonstrate that the observed changes in educational assortative mating can be explained without any change in male or female preferences. We argue that our model provides a useful computational laboratory to explore and quantify the implications of scenarios for the future.

  3. School beverage environment and children's energy expenditure associated with physical education class: an agent-based model simulation.

    Science.gov (United States)

    Chen, H-J; Xue, H; Kumanyika, S; Wang, Y

    2017-06-01

    Physical activity contributes to children's energy expenditure and prevents excess weight gain, but fluid replacement with sugar-sweetened beverages (SSBs) may diminish this benefit. The aim of this study was to explore the net energy expenditure (EE) after physical education (PE) class given the competition between water and SSB consumption for rehydration and explore environmental factors that may influence the net EE, e.g. PE duration, affordability of SSB and students' SSB preference. We built an agent-based model that simulates the behaviour of 13-year-old children in a PE class with nearby water fountains and SSB vending machines available. A longer PE class contributed to greater prevalence of dehydration and required more time for rehydration. The energy cost of a PE class with activity intensity equivalent to 45 min of jogging is about 300 kcal on average, i.e. 10-15% of average 13-year-old children's total daily EE. Adding an SSB vending machine could offset PE energy expenditure by as much as 90 kcal per child, which was associated with PE duration, students' pocket money and SSB preference. Sugar-sweetened beverage vending machines in school may offset some of the EE in PE classes. This could be avoided if water is the only readily available source for children's fluid replacement after class. © 2016 World Obesity Federation.

  4. Towards thresholds of disaster management performance under demographic change: exploring functional relationships using agent-based modeling

    Directory of Open Access Journals (Sweden)

    G. Dressler

    2016-10-01

    Full Text Available Effective disaster management is a core feature for the protection of communities against natural disasters such as floods. Disaster management organizations (DMOs are expected to contribute to ensuring this protection. However, what happens when their resources to cope with a flood are at stake or the intensity and frequency of the event exceeds their capacities? Many cities in the Free State of Saxony, Germany, were strongly hit by several floods in the last years and are additionally challenged by demographic change, with an ageing society and out-migration leading to population shrinkage in many parts of Saxony. Disaster management, which is mostly volunteer-based in Germany, is particularly affected by this change, leading to a loss of members. We propose an agent-based simulation model that acts as a "virtual lab" to explore the impact of various changes on disaster management performance. Using different scenarios we examine the impact of changes in personal resources of DMOs, their access to operation relevant information, flood characteristics as well as differences between geographic regions. A loss of DMOs and associated manpower caused by demographic change has the most profound impact on the performance. Especially in rural, upstream regions population decline in combination with very short lead times can put disaster management performance at risk.

  5. Enabling the Analysis of Emergent Behavior in Future Electrical Distribution Systems Using Agent-Based Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Sonja Kolen

    2018-01-01

    Full Text Available In future electrical distribution systems, component heterogeneity and their cyber-physical interactions through electrical lines and communication lead to emergent system behavior. As the distribution systems represent the largest part of an energy system with respect to the number of nodes and components, large-scale studies of their emergent behavior are vital for the development of decentralized control strategies. This paper presents and evaluates DistAIX, a novel agent-based modeling and simulation tool to conduct such studies. The major novelty is a parallelization of the entire model—including the power system, communication system, control, and all interactions—using processes instead of threads. Thereby, a distribution of the simulation to multiple computing nodes with a distributed memory architecture becomes possible. This makes DistAIX scalable and allows the inclusion of as many processing units in the simulation as desired. The scalability of DistAIX is demonstrated by simulations of large-scale scenarios. Additionally, the capability of observing emergent behavior is demonstrated for an exemplary distribution grid with a large number of interacting components.

  6. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    Directory of Open Access Journals (Sweden)

    Samreen Laghari

    Full Text Available Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT implies an inherent difficulty in modeling problems.It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS. The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC framework to model a Complex communication network problem.We use Exploratory Agent-based Modeling (EABM, as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy.The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  7. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    Science.gov (United States)

    Laghari, Samreen; Niazi, Muaz A

    2016-01-01

    Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  8. “Space, the Final Frontier”: How Good are Agent-Based Models at Simulating Individuals and Space in Cities?

    Directory of Open Access Journals (Sweden)

    Alison Heppenstall

    2016-01-01

    Full Text Available Cities are complex systems, comprising of many interacting parts. How we simulate and understand causality in urban systems is continually evolving. Over the last decade the agent-based modeling (ABM paradigm has provided a new lens for understanding the effects of interactions of individuals and how through such interactions macro structures emerge, both in the social and physical environment of cities. However, such a paradigm has been hindered due to computational power and a lack of large fine scale datasets. Within the last few years we have witnessed a massive increase in computational processing power and storage, combined with the onset of Big Data. Today geographers find themselves in a data rich era. We now have access to a variety of data sources (e.g., social media, mobile phone data, etc. that tells us how, and when, individuals are using urban spaces. These data raise several questions: can we effectively use them to understand and model cities as complex entities? How well have ABM approaches lent themselves to simulating the dynamics of urban processes? What has been, or will be, the influence of Big Data on increasing our ability to understand and simulate cities? What is the appropriate level of spatial analysis and time frame to model urban phenomena? Within this paper we discuss these questions using several examples of ABM applied to urban geography to begin a dialogue about the utility of ABM for urban modeling. The arguments that the paper raises are applicable across the wider research environment where researchers are considering using this approach.

  9. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    Science.gov (United States)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  10. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development.

    Science.gov (United States)

    Caffrey, James R; Hughes, Barry D; Britto, Joanne M; Landman, Kerry A

    2014-01-01

    The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.