WorldWideScience

Sample records for net soil ghg

  1. Spatial-temporal variability in GHG fluxes and their functional interpretation in RusFluxNet

    Science.gov (United States)

    Vasenev, Ivan; Meshalkina, Julia; Sarzhanov, Dmitriy; Mazirov, Ilia; Yaroslavtsev, Alex; Komarova, Tatiana; Tikhonova, Maria

    2016-04-01

    High spatial and temporal variability is mutual feature for most modern boreal landscapes in the European Territory of Russia. This variability is result of their relatively young natural and land-use age with very complicated development stories. RusFluxNet includes a functionally-zonal set of representative natural, agricultural and urban ecosystems from the Central Forest Reserve in the north till the Central Chernozemic Reserve in the south (more than 1000 km distance). Especial attention has been traditionally given to their soil cover and land-use detailed variability, morphogenetic and functional dynamics. Central Forest Biosphere Reserve (360 km to North-West from Moscow) is the principal southern-taiga one in the European territory of Russia with long history of mature spruce ecosystem structure and dynamics investigation. Our studies (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) have been concentrated on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to dominated there windthrow and fallow-forest successions. In Moscow RTSAU campus gives a good possibility to develop the ecosystem and soil monitoring of GHG fluxes in the comparable sites of urban forest, field crops and lawn ecosystems taking especial attention on their meso- and micro-relief, soil cover patterns and subsoil, vegetation and land-use technologies, temperature and moisture spatial and temporal variability. In the Central Chernozemic Biosphere Reserve and adjacent areas we do the comparative analysis of GHG fluxes and balances in the virgin and mowed meadow-steppe, forest, pasture, cropland and three types of urban ecosystems with similar subsoil and relief conditions. The carried out researches have shown not only sharp (in 2-5 times) changes in GHG ecosystem and soil fluxes and balances due to seasonal and daily microclimate variation, vegetation and crop development but their essential (in 2-4 times) spatial variability due to

  2. Net ecosystem exchange from five land-use transitions to bioenergy crops from four locations across the UK - The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project.

    Science.gov (United States)

    Xenakis, Georgios; Perks, Mike; Harris, Zoe M.; McCalmont, Jon; Rylett, Daniel; Brooks, Milo; Evans, Jonathan G.; Finch, Jon; Rowe, Rebecca; Morrison, Ross; Alberti, Giorgio; Donnison, Ian; Siebicke, Lukas; Morison, James; Taylor, Gail; McNamara, Niall P.

    2016-04-01

    A major part of international agreements on combating climate change is the conversion from a fossil fuel economy to a low carbon economy. Bioenergy crops have been proposed as a way to improve energy security while reducing CO2 emissions to help mitigate the effects of climate change. However, the impact of land-use change from a traditional land use (e.g., arable and grassland) to bioenergy cropping systems on greenhouse gas balance (GHG) and carbon stocks are poorly quantified at this time. The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project was commissioned and funded by the Energy Technologies Institute (ETI) to provide scientific evidence within the UK on a range of land-use conversions (LUC) to bioenergy crops. The ELUM network consists of seven partners investigating five LUCs in four locations including Scotland, Wales, North and South England. Transitions included grasslands to short rotation forestry (SRF), to short rotation coppice willow (SRC) and to Miscanthus and arable to SRC and Miscanthus Measurements of net ecosystem exchange (NEE) along with continuous measurements of meteorological conditions were made at seven sub-sites over a two-year period. Results showed that, over two years, two of the land-uses, a grassland in South England and a grassland conversion to Miscanthus in Wales were net sources of carbon. The greatest carbon sink was into the SRF site in Scotland followed by the SRC willow in South England. The annual terrestrial ecosystem respiration (TER) for the SRC willow in North and South Sussex sites were similar, but the annual GPP at the South England site was about 27% higher than that the North England site. Establishing a long term network will allow us to continue monitoring the effects of land use change on whole ecosystem carbon balance, providing an insight into which types of LUC are suitable for bioenergy cropping in the UK.

  3. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......Organic farming (OF) principles include the idea of reducing dependence of fossil fuels, but little has been achieved on this objective so far in Danish OF. Energy use and greenhouse gas (GHG) emissions from an average 39 ha cash crop farm were calculated and alternative crop rotations for bio......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  4. Soil greenhouse gas (GHG) emissions from smallholder crop-livestock systems in Central Kenya

    Science.gov (United States)

    Ortiz Gonzalo, Daniel; Vaast, Philippe; de Neergaard, Andreas; Oelofse, Myles; Albrecht, Alain; Rosenstock, Todd S.

    2017-04-01

    Few studies measured empirically greenhouse gas (GHG) emissions in sub-Saharan Africa. More specifically, there is no experimental data on GHG emissions from coffee systems in East Africa and estimations with GHG calculators have shown some limitations. The objectives of our study are to: 1) Quantify soil GHG fluxes in smallholder coffee-dairy farms in Central Kenya and; 2) Compare results with the GHG emissions estimated with GHG calculators. The study area is situated in Murang'a County at 1700 m.a.s.l. on the Eastern slopes of the Aberdares Range, where coffee (Coffee arabica) is cultivated within integrated crop-livestock-agroforestry systems. We carried out GHG measurements along two cropping seasons using non-flow through non-steady static chambers. Sixty rectangular frames (0.355m x 0.255m) were installed at two representative farms, including the three main cropping systems found in the area: 1) Coffee (Coffee arabica); 2) Napier grass (Pennisetum purpureum); 3) Maize intercropped with beans (Zea mays and Phaseolus vulgaris). We used the gas pooling technique to overcome spatial variability and obtain a composite sample from the two treatment chambers: fertilized and non-fertilized. The sampling was performed twice per week during the rainy season and once per week during the dry season. Fertilizer and manure applications were followed by daily measurements during seven days after application. Annual fluxes (cumulative) in coffee plots ranged from 0.8 to 2.1 kg N2O-N ha-1, 6.3 to 8.2 Mg CO2-C ha-1 and -1.3 to -0.8 kg CH4-C ha-1, with higher fluxes during the rainy seasons. Emissions of N2O and CO2 from coffee plots were 20 to 80% higher than those in maize and napier grass. We found significant higher emissions in fertilized hot-spots (45 -190 % higher around coffee bushes perimeter, within maize rows and in napier holes) than in non-fertilized locations (between trees, between rows and between holes). Though this aspect is crucial for upscaling the

  5. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    Science.gov (United States)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  6. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    , with or without irrigation, etc.) and were cultivated with 15 representative crop species common to Europe. At all sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest or fire) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated...... were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from...

  7. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    Science.gov (United States)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; Zhou, Xiaolu; Wang, Meng; Zhang, Kerou; Wang, Gangsheng

    2017-10-01

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral-associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.

  8. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    Science.gov (United States)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  9. Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application

    Directory of Open Access Journals (Sweden)

    Fumiaki Takakai

    2017-06-01

    Full Text Available Methane (CH4 and nitrous oxide (N2O fluxes were measured from paddy–upland rotation (three years for soybean and three years for rice with different soil fertility due to preceding compost application for four years (i.e., 3 kg FW m−2 year−1 of immature or mature compost application plots and a control plot without compost. Net greenhouse gas (GHG balance was evaluated by integrating CH4 and N2O emissions and carbon dioxide (CO2 emissions calculated from a decline in soil carbon storage. N2O emissions from the soybean upland tended to be higher in the immature compost plot. CH4 emissions from the rice paddy increased every year and tended to be higher in the mature compost plot. Fifty-two to 68% of the increased soil carbon by preceding compost application was estimated to be lost during soybean cultivation. The major component of net GHG emission was CO2 (82–94% and CH4 (72–84% during the soybean and rice cultivations, respectively. Net GHG emissions during the soybean and rice cultivations were comparable. Consequently, the effects of compost application on the net GHG balance from the paddy–upland rotation should be carefully evaluated with regards to both advantages (initial input to the soil and disadvantages (following increases in GHG.

  10. Short and mid-term effects of different biochar additions on soil GHG fluxes

    Science.gov (United States)

    Maier, Regine; Soja, Gerhard; Friesl-Hanl, Wolfgang; Dunst, Gerald; Kitzler, Barbara

    2015-04-01

    The application of biochar (BC) to soils may have a positive influence on physico-chemical soil properties and the mitigation of greenhouse gas (GHG) emissions. Furthermore, biochar contributes to a long-term soil carbon sequestration. The aim of this study is to explore short and mid-term effects (one day up to six months) of different BC-compost applications on soil GHG emissions, particularly CO2, CH4, N2O and NOx. In addition, compounds of the nitrogen cycle like NH4+, NO3- and the microbial biomass nitrogen (Nmic) were measured. For this purpose a field experiment in Kaindorf (Styria/Austria, gleyic Cambisol, loamy, 376 m.a.s.l.) with 16 plots and four different treatments was conducted. K = no BC-compost mixture but fertilized (NH4SO4) corresponding to T3 in 2013; T1 = 1 % BC-compost mixture, no addition of N in 2013 and 2014; T2 = 0.5 % BC-compost mixture, + 175 kg N ha-1 in 2013 and 2014; T3 = 1% BC-compost mixture, + 350 kg N ha-1 in 2013. Nitrogen was added as (NH4)2SO4 directly to the freshly produced biochar before mixing it with compost. Greenhouse gas fluxes (CO2, CH4, N2O) were measured monthly from closed chambers in the field over a period of six months, starting 30 days before BC application and ended shortly before harvesting in September. For the analysis of nitric oxide (NO) fluxes intact soil cylinders were taken from each plot and incubated at the laboratory at ambient air temperature. Mineral N contents were measured by the extraction with KCl-solution and the microbial biomass with chloroform-fumigation extraction (CFE). Biochar application to our agricultural soil showed no reduction potential of NO emissions, but N2O fluxes were significantly lower at T1 and T3 compared to treatment K. Gaseous N fluxes of the pure BC-compost mixture and the additional N fertilization with (NH4)2SO4 led to enormous gaseous N losses in form of N2O and NO. However, after application to the soil, fluxes were only higher for a short time period. We suggest

  11. The Land-use influence on soil GHG emission in condition of Moscow megalopolis

    Science.gov (United States)

    Vizirskaya, Maria; Epikhina, Anna; Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    he modern Global climate change problems are closely connected to greenhouses gases (GHG) balance in dominated landscapes. This problem is especially actual in case of sharply man-changed urban landscapes. Up to now not so many studies have deal with urbanization (functional zoning, land-use type, soil contamination etc.) effect on soils GHG emission spatial-temporal variability at the local and regional scale, although the global scale land-use changes and human impacts are reported to be the main factors behind soil CO2 emission. Moscow megalopolis (with population 12-16 million) is the biggest one not only for European territory of Russia but for Europe too. Our study has been done in representative urban landscapes with different land-use practices typical for Moscow: urban forest (widespread in the North of Moscow) and green lawns with different functional zoning (11 sites in total). Forest sites have been studied during 7 years and differ in mesorelief (small hill summit and two slopes). Green lawns vary in the functional use (residential, recreational and industrial) and level of human impact (normal and high). In each plot soil respiration was measured in field conditions using Li-6400-XT system. We separate autotrophic (root-derived) and heterotrophic (microbial-derived) soil respiration in the field using micro (1mm) and macro (1 cm) pore meshes. The measurements have been done weekly since June till October 2012 in 3 replicas per each plot. Additionally we analyze CH4 emission using the exposition chamber measurements method. The conducted research have shown high temporal and spatial variability of CO2 and CH4 fluxes due to functional zoning, slope, vegetation type, land-use practice, soil microclimate characteristics. The highest CO2 emission is typical for green lawns where the CO2 fluxes reached 3.3 µmol CO2m-2s-1, which is 2.5-3 times more than the one of the urban forest. Comparative analysis of the roots and microorganisms contribution in total

  12. SoilNet - A Zigbee based soil moisture sensor network

    Science.gov (United States)

    Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.

    2007-12-01

    Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25

  13. An Alternative Default Soil Organic Carbon Method for National GHG Inventory Reporting to the UNFCCC

    Science.gov (United States)

    Ogle, S. M.; Gurung, R.; Klepfer, A.; Spencer, S.; Breidt, J.

    2016-12-01

    Estimating soil organic C stocks is challenging because of the large amount of data needed to evaluate the impact of land use and management on this terrestrial C pool. Moreover, some of the required data are rarely collected by governments through surveys programs, and are not typically available in remote sensing products. Examples include data on organic amendments, cover crops, crop rotation sequences, vegetated fallows, and fertilization practices. Due to these difficulties, only about 20% of the countries report soil organic C stock changes in their national communications to the UNFCCC. Yet, C sequestration in soils represents one of the least expensive options for reducing greenhouse gas emissions, and has the largest potential for mitigation in the agricultural sector. In order to facilitate reporting, we developed an alternative approach to the current default method provided by the Intergovernmental Panel on Climate Change (IPCC) for estimating soil organic C stock changes in mineral soils. The alternative method estimates the steady-state C stocks for a three pool model given annual crop yields or net primary production as the main input, along with monthly average temperature, total precipitation and soil texture data. Yield data are commonly available in a national agricultural census, and global datasets exists with adequate data for weather and soil texture if national datasets are not available. Tillage and irrigation data are also needed to address the impact of these practices on decomposition rates. The change in steady-state stocks is assumed to occur over a few decades. A Bayesian analysis framework has been developed to derive probability distribution functions for the parameters, and the method is being applied in a global analysis of soil organic carbon stock changes.

  14. Greenhouse gas (GHG) emissions from soils amended with digestate derived from anaerobic treatment of food waste.

    Science.gov (United States)

    Pezzolla, Daniela; Bol, Roland; Gigliotti, Giovanni; Sawamoto, Takuji; López, Aranzazu Louro; Cardenas, Laura; Chadwick, David

    2012-10-30

    The application of organic materials to agricultural lands is considered good practice to improve soil organic matter content and recycle nutrients for crop growth. The anaerobic treatment of food waste may have environmental benefits, particularly with regard to greenhouse gases (GHGs) mitigation and enhancement of carbon sequestration. This work presents the results from a field experiment to evaluate CO(2) , CH(4) and N(2) O emissions from grassland amended with digestate produced by anaerobic fermentation of food waste. Experimental plots, located close to Rothamsted Research-North Wyke, were established using a randomized block design with three replicates and two treatments, added digestate (DG) and the unamended control (CNT). The digestate was applied on three occasions at an equivalent rate of 80 kg N ha(-1) . The application of digestate led to an increase in CO(2) emissions, especially after the 2(nd) application (74.1 kg CO(2) -C ha(-1)  day(-1) ) compared with the CNT soil (36.4 kg CO(2) -C ha(-1)  day(-1) ), whereas DG treatment did not affect the overall CH(4) and N(2) O emissions. The total grass yield harvested on a dry matter basis was greater in the DG treated plots (0.565 kg m(-2) ) than in the CNT plots (0.282 kg m(-2) ), as was the (15)  N content in the harvest collected from the DG plots. The results suggest that the digestate can be applied to agricultural land as a fertilizer to grow crops. Our study was conducted in an exceptionally dry growing season, so conclusions about the effect of digestate on GHG emissions should take this into account, and further field trials conducted under more typical growing seasons are needed. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Evaluating the applicability of the ECOSSE model to predict GHG emissions from managed organic soils in Brandenburg, Germany

    Science.gov (United States)

    Franz, Daniela; Gottschalk, Pia; Giebels, Michael; Richards, Mark; Yeluripati, Jagadeesh; Smith, Jo

    2010-05-01

    Greenhouse gas (GHG) balances associated with managed peatlands are not yet well understood. For instance, drainage of peatlands for agricultural use can cause a rise of CO2 and N2O fluxes whereas CH4 emissions decrease. A better understanding of the underlying processes will improve current estimates and predictions of GHG balances as well as soil carbon stocks under climate change. Furthermore, possible emission mitigating options for land-use may be identified. In Germany peatland represents four percent of the area and accounts for 2.3 to 4.5 percent of Germany's total GHG emissions, due to the fact that more than 95 % of German peatlands are currently managed or were cultivated in the past. To estimate and better understand GHG fluxes from peat soils soil organic matter (SOM) models can be employed. However, current state of the art SOM models do not account for specific peat soil conditions and very few modelling approaches specifically designed for organic soils have been developed as yet. We evaluate the applicability of a new SOM model - ECOSSE (Estimating Carbon in Organic Soils - Sequestration and Emissions). ECOSSE was constructed for peat soils in Scotland and Wales and developed from the SUNDIAL-model of carbon and nitrogen turnover in arable soils. The model is driven by commonly available meteorological data, soil parameters and management information. The main aim of ECOSSE is to predict the effect of land-use and climate change on GHG fluxes and therefore to assess the mitigation potential of C and N losses from organic soils by adapted land-use policy. We simulate GHG emissions for fen sites of the Rhin-Havelluch in Brandenburg, Germany, with different land-uses. Model results are evaluated against measured data of CH4 and N2O fluxes over three years, from 2007 to 2009. The measurements of these fluxes were obtained using the closed-chamber method and subsequent GC analysis within the project "Climate protection - fen-use-strategies" which was

  16. Dynamics of soil GHG emissions shaped by hydration state, aggregate size distribution and carbon placement: Column experiments using artificial soil aggregates

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    Dynamics of soil hydration affect microbial community dynamics and various biogeochemical processes (soil respiration, denitrification, methane production). Evidence suggests that anoxic conditions may persist in soil aggregates (long after bulk soil is aerated) thereby providing niches for anaerobic microbial communities (hot spots). Despite their recognized role in mediating soil biogeochemical fluxes, systematic studies of the impact of different environmental conditions on CO2, N2O and CH4 emissions from soil aggregates remain rare. We constructed artificial aggregates using a silt loam soil of different sizes and different carbon configurations (mixed, core, no addition) to study effects of hydration, aggregate size and carbon source configuration on GHG emissions. An assembly of aggregates of three sizes (18, 12, and 6 mm aggregates) was embedded in sand columns at four distinct layers (3 replicates for each aggregate-carbon source, 9 columns) and the water level was varied periodically to quantify effects of wetting/drying and submersion on GHG fluxes. Several gas samples were taken from the headspaces of each column (after closure) and analyzed using GC with the proper detectors to resolve fluxes. Results illustrate the critical role of hydration states on GHG emission, for example, lowering the water table (unsaturated conditions) decreases CH4 emissions while increasing N2O flux. We observe links between aerobic processes (e.g., nitrification) and anaerobic denitrification presumably by promoting alternative pathways (e.g., ammonia and nitrite oxidation). Methane production was activated under highly anoxic conditions (prolonged inundation). N2O production was highest form aggregates with carbon placed in the (anoxic) core whereas CO2 production rates were comparable from mixed and centered carbon sources (at rates that fluctuated with hydration conditions). Experimental results of artificial soil aggregates are of interest for improvement of physically

  17. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps.......Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...

  18. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    Science.gov (United States)

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  19. A Portable, Low-Power Analyzer and Automated Soil Flux Chamber System for Measuring Wetland GHG Emissions

    Science.gov (United States)

    Nickerson, Nick; Kim-Hak, David; McArthur, Gordon

    2017-04-01

    Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas

  20. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: Exploration of the GHG balance and economic performance of three case studies

    NARCIS (Netherlands)

    Wicke, B.; Smeets, E.M.W.; Razzaque, A.; Stille, L.; Singh, R.K.; Awan, A.R.; Mahmoodi, K.; Faaij, A.P.C.

    2013-01-01

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro) forestry) based on three case studies in South Asia. The economic impact of trading carbon

  1. Site Specific Landfill CH4 Emissions: Shortcomings of National GHG Inventory Guidelines and a New Process-Based Approach Linked to Climate and Soil Microclimate

    Science.gov (United States)

    Bogner, J. E.; Spokas, K.; Corcoran, M.

    2012-12-01

    Current (2006) IPCC national GHG inventory guidelines for landfill CH4, which estimate CH4 generation from the mass of waste in place, have high uncertainties, cannot be reliably related to measured emissions at specific sites, and lack comprehensive field validation. Moreover, measured landfill CH4 emissions vary over a wide range from >1000 g/m2/d down to negative values (uptake of atmospheric CH4). Literature over the last decade has emphasized that the major factors controlling emissions in these highly managed soil systems are gaseous transport rates as affected by the thickness and physical properties of cover soils, methanotrophic CH4 oxidation in cover materials as a function of seasonal soil microclimate. and the presence or absence of engineered gas extraction. Thus we developed and field validated a new site specific annual inventory model that incorporates specific soil profile properties and soil microclimate modeling coupled to 0.5° scale global climatic models. Based on 1D diffusion, CALMIM (California Landfill Methane Inventory Model) is a freely available JAVA tool which models a typical annual cycle for CH4 emissions from site specific daily, intermediate, and final landfill cover designs. This new approach, which is compliant with IPCC Tier III criteria, was originally field validated at two California sites (Monterey County; Los Angeles County), with limited field validation at three additional California sites. In addition to regional defaults for inventory purposes, CALMIM permits user selectable parameters and boundary conditions for more rigorous site specific applications where detailed CH4 emissions, meteorological, and soil microclimate data exist. We report here on improvements and expanded international field validation for CALMIM 5.2 in collaboration with research groups in the U.S., Europe, Africa, Asia, and Australia.odeled and measured annual cycle of landfill CH4 emissions for Austrian site. Cover consists of 50 cm sand & gravel

  2. Soil respiration and net N mineralization along a climate gradient in Maine

    Science.gov (United States)

    Jeffery A. Simmons; Ivan J. Fernandez; Russell D. Briggs

    1996-01-01

    Our objective was to determine the influence of temperature and moisture on soil respiration and net N mineralization in northeastern forests. The study consisted of sixteen deciduous stands located along a regional climate gradient within Maine. A significant portion of the variance in net N mineralization (41 percent) and respiration (33 percent) was predicted by...

  3. Soil cover patterns and dynamics impact on GHG fluxes in RF native and man-changed ecosystems

    Science.gov (United States)

    Vasenev, Ivan; Nesterova, Olga

    2017-04-01

    The increased soil spatial-temporal variability is mutual feature for most mature natural and particularly man-changed terrestrial ecosystems in Central and Far-East regions of Russia with soil cover strongly pronounced bioclimatic zoning and landscape-geomorphologic differentiation. Soil cover patterns (SCP) detailed morphogenetic analysis and typification is useful tool for soil forming and degradation processes quantitative evaluation, land ecological state and functional quality quantitative assessment. Quantitative analysis and functional-ecological interpretation of representative SCP spatial variability is especially important for environmentally friendly and demand-driven land-use planning and decision making. The carried out 33-years region- and local-scale researches of the wide zonal-provincial set of representative ecosystems and SCP with different types and history of land-use (forest, meadow-steppe, agricultural and recreational ones) give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. Succession process-based analysis of modern evolution of man-changed and natural soils and ESCP essentially increases accuracy of quantitative assessments of dominant soil forming and degradation processes rate and potential, their influence on land and soil cover quality and ecosystem services. Their results allow developing the regional and landscape adapted versions of automated land evaluation systems and land-use DSS. The validation and ranging of the limiting factors of ESCP regulation and develop¬ment, ecosystem principal services (with especial attention on greenhouse gases emissions, soil carbon dynamics and sequestration potential, biodiversity and productivity, hydrological regimes and geomorphologic stabilization), land functional qualities and agroecological state have been done for dominating and

  4. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  5. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Science.gov (United States)

    Sainju, Upendra M.

    2016-01-01

    practices and combined management practices were even more effective than individual management practices in reducing net GHG emissions from cropland soils. Partial accounting overestimated GWP and GHGI values as sinks or sources of net GHGs compared with full accounting when evaluating the effect of management practices. PMID:26901827

  6. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    practices and combined management practices were even more effective than individual management practices in reducing net GHG emissions from cropland soils. Partial accounting overestimated GWP and GHGI values as sinks or sources of net GHGs compared with full accounting when evaluating the effect of management practices.

  7. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  8. Past and future of GHG observations in Africa

    Science.gov (United States)

    Bombelli, A.; Valentini, R.; Battipaglia, G.; Chiti, T.; Nicolini, G.; Santini, M.; Vaglio Laurin, G.; Castaldi, S.

    2015-12-01

    Through the projects CarboAfrica before (2006-2010) and Africa-GHG afterwards (2010-2014) the authors have contributed to the development of a flux monitoring network in Sub-Saharan Africa and studied the Africa's GHG budget using different integrated approaches.The first GHG flux observatory in an African tropical rainforest was established, based on a 60m eddy covariance flux tower in the Ankasa Conservation Area, Ghana. CO2, water and energy fluxes, as well as atmospheric concentrations of gaseous N compounds and aerosols, were measured continuously throughout the year. Field campaigns were carried out during the wet and dry season to measure CH4 and N2O fluxes. The results showed that the tropical forest was acting as C-sink (6-8 MgC ha-1 yr-1).Other measurements and results concerned: the role of CO2 fertilization by analyzing wood growth rings of long-lived trees, with the longest (≈ 400 years) chronology for tropical forests; 14C measurements of soil organic matter age and turnover, showing the critical role that soil may have on the net organic C accumulation in tropical forests; the role of soil as CH4 source even in forests not visibly flooded; the role of tropical forests as natural source of N2O; the application of advanced remote sensing techniques, such as discrete and wave forms LiDAR, to assess tropical forests biomass and biodiversity. All these data were combined with other modeling and observing efforts to reassess the African continent GHG budget. The results showed that Africa is a small sink of carbon (-0.61±0.58 PgC yr-1), but the emissions of CH4 and N2O turn it into a net source of radiative forcing in CO2 equivalent terms. Uncertainties however are still very high. In order to constrain such uncertainty it is of paramount importance to increase the density of observations in space and time so to cover the complex and dynamic temporal and spatial variability of African ecosystems.

  9. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  10. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Kelleher, F. M. [Lincoln Univ., Soil Sience Dept., Lincoln, (New Zealand); McSeveny, T. M. [Manaaki Whenua-Landcare Research, Lincoln, (New Zealand); Byers, J. N. [Almuth Arneth Landcare Research, Lincoln (New Zealand)

    1998-12-01

    Tree carbon uptake (net primary productivity excluding fine root turnover, NPP`) in pine trees growing in a region of New Zealand subject to summer soil water deficit was investigated jointly with canopy assimilation (A{sub c}) and ecosystem-atmosphere carbon exchange rate (net ecosystem productivity, NEP). Canopy assimilation and NEP were used to drive a biochemically-based and environmentally constrained model validated by seasonal eddy covariance measurements. Over a three year period with variable rainfall annual NPP` and NEP showed significant variations. At the end of the growing season, carbon was mostly allocated to wood, with nearly half to stems and about a quarter to coarse roots. On a biweekly basis NPP` lagged behind A{sub c}, suggesting the occurrence of intermediate carbon storage. On an annual basis, however the NPP`/A{sub c} ratio indicated a conservative allocation of carbon to autotrophic respiration. The combination of data from measurements with canopy and ecosystem carbon fluxes yielded an estimate of heterotrophic respiration (NPP`-NEP) of approximately 30 per cent of NPP` and 50 per cent NEP. The annual values of NEP and NPP` can also be used to derive a `best guess` estimate of the annual below-ground carbon turnover rate, assuming that the annual changes in the soil carbon content is negligible. 46 refs., 7 figs.

  11. The Evaluation on the Cadmium Net Concentration for Soil Ecosystems

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2017-03-01

    Full Text Available Yixing, known as the “City of Ceramics”, is facing a new dilemma: a raw material crisis. Cadmium (Cd exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT, the ex situ static equilibrium approach (HAc, EDTA and CaCl2, and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops—paddy and zizania aquatica—were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved

  12. Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape

    Science.gov (United States)

    Peters, Emily B.; McFadden, Joseph P.

    2012-09-01

    In a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA, we simultaneously measured net CO2 exchange of trees using sap flow and leaf gas exchange measurements, net CO2exchange of a turfgrass lawn using eddy covariance from a portable tower, and total surface-atmosphere CO2 fluxes (FC) using an eddy covariance system on a tall tower. Two years of continuous measurements showed that net CO2exchange varied among vegetation types, with the largest growing-season (Apr-Nov) net CO2 uptake on a per cover area basis from evergreen needleleaf trees (-603 g C m-2), followed by deciduous broadleaf trees (-216 g C m-2), irrigated turfgrass (-211 g C m-2), and non-irrigated turfgrass (-115 g C m-2). Vegetation types showed seasonal patterns of CO2exchange similar to those observed in natural ecosystems. Scaled-up net CO2 exchange from vegetation and soils (FC(VegSoil)) agreed closely with landscape FC measurements from the tall tower at times when fossil fuel emissions were at a minimum. Although FC(VegSoil) did not offset fossil fuel emissions on an annual basis, the temporal pattern of FC(VegSoil) did significantly alter the seasonality of FC. Total growing season FC(VegSoil)in recreational land-use areas averaged -165 g C m-2 and was dominated by turfgrass CO2 exchange (representing 77% of the total), whereas FC(VegSoil) in residential areas averaged -124 g C m-2 and was dominated by trees (representing 78% of the total). Our results suggest urban vegetation types can capture much of the variability required to predict seasonal patterns and differences in FC(VegSoil) that could result from changes in land use or vegetation composition in temperate cities.

  13. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    Science.gov (United States)

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  14. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  15. Investigating the Effect of Soil Moisture on Net Ecosystem Exchange in Shale Hills

    Science.gov (United States)

    Griffiths, Z. G.; Davis, K. J.; He, Y.

    2016-12-01

    Carbon sinks have the ability to absorb more carbon dioxide than what they emit. The terrestrial biome acts as a huge carbon sink, however, this ability is dependent on different environmental factors. This study focused on the effects of soil moisture on net ecosystem exchange(NEE) in the Shale Hills Critical Zone Observatory, PA. It was hypothesized that the strength of the carbon sink would grow with wetter soils. Data was collected from the eddy-covariance flux tower, a COSMOS soil moisture probe, automated soil respiration chambers and sap flow probes for May to August between the years 2011-2016. Since temperature and photosynthetically active radiation(PAR) also have an effect on carbon fluxes, these variables were isolated to properly study soil moisture and carbon fluxes. Generally, less carbon dioxide was absorbed with increasing soil moisture. Since NEE is a combination of photosynthesis and respiration, the effect of soil moisture was studied separately for each process. The sap flow data showed a decrease in activity with increasing soil moisture, hence photosynthesis was most likely reduced. Additionally, more carbon dioxide was emitted from respiration with increasing soil moisture. These findings could possibly explain why the forest at Shale Hills tends to release more carbon dioxide with increasing soil moisture.

  16. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies.

    Science.gov (United States)

    Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C

    2013-09-30

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Net transformation of phosphorus forms applied as inorganic and organic amendments to a calcareous soil

    Science.gov (United States)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    The forms of phosphorus (P) in animal manure composts are different from that of synthetic P fertilizers, and this could affect how soil P chemistry will be altered when they are used as P amendments. The objective of this study was to analyze the net changes in the nature and dynamics of plant available P forms applied either as inorganic P (KH2PO4) or turkey litter compost (TLC) in calcareous soil with and without plant growth. Forms of TLC-P were characterized by x-ray diffraction and solution 31P NMR spectroscopy techniques. The amounts of various P forms in soils were measured by a sequential fractionation method after 4, 8, 12 and 16 weeks incubation. Brushite (Ca-P) and newberyite (Mg-P) were the major forms of inorganic P, and phosphate monoester was the major form of organic P present in TLC. The addition of inorganic P fertilizer increased the labile/moderately labile P, whereas the compost increased the moderately labile P extractable with weak acid (pH 4.2). Even though the amount of the labile P fraction in the compost-treated soil was smaller than that in the fertilizer-treated soils, ryegrass growth and plant P uptake were greater. The net transformation of the labile/moderately labile P was slower in the compost-treated soil without plant growth, however it was faster with plant growth. This study showed that P applied either as an inorganic or an organic amendment was recovered in different P fractions in a calcareous soil, and therefore it is expected that the P source would affect soil P chemistry. A weak acid extractable inorganic P fraction should be considered as plant available P especially in the compost-treated soil, that is converted into plant available P through direct and/or indirect root-induced acidification in the rhizosphere.

  18. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine ...... to SAccMin. Conclusively, different treatment histories influenced the quality (e.g., chemical composition) and cycling rate of the organic S pool, rather than its size...

  19. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  20. Urbanization has a positive net effect on soil carbon stocks: modelling outcomes for the Moscow region

    Science.gov (United States)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Leemans, Rik; Valentini, Riccardo

    2016-04-01

    Urbanization is responsible for large environmental changes worldwide. Urbanization was traditionally related to negative environmental impacts, but recent research highlights the potential to store soil carbon (C) in urban areas. The net effect of urbanization on soil C is, however, poorly understood. Negative influences of construction and soil sealing can be compensated by establishing of green areas. We explored possible net effects of future urbanization on soil C-stocks in the Moscow Region. Urbanization was modelled as a function of environmental, socio-economic and neighbourhood factors. This yielded three alternative scenarios: i) including neighbourhood factors; ii) excluding neighbourhood factors and focusing on environmental drivers; and iii) considering the New Moscow Project, establishing 1500km2 of new urbanized area following governmental regulation. All three scenarios showed substantial urbanization on 500 to 2000km2 former forests and arable lands. Our analysis shows a positive net effect on SOC stocks of 5 to 11 TgC. The highest increase occurred on the less fertile Orthic Podzols and Eutric Podzoluvisols, whereas C-storage in Orthic Luvisols, Luvic Chernozems, Dystric Histosols and Eutric Fluvisols increased less. Subsoil C-stocks were much more affected with an extra 4 to 10 TgC than those in the topsoils. The highest increase of both topsoil and subsoil C stocks occurred in the New Moscow scenario with the highest urbanization. Even when the relatively high uncertainties of the absolute C-values are considered, a clear positive net effect of urbanization on C-stocks is apparent. This highlights the potential of cities to enhance C-storage. This will progressively become more important in the future following the increasing world-wide urbanization.

  1. EV-GHG Mobile Source

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  2. Soil-Net: development and impact of innovative, open, online soil science educational resources

    OpenAIRE

    Hallett, Stephen H.; Caird, Sally

    2017-01-01

    Despite recognition of soil as a major global natural resource and longstanding policy recognition of its importance for understanding environmental systems and stewardship in a rapidly urbanizing world, soil science has been underrepresented in teaching National Curriculum in UK schools. Alongside concerns about declining student participation in science education, a key challenge is how to effectively engage students and address inadequacies in soil education. A UK government–funded initiat...

  3. Flood effects on efflux and net production of nitrous oxide in river floodplain soils

    Science.gov (United States)

    Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg

    2016-04-01

    Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In

  4. GlobalSoilMap.net – a new digital soil map of the world

    NARCIS (Netherlands)

    Hartemink, A.E.; Hempel, J.; Lagacherie, P.; McBratney, A.B.; MacMillan, R.A.; Montanarella, L.; Sanchez, P.A.; Walsh, M.; Zhang, G.L.

    2010-01-01

    Knowledge of the world soil resources is fragmented and dated. There is a need for accurate, up-to-date and spatially referenced soil information as frequently expressed by the modelling community, farmers and land users, and policy and decision makers. This need coincides with an enormous leap in

  5. A regional field-based assessment of organic C sequestration and GHG balances in irrigated agriculture in Mediterranean semi-arid land

    Science.gov (United States)

    Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma

    2016-04-01

    In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These

  6. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China.

    Science.gov (United States)

    Wang, Yongsheng; Liu, Yansui; Liu, Ruliang; Zhang, Aiping; Yang, Shiqi; Liu, Hongyuan; Zhou, Yang; Yang, Zhengli

    2017-05-09

    The efficacy of biochar as an environmentally friendly agent for non-point source and climate change mitigation remains uncertain. Our goal was to test the impact of biochar amendment on paddy rice nitrogen (N) uptake, soil N leaching, and soil CH 4 and N 2 O fluxes in northwest China. Biochar was applied at four rates (0, 4.5, 9 and13.5 t ha -1 yr -1 ). Biochar amendment significantly increased rice N uptake, soil total N concentration and the abundance of soil ammonia-oxidizing archaea (AOA), but it significantly reduced the soil NO 3 - -N concentration and soil bulk density. Biochar significantly reduced NO 3 - -N and NH 4 + -N leaching. The C2 and C3 treatments significantly increased the soil CH 4 flux and reduced the soil N 2 O flux, leading to significantly increased net global warming potential (GWP). Soil NO 3 - -N rather than NH 4 + -N was the key integrator of the soil CH 4 and N 2 O fluxes. Our results indicate that a shift in abundance of the AOA community and increased rice N uptake are closely linked to the reduced soil NO 3 - -N concentration under biochar amendment. Furthermore, soil NO 3 - -N availability plays an important role in regulating soil inorganic N leaching and net GWP in rice paddies in northwest China.

  7. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands......, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its d13C signature. Leaching of biogenic DIC was 8.34.9 gm2 yr1 for forests, 24.17.2 gm2 yr1 for grasslands, and 14.64.8 gm2 yr1 for croplands. DOC leaching equalled 3.51.3 gm2 yr1 for forests, 5.32.0 gm2 yr1 for grasslands...... ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...

  8. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    Science.gov (United States)

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  9. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    Science.gov (United States)

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-01-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type. PMID:26450811

  10. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...... and temperate climate zones. It was stressed that evaluation of emission factors should explicitly differentiate between data representing net C balance from a soil perspective and CO2-C balance from an atmospheric perspective. Modelling of inter-annual variability in NEE for three selected sites during a 21...

  11. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Science.gov (United States)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  12. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    Science.gov (United States)

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  13. [Mineralogy and genesis of mixed-layer clay minerals in the Jiujiang net-like red soil].

    Science.gov (United States)

    Yin, Ke; Hong, Han-Lie; Li, Rong-Biao; Han, Wen; Wu, Yu; Gao, Wen-Peng; Jia, Jin-Sheng

    2012-10-01

    Mineralogy and genesis were investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) to understand the mineralogy and its genesis significance of mixed-layer clay minerals in Jiujiang red soil section. XRD and FTIR results show that the net-like red soil sediments are composed of illite, kaolinite, minor smectite and mixed-layer illite-smectite and minor mixed-layer kaolinite-smectite. HRTEM observation indicates that some smectite layers have transformed into kaolinite layers in net-like red soil. Mixed-layer illite-smectite is a transition phase of illite transforming into smectite, and mixed-layer kaolinite-smectite is a transitional product relative to kaolinite and smectite. The occurrence of two mixed-layer clay species suggests that the weathering sequence of clay minerals in net-like red soil traversed from illite to mixed-layer illite-smectite to smectite to mixed-layer kaolinite-smectite to kaolinite, which indicates that net-like red soil formed under a warm and humid climate with strengthening of weathering.

  14. Greenhouse gas emission factors associated with rewetting of organic soils

    Directory of Open Access Journals (Sweden)

    D. Wilson

    2016-04-01

    Full Text Available Drained organic soils are a significant source of greenhouse gas (GHG emissions to the atmosphere. Rewetting these soils may reduce GHG emissions and could also create suitable conditions for return of the carbon (C sink function characteristic of undrained organic soils. In this article we expand on the work relating to rewetted organic soils that was carried out for the 2014 Intergovernmental Panel on Climate Change (IPCC Wetlands Supplement. We describe the methods and scientific approach used to derive the Tier 1 emission factors (the rate of emission per unit of activity for the full suite of GHG and waterborne C fluxes associated with rewetting of organic soils. We recorded a total of 352 GHG and waterborne annual flux data points from an extensive literature search and these were disaggregated by flux type (i.e. CO2, CH4, N2O and DOC, climate zone and nutrient status. Our results showed fundamental differences between the GHG dynamics of drained and rewetted organic soils and, based on the 100 year global warming potential of each gas, indicated that rewetting of drained organic soils leads to: net annual removals of CO2 in the majority of organic soil classes; an increase in annual CH4 emissions; a decrease in N2O and DOC losses; and a lowering of net GHG emissions. Data published since the Wetlands Supplement (n = 58 generally support our derivations. Significant data gaps exist, particularly with regard to tropical organic soils, DOC and N2O. We propose that the uncertainty associated with our derivations could be significantly reduced by the development of country specific emission factors that could in turn be disaggregated by factors such as vegetation composition, water table level, time since rewetting and previous land use history.

  15. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  16. Net regional methane sink in high artic soils of northeast Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Johansen, K. M. L.; Westergaard-Nielsen, Andreas

    2015-01-01

    Arctic tundra soils serve as potentially important but poorly understood sinks of atmospheric methane (CH4), a powerful greenhouse gas1, 2, 3, 4, 5. Numerical simulations project a net increase in methane consumption in soils in high northern latitudes as a consequence of warming in the past few...... decades3, 6. Advances have been made in quantifying hotspots of methane emissions in Arctic wetlands7, 8, 9, 10, 11, 12, 13, but the drivers, magnitude, timing and location of methane consumption rates in High Arctic ecosystems are unclear. Here, we present measurements of rates of methane consumption...... in different vegetation types within the Zackenberg Valley in northeast Greenland over a full growing season. Field measurements show methane uptake in all non-water-saturated landforms studied, with seasonal averages of − 8.3 ± 3.7 μmol CH4 m−2 h−1 in dry tundra and − 3.1 ± 1.6 μmol CH4 m−2 h−1 in moist...

  17. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    Science.gov (United States)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  18. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  19. Comparison of GHG fluxes from conventional and energy crop production from adjacent fields in the UK, using novel technologies

    Science.gov (United States)

    Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve

    2016-04-01

    allowed, for the first time, continuous ecosystem exchange of all three biogenic GHGs to be measured from OSR and Miscanthus at high spatial resolution (Consequently, the time of day at which any comparison of soil respiration between these two crops is made strongly biases the findings. Our data highlight the delicate balance which energy crops must maintain in order to ensure carbon-neutrality, and suggest that crops requiring fertiliser input will potentially become a net GHG source once indirect emissions (e.g. from fertiliser production) are accounted for. Furthermore, diurnal patterns of GHG flux should be assessed and used to guide suitable future manual measurement regimes.

  20. The influence of cockchafer larvae on net soil methane fluxes under different vegetation types - a mesocosm study

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph

    2017-04-01

    The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and

  1. Electricity trade and GHG emissions: Assessment of Quebec's hydropower in the Northeastern American market (2006-2008)

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Mourad, E-mail: ben.amor@b2b2c.c [CIRAIG-Ecole Polytechnique de Montreal (Canada); Pineau, Pierre-Olivier [CIRAIG-HEC Montreal (Canada); Gaudreault, Caroline [NCASI (Canada); Samson, Rejean [CIRAIG-Ecole Polytechnique de Montreal (Canada)

    2011-03-15

    Worldwide electricity sector reforms open up electricity markets and increase trades. This has environmental consequences as exports and imports either increase or decrease local production and consequently greenhouse gas (GHG) emissions. This paper's objective is to illustrate the importance of electricity trade's impact on GHG emissions by providing an estimate of the net GHG emissions resulting from these trades. To achieve this objective, Quebec hourly electricity exchanges with adjacent jurisdictions were examined over the 2006-2008 period. In order to associate a specific GHG emission quantity to electricity trades, hourly marginal electricity production technologies were identified and validated using the Ontario hourly output per power plant and information released in the Quebec adjacent system operator reports. It is estimated that over three years, imports into Quebec were responsible for 7.7 Mt of GHG, while Quebec hydropower exports avoided 28.3 Mt of GHG emissions. Hence, the net result is 20.6 Mt of avoided emissions over 2006-2008, or about 7 Mt per year, which corresponds to more than 8% of the Quebec yearly GHG emissions. When GHG emissions from all life cycle stages (resource extraction to end-of-life) are accounted for, the net avoided GHG emissions increase by 35%, to 27.9 Mt. - Research highlights: {yields} Environmental benefits of hydropower exports are considerable. {yields} Detailed GHG assessment of such electricity trade is missing from the literature. {yields} Net GHG emissions estimate resulting from such trade is provided. {yields} GHG gains are significant in the Northeast American electricity market due to such electricity trade.

  2. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil-air partitioning.

    Science.gov (United States)

    Cabrerizo, Ana; Dachs, Jordi; Moeckel, Claudia; Ojeda, María-José; Caballero, Gemma; Barceló, Damià; Jones, Kevin C

    2011-06-01

    Soils are a major reservoir of organic pollutants, and soil-air partitioning and exchange are key processes controlling the regional fate of pollutants. Here, we report and discuss the soil concentrations of polycyclic aromatic hydrocarbons (PAHs), their soil fugacities, the soil-air partition coefficients (K(SA)) and soil-air gradients for rural and semirural soils, in background areas of N-NE Spain and N-NW England. Different sampling campaigns were carried out to assess seasonal variability and differences between sampling sites. K(SA) values were dependent on soil temperature and soil organic quantity and type. Soil fugacities of phenanthrene and its alkyl homologues were 1-2 orders of magnitude higher than their ambient air fugacities for all sampling sites and periods. The soil to air fugacity ratio was correlated with soil temperature and soil redox potential. Similar trends for other PAHs were found but with lower fugacity ratios. The ubiquitous source of PAHs from background soils to the atmosphere found in all temperate regions in different seasons provides an indirect evidence of potential in situ generation of two to four ring PAHs and their alkyl homologues in the surface soil. We discuss this hypothetical biogenic source and other potential processes that could drive the high soil to air fugacity ratios of some PAHs.

  3. Simulating soil greenhouse emissions from Swiss long-term cropping system trials

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Skinner, Colin; Büchi, Lucie; Berner, Alfred; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Wittwer, Raphael; Gattinger, Andreas; Six, Johan

    2017-04-01

    There is an urgent need to identify and evaluate management practices for their bio-physical potential to mitigate greenhouse gas (GHG) emissions from agriculture. The cost and time required for direct management-specific GHG measurements limit the spatial and temporal resolution and the extent of data that can be collected. Biogeochemical process-based models such as DayCent can be used to bridge data gaps over space and time and estimate soil GHG emissions relevant to various climate change mitigation strategies. Objectives of this study were (a) to parameterize DayCent for common Swiss crops and crop-specific management practices using the Swiss long-term experimental data collected at four sites (Therwil, Frick, Changins, and Reckenholz); (b) to evaluate the model's ability to predict crop productivity, long-term soil carbon dynamics and N2O emissions from Swiss cropping systems; (c) to calculate a net soil GHG balance for all treatments (except for bio-dynamic) studied in long-term field experiments in Switzerland; and (d) to study the management effects and their interactions on soil GHG emissions at each experimental site. Model evaluation indicated that DayCent predicted crop productivity (rRMSE=0.29 r2=0.81, n=2614), change in soil carbon stock (rRMSE=0.14, r2=0.72, n=1289) and cumulative N2O emissions (rRMSE=0.25, r2=0.89, n=8) satisfactorily across all treatments and sites. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation on an annual basis using IPCC (2014) global warming potentials. Modelled net soil GHG emissions calculated for individual treatments over 30 years ranged from -594 to 1654 kg CO2 eq ha-1 yr-1. The highest net soil GHG emissions were predicted for conventional tillage and slurry application treatment at Frick, while soils under organic and reduced tillage management at Reckenholz acted as a net GHG sink. The statistical analyses using linear MIXED models indicated that net soil GHG

  4. DairyGHG: a tool for evaluating the greenhouse gas emissions and carbon footprint of dairy production systems

    Science.gov (United States)

    Greenhouse gas (GHG) emissions and their potential impact on the environment have become important national and international concerns. Dairy production, along with all other animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from our farm...

  5. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  6. Seeing the soil through the net: an eye-opener on the soil map of the Flemish region (Belgium)

    Science.gov (United States)

    Dondeyne, Stefaan; Vanierschot, Laura; Langohr, Roger; Van Ranst, Eric; Deckers, Jozef; Oorts, Katrien

    2017-04-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. The legend of these detailed soil maps (scale 1:20,000) has been converted to the 3rd edition of the international soil classification system 'World Reference Base for Soil Resources' (WRB). Over the last years, the government of the Flemish region made great efforts to make these maps, along with other environmental data, available to the general audience through the internet. The soil maps are widely used and consulted by researchers, teachers, land-use planners, environmental consultancy agencies and archaeologists. The maps can be downloaded and consulted in the viewer 'Visual Soil Explorer' ('Bodemverkenner'). To increase the legibility of the maps, we assembled a collection of photographs from soil profiles representing 923 soil types and 413 photos of related landscape settings. By clicking on a specific location in the 'Visual Soil Explorer', pictures of the corresponding soil type and landscape appear in a pop-up window, with a brief explanation about the soil properties. The collection of photographs of soil profiles cover almost 80% of the total area of the Flemish region, and include the 100 most common soil types. Our own teaching experience shows that these information layers are particular valuable for teaching soil geography and earth sciences in general. Overall, such visual information layers should contribute to a better interpretation of the soil maps and legacy soil data by serving as an eye-opener on the soil map to the wider community.

  7. Map of Natural (Landscape) and Permafrost Zones and the Net of Soil Temperature Meteorological Stations in Russia and Middle Asian Mountains, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a vector coverage of the Map of Natural Landscape and Permafrost Zones and the Net of Soil Temperature Meteorological Stations in Russia and Middle...

  8. Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Colleen M [ORNL; Hooker, Toby [Utah State University (USU); Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2011-01-01

    Elevated atmospheric [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. However, sustained forest production will depend on the nutrient balance of the forested ecosystem. Our aim was to examine the causes and consequences of increased fine-root production and mortality throughout the soil profile under elevated CO2 with respect to potential gross nitrogen (N) cycling rates. Our study was conducted in a CO2-enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were two-fold: (1) determine whether N is available for root acquisition in deeper soil, and (2) determine whether increased inputs of labile C from greater fine-root mortality at depth under elevated [CO2] had altered N cycling rates. While gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where microbial consumption of mineral N was reduced. Overall, up to 60% of potential gross N mineralization, and 100% of potential net N mineralization, occurred below 15-cm depth at this site. This finding was supported by in situ measurements from ion-exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.

  9. Soil properties associated with net nitrification following watershed conversion with Appalachian hardwoods to Norway spruce

    Science.gov (United States)

    Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth. Adams

    2011-01-01

    Nitrate (NO3-N) in soil solution and streamwater can be an important vector of nitrogen (N) loss from forested watersheds, and nitrification is associated with negative consequences of soil acidification and eutrophication of aquatic ecosystems. The purpose of this study was to identify vegetation-mediated soil properties that may control...

  10. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    Science.gov (United States)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  11. Cost-effective sampling of ¹³⁷Cs-derived net soil redistribution: part 1--estimating the spatial mean across scales of variation.

    Science.gov (United States)

    Li, Y; Chappell, A; Nyamdavaa, B; Yu, H; Davaasuren, D; Zoljargal, K

    2015-03-01

    The (137)Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many (137)Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of (137)Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954-2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate (137)Cs-derived net soil redistribution across scales of variation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    NARCIS (Netherlands)

    Kindler, R.; Siemens, J.; Kaiser, K.; Moors, E.J.

    2011-01-01

    Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and

  13. Earthworm species composition affects the soil bacterial community and net nitrogen mineralization

    NARCIS (Netherlands)

    Postma-Blaauw, M.B.; Bloem, J.; Faber, J.H.; Groenigen, van J.W.; Goede, de R.G.M.; Brussaard, L.

    2006-01-01

    Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological

  14. Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia

    Directory of Open Access Journals (Sweden)

    David G. Masters

    2012-08-01

    Full Text Available On-farm activities that reduce GHG emissions or sequester carbon from the atmosphere to compensate for anthropogenic emissions are currently being evaluated by the Australian Government as carbon offset opportunities. The aim of this study was to examine the implications of establishing and grazing Kikuyu pastures, integrated as part of a mixed Merino sheep and cropping system, as a carbon offset mechanism. For the assessment of changes in net greenhouse gas emissions, results from a combination of whole farm economic and livestock models were used (MIDAS and GrassGro. Net GHG emissions were determined by deducting increased emissions from introducing this practice change (increased methane and nitrous oxide emissions due to higher stocking rates from the soil carbon sequestered from growing the Kikuyu pasture. Our results indicate that livestock systems using perennial pastures may have substantially lower net GHG emissions, and reduced GHG intensity of production, compared with annual plant-based production systems. Soil carbon accumulation by converting 45% of arable land within a farm enterprise to Kikuyu-based pasture was determined to be 0.80 t CO2-e farm ha−1 yr−1 and increased GHG emissions (leakage was 0.19 t CO2-e farm ha−1 yr−1. The net benefit of this practice change was 0.61 t CO2-e farm ha−1 yr−1 while the rate of soil carbon accumulation remains constant. The use of perennial pastures improved the efficiency of animal production almost eight fold when expressed as carbon dioxide equivalent emissions per unit of animal product. The strategy of using perennial pasture to improve production levels and store additional carbon in the soil demonstrates how livestock should be considered in farming systems as both sources and sinks for GHG abatement.

  15. National and Sectoral GHG Mitigation Potential

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper compares model estimates of national and sectoral GHG mitigation potential across six key OECD GHG-emitting economies: Australia, Canada, the EU, Japan, Mexico and the US. It examines the implications of model structure, baseline and policy assumptions, and assesses GHG mitigation potential estimates across a variety of models, including models that are used to inform climate policy-makers in each of these economies.

  16. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  17. Energy and GHG Analysis of Rural Household Biogas Systems in China

    Directory of Open Access Journals (Sweden)

    Lixiao Zhang

    2014-02-01

    Full Text Available The Chinese government has taken great efforts to popularize rural household scale biogas digesters, since they are regarded as an effective approach to address energy shortage issues in rural areas and as a potential way of reducing greenhouse gas (GHG emissions. Focusing on a typical rural household biogas system, the aim of this study is to systematically quantify its total direct and indirect energy, concentrating on non-renewable energy and the associated GHG emission cost over the entire life cycle to understand its net dynamic benefits. The results show that the total energetic cost for biogas output is 2.19 J/J, of which 0.56 J is from non-renewable energy sources and the GHG emission cost is 4.54 × 10−5 g CO2-equivalent (CO2-eq, with respect to its design life cycle of 20 years. Correspondingly, a net non-renewable energy saving of 9.89 × 1010 J and GHG emission reduction of 50.45 t CO2-eq can be obtained considering the coal substitution and manure disposal. However, it must be run for at least 10 and 3 years, to obtain positive net non-renewable energy savings and GHG emission reduction benefits, respectively. These results have policy implications for development orientation, follow-up services, program management and even national financial subsidy methods.

  18. Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets

    Science.gov (United States)

    Richard D. Bergman; Hanwen Zhang; Karl Englund; Keith Windell; Hongmei Gu

    2016-01-01

    Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration...

  19. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    Science.gov (United States)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  20. Quantifying GHG Emissions From Terrestrial Ecosystems In Africa - The Crucial Role Of Livestock Systems

    Science.gov (United States)

    Butterbach-Bahl, K.; Pelster, D.; Goopy, J.

    2015-12-01

    Knowledge on GHG fluxes from terrestrial ecosystems in Africa remains limited. Published field trials on soil GHG fluxes are summarized in approx. 10 research papers. Emissions related to livestock production, which are dominating most current estimates, rely on modelling work. Thus, uncertainties for African GHG fluxes are likely the highest at continental scale. Even though total GHG fluxes from agricultural soils seem to be low (insufficient fertilizer use/ soil degradation) the opposite might be true for livestock systems. Emissions per kg edible milk protein in SSA are a magnitude higher as for Europe (>100 kg CO2eq kg-1). Differences are related to feed intake, quality and availability, species and breeds, etc. Besides, handling of animal wastes is often less sophisticated, resulting in high nutrient losses and GHG fluxes. Estimates remain unconstrained, since in-situ measurements are missing and emission factors, developed elsewhere, are applied without verification to the African situation. To support African countries to improve emission reporting, to improve productivity of the agricultural sector while minimizing GHG fluxes and to allow them to play a vital role in emission trading, , requires to build in-continent research capacity. The International Livestock Research Institute (ILRI), has recently established a state-of-the art GHG laboratory in East Africa, which is envisioned to build a knowledge hub for environmental research. First measurement results indicate that EF for excreta applications to rangelands might be largely overestimated, mainly due to its rather low N concentrations. On the other hand, EF for ruminant CH4 emissions might be strongly underestimated, since those do not consider that livestock is often held at sub-maintenance levels. Thus, an international initiative is needed to support African countries to learn about land based GHG fluxes and to build research capacity. When do we start?

  1. Valuing Avoided Soil Erosion by Considering Private and Public Net Benefits

    OpenAIRE

    Barry, Luke E.; Paragahawewa, Upananda Herath; Yao, Richard T.; Turner, James A

    2011-01-01

    The population in New Zealand is expected to increase to over five million by the mid 2020’s from the current level of 4.3 million (Statistics New Zealand, 2009). An increasing demand for primary produce as a result may put pressure on marginal land to be farmed. Understanding the economic value of avoided erosion in New Zealand is therefore an important factor in policy making to optimise the soil related activities in the economy. Establishing a methodology for estimating the economic value...

  2. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  3. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada

    Directory of Open Access Journals (Sweden)

    Brian G. McConkey

    2012-09-01

    Full Text Available To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture.

  4. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada.

    Science.gov (United States)

    Vergé, Xavier P C; Dyer, James A; Worth, Devon E; Smith, Ward N; Desjardins, Raymond L; McConkey, Brian G

    2012-09-04

    To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO₂e y(-1). The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture.

  5. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia

    Science.gov (United States)

    Büdel, Burkhard; Williams, Wendy J.; Reichenberger, Hans

    2018-01-01

    Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m-2 yr-1, corresponding to an annual carbon gain of 2.75 g m-2 yr-1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m-2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m-2 yr-1, equivalent to a carbon gain of 1.7 g m-2 yr-1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m-2 s-1

  6. GHG mitigation of agricultural peatlands requires coherent policies

    DEFF Research Database (Denmark)

    Regina, Kristina; Budiman, Arif; Greve, Mogens Humlekrog

    2016-01-01

    As soon as peat soil is drained for agricultural production, the peat starts to degrade, which causes emissions to the atmosphere. In countries with large peatland areas, the GHG mitigation potential related to management of these soils is often estimated as the highest amongst the measures...... available in agriculture. Although the facts are well known, the policies leading to diminished emissions are often difficult to implement. We have analysed the reasons why the mitigation potential is not fully utilized and what could be done better in national implementation of climate policies. Four cases...... are used to illustrate the necessary steps to reach mitigation targets: determining the amount and properties of peat soils, estimating the potential, costs and feasibility of the mitigation measures, and selecting and implementing the best measures. A common feature for all of the cases was that national...

  7. Developing the GHG inventory for South Africa

    CSIR Research Space (South Africa)

    Taviv, R

    2008-10-01

    Full Text Available will be used for the Second National Communication to the UNFCCC. Furthermore, the GHG inventory will be a critical source of information for air quality management and climate change mitigation in South Africa...

  8. Biochar for reducing GHG emissions in Norway: opportunities and barriers to implementation.

    Science.gov (United States)

    Rasse, Daniel; O'Toole, Adam; Joner, Erik; Borgen, Signe

    2017-04-01

    Norway has ratified the Paris Agreement with a target nationally determined contribution (NDC) of 40% reduction of greenhouse gas emissions by 2030, with the land sector (AFOLU) expected to contribute to this effort. Increased C sequestration in soil, as argued by the 4 per 1000 initiative, can provide C negative solutions towards reaching this goal. However, Norway has only 3% of its land surface that is cultivated, and management options are fairly limited because the major part is already under managed grasslands, which are assumed to be close to C saturation. By contrast, the country has ample forest resources, allowing Norway to report 25 Mt CO2-eq per year of net CO2 uptake by forest. In addition, the forest industry generates large amounts of unused residues, both at the processing plants but also left decaying on the forest floor. Because of the unique characteristics of the Norwegian land sector, the Norwegian Environment Agency reported as early as 2010 that biochar production for soil C storage had the largest potential for reducing GHG emissions through land-use measures. Although straw is a potential feedstock, the larger quantities of forest residues are a prime candidate for this purpose, as exemplified by our first experimental facility at a production farm, which is using wood chips as feedstock for biochar production. The highly controlled and subsidised Norwegian agriculture might offer a unique test case for implementing incentives that would support farmers for biochar-based C sequestration. However, multiple barriers remain, which mostly revolve around the complexity of finding the right implementation scheme (including price setting) in a changing landscape of competition for biomass (with e.g. bioethanol and direct combustion), methods of verification and variable co-benefits to the farmer. Here we will present some of these schemes, from on-farm biochar production to factories for biochar-compound fertilizers, and discuss barriers and

  9. Net greenhouse gas emissions at Eastmain-1 reservoir, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Alain; Bastien, Julie; Bonneville, Marie-Claude; del Giorgio, Paul; Demarty, Maud; Garneau, Michelle; Helie, Jean-Francois; Pelletier, Luc; Prairie, Yves; Roulet, Nigel; Strachan, Ian; Teodoru, Cristian

    2010-09-15

    The growing concern regarding the long-term contribution of freshwater reservoirs to atmospheric greenhouse gases (GHG), led Hydro-Quebec, to study net GHG emissions from Eastmain 1 reservoir, which are the emissions related to the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period. This large study was realized in collaboration with University du Quebec a Montreal, McGill University and Environnement IIlimite Inc. This is a world premiere and the net GHG emissions of EM-1 will be presented in details.

  10. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    OpenAIRE

    Jiao Chen; Zhaoqiong Chen; Yingwei Ai; Jingyao Xiao; Dandan Pan; Wei Li; Zhiyu Huang; Yumei Wang

    2015-01-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO4 2− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil acc...

  11. The diet-related GHG index

    DEFF Research Database (Denmark)

    Lund, Thomas Bøker; Watson, David; Smed, Sinne

    2017-01-01

    The aim was to construct and validate a cost-efficient index to measure GHG emissions (GHGe) caused by Danish consumers’ diets to be employed in questionnaire-based surveys. The index was modelled on the basis of actual food purchase data from a panel of ordinary Danish households and a questionn......The aim was to construct and validate a cost-efficient index to measure GHG emissions (GHGe) caused by Danish consumers’ diets to be employed in questionnaire-based surveys. The index was modelled on the basis of actual food purchase data from a panel of ordinary Danish households......-efficient way to estimate diet-related GHG emissions of Danish consumers. Since the index is responsive to relevant socio-demographic and attitudinal factors, it can be utilised to monitor key attitudinal/habitual and socio-demographic drivers of change....

  12. Anthropogenic Disturbance of Montane Meadows May Cause Substantial Loss of Soil Carbon to the Atmosphere

    Science.gov (United States)

    Reed, C. C.; Sullivan, B. W.; Hart, S. C.; Drew, M.; Merrill, A.

    2016-12-01

    High-elevation meadows are biological hotspots that contain high densities of soil carbon (C). The capacity of these ecosystems to sequester C depends on a combination of high primary productivity, seasonally low temperatures, and anaerobic soil conditions associated with water tables at or near the soil surface. However, anthropogenic disturbances in many montane meadows in California's Sierra Nevada have lowered water tables, decreased primary productivity, and created aerobic soil conditions - changes that may alter the balance of greenhouse gas (GHG) emissions and reverse meadows from a net C sink to a net source. Recently, C policy in California has spurred interest in the potential of hydrologic restoration to increase C sequestration in meadows. However, soil C pools and fluxes in degraded meadows must be quantified before the impacts of restoration can accurately be assessed. In this study, we measured soil C stocks in surface soil (1 m) and annual soil GHG fluxes (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) in three degraded, northern Sierra Nevada meadows. In a parallel laboratory incubation, we manipulated meadow soil water content to determine target goals for restoration of anaerobic conditions. Our results suggest that degraded meadows contain large reservoirs of existing C, but that this C may be vulnerable to decomposition under current conditions. Soil CO2 fluxes ranged from 26.7-33.1 Mg of CO2 ha-1 y-1, roughly equivalent to the amount of C sequestered annually by 70 acres of U.S. forests. These high rates of soil respiration, combined with low primary productivity, resulted in substantial losses of soil C with implications for climate change, ecosystem function, and restoration. Soils from these meadows were a net source of N2O and a net sink of CH4, but these fluxes were 4 orders of magnitude smaller than CO2. Also, we found substantial GHG emissions persist in these organic soils at peak soil moisture, suggesting that

  13. Atmospheric impact of abandoned boreal organic agricultural soils depends on hydrological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maljanen, M.; Martikainen, P.J. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], E-Mail: marja.maljanen@uef.fi; Hytonen, J. [Finnish Forest Research Inst., Kannus (Finland); Makiranta, P.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Forest Sciences; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)

    2013-09-01

    Drained agricultural peat soils are significant sources of carbon dioxide (CO{sub 2}) but also small sinks for methane (CH{sub 4}). Leaving these soils without any cultivation practice could be an option to mitigate GHG emissions. To test this hypothesis, we measured, over a three year period, net CO{sub 2} exchange and fluxes of CH{sub 4} for five agricultural peat soils that had been abandoned for 20-30 years. Annually, the sites were either small net sinks or sources of CO{sub 2} and CH{sub 4} (-7,8 to 530 g CO{sub 2}-Cm {sup -2} and -0,41 to 1,8 g CH{sub 4}m{sup -2}). Including N{sub 2}O emissions from our previous study, the net (CH{sub 4}+CO{sub 2}+N{sub 2}O) emissions as CO{sub 2} equivalents were lower than in cultivated peat soils and were lowest in the wet year. Therefore, high GHG emissions from these soils could be avoided if the water table is maintained close to the soil surface when photosynthesis is favoured over respiration. (orig.)

  14. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xi, E-mail: icy124@hotmail.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Toma, Yo [Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Ehime (Japan); Yeluripati, Jagadeesh [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Iwasaki, Shinya [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Bellingrath-Kimura, Sonoko D. [Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems (Germany); Jones, Edward O. [Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London (United Kingdom); Hatano, Ryusuke [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan)

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha{sup −1} yr{sup −1} in 1959–0.26 Mg C ha{sup −1} yr{sup −1} in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate

  15. Soil Trace Gas Flux for Wetland Vegetation Zones in North Dakota Prairie Pothole Basins

    Science.gov (United States)

    Phillips, R. L.; Beeri, O.; Dekaiser, E. S.

    2003-12-01

    Wetland ecosystems are considered a source for radiatively trace gases [methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O)] but flux data for these greenhouse gases are lacking for depressional wetlands that comprise the Prairie Pothole Region. This region is characterized by thousands of small, closed basins that extend along the Missouri Coteau from north central Iowa to central Alberta. Surrounding each body of water are conspicuous zonation patterns given by specific vegetation life-forms and soil properties that are predominately formed by basin hydrology. Basin vegetation zones include deep marsh, shallow marsh, wet meadow, low prairie, and cropland (Stewart and Kantrud,1971). Our primary objective was to determine if net greenhouse gas flux for soils in these wetland basins [mg/m2/day CO2 equivalent (IPCC, 2000)] vary with vegetative zone for prairie pothole ecosystems. These data may then be used to map estimates for total basin greenhouse gas (GHG) flux. Additionally, we aimed to find the relative contribution of each of the 3 trace gases (CO2, CH4 and N2O) to net GHG flux. We hypothesized that flux would be greatest for marsh areas and lowest for upland areas. We selected a semi-permenant prairie pothole research site in Max, ND and mapped respective vegetative zones for 3 adjacent basins. Sample points were randomly selected for each basin and zone using aerial imagery. Samples of soil gases were collected using the static chamber method on August 3, 2003, and these were analyzed using gas chromatography for CO2, CH4 and N2O the following day. Soil moisture, clay content, organic matter, and temperature data were also collected. Net greenhouse gas flux for the cropped zone soils was significantly lower (pwetland zones within these closed basin ecosystems and that CH4 contributes most to net GHG flux for these wetland soils.

  16. National Greenhouse Gas Emission Inventory (EV-GHG)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  17. Salt Marsh Net Ecosystem Carbon Balance: Improving Methods to Quantify the Role of Lateral (Tidal) Exchanges

    Science.gov (United States)

    Kroeger, K. D.

    2016-02-01

    Coastal wetlands are prime candidates for greenhouse gas emission offsets as they display extraordinarily high rates of carbon (C) sequestration. However, lack of data about rates of and controls on C sequestration in tidal wetlands, as well as substantial temporal and spatial heterogeneity, complicate development of both models and a methodology for use by C registries. The goals of our field research are to improve understanding of the climatic role of coastal wetlands, quantify potential for GHG emission offsets through restoration or preservation, and quantify impacts of eutrophication and other environmental factors. Among our objectives is to construct C and greenhouse gas (GHG) budgets for salt marshes, based on measurements of GHG exchanges with the atmosphere, C storage in soils, and lateral (tidal) exchanges of gases, C, and sediment. In this presentation, emphasis is on rate and source of tidal exchanges between salt marshes and adjacent estuaries. We measured fluxes by collecting high frequency data on tidal water flows and physical and chemical conditions in wetland channels using acoustic and optical sensors, as well as laser absorption spectrometry. To provide site-specific calibrations of sensors, we collected water samples across tidal cycles and seasons. Source investigations include analysis of stable isotope and lipid compositions. We used multiple regressions to estimate dissolved organic (DOC) and inorganic carbon (DIC) concentrations at high frequency over extended time. Carbon flux was calculated as the product of concentration and water flux, corrected for modeled flow outside of the tidal creek. Annual rates of net C flux from wetland to estuary indicate that both DOC and DIC are large terms in the salt marsh carbon budget relative to net exchange with the atmosphere and rate of storage in soil, and that DIC flux may have been underestimated in previous studies.

  18. Connecting the cycles: impact of farming practices, Carbon and nutrient erosion on GHG emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2013-04-01

    This study focuses on identifying links between GHG emissions, soil management and soil erosion that are not considered in the commonly applied emission calculations associated with farming and soil erosion. The role of agriculture in generating GHG emissions through the use of fertilizers and fossil fuels is well documented. The negative impacts of soil erosion on agricultural land and its productivity have also been studied extensively. The lateral movement of soil through terrestrial ecosystems has also been recognized as a significant flux of C within the global C cycle. Soil erosion removes approximately 0.5 Gt of C per year from agricultural land. Much of this C is deposited in the landscape, effectively burying the organic matter from the atmosphere and taking it, at least for an unspecified time, out of the C exchange between soil and atmosphere. Such calculations raise the notion that soil erosion generates an unintentional benefit for climate, owing to the long-term burial of soil organic Carbon. But limiting the assessment of the impact of soil erosion on climate change to organic carbon burial ignores, apart from economic and social damages, the coupling between biogeochemical cycles. For example, the eroded nitrogen has to be replaced, at least in part by artificial fertilizers, to maintain soil fertility. At this point the sediment, Carbon and nitrogen cycles meet, because the production of fertilizer generates greenhouse gases. The production of one ton of fertilizer generates on the order of 850 kg of carbon dioxide. Applying this number to the 0.5 GT C erosion estimate, the amount of nitrogen lost owing to erosion each year yields carbon dioxide emissions of 0.02-0.04 Pg per year. These emissions correspond to 15-30% of the organic carbon buried owing to soil erosion. In this presentation, the full complexity of biogeochemical cycling on agricultural land is explored and connections between cycles which require consideration for a full GHG emission

  19. Net soil respiration and greenhouse gas balance along a sequence of forest disturbance to smallholder rubber and oil palm plantations in Sumatra

    Science.gov (United States)

    Khusyu Aini, Fitri; Hergoualc'h, Kristell; Smith, Jo; Verchot, Louis; Martius, Christopher

    2017-04-01

    The rapid increase in demand for land to establish oil palm and rubber plantations has led to the conversion of forests, with potential impacts on greenhouse gas emissions and on climate change. This study evaluates the net greenhouse gas balance following forest change to other land uses, i.e. one year rubber plantation, twenty-year rubber plantation and eight year oil palm plantation on Sumatran mineral soils. None of the plantations had ever been fertilized previously. During this study they were fertilized to provide nitrogen at the recommended rate used by farmers (33.3 kg N ha-1 y-1). The ecosystem stores carbon in litterfall, standing litter biomass (undergrowth vegetation, leaves, twigs, litter on the soil surface), soil organic matter, root biomass, and standing tree biomass. It releases carbon to the atmosphere through soil respiration fluxes, negative values indicating that carbon is stored by the land use change and positive values indicating emissions to the atmosphere. Net soil respiration was assessed using a mass balance approach: standing litter and tree biomass were measured once; the rate of carbon accumulation from standing litter and tree biomass was calculated by dividing the stock by the age of plantation or the time since logging started in the disturbed forest. The carbon accumulation in standing litter, tree biomass in the forest and soil organic matter for all land-uses was estimated from available in the literature. Root biomass for each land-use system was calculated using the root:shoot ratio. The net soil respiration of carbon dioxide from the forest, disturbed forest, one year rubber plantation, twenty-year rubber plantation and oil palm plantation were calculated to be -6 (± 5), 12 (± 6), 11 (± 15), 10 (± 5), 39 (± 7) Mg ha-1 y-1, respectively. Soil nitrous oxide, methane and litterfall were measured for 14 months and respiration fluxes were measured for 5 months across land uses and different seasons. The measured emissions of

  20. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity.

    Science.gov (United States)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D; Jones, Edward O; Hatano, Ryusuke

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959-2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from -1.26MgCha(-1)yr(-1) in 1959-0.26 Mg Cha(-1)yr(-1) in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959-2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  2. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    Science.gov (United States)

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  3. Linking GHG Emission Trading Systems and Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Several different types of links are possible between different GHG-mitigation systems. These include: Linking two or more emission trading schemes so that emissions trading can occur both within and between different schemes ('direct links'); and Linking emission trading systems to registries/mechanisms and systems that generate offsets from project based mechanisms or from direct purchases/transfers of AAUs ('indirect links').

  4. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  5. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  6. CHANGES IN GHG EMISSIONS AND EURO STANDARDS

    Directory of Open Access Journals (Sweden)

    Miljko Kokić

    2007-06-01

    Full Text Available An enormous price increase of crude oil, limited fossil resources and the impact of greenhouse gas (GHG emissions on global warming have strengthened the efforts to develop alternatives- renewable to the classical-oil fuel. The world leading manufacturers of the motor vehicles have relatively easily satisfied increasingly more stringent EURO standards, ECE Regulations or EEC Directives. The vehicle manufacturers of Serbia may satisfy EURO standards primarily by purchasing the appropriate foreign made engines. Based on the analysis presented in this paper, it is concluded that Florida model with diesel engine, is very environmentally friendly vehicle for our conditions.

  7. Plant diversity affects GHG fluxes in an ecological engineering experiment in a disturbed Sphagnum peatland (La Guette, France)

    Science.gov (United States)

    Gogo, Sébastien; Laggoun-Défarge, Fatima; Leroy, Fabien; Guimbaud, Christophe; Bernard-Jannin, Léonard

    2017-04-01

    Many Sphagnum peatlands are experiencing vegetation change caused mainly by hydrological disturbances. In the context of these direct and indirect modifications, greenhouse gases (GHG) fluxes are affected by peat oxygenation, changes in litter composition (and thus decomposition) and rhizospheric processes (such as root exudates). This could lead a C sink system to switch to a source. To restore peatland functioning, ecological engineering works can be undertaken. Our study site, La Guette peatland (central France) is invaded by Molinia caerulea because a drain at the output decreased the water table depth. It was shown that it functioned as a source of C. In 2014, hydrological works were undertaken: 8 dams were installed, ditches were dug perpendicular to the water flow and back-filled with a mixture of shales and bentonite. In addition, a biodiversity experiment with 2 identical experimental stations was implemented: "downstream", close to the hydraulic works (relatively wet), "upstream", (relatively dry), with types of 3 vegetation plot (2m x 2m, n=4): 1) "control": intact vegetation (Molinia caerulea, Erica tetralix), 2) "bare" peat: vegetation and 5cm of peat were removed, 3) "Sphagnum": bare peat+Sphagnum. Our study aims to assess the effect of the vegetation treatment on the GHG fluxes. CO2 (ecosystem respiration or ER, Gross Primary Production or GPP, and Net Ecosystem Exchange) and CH4 fluxes (manual accumulation chamber), air and soil temperature, water table level, soil moisture were measured. After 18 months, half of the surface of "bare" and "Sphagnum" plots were covered by vegetation (Eriophorum angustifolium, Rynchospora alba, Trichophorum cespitosum). With time, as succession unfolds in these 2 types of station, ER and GPP increased. The sensitivity of ER to temperature increased sharply in "bare" and "Sphagnum" plots with years and became higher than the sensitivity in "control" plots. GPP increased with the total vegetation percentage cover

  8. Australian net (1950s-1990) soil organic carbon erosion: implications for CO2 emission and land-atmosphere modelling

    Science.gov (United States)

    The debate remains unresolved about soil erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2. There is little historical land use and management context to this debate, which is central to Australia's recent past of European settlement, agricultura...

  9. Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil

    DEFF Research Database (Denmark)

    Mathieu, O.; Levegue, J.; Henault, C.

    2007-01-01

    or relatively low (15)N enrichment levels and requires a good knowledge of the isotopic fractionation effect inherent to this biological mechanism. This paper reports the measurement of the net and instantaneous isotopic fractionation factor (alpha(i)(s/p)) during the denitrification of NO(3)(-) to N(2)O over...... a range of (15)N substrate enrichments (0.37 to 1.00 atom% (15)N). At natural abundance level, the isotopic fractionation effect reported falls well within the range of data previously observed. For (15)N-enriched substrate, the value of alpha(i)(s/p) was not constant and decreased from 1.024 to 1......Nitrous oxide, a greenhouse gas, is mainly emitted from soils during the denitrification process. Nitrogen stable-isotope investigations can help to characterise the N(2)O source and N(2)O production mechanisms. The stable-isotope approach is increasingly used with (15)N natural abundance...

  10. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast.

    Science.gov (United States)

    Gomez, Joshua; Vidon, Philippe; Gross, Jordan; Beier, Colin; Caputo, Jesse; Mitchell, Myron

    2016-05-01

    Although anthropogenic emissions of greenhouse gases (GHG: CO2, CH4, N2O) are unequivocally tied to climate change, natural systems such as forests have the potential to affect GHG concentration in the atmosphere. Our study reports GHG emissions as CO2, CH4, N2O, and CO2eq fluxes across a range of landscape hydrogeomorphic classes (wetlands, riparian areas, lower hillslopes, upper hillslopes) in a forested watershed of the Northeastern USA and assesses the usability of the topographic wetness index (TWI) as a tool to identify distinct landscape geomorphic classes to aid in the development of GHG budgets at the soil atmosphere interface at the watershed scale. Wetlands were hot spots of GHG production (in CO2eq) in the landscape owing to large CH4 emission. However, on an areal basis, the lower hillslope class had the greatest influence on the net watershed CO2eq efflux, mainly because it encompassed the largest proportion of the study watershed (54 %) and had high CO2 fluxes relative to other land classes. On an annual basis, summer, fall, winter, and spring accounted for 40, 27, 9, and 24 % of total CO2eq emissions, respectively. When compared to other approaches (e.g., random or systematic sampling design), the TWI landscape classification method was successful in identifying dominant landscape hydrogeomorphic classes and offered the possibility of systematically accounting for small areas of the watershed (e.g., wetlands) that have a disproportionate effect on total GHG emissions. Overall, results indicate that soil CO2eq efflux in the Archer Creek Watershed may exceed C uptake by live trees under current conditions.

  11. Connecting the cycles: Impact of sediment, carbon and nutrient erosion on GHG emissions

    Science.gov (United States)

    Kuhn, N. J.

    2012-04-01

    The role of agriculture in generating greenhouse gas (GHG) emissions through the use of fertilizers and fossil fuels is well documented. The negative impacts of soil erosion on agricultural land and its productivity have also been studied extensively. The lateral movement of soil through terrestrial ecosystems has also been recognized as a significant flux of C within the global C cycle. Soil erosion removes approximately 0.5 Gt of C/a from agricultural land. Much of this C is deposited in the landscape, effectively burying the organic matter from the atmosphere and taking it, at least for an unspecified time, out of the C exchange between soil and atmosphere. Such calculations raise the notion that soil erosion generates an unintentional benefit for climate, owing to the long-term burial of soil organic C. But limiting the assessment of the impact of soil erosion on climate change to organic C burial ignores, apart from economic and social damages, the coupling between biogeochemical cycles. For example, the eroded N has to be replaced, at least in part by artificial fertilizers, to maintain soil fertility. At this point the sediment, C and N cycles meet, because the production of fertilizer generates greenhouse gases. The production of one ton of fertilizer generates on the order of 850 kg of CO2 (West and Marland, 2002). Applying this number to the 0.5 Gt C erosion estimate, the amount of N lost owing to erosion each year yields CO2 emissions of 0.02-0.04 Pg/a. These emissions correspond to 15-30% of the organic C buried owing to soil erosion. In this presentation, the full complexity of biogeochemical cycling on agricultural land is explored and connections between cycles which require consideration for a full GHG emission balance of soil erosion on agricultural land are identified.

  12. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain.

    Science.gov (United States)

    Del Prado, A; Mas, K; Pardo, G; Gallejones, P

    2013-11-01

    There is world-wide concern for the contribution of dairy farming to global warming. However, there is still a need to improve the quantification of the C-footprint of dairy farming systems under different production systems and locations since most of the studies (e.g. at farm-scale or using LCA) have been carried out using too simplistic and generalised approaches. A modelling approach integrating existing and new sub-models has been developed and used to simulate the C and N flows and to predict the GHG burden of milk production (from the cradle to the farm gate) from 17 commercial confinement dairy farms in the Basque Country (northern Spain). We studied the relationship between their GHG emissions, and their management and economic performance. Additionally, we explored some of the effects on the GHG results of the modelling methodology choice. The GHG burden values resulting from this study (0.84-2.07 kg CO2-eq kg(-l) milk ECM), although variable, were within the range of values of existing studies. It was evidenced, however, that the methodology choice used for prediction had a large effect on the results. Methane from the rumen and manures, and N2O emissions from soils comprised most of the GHG emissions for milk production. Diet was the strongest factor explaining differences in GHG emissions from milk production. Moreover, the proportion of feed from the total cattle diet that could have directly been used to feed humans (e.g. cereals) was a good indicator to predict the C-footprint of milk. Not only were some other indicators, such as those in relation with farm N use efficiency, good proxies to estimate GHG emissions per ha or per kg milk ECM (C-footprint of milk) but they were also positively linked with farm economic performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Modeling GHG emission and energy consumption in selected greenhouses in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, SH.; Khoshnevisan, B. [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran, Islamic Republic of)

    2013-07-01

    It is crucial to determine energy efficiency and environmental effects of greenhouse productions. Such study can be a viable solution in probing challenges and existing defects. The aims of this study were to analyze energy consumption and greenhouse gas (GHG) emissions for pepper production using biological method inside greenhouses which used natural gas (NG) heating system in Esfahan province. Data were collected from 22 greenhouse holders using a face to face questionnaire method, in 2010-2011. Also, functional area was selected 1000 m2. Total energy input, total energy output, energy ratio, energy productivity, specific energy, net energy gain and total GHG emissions were calculated as 297799.9 MJ area-1, 3851.84 MJ area-1, 0.013, 0.016 kg MJ-1, 61.85 MJ kg-1, -293948 MJ area-1 and 14390.85 kg CO2 equivalent area-1, respectively. Result revealed that replacing diesel fuel with NG will not be an effective way of reducing energy consumption for greenhouse production. However, it is crucial to focus on energy management in order to enhance the energy and environmental indices. One way to supply adequate input energy and a reduction in GHG emissions is the utilization of renewable and clean energy sources instead of NG and diesel fuel. Also, it is suggested to adopt solar greenhouses in the region and to supply electricity from non-fossil sources seriously.

  14. GHG emission mitigation measures and technologies in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, M. [Energy Efficiency Center, Prague (Czech Republic)

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  15. A Systems Approach to Reducing Institutional GHG Emissions

    Science.gov (United States)

    Williamson, Sean R.

    2012-01-01

    Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

  16. The influence of management on GHG fluxes over Central European grasslands

    Science.gov (United States)

    Hoertnagl, Lukas; Bahn, Michael; Buchmann, Nina; Dias-Pinez, Eugenio; Eugster, Werner; Kiese, Ralf; Klumpp, Katja; Thomas, Ladreiter-Knauss; Lu, Haiyan; Wohlfahrt, Georg; Zeeman, Matthias; Merbold, Lutz

    2016-04-01

    Central European grasslands are characterized by a wide range of different agricultural practices along an altitudinal and management gradient, reaching from low pastures and meadows up to high alpine grasslands above the tree line. In the future, the intensification of already available agricultural land as a consequence of increased demand for feed and food will play an important role because of the scarcity of unused, productive land. The land use intensity strongly affects the exchange of trace gases between the biosphere and atmosphere. Therefore, the greenhouse gas (GHG) reduction potential for different farming strategies needs to be quantified before effective greenhouse gas mitigation strategies can be introduced. Direct measurements of long-term grassland GHG exchange at ecosystem scale along altitudinal and management gradients can help in identifying key processes that lead to GHG emissions. In this synthesis we investigated GHG fluxes with a focus on N2O and CH4 from 15 grassland sites, quantified by means of the eddy covariance or chamber technique. Grasslands were a source of N2O, with the exception of one abandoned site, while they were a source or small sink for CH4. The predictive power of soil temperature and water-filled pore space for N2O and CH4 flux patterns during snow-free time periods in-between management events was generally low but varied considerably across the year. However, setting fluxes in relation to classes of the two soil parameters revealed favorable conditions ('sweet spots') for N2O and CH4 emissions for some sites. In addition, fertilization had a clear impact on N2O and CH4 fluxes, with emission peaks on the day of fertilization or one day later. N2O-N emission factors at fertilized sites were found to be slightly higher than the IPCC Tier 1 approach, ranging between 1.31 and 1.53 %, depending on the gap-filling method to calculate yearly cumulative N2O emissions.

  17. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  18. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  19. Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology.

    Science.gov (United States)

    Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M

    2017-09-01

    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N2O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Understanding and quantifying greenhouse gases (GHG) emissions: the UK GHG Emissions and Feedback Programme

    Science.gov (United States)

    Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew

    2016-04-01

    We give an overview over the structure, objectives, and methods of the UK-based Greenhouse Gases Emissions and Feedback Programme. The overarching objective of this research programme is to deliver improved GHG inventories and predictions for the UK, and for the globe at a regional scale. To address this objective, the Programme has developed a comprehensive, multi-year and interlinked measurement and data analysis programme, focussing on the major GHGs carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The Programme integrates three UK research consortia with complementary objectives, focussing on observation and modelling in the atmosphere, the oceans, and the terrestrial biosphere: GAUGE (Greenhouse gAs Uk and Global Emissions) will produce robust estimates of the UK GHG budget, using new and existing atmospheric measurement networks and modelling activities at a range of scales. It integrates inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology. The GREENHOUSE (Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments) project aims to understand the spatio-temporal patterns of biogenic GHG emissions in the UK's landscape of managed and semi-managed ecosystems. It uses existing UK field data and several targeted new measurement campaigns to build regional GHG inventories and improve the capabilities of land surface models. RAGNARoCC (Radiatively active gases from the North Atlantic Region and Climate Change) is an oceanographic project to investigate the air-sea fluxes of GHGs in the North Atlantic region. Through dedicated research cruises as well as data collection from ships of opportunity, it develops a comprehensive budget of natural and anthropogenic components of the carbon cycle in the North Atlantic and a better understanding of why the air-sea fluxes of CO2 vary regionally, seasonally and multi

  1. Soil Greenhouse Gas Fluxes, Environmental Controls, and the Partitioning of N2O Sources in UK Natural and Seminatural Land Use Types

    Science.gov (United States)

    Sgouridis, Fotis; Ullah, Sami

    2017-10-01

    Natural and seminatural terrestrial ecosystems (unmanaged peatlands and forests and extensive and intensive grasslands) have been under-represented in the UK greenhouse gas (GHG) inventory. Mechanistic studies of GHG fluxes and their controls can improve the prediction of the currently uncertain GHG annual emission estimates. The source apportionment of N2O emissions can further inform management plans for GHG mitigation. We have measured in situ GHG fluxes monthly in two replicated UK catchments and evaluated their environmental controlling factors. An adapted 15N-gas flux method with low addition of 15N tracer (0.03-0.5 kg 15N ha-1) was used to quantify the relative contribution of denitrification to net N2O production. Total N2O fluxes were 40 times higher in the intensive grasslands than in the peatlands (range: -1.32 to 312.3 μg N m-2 h-1). The contribution of denitrification to net N2O emission varied across the land use types and ranged from 9 to 60%. Soil moisture was the key parameter regulating the partitioning of N2O sources (r2 = 0.46). Total N2O fluxes were explained by a simple model (r2 = 0.83) including parameters such as total dissolved nitrogen, organic carbon, and water content. A parsimonious model with the soil moisture content as a single scalar parameter explained 84% of methane flux variability across land uses. The assumption that 1% of the atmospherically deposited N on natural ecosystems is emitted as N2O could be overestimated or underestimated (0.3-1.6%). The use of land use-specific N2O emission factors and further information on N2O source partitioning should help constrain this uncertainty.

  2. Effect of fertilising with pig slurry and chicken manure on GHG emissions from Mediterranean paddies

    Energy Technology Data Exchange (ETDEWEB)

    Maris, S.C., E-mail: stefania@macs.udl.cat [Environment and Soil Science Department, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida (Spain); Teira-Esmatges, M.R.; Bosch-Serra, A.D. [Environment and Soil Science Department, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida (Spain); Moreno-García, B. [Soils and Irrigation Department, Agrifood Research and Technology Centre of Aragon (CITA), Av. Montañana 930, E-50059 Zaragoza (Spain); Català, M.M. [Ebre Field Station, Institute of Agrifood Research and Technology (IRTA), Ctra. de Balada, km 1, E-43870 Amposta (Spain)

    2016-11-01

    Soil fertilisation affects greenhouse gas emissions. The objective of this study was to compare the effect of different fertilisation strategies on N{sub 2}O, CH{sub 4} emissions and on ecosystem respiration (CO{sub 2} emissions), during different periods of rice cultivation (rice crop, postharvest period, and seedling) under Mediterranean climate. Emissions were quantified weekly by the photoacoustic technique at two sites. At Site 1 (2011 and 2012), background treatments were 2 doses of chicken manure (CM): 90 and 170 kg NH{sub 4}{sup +}-N ha{sup −} {sup 1} (CM-90, CM-170), urea (U, 150 kg N ha{sup −} {sup 1}) and no-N (control). Fifty kilogram N ha{sup −} {sup 1} ammonium sulphate (AS) were topdress applied to all of them. At Site 2 (2012), background treatments were 2 doses of pig slurry (PS): 91 and 152 kg NH{sub 4}{sup +}-N ha{sup −} {sup 1} (PS-91, PS-152) and ammonium sulphate (AS) at 120 kg NH{sub 4}{sup +}-N ha{sup −} {sup 1} and no-N (control). Sixty kilogram NH{sub 4}{sup +}-N ha{sup −} {sup 1} as AS were topdress applied to AS and PS-91. During seedling, global warming potential (GWP) was ~ 3.5–17% of that of the whole rice crop for the CM treatments. The postharvest period was a net sink for CH{sub 4}, and CO{sub 2} emissions only increased for the CM-170 treatment (up to 2 Mg CO{sub 2} ha{sup −} {sup 1}). The GWP of the entire rice crop reached 17 Mg CO{sub 2}-eq ha{sup −} {sup 1} for U, and was 14 for CM-170, and 37 for CM-90. The application of PS at agronomic doses (~ 170 kg N ha{sup −} {sup 1}) allowed high yields (~ 7.4 Mg ha{sup −} {sup 1}), the control of GWP (~ 6.5 Mg CO{sub 2}-eq ha{sup −} {sup 1}), and a 13% reduction in greenhouse gas intensity (GHGI) to 0.89 kg CO{sub 2}-eq kg{sup −} {sup 1} when compared to AS (1.02 kg CO{sub 2}-eq kg{sup −} {sup 1}). - Highlights: • Pig slurry (~ 170 kg N ha{sup −} {sup 1}; low C/N) allows high rice yields without increasing GWP. • Chicken manure (~ 170 kg N ha{sup

  3. Nitrogen Cycling and GHG Emissions of Natural and Managed Tropical Ecosystems at Mt. Kilimanjaro

    Science.gov (United States)

    Gutlein, A.; Ralf, K.; Gerschlauer, F.; Dannenmann, M.; Butterbach-Bahl, K.; Diaz-Pines, E.

    2016-12-01

    In a rapidly changing world understanding of natural ecosystems response to human perturbations such as land use and climate changes as well as habitat destruction is crucial with respect to sustainability of ecosystem services. This is particularily true for tropical forest ecosystems which have significant effects on the major biogeochemical cycles and global climate. Here we present a comprehensive dataset of nitrogen cycling and GHG emissions of natural and managed ecosystems along land use and climate gradients at Mt. Kilimanjaro, Tanzania including different forest ecosystems, homegardens, and coffee plantations. Soil N turnover rates were highest in the Ocotea forest and progressively decreased with decreasing annual rainfall and increasing land use intensity. Nitrogen production and immobilization rates positively correlated with soil organic C and total N concentrations as well as substrate availability of dissolved organic C and N, but correlated less with soil ammonium and nitrate concentrations. By using indicators of N retention and characteristics of soil nutrient status, we observed a grouping of faster, but tighter N cycling in the (semi-) natural savanna, Helychrysum and Ocotea forest. This contrasted with a more open N cycle in managed systems (homegarden and coffee plantation) where N was more prone to leaching or gaseous losses due to high nitrate production rates. The partly disturbed lower montane forest ranged in between these two groups. These finding could be supported by differences in natural 15N abundance of litter and soil across all sites. Comparing GHG emissions at the land use gradient showed, that with increasing intensification (lower montane forest - homegarden - coffee plantation) N2O emissions increased but at the same time the soil sink for atmospheric CH4 decreased. GHG emission measurements at the climate gradient (savanna, lower montane, Ocotea and Podocarpus forest, Helychrysum) revealed that differences in soil moisture

  4. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.

    Science.gov (United States)

    Lu, Hongwei; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH4 emission from the landfills. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. CH_{4} production in the deep soil as a source of stem CH_{4} emission in Fagus sylvatica}

    Science.gov (United States)

    Maier, Martin; Machacova, Katerina; Urban, Otmar; Lang, Friederike

    2017-04-01

    Predicting greenhouse gas (GHG) fluxes on a global scale requires understanding fluxes on the local scale. Understanding GHG processes in soil-plant-atmosphere systems is essential to understand and mitigate GHG fluxes on the local scale. Forests are known to act as carbon sink. Yet, trees at waterlogged sites are known to emit large amounts of CH4, what can offset the positive GHG balance due the CO2 that is sequestered as wood. Generally, upland trees like European beech (Fagus sylvatica L.) are assumed not to emit CH4, and the upland forest soils are regarded as CH4 sinks. Soil-atmosphere fluxes and stem-atmosphere fluxes of CH4 were studied together with soil gas profiles at two upland beech forest sites in Germany and Czech Republic. Soil was a net CH4 sink at both sites. While most trees showed no or low emissions, one beech tree had exorbitant CH4 emissions that were higher than the CH4 sink capacity of the soil. A soil survey showed strong redoximorphic color patterns in the soil adjacent to this tree. Although the soil around the tree was taking up CH4, the soil gas profiles around this tree showed CH4 production at a soil depth >0.3 m. We interpret the coincidence of the production of CH4 in the deep soil below the beech with the large stem emissions as strong hint that there is a transport link between the soil and stem. We think that the root system represents a preferential transport system for CH4 despite the fact that beech roots usually do not have a special gas transport tissue. The observed CH4 stem emissions represent an important CH4 flux in this ecosystem, and, thus, should be considered in future research. Acknowledgement This research was supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415) and project DFG (MA 5826

  6. GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014

  7. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  8. Approximated EU GHG inventory: Early estimates for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Herold, A. [Oeko-Institut (Oeko), Freiburg (Germany); Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark)

    2012-10-15

    The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2011. The official submission of 2011 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2013. In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach - based on data or estimates for individual countries, sectors and gases - to derive EU GHG estimates in the preceding year (t-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The 2011 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2012 submissions to UNFCCC (which relate to emissions in 2010). Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2011. Finally, the EEA has also used the early estimates of 2011 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2011 were only used for countries that lack their own early estimates to track progress towards national and EU targets. (LN)

  9. Approximated EU GHG inventory: Early estimates for 2010

    Energy Technology Data Exchange (ETDEWEB)

    Herold, A.; Busche, J.; Hermann, H.; Joerss, W.; Scheffler, M. (OEko-Institut, Freiburg (Germany))

    2011-10-15

    The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2010. The official submission of 2010 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2012. In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach - based on data or estimates for individual countries, sectors and gases - to derive EU GHG estimates in the preceding year (t-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The 2010 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2011 submissions to UNFCCC (which re-late to emissions in 2009). Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2010. Finally, EEA has also used the early estimates of 2010 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2010 were only used for countries that lack their own early estimates to track progress towards national and EU targets. (Author)

  10. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  11. Using the Synergy Between GERB/SEVIRI and Micrometeorological Data to Study the Relationship Between Surface Net Radiation and Soil Heat Flux at Local and Regional Scales

    Science.gov (United States)

    Ferreira, A. G.; Velázquez Blázquez, A.; Soria, E.; Lopez-Baeza, E.

    2009-04-01

    The surface energy exchange between the land surface and the atmosphere can be described by the energy balance equation Rn - H - LE - G = 0, where Rn represents net radiation, H the sensible heat flux, LE, the latent heat flux and G the soil heat flux. In this work the relationship between Rn and G is studied over vineyard crops, a relative sparse vegetation cover crop where, according to the literature, it is expected that G consumes a significant proportion of Rn. In order to study this relationship at local and regional scales, micrometeorological observations and METEOSAT Second Generation (MSG) satellite data have been used. MSG through the GERB (Geostationary Earth Radiation Budget) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensors can provide estimates of net radiation and required land surface temperature (LST) information with a frequency of 15 min intervals. The necessary micrometeorological parameters, to compare with satellite data, were collected during the full vine growing season of 2007 (May to September) in a field experiment carried out at the Valencia Anchor Station (VAS) site area. The VAS is a robust reference meteorological station which is successfully used preferentially for validation of low spatial resolution satellite data and products. It is located on the natural region of the Utiel-Requena Plateau, at about 80 km west from the city of Valencia, Spain, and represents a reasonable homogeneous area of about 50 km x 50 km dedicated primarily to growing vines. The methodology utilized to study the relationship between Rn and G at local and regional scales, was that proposed by Santanello and Friedel (2002), where surface temperature can be obtained from SEVIRI that provides estimates of LST with unprecedented frequency of 15 min intervals with a spatial resolution of 3.1 km, thus totally covering its diurnal course. The preliminary results show that: 1- the correlation between the ground measurements and SEVIRI LST is

  12. Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil Fertilization and Biochar Addition Experiment

    Science.gov (United States)

    Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.

    2013-12-01

    Rising atmospheric concentrations of greenhouse gases (GHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), linked to current climate change has stimulated a scientific response to provide robust accounting of sources and sinks of these gases. There is an urgent need to increase awareness of land management impacts on GHG flux dynamics to facilitate the development of management strategies that minimize GHG emissions. Biochar (pyrolyzed organic matter) has been identified as a strategy to reduce net GHG fluxes from soils. This is due to its potential to sequester large amounts of carbon for significant time periods, as well as its modification of biotic and abiotic soil conditions, which in turn can alter the GHG balance. This study describes the effect of biochar and urea-N application on soil surface CO2, CH4 and N2O fluxes in a Pacific Northwest Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). We used a randomized complete-block design with four replicates of the following treatments: i) control, ii) 5 Mg ha-1 biochar surface application, iii) 200 kg N ha-1 urea pellets surface application, and iv) 5 Mg ha-1 biochar plus 200 kg N ha-1 urea. Soil GHG flux measurements were made biweekly for two years beginning in September 2011 using a non-steady-state non-flow through chamber technique. Biochar was added in February 2012, with urea applied in March 2013. A collar made from 21-cm diameter x 11-cm long PVC piping was installed in each of the 16 plots between two large trees on the forest floor, penetrating the organic layer to the mineral soil at the 5-8 cm depth. A clear Plexiglas lid, equipped with a 10-cm long vent tube and 9-V fan, was placed on each collar when making measurements, with 20-mL samples of chamber headspace air collected at 0, 3, 6, 9 and 12 min using a medical syringe with 21-gauge needle inserted through a rubber septum in the chamber lid. Samples were injected into and transported in previously

  13. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  14. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  15. Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate

    Science.gov (United States)

    Skiba, U.; Jones, S. K.; Drewer, J.; Helfter, C.; Anderson, M.; Dinsmore, K.; McKenzie, R.; Nemitz, E.; Sutton, M. A.

    2013-02-01

    Greenhouse gas (GHG) fluxes from a seminatural, extensively sheep-grazed drained moorland and intensively sheep-grazed fertilised grassland in South East (SE) Scotland were compared over 4 yr (2007-2010). Nitrous oxide (N2O) and methane (CH4) fluxes were measured by static chambers, respiration from soil plus ground vegetation by a flow-through chamber, and the net ecosystem exchange (NEE) of carbon dioxide (CO2) by eddy-covariance. All GHG fluxes displayed high temporal and interannual variability. Temperature, radiation, water table height and precipitation could explain a significant percentage of seasonal and interannual variations. Greenhouse gas fluxes were dominated by the net ecosystem exchange of CO2 at both sites. Net ecosystem exchange of CO2 and respiration was much larger on the productive fertilised grassland (-1567 and 7157 g CO2eq m-2 yr-1, respectively) than on the seminatural moorland (-267 and 2554 g CO2eq m-2 yr-1, respectively). Large ruminant CH4 (147 g CO2eq m-2 yr-1) and soil N2O (384 g CO2eq m-2 yr-1) losses from the grazed grassland counteracted the CO2 uptake by 34%, whereas the small N2O (0.8 g CO2eq m-2 yr-1) and CH4 (7 g CO2eq m-2 yr-1) emissions from the moorland only impacted the NEE flux by 3%. The 4-yr average GHG budget for the grazed grassland was -1034 g CO2eq m-2 yr-1 and -260 g CO2eq m-2 yr-1 for the moorland.

  16. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems

    Science.gov (United States)

    Fangueiro, David; Becerra, Daniel; Albarrán, Ángel; Peña, David; Sanchez-Llerena, Javier; Rato-Nunes, José Manuel; López-Piñeiro, Antonio

    2017-02-01

    %, relative to CT. However, the effect of water management on yield-scaled GWP depended on the soil management: yield-scaled GWP was higher with flooding when NT was used and lower when tillage was used. It can be concluded that, for aerobic rice production, NT is an efficient strategy to minimize GHG emissions while maintaining high levels of production.

  17. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China.

    Science.gov (United States)

    Zhou, Yumei; Hagedorn, Frank; Zhou, Chunliang; Jiang, Xiaojie; Wang, Xiuxiu; Li, Mai-He

    2016-02-16

    Climatic warming is expected to particularly alter greenhouse gas (GHG) emissions from soils in cold ecosystems such as tundra. We used 1 m(2) open-top chambers (OTCs) during three growing seasons to examine how warming (+0.8-1.2 °C) affects the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from alpine tundra soils. Results showed that OTC warming increased soil CO2 efflux by 141% in the first growing season and by 45% in the second and third growing season. The mean CH4 flux of the three growing seasons was -27.6 and -16.7 μg CH4-C m(-2)h(-1) in the warmed and control treatment, respectively. Fluxes of N2O switched between net uptake and emission. Warming didn't significantly affect N2O emission during the first and the second growing season, but stimulated N2O uptake in the third growing season. The global warming potential of GHG was clearly dominated by soil CO2 effluxes (>99%) and was increased by the OTC warming. In conclusion, soil temperature is the main controlling factor for soil respiration in this tundra. Climate warming will lead to higher soil CO2 emissions but also to an enhanced CH4 uptake with an overall increase of the global warming potential for tundra.

  18. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  19. The impact of land-use change from forest to oil palm on soil greenhouse gas and volatile organic compound fluxes in Malaysian Borneo

    Science.gov (United States)

    Drewer, Julia; Leduning, Melissa; Kerdraon-Byrne, Deirdre; Sayer, Emma; Sentien, Justin; Skiba, Ute

    2017-04-01

    Monocultures of oil palm have expanded in SE Asia, and more recently also in Africa and South America, frequently replacing tropical forests. The limited data available clearly show that this conversion is associated with a potentially large greenhouse gas (GHG) burden. The physical process of land-use change, such is felling, drainage and ploughing can significantly increase emissions of N2O and soil CO2 respiration and decrease CH4 oxidation rates in the short term; and in the long-term regular nitrogen applications will impact in particular soil N2O fluxes. Little is known about volatile organic compound (VOC) fluxes from soil and litter in tropical forests and their speciation or about the links between GHG and VOC fluxes. VOC emissions are important as they directly and indirectly influence the concentrations and lifetimes of air pollutants and GHGs. For example, oxidation of VOCs generate tropospheric ozone which is also a potent GHG. Within ecosystems, monoterpenes can mediate plant-microbe and plant- interactions and protect photosynthesis during abiotic stress. However, little is known about monoterpene composition in the tropics - a widely recognized major global source of terpenoids to the atmosphere. These knowledge gaps make it difficult for developing countries in the tropics, especially SE Asia, to develop effective mitigation strategies. Current understanding of soil GHG fluxes associated with land-use change from forest to oil palm is not sufficient to provide reliable estimates of their carbon footprints and sustainability or advice on GHG mitigation strategies. To provide the necessary data we have installed a total of 56 flux chambers in logged forests, forest fragments and mature and young oil palm plantations as well as riparian zones within the SAFE landscape in SE Sabah (Stability of Altered Forest Ecosystems; http://www.safeproject.net). Soil respiration rates, N2O, CH4 and VOC fluxes together with soil moisture, pH, mineral and total C and

  20. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  1. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.

    Science.gov (United States)

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-08-21

    In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on

  2. Does consideration of GHG reductions change local decision making? A Case Study in Chile

    Science.gov (United States)

    Cifuentes, L. A.; Blumel, G.

    2003-12-01

    While local air pollution has been a public concern in developing countries for some time, climate change is looked upon as a non-urgent, developed world problem. In this work we present a case study of the interaction of measures to abate air pollution and measures to mitigate GHG emissions in Santiago, Chile, with the purpose of determining if the consideration of reductions in GHG affects the decisions taken to mitigate local air pollution. The emissions reductions of both GHG and local air pollutants were estimated from emission factors (some derived locally) and changes in activity levels. Health benefits due to air pollution abatement were computed using figures derived previously for the cost benefit analysis of Santiago's Decontamination Plan, transferred to the different cities taking into consideration local demographic and income data. The Santiago estimates were obtained using the damage function approach, based on some local epidemiological studies, and on local health and demographic data. Unit social values for the effects were estimated locally (for cost of treatment and lost productivity values) or extrapolated from US values (mainly for WTP values) using the ratio of per-capita income and an income elasticity of 1. The average benefits of emission abatement (in 1997 US\\ per ton) are 1,800 (1,200-2300) for NOx, 3,000 (2,100-3900) for SO2, 31,900 (21,900 - 41,900) for PM, and 630 (430 - 830) for resuspended dust. Economic benefits due to carbon reduction were considered at 3.5, 10 and 20 UStCO2. Marginal abatement cost curves were constructed considering private and net costs (private less the potential sales of carbon credits) Due to the bottom-up approach to constructing the marginal cost curve, many abatement measures (like congestion tolls and CNG instead of diesel buses) amounting to 8% reduction of PM2.5 concentration, exhibit a negative private cost. If the health benefits are considered for the decision, a maximum reduction of 22% in PM2

  3. GHG Fluxes in semi-natural grasslands in the Pyrenees

    Science.gov (United States)

    Debouk, Haifa; Altimir, Nuria; Ribas, Angela; Ibañez, Mercedes; Sebastià, Teresa

    2015-04-01

    Mountain areas are identified by the IPCC report (2013) as particularly sensitive to climate change. The need to understand mountain grasslands is crucial since these ecosystems can act as both sinks and sources of CO2. Investigating CH4 and N2O fluxes is important because they can offset potential CO2 sequestration. While most studies have been focusing on CO2, the knowledge on the temporal and spatial variability of CH4 and N2O, particularly in semi-natural mountain grasslands, is scarce. This study describes the magnitude and range of variability of the fluxes of CO2, N2O, and CH4 from four semi-natural pastures in the Pyrenees across an altitudinal gradient (1026 to 2436 m a.s.l.) during the growth period in 2012 and 2013. We measured GHG fluxes of the grassland during both light and dark conditions in the study sites using a photoacoustic field gas-monitor (INNOVA 1412, LumaSense Technologies). After completing the GHG measurements, we collected vegetation samples for the estimation of above-ground and below-ground biomass and separated them into functional groups and species. We present here the analysis of the relationship between GHG fluxes and above-ground biomass including the contribution of the relative abundance of plant functional types. Our preliminary results showed a clear seasonal pattern of GHG fluxes. We observed a negative impact of the summer period on the GHG fluxes, which was mostly pronounced in the CO2. We will further elaborate in-depth the effect of the temporal and spatial variability on the fluxes of CO2, N2O and CH4. Also, we will present the relationship between the GHG fluxes and the contribution of the vegetation in terms of the relative abundance of different plant functional types.

  4. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    NARCIS (Netherlands)

    Ceschia, E.; Beziat, P.; Dejoux, J.F.; Elbers, J.A.; Jacobs, C.M.J.; Jans, W.W.P.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal, with or

  5. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  6. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nichol, Corrie Ian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  7. SkyLine and SkyGas: Novel automated technologies for automatic GHG flux measurements

    Science.gov (United States)

    Ineson, Philip; Stockdale, James

    2014-05-01

    1. Concerns for the future of the Earth's climate centre around the anthropogenically-driven continuing increases in atmospheric concentrations of the major 'greenhouse gases' (GHGs) which include CO2, CH4 and N2O. A major component of the global budgets for all three of these gases is the flux between the atmosphere and terrestrial ecosystems. 2. Currently, these fluxes are poorly quantified, largely due to technical limitations associated with making these flux measurements. Whilst eddy covariance systems have greatly improved such measurements at the ecosystem scale, flux measurements at the plot scale are commonly made using labour intensive traditional 'cover box' approaches; technical limitations have frequently been a bottle-neck in producing adequate and appropriate GHG flux data necessary for making land management decisions. For example, there are almost no night time flux data for N2O fluxes, and frequently such data are only measured over bare soil patches. 3. We have been addressing the design of novel field equipment for the automation of GHG flux measurements at the chamber and plot scale and will present here some of the technical solutions we have developed. These solutions include the development of the SkyLine and SkyGas approaches which resolve many of the common problems associated with making high frequency, sufficiently replicated GHG flux measurements under field conditions. 4. Unlike most other automated systems, these technologies 'fly' a single chamber to the measurement site, rather than have multiple replicated chambers and analysers. We will present data showing how such systems can deliver high time and spatial resolution flux data, with a minimum of operator intervention and, potentially, at relatively low per plot cost. We will also show how such measurements can be extended to monitoring fluxes from freshwater features in the landscape.

  8. Impact of soil drought on leaf growth of a teak plantation in a dry tropical region and the subsequent impact of leaf area on both canopy net assimilation and evapotranspiration

    Science.gov (United States)

    Tanaka, Katsunori

    2010-05-01

    The current study demonstrated the interannual variations from the beginning of leaf expansion to the peak at a stand level in a dry tropical climate of northern Thailand. Radiative transmittance was measured from March-July in 2001-2008, and seasonal changes in leaf area were qualitatively estimated based on this time series. Soil moisture was also measured, and its influence on leaf growth was shown. Next, a soil-plant-air (SPAC) continuum multilayer model was used to numerically simulate net canopy assimilation (An) and evapotranspiration (ET) for 8 years, to examine the seasonal changes in LAI on An and ET. Two numerical experiments with different seasonal patterns of LAI were carried out using above-canopy hydro-meteorological data as input data. The first experiment involved seasonally varying LAI estimated based on time-series of radiative transmittance through the canopy, and the second experiment applied a constant LAI (or the peak values of LAI) after the flushing. In the first simulation, the simulated transpiration agreed with seasonal changes in heat pulse velocity, corresponding to the water use of individual trees. In the second numerical simulations, the constant LAI increased transpiration at small LAI, particularly immediately after leaf flush. But, the seasonal changes in simulated transpiration were apparently similar to those in observed heat pulse velocity. This implies that soil water, which is balanced in SPAC systems by precipitation, canopy interception, soil evaporation, soil water uptake by transpiration, and discharge, can mainly control the seasonal changes in transpiration. The simulated An became negative under soil drought during the leaf expansion stage in the second simulation, while it became positive or slightly negative even under soil drought in the first simulation. Thus, the limitation of leaf expansion rate caused by soil drought can be favorable for carbon gain.

  9. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow

    Science.gov (United States)

    Chen, Xiaopeng; Wang, Genxu; Zhang, Tao; Mao, Tianxu; Wei, Da; Hu, Zhaoyong; Song, Chunlin

    2017-05-01

    The limited number of in situ measurements of greenhouse gas (GHG) flux during soil freeze-thaw cycles in permafrost regions limits our ability to accurately predict how the alpine ecosystem carbon sink or source function will vary under future warming and increased nitrogen (N) deposition. An alpine meadow in the permafrost region of the Qinghai-Tibet Plateau was selected, and a simulated warming with N fertilization experiment was carried out to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. The results showed that: (i) warming (4.5 °C) increased the average seasonal Re, CH4 uptake and N2O emission by 73.5%, 65.9% and 431.6%, respectively. N fertilization (4 g N m-2) alone had no significant effect on GHG flux; the interaction of warming and N fertilization enhanced CH4 uptake by 10.3% and N2O emissions by 27.2% than warming, while there was no significant effect on the Re; (ii) the average seasonal fluxes of Re, CH4 and N2O were MG > LG > EG, and Re and CH4 uptake were most sensitive to the soil freezing process instead of soil thawing process; (iii) surface soil temperature was the main driving factor of the Re and CH4 fluxes, and the N2O flux was mainly affected by daily rainfall; (iv) in the growing season, warming increased greenhouse warming potential (GWP) of the alpine meadow by 74.5%, the N fertilization decreased GWP of the warming plots by 13.9% but it was not statistically significant. These results indicate that (i) relative to future climate warming (or permafrost thawing), there could be a hysteresis of GHG flux in the alpine meadow of permafrost region; (ii) under the scenario of climate warming, increasing N deposition has limited impacts on the feedback of GHG flux of the alpine meadow.

  10. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock

    Science.gov (United States)

    Zervas, G.; Tsiplakou, E.

    2012-03-01

    Greenhouse gas (GHG) emissions are expected to cause global warming which results in extreme weather changes that could affect crop yields and productivity, food supplies and food prices. It is also expected that climate change will have an impact on animal metabolism and health, reproduction and productivity. On the other hand, the expected increased demand of animal origin products in the coming years will increase the reared animal numbers and consequently GHG emissions. This paper outlines the main GHGs emitted from livestock which are CO2, CH4 and N2O, coming from respiration, enteric fermentation and manure management respectively, with CH4 and N2O having the highest global warming potential. Ruminant livestock has the highest contribution to these GHG emissions with small ruminants share being 12.25% of the total GHG emissions from livestock's enteric and manure CH4, and manure N2O in CO2 equivalent, producing 9.45 kg CO2 equivalent per kg body weight with the respective values for cattle, pigs and poultry being 5.45, 3.97 and 3.25. Since the production systems significantly affect the GHG emissions, the grazing, livestock crop complex, and intensive ones account for 30.5%, 67.29% and 5.51% for total CH4 emission (from enteric fermentation and manure management) and 24.32%, 68.11% and 7.57% for N2O respectively. Taking into account the positive and negative impacts of small ruminant livestock production systems to the environmental aspects in general, it is recommended that a number of potentially effective measures should be taken and the appropriate mitigation technologies should be applied in order to reduce effectively and essentially the GHG emissions to the atmosphere, with no adverse effects on intensification and increased productivity of small ruminants production systems.

  11. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration

    Directory of Open Access Journals (Sweden)

    J. I. L. Morison

    2013-02-01

    Full Text Available The effect of tree (lodgepole pine planting with and without intensive drainage on soil greenhouse gas (GHG fluxes was assessed after 45 yr at a raised peatbog in West Flanders Moss, central Scotland. Fluxes of CO2 CH4 and N2O from the soil were monitored over a 2-yr period every 2 to 4 weeks using the static opaque chamber method in a randomised experimental block trial with the following treatments: drained and planted (DP, undrained and planted (uDP, undrained and unplanted (uDuP and for reference also from an adjoining near-pristine area of bog at East Flanders Moss (n-pris. There was a strong seasonal pattern in both CO2 and CH4 effluxes which were significantly higher in late spring and summer months because of warmer temperatures. Effluxes of N2O were low and no significant differences were observed between the treatments. Annual CH4 emissions increased with the proximity of the water table to the soil surface across treatments in the order: DP 4 m−2 yr−1, respectively. For CO2, effluxes increased in the order uDP 2 m−2 yr−1, respectively. CO2 effluxes dominated the total net GHG emission, calculated using the global warming potential (GWP of the three GHGs for each treatment (76–98%, and only in the n-pris site was CH4 a substantial contribution (23%. Based on soil effluxes only, the near pristine (n-pris peatbog had 43% higher total net GHG emission compared with the DP treatment because of high CH4 effluxes and the DP treatment had 33% higher total net emission compared with the uDP because drainage increased CO2 effluxes. Restoration is likely to increase CH4 emissions, but reduce CO2 effluxes. Our study suggests that if estimates of CO2 uptake by vegetation from similar peatbog sites were included, the total net GHG emission of restored peatbog would still be higher than that of the peatbog with trees.

  12. FORECASTING MODEL OF GHG EMISSION IN MANUFACTURING SECTORS OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-01-01

    Full Text Available This study aims to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analysis energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025 and 25 years (2016-2040 by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1 Model 1(2,1,1 shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2 Model 2 (2,1,2 shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.

  13. F‐GHG Emissions Reduction Efforts: FY2015 Supplier Profiles

    Science.gov (United States)

    The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.

  14. 40 CFR 98.183 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Lead Production § 98.183 Calculating GHG emissions. You must... = Annual process CO2 emissions from smelting furnaces at facility used for lead production (metric tons... section (metric tons/year). k = Total number of smelting furnaces at facility used for lead production...

  15. The Liability Rules under International GHG Emissions Trading

    NARCIS (Netherlands)

    Zhang, ZX

    Article 17 or the Kyoto Protocol authorizes emissions trading, but the rules governing emissions trading have been deferred to subsequent conferences. in designing and implementing an international greenhouse gas (GHG) emissions trading scheme, assigning liability rules has been considered to be one

  16. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    Science.gov (United States)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  17. High temporal frequency measurements of greenhouse gas emissions from soils

    Science.gov (United States)

    Savage, K.; Phillips, R.; Davidson, E.

    2014-05-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency, precise measurements of CO2 have been available for years, methods for measuring soil fluxes of CH4 and N2O at high temporal frequency have been hampered by lack of appropriate technology for in situ real-time measurements. A previously developed automated chamber system for measuring CO2 flux from soils was configured to run in line with a new quantum cascade laser (QCLAS) instrument that measures N2O and CH4. Here we present data from a forested wetland in Maine and an agricultural field in North Dakota, which provided examples of both net uptake and production for N2O and CH4. The objective was to provide a range of conditions in which to run the new system and to compare results to a traditional manual static-chamber method. The high-precision and more-than-10-times-lower minimum detectable flux of the QCLAS system, compared to the manual system, provided confidence in measurements of small N2O uptake in the forested wetland. At the agricultural field, the greatest difference between the automated and manual sampling systems came from the effect of the relatively infrequent manual sampling of the high spatial variation, or "hot spots", in GHG fluxes. Hot spots greatly influenced the seasonal estimates, particularly for N2O, over one 74-day alfalfa crop cycle. The high temporal frequency of the automated system clearly characterized the transient response of all three GHGs to precipitation and demonstrated a clear diel pattern related to temperature for GHGs. A combination of high-frequency automated and spatially distributed chambers would be ideal for characterizing hot spots and "hot moments" of GHG fluxes.

  18. The impact of uncertainties on predicted GHG emissions of dairy cow production systems

    NARCIS (Netherlands)

    Zehetmeier, M.; Gandorfer, M.; Hoffmann, H.; Muller, U.K.; Boer, de I.J.M.

    2014-01-01

    Dairy farms produce significant greenhouse gas (GHG) emissions and are therefore a focal point for GHG-mitigation practices. To develop viable mitigation options, we need robust (insensitive to changes in model parameters and assumptions) predictions of GHG emissions. To this end, we developed a

  19. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    Science.gov (United States)

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  20. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils.

    Science.gov (United States)

    Zheng, Jiyong; Stewart, Catherine E; Cotrufo, M Francesca

    2012-01-01

    Biochar (BC) application to agricultural soils could potentially sequester recalcitrant C, increase N retention, increase water holding capacity, and decrease greenhouse gas (GHG) emissions. Biochar addition to soils can alter soil N cycling and in some cases decrease extractable mineral N (NO and NH) and NO emissions. These benefits are not uniformly observed across varying soil types, N fertilization, and BC properties. To determine the effects of BC addition on N retention and GHG flux, we added two sizes (>250 and soils (aridic Argiustoll and aquic Haplustoll) with and without N fertilizer and measured extractable NO and NH and GHG efflux (NO, CO, and CH) in a 123-d laboratory incubation. Biochar had no effect on NO, NH, or NO in the unfertilized treatments of either soil. Biochar decreased cumulative extractable NO in N fertilized treatments by 8% but had mixed effects on NH. Greenhouse gas efflux differed substantially between the two soils, but generally with N fertilizer BC addition decreased NO 3 to 60%, increased CO 10 to 21%, and increased CH emissions 5 to 72%. Soil pH and total treatment N (soil + fertilizer + BC) predicted soil NO flux well across these two different soils. Expressed as CO equivalents, BC significantly reduced GHG emissions only in the N-fertilized silt loam by decreasing NO flux. In unfertilized soils, CO was the dominant GHG component, and the direction of the flux was mediated by positive or negative BC effects on soil CO flux. On the basis of our data, the use of BC appears to be an effective management strategy to reduce N leaching and GHG emissions, particularly in neutral to acidic soils with high N content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Empirical evidence of soil carbon changes in bioenergy cropping systems

    Science.gov (United States)

    Biofuels are seen as a near-term solution to reduce greenhouse gas (GHG) emissions, reduce petroleum usage, and diversify rural economies. Accurate accounting of all GHG emissions is necessary to measure the overall carbon (C) intensity of new biofuel feedstocks. Changes in direct soil organic carb...

  2. Energy and Emissions from U.S. Population Shifts and Implications for Regional GHG Mitigation Planning.

    Science.gov (United States)

    Hoesly, Rachel; Matthews, H Scott; Hendrickson, Chris

    2015-11-03

    Living in different areas is associated with different impacts; the movement of people to and from those areas will affect energy use and emissions over the U.S. The emissions implications of state-to-state migration on household energy and GHG emissions are explored. Three million households move across state lines annually, and generally move from the North East to the South and West. Migrating households often move to states with different climates (thus different heating and cooling and needs), different fuel mixes, and different regional electricity grids, which leads them to experience changes in household emissions as a result of their move. Under current migration trends, the emissions increases of households moving from the Northeast to the South and Southwest are balanced by the emissions decreases of households moving to California and the Pacific Northwest. The net sum of emissions changes for migrating households is slightly positive but near zero; however, that net zero sum represents the balance of many emission changes. Planning for continued low carbon growth in low carbon regions or cities experiencing high growth rates driven by migration is essential in order to offset the moderate emissions increases experienced by households moving to high carbon regions.

  3. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands

    Science.gov (United States)

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  4. Voluntary GHG reduction of industrial sectors in Taiwan.

    Science.gov (United States)

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Towards the development of a GHG emissions baseline for the Agriculture, Forestry and Other Land Use (AFOLU sector, South Africa

    Directory of Open Access Journals (Sweden)

    Luanne B. Stevens

    2016-12-01

    Full Text Available South Africa is a signatory to the United Nations Framework Convention on Climate Change (UNFCCC and as such is required to report on Greenhouse gas (GHG emissions from the Energy, Transport, Waste and the Agriculture, Forestry and Other Land Use (AFOLU sectors every two years in national inventories. The AFOLU sector is unique in that it comprises both sources and sinks for GHGs. Emissions from the AFOLU sector are estimated to contribute a quarter of the total global greenhouse gas emissions. GHG emissions sources from agriculture include enteric fermentation; manure management; manure deposits on pastures, and soil fertilization. Emissions sources from Forestry and Other Land Use (FOLU include anthropogenic land use activities such as: management of croplands, forests and grasslands and changes in land use cover (the conversion of one land use to another. South Africa has improved the quantification of AFOLU emissions and the understanding of the dynamic relationship between sinks and sources over the past decade through projects such as the 2010 GHG Inventory, the Mitigation Potential Analysis (MPA, and the National Terrestrial Carbon Sinks Assessment (NTCSA. These projects highlight key mitigation opportunities in South Africa and discuss their potentials. The problem remains that South Africa does not have an emissions baseline for the AFOLU sector against which the mitigation potentials can be measured. The AFOLU sector as a result is often excluded from future emission projections, giving an incomplete picture of South Africa’s mitigation potential. The purpose of this project was to develop a robust GHG emissions baseline for the AFOLU sector which will enable South Africa to project emissions into the future and demonstrate its contribution towards the global goal of reducing emissions.

  6. Miscanthus-derived SOC: numerically declining over soil depths

    Science.gov (United States)

    Hu, Yaxian; Schäfer, Gerhard; Duplay, Joëlle; Kuhn, Nikolaus J.

    2016-04-01

    Miscanthus is one of the most efficient perennial bioenergy crops for wide establishment and distribution. Most of the previous reports had shown the benefits of Miscanthus cultivation in soil organic carbon (SOC) sequestration and greenhouse gas emissions (GHG) mitigation. However, some other papers pointed out that the Miscanthus-derived SOC is mainly of particulate organic matter and the labile quality of particulate organic matter may bear great uncertainties in GHGs emissions. This urges the necessity to investigate the quality and mineralization potential of Miscanthus-derived SOC. This study investigated soil profiles deep to 1 m from 20 yr Miscanthus fields in France and Switzerland. Soil organic carbon (SOC) concentration and δ13C compositions of all the soil layers (0-10, 10-40, 40-70 and 70-100 cm) were determined. Our results show that: 1) Miscanthus cultivation can in general increase the SOC stocks compared to the Grassland, while the benefits of SOC sequestration may only constrain to the surface soil. Isotopically, the Miscanthus-derived SOC ranged from 69% the top 10 cm soil down to only 7% in the 70 to 100 cm layer, cautioning the use of SOC stocks on the surface soil to estimate the total net benefits of Miscanthus cultivation in terms of sequestrating atmospheric CO2. 2) Compared to the Grassland soils, the surface soils on the Miscanthus fields tended to have a risk of acidification (pH values down to 6) and exceeded contents of P and K, adding another precaution to the environmental impacts of Miscanthus cultivation in the entire Upper Rhine Region. Overall, changes of soil characteristics must be included into Life Cycle Assessment to fully evaluate the environmental impacts of long-term Miscanthus cultivation.

  7. What can we learn from field experiments about the development of SOC and GHG emissions under different management practices?

    Science.gov (United States)

    Spiegel, Heide; Lehtinen, Taru; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2015-04-01

    Successful agricultural management practices are required to maintain or enhance soil quality; at the same time climate change mitigation is becoming increasingly important. Within the EU project CATCH-C we analysed the effects of different agricultural practices not only on crop productivity, but also on soil quality indicators (e.g. soil organic carbon (SOC)) and climate change (CC) mitigation indicators (e.g. CO2, CH4, N2O emissions). European data sets and associated literature, mainly from long-term experiments were evaluated. This evaluation of agricultural management practices was carried out comparing a set of improved ("best") and often applied ("current") management practices. Positive and negative effects occurred when best management practices are adopted. As expected, none of the investigated practices could comply with all objectives simultaneously, i.e. maintaining high yields, mitigating climate change and improving chemical, physical and biological soil quality. The studied soil management practices "non-inversion tillage", "organic fertilisation" (application of farm yard manure, slurry, compost) and "incorporation of crop residues" represent important management practices for farmers to increase SOC, thus improving soil quality. However, CO2 and, especially, N2O emissions may rise as well. The evaluation of CC mitigation is often limited by the lack of data from - preferably - continuous GHG emission measurements. Thus, more long-term field studies are needed to better assess the CO2, CH4 and, especially, N2O emissions following the above mentioned favorably rated MPs. Only if SOC and GHG emissions are measured in the same field experiments, it will be possible to compute overall balances of necessary CO2-C equivalent emissions. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food. (Grant Agreement N° 289782).

  8. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  9. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  10. Landscape topography structures the soil microbiome in arctic polygonal tundra

    Energy Technology Data Exchange (ETDEWEB)

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; Wu, Yuxin; Ulrich, Craig; Kneafsey, Timothy; Tringe, Susannah G.; Torn, Margaret S.; Hubbard, Susan S.; Jansson, Janet K.

    2018-02-22

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across the polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.

  11. Tracking changes in land-use and drainage status of organic soils using heterogeneous spatial datasets

    Science.gov (United States)

    Untenecker, Johanna; Tiemeyer, Bärbel; Freibauer, Annette; Laggner, Andreas; Luterbacher, Jürg

    2016-04-01

    Tracking land-use since 1990 is one of the major challenges in greenhouse gas (GHG) reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, as the data availability, especially for the base year 1990, is often poor. Even if data is available, spatial and thematic resolution will often change over time or differ even within one country. Such inconsistencies will cause a strong overestimation of land use change (LUC) if not adequately accounted for. Using different spatial datasets, we present a method that allows tracking changes in land-use and drainage status of organic soils. The drainage status is relevant for the Kyoto activities grazing land management (GM) and wetland drainage and rewetting (WDR) as the GHG emissions of organic soils strongly depend on the groundwater level. We used datasets that are already used for the German national inventory report (Digital Landscape Model of official cadastre data) and high resolution spatial datasets (CIR aerial photography) derived for biodiversity monitoring of six federal states in North and East Germany. This data is combined with the legal protection status such as nature conservation areas. To create a consistent time series, we developed a translation key which allows quantifying gross and net LUC in a spatially explicit manner. The developed method fills the lack of data for 1990 and allows GHG accounting on higher Tier levels as soon as detailed emission factors are ready to be implemented. LUC can be stratified by the protection status. Areas without a protection status show a trend towards both intensification of land-use and drier conditions. Highly protected areas show an opposite trend while a moderate protection level (e.g. by nature parks) did only have very weak effects. Furthermore, there are major differences between federal states. In Schleswig-Holstein, known as a federal state of high agricultural production, organic soils tend to become drier and

  12. On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions

    Directory of Open Access Journals (Sweden)

    Saule Baurzhan

    2017-03-01

    Full Text Available Many power utilities in sub-Saharan Africa (SSA have inadequate generation capacity, unreliable services, and high costs. They also face capital constraints that restrict them from making the investments necessary for capacity expansion. Capacity shortages have compelled power utilities to use leased emergency power-generating units, mainly oil-fired diesel generators, as a short-term solution. An economic analysis is carried out to compare the economic net present value (ENPV of fuel savings, as well as the greenhouse gas (GHG savings, from investing capital in a solar PV power-generation plant with those from investing the same amount of funds into a diesel power plant. The results show that ENPV is negative for the solar PV plant, whereas it has a large positive value for the diesel plant. In addition, the diesel plant would be almost three times as effective in reducing GHG emissions as the same value of investment in the solar PV plant. Even with solar investment costs falling, it will take 12 to 24 years of continuous decline before solar PV becomes cost-effective for SSA. The capital cost of solar PV would need to drop to US$1058.4 per kW to yield the same level of ENPV as the diesel plant.

  13. Possibilities for near-term bioenergy production and GHG-mitigation through sustainable intensification of agriculture and forestry in Denmark

    Science.gov (United States)

    Larsen, Søren; Bentsen, Niclas S.; Dalgaard, Tommy; Jørgensen, Uffe; Olesen, Jørgen E.; Felby, Claus

    2017-11-01

    To mitigate climate change it is necessary to further increase the deployment of renewable energy, including bioenergy. This analysis shows how this can be achieved in Danish agriculture and forestry before 2020. The key is a sustainable intensification and we show through three scenarios how it is possible to increase production while at the same time decreasing environmental impact and with only minor consequences on food and feed production. An additional ~10 Tg biomass can be available in 2020 for the Danish energy sector. By converting the biomass in a biorefinery concept it is possible to supply relevant, domestically produced energy carriers that amounts to ~5%‑13% of 2020 Danish energy consumption. This has the potential to reduce the GHG emissions with 13%‑21% of 2020 emissions. These results are possible because Danish net primary production and the human appropriation hereof can be increased. We show that biomass for bioenergy has a large near-term potential to supply relevant energy carriers to the society while at the same time achieving significant GHG emission mitigation.

  14. Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2014-04-01

    Full Text Available This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME increased by 54.3% (61.5 to 94.9 ×109 kg annually from the year 1961 to 2010, and the highest annual growth rate (AGR was noted for goat (2.0%, followed by buffalo (1.57% and swine (1.53%. Global EME is projected to increase to 120×109 kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3% between the years 1961 to 2010, and AGR was highest for goat (1.91%, followed by buffalo (1.55%, swine (1.28%, sheep (1.25% and cattle (0.70%. In India, total EME was projected to grow by 18.8×109 kg in 2050. Global methane emission from manure (MEM increased from 6.81 ×109 kg in 1961 to 11.4×109 kg in 2010 (an increase of 67.6%, and is projected to grow to 15×109 kg by 2050. In India, the annual MEM increased from 0.52×109 kg to 1.1×109 kg (with an AGR of 1.57% in this period, which could increase to 1.54×109 kg in 2050. Nitrous oxide emission from manure in India could be 21.4×106 kg in 2050 from 15.3×106 kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11% from developed countries, but increased drastically (1.23% for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%, swine (9.57% and sheep (7.40%, and for developing countries from cattle (68.3%, buffalo (13.7% and goat (5.4%. The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010 than the developing countries. With this trend, world GHG emissions could reach 3,520×109 kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

  15. Improved oilfield GHG accounting using a global oilfield database

    Science.gov (United States)

    Roberts, S.; Brandt, A. R.; Masnadi, M.

    2016-12-01

    The definition of oil is shifting in considerable ways. Conventional oil resources are declining as oil sands, heavy oils, and others emerge. Technological advances mean that these unconventional hydrocarbons are now viable resources. Meanwhile, scientific evidence is mounting that climate change is occurring. The oil sector is responsible for 35% of global greenhouse gas (GHG) emissions, but the climate impacts of these new unconventional oils are not well understood. As such, the Oil Climate Index (OCI) project has been an international effort to evaluate the total life-cycle environmental GHG emissions of different oil fields globally. Over the course of the first and second phases of the project, 30 and 75 global oil fields have been investigated, respectively. The 75 fields account for about 25% of global oil production. For the third phase of the project, it is aimed to expand the OCI to contain closing to 100% of global oil production; leading to the analysis of 8000 fields. To accomplish this, a robust database system is required to handle and manipulate the data. Therefore, the integration of the data into the computer science language SQL (Structured Query Language) was performed. The implementation of SQL allows users to process the data more efficiently than would be possible by using the previously established program (Microsoft Excel). Next, a graphic user interface (gui) was implemented, in the computer science language of C#, in order to make the data interactive; enabling people to update the database without prior knowledge of SQL being necessary.

  16. Possibilities for Near-term Bioenergy Production and GHG-Mitigation through Sustainable Intensification of Agriculture and Forestry in Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Bentsen, Niclas S; Dalgaard, Tommy

    2017-01-01

    it is possible to increase production while at the same time decreasing environmental impact and with only minor consequences on food and feed production. An additional ~10 Tg biomass can be available in 2020 for the Danish energy sector. By converting the biomass in a biorefinery concept it is possible......To mitigate climate change it is necessary to further increase the deployment of renewable energy, including bioenergy. This analysis shows how this can be achieved in Danish agriculture and forestry before 2020. The key is a sustainable intensification and we show through three scenarios how...... to supply relevant, domestically produced energy carriers that amounts to ~5%−13% of 2020 Danish energy consumption. This has the potential to reduce the GHG emissions with 13%−21% of 2020 emissions. These results are possible because Danish net primary production and the human appropriation hereof can...

  17. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  18. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  19. Attribution of Net Carbon Change by Disturbance Type across Forest Lands of the Continental United States

    Science.gov (United States)

    Hagen, S. C.; Harris, N.; Saatchi, S. S.; Domke, G. M.; Woodall, C. W.; Pearson, T.

    2016-12-01

    We generated spatially comprehensive maps of carbon stocks and net carbon changes from US forestlands between 2005 and 2010 and attributed the changes to natural and anthropogenic processes. The prototype system created to produce these maps is designed to assist with national GHG inventories and support decisions associated with land management. Here, we present the results and methodological framework of our analysis. In summary, combining estimates of net C losses and gains results in net carbon change of 269±49 Tg C yr-1 (sink) in the coterminous US forest land, with carbon loss from harvest acting as the predominent source process.

  20. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China

    Directory of Open Access Journals (Sweden)

    Zaidi Jiang

    2017-12-01

    Full Text Available Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform—the Denitrification Decomposition (DNDC online model—for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1 moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N2O emission while maintaining the paddy rice yield; (2 ground straw residue had almost no influence on paddy rice yield, but the CH4 emission and the surface SOC concentration increased along with the quantity of the straw residue; (3 compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH4 emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  1. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2010-11-01

    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  2. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  3. Energy demand modelling and GHG emission reduction: case study Croatia

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Novosel, Tomislav

    2013-01-01

    and develop new energy policy towards energy efficiency and renewable energy sources, in order to comply with all of the presented tasks. Planning future energy demand, considering various policy options like regulation, fiscal and financial measures, becomes one of the crucial issues of future national...... energy strategy. This paper analyses Croatian long term energy demand and its effect on the future national GHG emissions. For that purpose the national energy demand model was constructed (NeD model). The model is comprised out of six modules each representing one sector, following Croatian national...... energy balance; industry, transport, households, services, agriculture and construction. For three of the modules (industry, transport and households) previously developed long term energy demand models were used, while for the remaining three new models were constructed. As an additional feature, new...

  4. Potential options to reduce GHG emissions in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.; Bonduki, Y.; Perdomo, M.

    1996-12-31

    The Government of Venezuela ratified the United Nations Framework Convention on Climate Change (UNFCCC) in December, 1994. The Convention requires all parties to develop and publish national inventories of anthropogenic greenhouse gas emissions (GHG) as well as national plans to reduce or control emissions, taking into account their common but differentiated responsibilities and their specific national and regional development priorities, objectives, and circumstances. Within this context, the Ministry of Environment and Renewable Natural Resources and the Ministry of Energy and Mines developed the `Venezuelan Case-Study to Address Climate Change`. The study was initiated in October 1993, with the financial and technical assistance of the Government of United States, through the U.S. Country Studies Program (USCSP), and the Global Environment Facility (GEF), through the United Nations Environment Programme (UNEP).

  5. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  6. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China

    Science.gov (United States)

    Zhang, Z. S.; Guo, L. J.; Liu, T. Q.; Li, C. F.; Cao, C. G.

    2015-12-01

    Significant efforts have been devoted to assess the effects of conservation tillage (no-tillage [NT] and straw returning) on greenhouse gas (GHG) emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), and net economic budget in crop growing seasons. However, only a few studies have evaluated the effects conservation tillage on the net ecosystem economic budget (NEEB) in a rice-wheat cropping system. Therefore, a split-plot field experiment was performed to comprehensively evaluate the effects of tillage practices (i.e., conventional intensive tillage [CT] and NT) and straw returning methods (i.e., straw returning or removal of preceding crop) on the soil total organic carbon (TOC), GHG emissions, GWP, GHGI, and NEEB of sandy loam soil in a rice-wheat cropping system in central China. Conservation tillage did not affect rice and wheat grain yields. Compared with CT and straw removal, NT and straw returning significantly increased the TOC of 0-5 cm soil layer by 2.9% and 7.8%, respectively. However, the TOC of 0-20 cm soil layer was not affected by tillage practices and straw returning methods. NT did not also affect the N2O emissions during the rice and wheat seasons; NT significantly decreased the annual CH4 emissions by 7.5% and the annual GWP by 7.8% compared with CT. Consequently, GHGI under NT was reduced by 8.1%. Similar to NT, straw returning did not affect N2O emissions during the rice and wheat seasons. Compared with straw removal, straw returning significantly increased annual CH4 emissions by 35.0%, annual GWP by 32.0%, and annual GHGI by 31.1%. Straw returning did not also affect NEEB; by contrast, NT significantly increased NEEB by 15.6%. NT without straw returning resulted in the lowest GWP, the lowest GHGI, and the highest NEEB among all treatments. This finding suggested that NT without straw returning may be applied as a sustainable technology to increase economic and environmental benefits. Nevertheless, environmentally straw

  7. Rent-seeking and grandfathering: The case of GHG trade in the EU

    DEFF Research Database (Denmark)

    Brandt, Urs Steiner; Svendsen, Gert Tinggaard

    2002-01-01

    The EU Commission has recently proposed a new directive establishing a framework for greenhouse gas (GHG) emissions trading within the European Union. The idea is to devalue the emission quotas in circulation by the year 2012 at latest, so that the EU will meet its Kyoto target level of an 8% GHG...

  8. The GHG-CCI project of ESA's climate change initiative : Data products and application

    NARCIS (Netherlands)

    Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, Hartmut; Aben, I.; Alexe, Mihai; Bergamaschi, P.; Bovensmann, H.; Brunner, D; Buchmann, B.; Burrows, J. P.; Butz, A.; Chevallier, F.; Crevoisier, C. D.; De Mazière, M.; De Wachter, E.; Detmers, R.; Dils, B.; Feng, L.; Frankenberg, C.; Hasekamp, O.P.; Hewson, W.; Heymann, J.; Houweling, S.; Kaminski, T.; Laeng, A.; van Leeuwen, T.; Lichtenberg, G.; Marshall, J.; Noël, S.; Notholt, J.; Palmer, P.I.; Parker, R.; Sundström, A. M.; Scholze, M.; Stiller, G. P.; Warneke, T.; Zehner, C.

    2016-01-01

    The goal of the GHG-CCI project (http://www.esa-ghg-cci.org/) of ESA's Climate Change Initiative (CCI) is to generate global atmospheric satellite-derived carbon dioxide (CO2) and methane (CH4) data sets as needed to improve our understanding of the regional sources and sinks of these important

  9. Broadening GHG accounting with LCA: application to a waste management business unit.

    Science.gov (United States)

    Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle

    2009-11-01

    In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.

  10. Energy efficiency improvement and GHG abatement in the global production of primary aluminium

    NARCIS (Netherlands)

    Kermeli, Katerina; Ter Weer, Peter Hans; Crijns - Graus, Wina; Worrell, Ernst

    Primary aluminium production is a highly energy-intensive and greenhouse gas (GHG)-emitting process responsible for about 1 % of global GHG emissions. In 2009, the two most energy-intensive processes in primary aluminium production, alumina refining and aluminium smelting consumed 3.1 EJ, of which 2

  11. Quantifying Terrestrial Ecosystem Carbon Stocks for Future GHG Mitigation, Sustainable Land-Use Planning and Adaptation to Climate Change in Quebec, Canada.

    Science.gov (United States)

    Garneau, M.; van Bellen, S.

    2016-12-01

    Based on various databases, carbon stocks of terrestrial ecosystems in the boreal and arctic biomes of Quebec were quantified as part of an evaluation of their capacity to mitigate anthropogenic greenhouse gas (GHG) emissions and estimate their vulnerability with respect to recent climate change and land use changes. The results of this project are contributing to the establishment of the Strategy for Climate Change Adaptation as well as the 2013-2020 Climate Change Action Plan of the Quebec Ministry of Environment, which aim to adapt the Quebec society to the effects of climate change and the reduction of GHG emissions. The total carbon stock of the soils of the forest and peatland ecosystems of Quebec was quantified at 18.00 Gt C or 66.0 Gt CO2-equivalent, of which 95% corresponds to the boreal and arctic regions. The mean carbon mass per unit area (kg C m-2) of peatlands is about nine times higher than that of forests, with values of 100,0 kg C m-2 for peatlands and 10,9 kg C m-2 for forest stands. In 2013, total anthropogenic emissions in Quebec were quantified at 82.6 Mt CO2-equivalent (Environment Canada, 2015), or 1.25‰ of the total Quebec ecosystem carbon stock. The total stock thus represents the equivalent of about 800 years of anthropogenic emissions at the current rate, divided between 478 years for peatlands and 321 years for forest soils. Future GHG mitigation policies and sustainable land-use planning should be supported by scientific data on terrestrial ecosystems carbon stocks. An increase in investments in peatland, wetland and forest conservation, management and rehabilitation may contribute to limit greenhouse gas emissions. It is therefore essential, that, following the objectives of multiple international organisations, the management of terrestrial carbon stocks becomes part of the national engagement to reduce GHG emissions.

  12. Comparing Madrid and Salvador GHG Emission Inventories: Implications for Future Researches

    Directory of Open Access Journals (Sweden)

    José Celio Silveira Andrade

    2017-06-01

    Full Text Available This paper compares the Greenhouse Gas (GHG emission inventories of Madrid and Salvador and discusses some implications for future researches, focusing on citylevel carbon accounting (CLCA of emissions from urban supply chains (USC and final consumers. To carry out this study, secondary data were collected from official documents of municipal governments of these two cities. According to the results, there are differences in stationary energy GHG emissions due to the big distinction concerning electricity emission factors used by each city. Air transportation GHG emissions are also very different. These two cities share some common figures regarding road transportation and per capita waste sector GHG emissions. In the conclusion section, we discuss opportunities for improvement of the cities’ GHG emission inventories as well as some implications for policy-making and future researches on carbon accounting, with focus on an integrated production-consumption system.

  13. Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate

    Directory of Open Access Journals (Sweden)

    U. Skiba

    2013-02-01

    Full Text Available Greenhouse gas (GHG fluxes from a seminatural, extensively sheep-grazed drained moorland and intensively sheep-grazed fertilised grassland in South East (SE Scotland were compared over 4 yr (2007–2010. Nitrous oxide (N2O and methane (CH4 fluxes were measured by static chambers, respiration from soil plus ground vegetation by a flow-through chamber, and the net ecosystem exchange (NEE of carbon dioxide (CO2 by eddy-covariance. All GHG fluxes displayed high temporal and interannual variability. Temperature, radiation, water table height and precipitation could explain a significant percentage of seasonal and interannual variations. Greenhouse gas fluxes were dominated by the net ecosystem exchange of CO2 at both sites. Net ecosystem exchange of CO2 and respiration was much larger on the productive fertilised grassland (−1567 and 7157 g CO2eq m−2 yr−1, respectively than on the seminatural moorland (−267 and 2554 g CO2eq m−2 yr−1, respectively. Large ruminant CH4 (147 g CO2eq m−2 yr−1 and soil N2O (384 g CO2eq m−2 yr−1 losses from the grazed grassland counteracted the CO2 uptake by 34%, whereas the small N2O (0.8 g CO2eq m−2 yr−1 and CH4 (7 g CO2eq m−2 yr−1 emissions from the moorland only impacted the NEE flux by 3%. The 4-yr average GHG budget for the grazed grassland was −1034 g CO2eq m−2 yr−1 and −260 g CO2eq m−2 yr−1 for the moorland.

  14. Estimating Greenhouse Gas (GHG) Emissions in 2050 from New Buildings in California

    Science.gov (United States)

    Beardsley, K.; Thorne, J. H.; Quinn, J. F.

    2009-12-01

    A major contributor to global warming is Greenhouse Gas (GHG) emissions, with carbon dioxide (CO2) as the lead constituent. While the United States has failed to take a leadership role in worldwide efforts to reduce global warming, California has implemented some of the strictest reduction goals in the country. Recent legislation in California requires significant GHG emission reductions in the coming decades to meet state-mandated targets. To better understand the relative contribution of urban growth to these emissions, we applied an Energy and GHG Impacts Calculator (referred to as “GHG Calculator”) to estimate GHG contributions for two statewide population growth scenarios for the year 2050. Implemented as part of the UPlan urban growth model, the GHG Calculator allows users to predict and compare GHG output from new development. In this paper, two scenarios, differing only in the spatial allocation of housing among zoning categories, are developed and tested for the year 2050 in California. The difference in total GHG emissions between these scenarios was less than 1%. Thus, while “smart growth” may be desirable for a variety of other reasons, the policy impact of the sprawl footprint per se on fixed-source GHG emissions is likely to be far less than effects from other factors, such as insulation and household energy efficiency. The GHG Calculator allows alternative emission-reducing measures to be tested, including modified energy mixes (e.g. a greater percent of renewable sources and lower carbon-based fuels) and conservation measures. The goal is to approximate 2050 emissions and determine what measures are needed to achieve the 2050 goal set by the Governor of California to help decrease the State’s overall contribution to global warming.

  15. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  16. Urban Fluxes Monitoring and Development of Planning Strategies to Reduce Ghg Emissions in AN European City

    Science.gov (United States)

    Marras, S.; Sirca, C.; Bellucco, V.; Falk, M.; Pyles, R. D.; Snyder, R. L.; Paw U, K.; Duce, P.; Blecic, I.; Trunfio, G. A.; Cecchini, A.; Spano, D.

    2013-12-01

    Cities and human settlements in general are a primary source of emissions that contribute to human-induced climate change. To investigate the impact of an urbanized area on urban metabolism components, an eddy covariance (EC) tower will be set up in a city (Sassari) located in the center of the Mediterranean basin (Sardinia, Italy). The EC tower, as well as a meteorological station and radiometers, will be set up to monitor energy, water, and carbon fluxes in the city center. A GHG emissions inventory will be also compiled to identify the main emission sources. In addition, a modeling framework will be used to study the impact of different urban planning strategies on carbon emission rates. The modeling framework consists of four models to analyze fluxes both at local and municipality scale: (i) a land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm, ACASA) to simulate the urban metabolism components at local scale; (ii) a Cellular Automata model to simulate the urban land-use dynamics in the near future (20-30 years); (iii) a transportation model to estimate the variation of the transportation network load, and (iv) the coupled model WRF-ACASA will be finally used to simulate the urban metabolism components at municipality scale. The participation of local stakeholders will allow the definition of future planning strategies with the aim to identify low carbon emissions strategies. The projects activities, methodologies applied, as well as the preliminary results will be reported here.

  17. Above- and Below-ground Biomass, Net Ecosystem Carbon Exchange, and Soil Respiration in a Poplar Populus deltoides Bartr.) stand : Changes after 3 years of Growth under Elevated CO2

    Science.gov (United States)

    Barron-Gafford, G. A.; Grieve, K.; Bil, K.; Kudeyarov, V.; Handley, L.; Murthy, R.

    2003-12-01

    Stands of cottonwood (Populus deltoides Bartr.) trees were grown as a coppiced system under ambient (40 Pa), twice ambient (80 Pa), and three times ambient (120 Pa) partial pressure CO2 for the past three years in the Intensively-managed Forest Mesocosm (IFM) of the Biosphere 2 Center. Over three years Net Ecosystem CO2 exchange (NECE) was measured continuously and in the third year, nine whole trees were harvested from each CO2 treatment over the growing season. Both above- and below-ground parameters were measured. Three years of growth under elevated CO2 showed the expected stimulation in foliar biomass (8.7, 11.9, and 13.1 kg for the 40, 80, and 120 Pa treatments, respectively). Rates of NECE also followed an expected increase with elevated atmospheric CO2 concentrations, with maximum CO2 uptake rates reaching 10.5, 15.6, and 19.6 μ moles m-2 s-1 in the 40, 80, and 120 Pa treatments, respectively. However, above ground woody biomass and root biomass were not much stimulated beyond 80 Pa CO2. Wood/foliage and above/below ground biomass ratios reflect this decline. Under conditions of non-limiting nutrients and water, we found consistent increases in the above/below ground biomass ratio and wood to foliage biomass ratios in the 80 compared to the 40 Pa pCO2. Woody biomass production and the above/below ground biomass ratio were lower under the 120 Pa than any other treatment. Although biomass production did not change appreciably between 80 and 120 Pa CO2 treatments, both substrate induced and in-situ soil respiration values are also significantly higher in the 120Pa treatment, though no differences were present prior to CO2 treatments (Murthy et al. 2003). The unique closed-system operation of the IFM allowed for measures of soil CO2 efflux to be measured at both the soil collar and stand scales using a box model that takes into account all inputs and outputs from the stand. In-situ soil respiration rates increased significantly with increased atmospheric CO2

  18. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  19. Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

    Science.gov (United States)

    Wang, Jinyang; Zhang, Xiaolin; Liu, Yinglie; Pan, Xiaojian; Liu, Pingli; Chen, Zhaozhi; Huang, Taiqing; Xiong, Zhengqin

    2012-01-01

    Background Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. Materials and Methods Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI). Principal Results The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. Conclusions In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system. PMID

  20. GRL-FLUXNET: Measuring GHG, Water, and Microbial Fluxes in the Southern Great Plains

    Science.gov (United States)

    Gowda, P. H.; Steiner, J. L.; Wagle, P.; Northup, B. K.

    2016-12-01

    The GRLNET flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between the atmosphere and a diverse range of terrestrial ecosystems including native and improved tallgrass prairie pastures, burned and unburned pastures, grazed and non-grazed pastures, till and no-till winter wheat and canola, grazed and non-grazed winter wheat, grazed and non-grazed alfalfa. In addition, chamber-based measurements of soil emissions of three major greenhouse gases (CO2, CH4, and N2O) and chamber-based measurements of net ecosystem CO2 exchange (NEE) and ecosystem respiration (autotrophic and heterotrophic) will be carried at the eddy flux sites and several small plot scales with different levels of nitrogen (N), legume treatment, and tillage systems. Biometerological variables such as leaf area index, canopy height, and dry biomass will be collected periodically. Soil chemistry and nutrient status (total soil C and N, extractable soil C, NO2, NO3, NO4, and basic organic acids) and soil microbial community and their activities will be monitored throughout the year at the study sites.

  1. GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China

    Directory of Open Access Journals (Sweden)

    Han Hao

    2017-04-01

    Full Text Available With the mass market penetration of electric vehicles, the Greenhouse Gas (GHG emissions associated with lithium-ion battery production has become a major concern. In this study, by establishing a life cycle assessment framework, GHG emissions from the production of lithium-ion batteries in China are estimated. The results show that for the three types of most commonly used lithium-ion batteries, the (LFP battery, the (NMC battery and the (LMO battery, the GHG emissions from the production of a 28 kWh battery are 3061 kgCO2-eq, 2912 kgCO2-eq and 2705 kgCO2-eq, respectively. This implies around a 30% increase in GHG emissions from vehicle production compared with conventional vehicles. The productions of cathode materials and wrought aluminum are the dominating contributors of GHG emissions, together accounting for around three quarters of total emissions. From the perspective of process energy use, around 40% of total emissions are associated with electricity use, for which the GHG emissions in China are over two times higher than the level in the United States. According to our analysis, it is recommended that great efforts are needed to reduce the GHG emissions from battery production in China, with improving the production of cathodes as the essential measure.

  2. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  3. Proximal sensing for soil carbon accounting

    OpenAIRE

    England, Jacqueline R.; Viscarra Rossel, Raphael Armando

    2018-01-01

    Maintaining or increasing soil organic carbon (C) is important for securing food production, and for mitigating greenhouse gas (GHG) emissions, climate change and land degradation. Some land management practices in cropping, grazing, horticultural and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one needs measu...

  4. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  5. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  6. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  7. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  8. Geological contribution to the GHG budget of the Capo Caccia karst ecosystem (NW Sardinia, Italy)

    Science.gov (United States)

    Sanna, Laura; Arca, Angelo; Casula, Marcello; Ventura, Andrea; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    Capo Caccia karst area (North-West Sardinia, Italy) is one of the monitoring points of the Italian ICOS infrastructure. The carbon flux in this region is continuously performed by direct measurement of gas exchanges across canopy-atmosphere interface using an eddy covariance tower placed over a Mediterranean maquis, constituted by sclerophyl species. As the net ecosystem carbon balance in this terrestrial ecosystem does not only respond to physiological features of its vegetation, the geological contribution to the GHG budget has been investigated through the relationships among atmosphere-biosphere-geosphere gas exchanges. Since carbon dioxide is involved in the geochemical cycle of the karst processes, the environmental monitoring programme has been extended to the underground atmosphere using micrometeorological stations installed within caves. The preliminary data show a static cave air CO2 concentration ranging from 500 ppm to 1600 ppm, with periodic gas plumes that reach up to 18,000 ppm. Correlation analysis point out that subsurface-atmosphere gas exchange reflects environmental forcing related to atmospheric variables. In fact the degassing mainly occurs by barometric pressure changes and via density driven flow. Subsurface air ventilation can be also induced by water table oscillations, so future step of the study will take into account the relationship between the unsatured zone and the near marine ecosystem. Even though underground air mass is reasonably small respect to the outside atmosphere, when considering the high density of karst features of Capo Caccia karst ecosystem, its temporal CO2 pattern provides evidence that the amounts of carbon that might be released from subsurface could be noticeable at both local and regional scale. Integrated monitoring of atmosphere dynamic can give clues for understanding carbon cycle model and multidisciplinary approaches contribute for filling the gap in global carbon budget. Acknowledgements This research was

  9. Accounting of GHG emissions and removals from forest management: a long road from Kyoto to Paris.

    Science.gov (United States)

    Krug, Joachim H A

    2018-01-03

    GHG emission reductions. This also concerns forests as a resource for the bio-based economy and wood products, and for increasing carbon reservoirs. By discussing the existing elements of forest accounting rules and conditions for establishing an accounting system post 2030, it is concluded that core requirements like factoring out direct human-induced from indirect human-induced and natural impacts on managed lands, a facilitation of incentives for management changes and providing safeguards for the integrity of the accounting system are not sufficiently secured by currently discussed accounting rules. A responsibility to fulfil these basic requirements is transferred to Nationally Determined Contributions. Increased incentives for additional human induced investments are not stipulated by the accounting approach but rather by the political decision to make use of the substitution effect and potential net removals from LULUCF to contribute to self-set targets.

  10. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

    Science.gov (United States)

    Poblador, Sílvia; Lupon, Anna; Sabaté, Santiago; Sabater, Francesc

    2017-09-01

    Riparian zones play a fundamental role in regulating the amount of carbon (C) and nitrogen (N) that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG) emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2) and nitrous oxide (N2O) from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification) and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2-10 g C m-2 d-1) than N2O (0.001-0.2 mg N m-2 d-1) to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic) spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.

  11. Climate Leadership Award for Excellence in GHG Management (Goal Setting Certificate)

    Science.gov (United States)

    Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.

  12. Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award)

    Science.gov (United States)

    Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.

  13. Fossil energy and GHG saving potentials of pig farming in the EU

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Mogensen, Lisbeth; Hermansen, John Erik

    2010-01-01

    ) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular......, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions......In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG...

  14. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  15. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  16. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  17. Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2013-05-01

    Full Text Available This paper compares the greenhouse gas (GHG emissions of natural gas (NG- based fuels to the GHG emissions of electric vehicles (EVs powered with NG-to-electricity in China. A life-cycle model is used to account for full fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing. The reduction of life-cycle GHG emissions of EVs charged by electricity generated from NG, without utilizing carbon dioxide capture and storage (CCS technology can be 36%–47% when compared to gasoline vehicles. The large range change in emissions reduction potential is driven by the different generation technologies that could in the future be used to generate electricity in China. When CCS is employed in power plants, the GHG emission reductions increase to about 71%–73% compared to gasoline vehicles. It is found that compressed NG (CNG and liquefied NG (LNG fuels can save about 10% of carbon as compared to gasoline vehicles. However, gas-to-liquid (GTL fuel made through the Fischer-Tropsch method will likely lead to a life-cycle GHG emissions increase, potentially 3%–15% higher than gasoline, but roughly equal to petroleum-based diesel. When CCS is utilized, the GTL fueled vehicles emit roughly equal GHG emissions to petroleum-based diesel fuel high-efficient hybrid electric vehicle from the life-cycle perspective.

  18. Dynamics of Blue Carbon Stocks and GHG Emissions Along a Land Use Gradient in El Salvador

    Science.gov (United States)

    Cifuentes, M.; Torres, D.; Sergio, V.; Rivera, C. G.; Molina, O.

    2016-12-01

    Coastal blue carbon ecosystems can store up to 5 times more carbon than their terrestrial counterparts. The former are also under great threats stemming from climate change (i.e. sea level rise) and human encroachment (i.e. land use change). Our research was conducted in Jiquilisco and Jaltepeque Bays in El Salvador and constitutes the first-ever assessment of blue carbon stocks and GHG emissions along a land use gradient in the country. Ecosystem-level carbon stocks were measured in mangroves (natural and restored stands), marshes, shrimp farms, artisan salt flats, and adjacent agriculture areas. Ecosystem carbon ranged from 738 ± 116 MgC·ha-1 to 617 ± 115 MgC·ha-1 in tall and medium mangroves to 191 ± 28 MgC·ha-1 in dwarf mangroves. An average 87 % of this carbon is sequestered in the soil, consistent with measurements made elsewhere. Carbon losses from conversion from mangroves to agricultural uses reduced natural stocks by 90%, thus producing dramatic historical emissions in the country. Conservative estimates suggest historical (1993-2014) carbon emissions from this land-use dynamics may amount to 48495 to 58004 Gg CO2e, representing 3 to 4 times the country's emissions in 2005. Our data allow us to test the efficacy of "Ecological Mangrove Restoration" programs promoted in El Salvador to strengthen local governance, livelihoods and ecosystem stability. Restored mangrove stands represent anywhere from 36 to 77 % of ecosystem carbon stocks measured in natural stands, suggesting they are playing an important role in recovering lost stocks over time. Further efforts should be spent in expanding community mangrove restoration, and ensuring carbon sequestration is properly included in the national MRV system for REDD+.

  19. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mechanistic modeling of thermo-hydrological processes and microbial interactions at pore to profile scales resolve methane emission dynamics from permafrost soil

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates

  1. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  2. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  3. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  4. Essays on the U.S. biofuel policies: Welfare impacts and the potential for reduction of GHG emission

    Science.gov (United States)

    Hossiso, Kassu Wamisho

    This dissertation study investigates the impact of the US biofuel policies related to greenhouse gas (GHG) emission regulation, tax credit and renewable fuel standard (RFS2) mandate over production and consumption of ethanol as well as technical and environmental performance of corn ethanol plants. The study develops analytical models and provides quantitative estimation of the impact of various biofuel policies in each of the three chapters. Chapter 1 of this dissertation examines the tradeoff between achieving the environmental goal of minimizing life cycle GHG emissions and minimizing production costs in recently built dry-grind corn ethanol plants. The results indicate that the average ethanol plant is able to reduce GHG emissions by 36 % relative to the level under cost minimization, but production costs are 22 % higher. To move from least cost to least emissions allocations, ethanol plants would on average produce 25 % more of wet byproduct and 47% less of dry byproduct. Using a multi-output, multi-input partial equilibrium model, Chapter 2 explores the impact of the tax credit and RFS2 mandate policy on market price of ethanol, byproducts, corn, and other factor inputs employed in the production of corn ethanol. In the short-run, without tax credit ethanol plants will not have the incentive to produce the minimum level of ethanol required by RFS2. In the long-run, if ethanol plants to have the incentive to produce the minimum RFS2 mandate without tax credit policy, gasoline price will need to increase by order of 50% or more relative to the 2011 price. Chapter 3 develop meta-regression model to investigate the extent to which statistical heterogeneity among results of multiple studies on soil organic carbon (SOC) sequestration rates can be related to one or more characteristics of the studies in response to conventional tillage (CT) and no-till (NT). Regarding the difference in the rate of SOC sequestration between NT and CT, our results shows that the

  5. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    Science.gov (United States)

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  6. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  7. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  8. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  9. Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.

    Science.gov (United States)

    Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal

    2017-10-16

    The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N2O, CO2) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N2O, CO2, and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.

  10. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  11. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  12. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  13. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  14. Role of organic amendment application on greenhouse gas emission from soil

    Energy Technology Data Exchange (ETDEWEB)

    Thangarajan, Ramya, E-mail: thary008@mymail.unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, SA 5095 (Australia); Bolan, Nanthi S. [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, SA 5095 (Australia); Tian, Guanglong [Environmental Monitoring and Research Division, Monitoring and Research Dep., Metropolitan Water Reclamation District of Greater Chicago, 6001, Pershing Road, Cicero, IL 60804 (United States); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, SA 5095 (Australia); Kunhikrishnan, Anitha [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science,10 Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-11-01

    Globally, substantial quantities of organic amendments (OAs) such as plant residues (3.8 × 10{sup 9} Mg/yr), biosolids (10 × 10{sup 7} Mg/yr), and animal manures (7 × 10{sup 9} Mg/yr) are produced. Recycling these OAs in agriculture possesses several advantages such as improving plant growth, yield, soil carbon content, and microbial biomass and activity. Nevertheless, OA applications hold some disadvantages such as nutrient eutrophication and greenhouse gas (GHG) emission. Agriculture sector plays a vital role in GHG emission (carbon dioxide— CO{sub 2}, methane— CH{sub 4}, and nitrous oxide— N{sub 2}O). Though CH{sub 4} and N{sub 2}O are emitted in less quantity than CO{sub 2}, they are 21 and 310 times more powerful in global warming potential, respectively. Although there have been reviews on the role of mineral fertilizer application on GHG emission, there has been no comprehensive review on the effect of OA application on GHG emission in agricultural soils. The review starts with the quantification of various OAs used in agriculture that include manures, biosolids, and crop residues along with their role in improving soil health. Then, it discusses four major OA induced-GHG emission processes (i.e., priming effect, methanogenesis, nitrification, and denitrification) by highlighting the impact of OA application on GHG emission from soil. For example, globally 10 × 10{sup 7} Mg biosolids are produced annually which can result in the potential emission of 530 Gg of CH{sub 4} and 60 Gg of N{sub 2}O. The article then aims to highlight the soil, climatic, and OA factors affecting OA induced-GHG emission and the management practices to mitigate the emission. This review emphasizes the future research needs in relation to nitrogen and carbon dynamics in soil to broaden the use of OAs in agriculture to maintain soil health with minimum impact on GHG emission from agriculture. - Highlights: ► A comprehensive overview for the first time on GHG emission from

  15. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs ), and metabolic quotient (qCO2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  16. Continuous measurements of CO2 emission from cultivated peat soil - effect of tillage intensity

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2014-05-01

    Peatlands process and transfer significant quantities of greenhouse gases (GHG) such as CO2, CH4 and N2O. Most natural water-saturated peatlands sequester large amounts of CO2 from the atmosphere and emit CH4. Drainage and cultivation of peat soils increase soil aeration and reverse the carbon flux into net CO2 emissions, while CH4 emissions decrease and cultivated peat soils may even act as sinks for CH4. Fertile peat soils are potential sources of N2O when drained. In this investigation we used automatic dark chambers (ADC BioScientific Ltd) to measure CO2 emissions from plots with different soil tillage intensities. The field trial is located on the island Gotland east of the Swedish main land (57.584825N 18.47691E) and the soil is a peat soil with high pH (7.5) and organic content of 46.4 % (loss on ignition). The set-up was 4 treatments repeated in 4 blocks. Each plot was 18 by 25 meters and the following treatments were tested: A. Ploughing every year B. Ploughing 1 out of 4 years C. Only stubble cultivation D. Permanent ley One chamber was put in each plot and connected to a master control unit to create a network with 16 chambers. Measurements were made every hour during most of 2012 (17/4- 6/11 with some gaps) and every second hour during 2013 (22/4-27/6). Higher emissions could be observed just after cultivation and that effect lasted for about one day. The average emission was highest from treatment D during 2012 (4.53 μmol m-2 s-1) and treatment C and D during 2013 (3.85 μmol m-2 s-1).

  17. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  18. A consumption-based GHG inventory for the U.S. state of Oregon.

    Science.gov (United States)

    Erickson, Peter; Allaway, David; Lazarus, Michael; Stanton, Elizabeth A

    2012-04-03

    Many U.S. states conduct greenhouse gas (GHG) inventories to inform their climate change planning efforts. These inventories usually follow a production-based method adapted from the Intergovernmental Panel on Climate Change. States could also take a consumption-based perspective, however, and estimate all emissions released to support consumption in their state, regardless of where the emissions occur. In what may be the first such comprehensive inventory conducted for a U.S. state, we find that consumption-based emissions for Oregon are 47% higher than those released in-state. This finding implies that Oregon's contribution to global greenhouse gas emissions (carbon footprint) is considerably higher than traditional production-based methods would suggest. Furthermore, the consumption-based inventory helps highlight the role of goods and services (and associated purchasing behaviors) more so than do production-based methods. Accordingly, a consumption-based perspective opens new opportunities for many states and their local government partners to reduce GHG emissions, such as initiatives to advance lower-carbon public sector or household consumption, that are well within their sphere of influence. State and local governments should consider conducting consumption-based GHG inventories and adopting consumption-based emission reductions targets in order to broaden the reach and effectiveness of state and local actions in reducing global GHG emissions. Consumption-based frameworks should be viewed as a complement to, but not a substitute for, production-based (in-state) GHG emissions inventories and targets.

  19. GHG emission quantification for pavement construction projects using a process-based approach

    Directory of Open Access Journals (Sweden)

    Charinee Limsawasd

    2017-03-01

    Full Text Available Climate change and greenhouse gas (GHG emissions have attracted much attention for their impacts upon the global environment. Initiating of new legislation and regulations for control of GHG emissions from the industrial sectors has been applied to address this problem. The transportation industries, which include operation of road pavement and pavement construction equipment, are the highest GHG-emitting sectors. This study presents a novel quantification model of GHG emissions of pavement construction using process-based analysis. The model is composed of five modules that evaluate GHG emissions. These are: material production and acquisition, (2 material transport to a project site, (3 heavy equipment use, (4 on-site machinery use, and, (5 on-site electricity use. The model was applied to a hypothetical pavement project to compare the environmental impacts of flexible and rigid pavement types during construction. The resulting model can be used for evaluation of environmental impacts, as well as for designing and planning highway pavement construction.

  20. Optimizing production with energy and GHG emission constraints in Greece: An input-output analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hristu-Varsakelis, D., E-mail: dcv@uom.g [Department of Applied Informatics, University of Macedonia, 156 Egnatia St., Thessaloniki 54006 (Greece); Karagianni, S., E-mail: stelkar@uom.g [Department of Economics, University of Macedonia, 156 Egnatia St., Thessaloniki 54006 (Greece); Pempetzoglou, M., E-mail: mariap@socadm.duth.g [Department of Social Administration, Democritus University of Thrace, 1 Panagi Tsaldari St., 69100 Komotini (Greece); Sfetsos, A., E-mail: ts@ipta.demokritos.g [Environmental Research Laboratory, INT-RP, NCSR Demokritos, Patriarhou Grigoriou, Agia Paraskevi 15310 (Greece)

    2010-03-15

    Under its Kyoto and EU obligations, Greece has committed to a greenhouse gas (GHG) emissions increase of at most 25% compared to 1990 levels, to be achieved during the period 2008-2012. Although this restriction was initially regarded as being realistic, information derived from GHG emissions inventories shows that an increase of approximately 28% has already taken place between 1990 and 2005, highlighting the need for immediate action. This paper explores the reallocation of production in Greece, on a sector-by-sector basis, in order to meet overall demand constraints and GHG emissions targets. We pose a constrained optimization problem, taking into account the Greek environmental input-output matrix for 2005, the amount of utilized energy and pollution reduction options. We examine two scenarios, limiting fluctuations in sectoral production to at most 10% and 15%, respectively, compared to baseline (2005) values. Our results indicate that (i) GHG emissions can be reduced significantly with relatively limited effects on GVP growth rates, and that (ii) greater cutbacks in GHG emissions can be achieved as more flexible production scenarios are allowed.

  1. Optimizing production with energy and GHG emission constraints in Greece. An input-output analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hristu-Varsakelis, D. [Department of Applied Informatics, University of Macedonia, 156 Egnatia St., Thessaloniki 54006 (Greece); Karagianni, S. [Department of Economics, University of Macedonia, 156 Egnatia St., Thessaloniki 54006 (Greece); Pempetzoglou, M. [Department of Social Administration, Democritus University of Thrace, 1 Panagi Tsaldari St., 69100 Komotini (Greece); Sfetsos, A. [Environmental Research Laboratory, INT-RP, NCSR Demokritos, Patriarhou Grigoriou, Agia Paraskevi 15310 (Greece)

    2010-03-15

    Under its Kyoto and EU obligations, Greece has committed to a greenhouse gas (GHG) emissions increase of at most 25% compared to 1990 levels, to be achieved during the period 2008-2012. Although this restriction was initially regarded as being realistic, information derived from GHG emissions inventories shows that an increase of approximately 28% has already taken place between 1990 and 2005, highlighting the need for immediate action. This paper explores the reallocation of production in Greece, on a sector-by-sector basis, in order to meet overall demand constraints and GHG emissions targets. We pose a constrained optimization problem, taking into account the Greek environmental input-output matrix for 2005, the amount of utilized energy and pollution reduction options. We examine two scenarios, limiting fluctuations in sectoral production to at most 10% and 15%, respectively, compared to baseline (2005) values. Our results indicate that (1) GHG emissions can be reduced significantly with relatively limited effects on GVP growth rates, and that (2) greater cutbacks in GHG emissions can be achieved as more flexible production scenarios are allowed. (author)

  2. How to estimate green house gas (GHG) emissions from an excavator by using CAT's performance chart

    Science.gov (United States)

    Hajji, Apif M.; Lewis, Michael P.

    2017-09-01

    Construction equipment activities are a major part of many infrastructure projects. This type of equipment typically releases large quantities of green house gas (GHG) emissions. GHG emissions may come from fuel consumption. Furthermore, equipment productivity affects the fuel consumption. Thus, an estimating tool based on the construction equipment productivity rate is able to accurately assess the GHG emissions resulted from the equipment activities. This paper proposes a methodology to estimate the environmental impact for a common construction activity. This paper delivers sensitivity analysis and a case study for an excavator based on trench excavation activity. The methodology delivered in this study can be applied to a stand-alone model, or a module that is integrated with other emissions estimators. The GHG emissions are highly correlated to diesel fuel use, which is approximately 10.15 kilograms (kg) of CO2 per gallon of diesel fuel. The results showed that the productivity rate model as the result from multiple regression analysis can be used as the basis for estimating GHG emissions, and also as the framework for developing emissions footprint and understanding the environmental impact from construction equipment activities introduction.

  3. Understanding Variability To Reduce the Energy and GHG Footprints of U.S. Ethylene Production.

    Science.gov (United States)

    Yao, Yuan; Graziano, Diane J; Riddle, Matthew; Cresko, Joe; Masanet, Eric

    2015-12-15

    Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due to fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward.

  4. 77 FR 14225 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule Step 3, GHG...

    Science.gov (United States)

    2012-03-08

    ... LDVR Light-Duty Vehicle Rule N2O Nitrous Oxide NAAQS National Ambient Air Quality Standard NACAA...? 4. Options for Allowing GHG-Only Sources To Obtain a GHG PAL 5. Extending PALs to GHGs on a CO 2 e... source that already has a mass-based GHG PAL obtain a CO 2 e-based PAL once we issue final changes to the...

  5. Greenhouse gas emissions from fen soils used for forage production in northern Germany

    Science.gov (United States)

    Poyda, Arne; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; Taube, Friedhelm

    2016-09-01

    A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2-C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2-C eq. ha-1 a-1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2-C eq. (GJ net energy lactation; NEL)-1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean ≤ 20 cm below the surface).

  6. GHG emissions from slurry and digestates during storage and after field application

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Nguyen, Quan Van; Petersen, Søren O.

    , but environmental impacts, such as greenhouse gas (GHG) emissions, during storage and after field application should take into account. Mainly, methane (CH4) is produced during storage and nitrous oxide (N2O) after field application. Currently, direct (CH4, N2O) and indirect (NH3) GHG emissions during storage...... are determined in a pilot-scale study with digested materials from Maabjerg Bioenergy and Fredericia Wastewater Treatment Facility, using untreated cattle and pig slurry as reference. These and other results will be used to model the effect of temperature and pre-treatment on CH4 emissions. The composition...... of volatile solids (VS) is critical for predicting GHG emissions and the effect of biogas treatment. Volatile solids may be considered to have an easily degradable VS (VSd) and a slowly degradable VS (VSnd) fraction. A new approach to estimate VSd was investigated using the short-term evolution of CO2-C from...

  7. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    Energy Technology Data Exchange (ETDEWEB)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  8. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    Energy Technology Data Exchange (ETDEWEB)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  9. The political economy of a tradable GHG permit market in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Markussen, P.; Tinggaard Svendsen, G.; Vesterdal, M.

    2002-07-01

    The EU has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. Therefore, the EU Commission has just proposed a new directive establishing a framework for GHG emissions trading within the European Union. This proposal is to outcome a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stake holders all had the opportunity to comment on the Green Paper and from their directive proposal. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently lead to a grand fathered permit allocation rule like the one found in the US tradable permit systems. (au)

  10. Strategies to reducing GHG emissions in semi-arid rangelands of Mexico

    Directory of Open Access Journals (Sweden)

    Heriberto Díaz Solís

    2016-01-01

    Full Text Available SESS (Simple Ecological Sustainability Simulator model was modified to evaluate 3 management strategies that could increase CO2 sequestration and reduce methane emissions in cow-calf production systems in semi-arid rangelands. The management strategies included (1 maintenance of a high and constant stocking rate (CONTROL, which is the most common current practice, (2 maintenance of a low and constant stocking rate (LOW SR and (3 adjustment of stocking rate before the beginning of each breeding season based on the amount of precipitation during the previous growing season (REPLA-PPT. The model was parameterized to represent a typical extensive (5 000 ha cow-calf production system in the northeastern portion of the Mexican state of Coahuila under an historical (1950 to 1994 precipitation regime, and compared carbon sequestration, methane emissions, animal performance and net profit resulting from each strategy. Results of the 45-year simulations indicated the REPLA-PPT stocking rate strategy had the greatest improvement of range condition, captured more CO2 in vegetation, had the lowest methane emissions, substantially improved mean body condition score and reduced annual mortality of cattle, compared to the constant stocking rate strategies. REPLA-PPT also showed the highest values for calves weaned, and kg weaned per ton of methane produced and highest long-term net profit. This suggests that adaptive management of extensive cow-calf production systems in semi-arid environments could increase carbon sequestration in soils and reduce methane emissions, while improving range production, maintaining animal production and giving the greatest long-term net profit.

  11. La plataforma .NET

    OpenAIRE

    Fornas Estrada, Miquel

    2008-01-01

    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  12. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  13. Exploiting Soil-Management Strategies for Climate Mitigation in the European Union: Maximizing "Win-Win" Solutions across Policy Regimes

    Directory of Open Access Journals (Sweden)

    Christian Bugge. Henriksen

    2011-12-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC has identified a number of soil-management strategies that can be implemented to reduce GHG emissions. However, before deciding which of these strategies are most appropriate in any given situation, it is important to investigate how these strategies affect other aspects of sustainable development. For instance, some attempts to sequester carbon in the landscape could alter the soil's capacity to filter water. Alternatively, other strategies could unintentionally increase net energy consumption through greater fertilizer use. Focusing specifically on opportunities to implement soil-management strategies in the European Union (EU, we discuss the synergies and trade-offs of those strategies with respect to water resources management and energy security. The focus of the analysis is two-fold: first, we analyze the net benefit of strategies such as crop management, nutrient management, tillage and residue management, water management, and bioenergy vis-a-vis their implications for water resources and energy security; second, we undertake an assessment of the EU's relevant policy frameworks to assess whether the potential synergies from various soil-management strategies are being encouraged or, conversely, where perverse outcomes or trade-offs are likely. Our findings suggest there is much scope to encourage soil-management strategies in Europe that would mitigate greenhouse gas emissions, but these synergies are currently not fully exploited at the EU policy level. We identify a number of options for better policy integration among the Common Agricultural Policy, the Water Framework Directive, and the Climate Action and Renewable Energy Package.

  14. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    DEFF Research Database (Denmark)

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2013-01-01

    Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM...... the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings...

  15. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj

    2015-01-01

    . In this study, we integrated three types of analysis - energetic, GHG and economic – in order to optimise biogas production from the co-digestion of pig slurry (PS) and sugar beet pulp silage (SB). We found that the energy and GHG balances are improved when utilising SB as a co-substrate, mainly because...... to be improved. The economic and environmental performances of the biogas chain must be optimised to ensure viable and sustainable solutions. Different types of feedstock materials will have to be considered, including Agricultural residues, agro-industrial residues and, to some extent, dedicated energy crops...

  16. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj

    . In this study, we integrated three types of analysis - energetic, GHG and economic – in order to optimise biogas production from the co-digestion of pig slurry (PS) and sugar beet pulp silage (SB). We found that the energy and GHG balances are improved when utilising SB as a co-substrate, mainly because...... to be improved. The economic and environmental performances of the biogas chain must be optimised to ensure viable and sustainable solutions. Different types of feedstock materials will have to be considered, including Agricultural residues, agro-industrial residues and, to some extent, dedicated energy crops...

  17. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen; Boldrin, Alessio; Raj Baral, Khagendra

    . In this study, we integrated three types of analysis - energetic, GHG and economic – in order to optimise biogas production from the co-digestion of pig slurry (PS) and sugar beet pulp silage (SB). We found that the energy and GHG balances are improved when utilising SB as a co-substrate, mainly because...... to be improved. The economic and environmental performances of the biogas chain must be optimised to ensure viable and sustainable solutions. Different types of feedstock materials will have to be considered, including agricultural residues, agro-industrial residues and, to some extent, dedicated energy crops...

  18. Progress toward an Integrated Global GHG Information System (IG3IS)

    Science.gov (United States)

    DeCola, Philip

    2016-04-01

    Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations have shown the inexorable rise of global GHG concentrations due to human socioeconomic activity. Scientific observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this amassing evidence, nations, states, cities and private enterprises are accelerating efforts to reduce emissions of GHGs, and the UNFCCC process recently forged the Paris Agreement. Emission reduction strategies will vary by nation, region, and economic sector (e.g., INDCs), but regardless of the strategies and mechanisms applied, the ability to implement policies and manage them effectively over time will require consistent, reliable and timely information. A number of studies [e.g., Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (2010); GEO Carbon Strategy (2010); IPCC Task Force on National GHG Inventories: Expert Meeting Report on Uncertainty and Validation of Emission Inventories (2010)] have reported on the state of carbon cycle research, observations and models and the ability of these atmospheric observations and models to independently validate and improve the accuracy of self-reported emission inventories based on fossil fuel usage and land use activities. These studies concluded that by enhancing our in situ and remote-sensing observations and atmospheric data assimilation modeling capabilities, a GHG information system could be achieved in the coming decade to serve the needs of policies and actions to reduce GHG emissions. Atmospheric measurements and models are already being used to provide emissions information on a global and continental scale through existing networks, but these efforts currently provide insufficient information at the human-dimensions where nations, states, cities, and private enterprises can take valuable, and additional action that can reduce emissions for a specific GHG

  19. CLASSIFICATION OF EU COUNTRIES IN TERMS OF THE EVOLUTION OF THE GHG INDICATOR USING CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    MARINOIU CRISTIAN

    2015-07-01

    Full Text Available Greenhouse gases are one of the main factors that influence the Earth's global temperature variation. As the result of both the beginning of the industrial revolution (the 1750’s and the intensificication and diversification of human activities, the volume of greenhouse gasses increases significantly. The risk of an accelerated global warming can be decreased by reducing the volume of greenhouse gasses emissions resulting from human activities. The annual volume of these emissions is reflected by the Greenhouse gas (GHG indicator. This work carries out a classification of EU countries on the basis of the evolution of the GHG indicator using Partitioning Around Medoids (PAM method.

  20. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    Science.gov (United States)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of

  1. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India.

    Science.gov (United States)

    Lenka, Sangeeta; Lenka, Narendra Kumar; Singh, Amar Bahadur; Singh, B; Raghuwanshi, Jyothi

    2017-02-01

    Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP. The treatments were composed of 100% organic (ONM), 100% inorganic (NPK), and integrated nutrient management (INM) with 50% organic + 50% inorganic inputs. The gas samples for GHGs (CO 2 , CH 4 , and N 2 O) were collected by static chamber method at about 15-day interval during 2012-13 growing season. The change in soil organic carbon (SOC) content was estimated in terms of the changes in SOC stock in the 0-15 cm soil over the 9-year period covering 2004 to 2013. There was a net uptake of CH 4 in all the treatments in both soybean and wheat crop seasons. The cumulative N 2 O and CO 2 emissions were in the order of INM > ONM > NPK with significant difference between treatments (p < 0.05) in both the crop seasons. The annual GWP, expressed in terms of CH 4 and N 2 O emission, also followed the same trend and was estimated to be 1126, 1002, and 896 kg CO 2 eq ha -1  year -1 under INM, ONM, and NPK treatments, respectively. However, the change in SOC stock was significantly higher under ONM (1250 kg ha -1  year -1 ) followed by INM (417 kg ha -1  year -1 ) and least under NPK (198 kg ha -1  year -1 ) treatment. The wheat equivalent yield was similar under ONM and INM treatments and was significantly lower under NPK treatment. Thus, the GWP per unit grain yield was lower under ONM followed by NPK and INM treatments and varied from 250, 261, and 307 kg CO 2 eq Mg -1 grain yield under ONM, NPK, and INM treatments, respectively.

  2. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  3. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  4. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  5. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  6. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  7. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  8. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Alvarado-Morales, Merlin

    2016-01-01

    Greenhouse gas (GHG) emission savings from biofuels dramatically depend upon the source of energy displaced and the effects induced outside the energy sector, for instance land-use changes (LUC). Using consequential life-cycle assessment and including LUC effects, this study provides GHG emission...

  9. Intensification pathways for beef and dairy cattle production systems : Impacts on GHG emissions, land occupation and land use change

    NARCIS (Netherlands)

    Gerssen-Gondelach, Sarah J.; Lauwerijssen, Rachel B.G.; Havlík, Petr; Herrero, Mario; Valin, Hugo; Faaij, Andre P.C.; Wicke, Birka

    2017-01-01

    Cattle production is characterized by high land requirements, and greenhouse gas (GHG) emissions associated with the resulting land use change (LUC) and cradle to farm gate processes. Intensification of cattle production systems is considered an important strategy for mitigating anthropogenic GHG

  10. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw...

  11. 76 FR 9534 - Development of Technical Guidelines and Scientific Methods for Quantifying GHG Emissions and...

    Science.gov (United States)

    2011-02-18

    ... user- ] friendly tool for GHG quantification, will assist farmers, ranchers, and forest owners in..., and reproductive management (genetic selection, gender differences, etc.). 2.2.2 Grazing land... in merging differing estimation techniques from diverse technologies and management practices. 3.3...

  12. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  13. Global Climate targets and future consumption level: An evaluation of the required GHG intensity

    NARCIS (Netherlands)

    Girod, B.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Hertwich, E.G.

    2013-01-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of

  14. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  16. Replacing fossil based PET with biobased PEF; proess analysis, energy and GHG balance

    NARCIS (Netherlands)

    Eerhart, A.J.J.E.|info:eu-repo/dai/nl/341358541; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2012-01-01

    An energy and greenhouse gas (GHG) balance study was performed on the production of the bioplastic polyethylene furandicarboxylate (PEF) starting from corn based fructose. The goal of the study was to analyze and to translate experimental data on the catalytic dehydration of fructose to a simulation

  17. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.

    Science.gov (United States)

    Chavez-Rodriguez, Mauro F; Nebra, Silvia A

    2010-12-15

    Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.

  18. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  19. GHG-emissions for cars with different power trains over the whole life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The method of life-cycle assessment (LCA) has been applied to cars with different power trains. As an example, the results for greenhouse gas (GHG) emissions are presented. They show possibilities and limits for the reduction of these emissions in the transportation sector by means of advanced technology. (author) 2 figs., 4 refs.

  20. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    Science.gov (United States)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  1. Food Safety Nets:

    OpenAIRE

    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane

    2013-01-01

    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  2. Net technical assessment

    OpenAIRE

    Wegmann, David G.

    1989-01-01

    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  3. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity.

    Science.gov (United States)

    Lubbers, Ingrid M; van Groenigen, Kees Jan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-09-04

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation.

  4. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German

    1998-01-01

    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  5. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.

    2002-01-01

    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  6. Teaching Tennis for Net Success.

    Science.gov (United States)

    Young, Bryce

    1989-01-01

    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  7. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten

    2012-01-01

    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  8. Estimating GHG emissions of marine ports-the case of Barcelona

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Gara, E-mail: gara.villalba@uab.e [Department of Chemical Engineering, Institute of Environmental Science and Technology, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gemechu, Eskinder Demisse, E-mail: eskinderdemisse.gemechu@urv.ca [Environmental Management and Analysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona (Spain)

    2011-03-15

    In recent years, GHG inventories of cities have expanded to include extra-boundary activities that form part of the city's urban metabolism and economy. This paper centers on estimating the emissions due to seaports, in such a way that they can be included as part of the city's inventory or be used by the port itself to monitor their policy and technology improvements for mitigating climate change. We propose the indicators GHG emissions per ton of cargo handled or per passenger and emissions per value of cargo handled as practical measures for policy making and emission prevention measures to be monitored over time. Adapting existing methodologies to the Port of Barcelona, we calculated a total of 331,390 tons of GHG emissions (CO{sub 2} equivalents) for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions). The highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. Knowing the highest emitters, the port can take action to improve the ship's activities within the port limits, such as maneuvering and hotelling. With these results, the port and the city can also find ways to reduce the land-based emissions. - Research highlights: {yields} Adapting existing methodologies to the Port of Barcelona (PoB), we calculated a total of 331,390 tons of GHG emissions for the year of 2008, half of which were attributed to vessel movement (sea-based emissions) and the other half to port, land related activities (land-based emissions) {yields} Emissions per ton of cargo handled is proposed as an indicator to pin point high polluting vessels-a measure independent of the city the port belongs to. For 2008, the highest polluters were auto carriers with 6 kg of GHG emissions per ton of cargo handled. {yields} An additional measure of emissions per value of cargo handled is proposed to complement the emissions per weight

  9. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  10. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne

    2006-01-01

    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  11. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    Science.gov (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426

  12. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP20. To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP20. We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  13. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  14. Seasonal Variation in Soil Greenhouse Gas Emissions at Three Age-Stages of Dawn Redwood (Metasequoia glyptostroboides Stands in an Alluvial Island, Eastern China

    Directory of Open Access Journals (Sweden)

    Shan Yin

    2016-11-01

    Full Text Available Greenhouse gas (GHG emissions are an important part of the carbon (C and nitrogen (N cycle in forest soil. However, soil greenhouse gas emissions in dawn redwood (Metasequoia glyptostroboides stands of different ages are poorly understood. To elucidate the effect of plantation age and environmental factors on soil GHG emissions, we used static chamber/gas chromatography (GC system to measure soil GHG emissions in an alluvial island in eastern China for two consecutive years. The soil was a source of CO2 and N2O and a sink of CH4 with annual emissions of 5.5–7.1 Mg C ha−1 year−1, 0.15–0.36 kg N ha−1 year−1, and 1.7–4.5 kg C ha−1 year−1, respectively. A clear exponential correlation was found between soil temperature and CO2 emission, but a negative linear correlation was found between soil water content and CO2 emission. Soil temperature had a significantly positive effect on CH4 uptake and N2O emission, whereas no significant correlation was found between CH4 uptake and soil water content, and N2O emission and soil water content. These results implied that older forest stands might cause more GHG emissions from the soil into the atmosphere because of higher litter/root biomass and soil carbon/nitrogen content compared with younger stands.

  15. Management of agricultural soils for greenhouse gas mitigation

    NARCIS (Netherlands)

    Sánchez, B.; Iglesias, A.; McVittie, A.; Álvaro-Fuentes, J.; Ingram, J.; Mills, J.; Lesschen, J.P.; Kuikman, P.J.

    2016-01-01

    A portfolio of agricultural practices is now available that can contribute to reaching European mitigation targets. Among them, the management of agricultural soils has a large potential for reducing GHG emissions or sequestering carbon. Many of the practices are based on well tested agronomic

  16. Valuing Non-CO2 GHG Emission Changes in Benefit-Cost ...

    Science.gov (United States)

    The climate impacts of greenhouse gas (GHG) emissions impose social costs on society. To date, EPA has not had an approach to estimate the economic benefits of reducing emissions of non-CO2 GHGs (or the costs of increasing them) that is consistent with the methodology underlying the U.S. Government’s current estimates of the social cost of carbon (SCC). A recently published paper presents estimates of the social cost of methane that are consistent with the SCC estimates. The Agency is seeking review of the potential application of these new benefit estimates to benefit cost analysis in relation to current practice in this area. The goal of this project is to improve upon the current treatment of non-CO2 GHG emission impacts in benefit-cost analysis.

  17. Characterizing the GHG emission impacts of carsharing: a case of Vancouver

    Science.gov (United States)

    Namazu, Michiko; Dowlatabadi, Hadi

    2015-12-01

    Carsharing exemplifies a growing trend towards service provision displacing ownership of capital goods. We developed a model to quantify the impact of carsharing on greenhouse gas (GHG) emissions. The study took into account different types of households and their trip characteristics. The analysis considers five factors by which carsharing can impact GHG emissions: transportation mode change, fleet vintage, vehicle optimization, more efficient drive trains within each vehicle type, and trip aggregation. Access to carsharing has already been shown to lead some users to relinquish ownership of their personal vehicle. We find that even without a reduction in vehicle-kilometers traveled the change in characteristics of the vehicles used in carsharing fleets can reduce GHGs by more than 30%. Shifting some trips to public transit provides a further 10%-20% reduction in GHGs.

  18. Advanced biofuels - GHG emissions and energy balances. A report to IEA bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Don [S and T 2 Consultants Inc., Delta, British Columbia (Canada)

    2013-05-25

    In this work, a number of advanced biofuel pathways were examined with respect to their energy balances and GHG emission performance. Some of these pathways have relatively detailed public techno-economic modelling studies available on which the energy and GHG lifecycle modelling has been based. However there is a continuum in the quality of publicly available data and, for some of the pathways a significant number of assumptions had to be made in order to generate results. Some caution is therefore warranted when the results of different systems are compared. Furthermore, none of the modelling data is based on actual operating systems, as the processes being assessed are not yet in commercial operation; rather, they are each in different stages of research, development and demonstration.

  19. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain

    OpenAIRE

    Sevigné Itoiz, Eva

    2015-01-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations t...

  20. Data Availability for Carbon Calculators in Measuring GHG Emissions Produced by the Food Sector

    Directory of Open Access Journals (Sweden)

    Pegah Amani

    2012-03-01

    Full Text Available  The continuing increase in burning fossil fuels over recent decades along with the changing land use have resulted in a considerable increase in the amount of greenhouse gases (GHGs which can potentially lead to climate change. Adaptation processes will become necessary in order to cope with these challenges in the future. Despite individuals’ and institutions’ willingness to reduce the amount of GHG emissions caused by their actions or their "carbon footprints", they may lack the knowledge to make effective choices. Carbon calculators have been developed to address these knowledge gaps by measuring and communicating the overall magnitude of the impacts and also the extent to which different behavior patterns contribute to GHG emissions. LCA databases, as providers of inventory data for carbon calculators, have an important role in helping to develop more complete and accurate tools to measure and report produced GHG emissions. For emissions-intensive behavior patterns, the food life cycle is a significant contributor to emissions resulting from activities including agriculture, processing, transport, storage, retail, consumption, and waste handling. This research seeks to classify and characterize these calculators and the agricultural activities or practices they cover, to provide the reader with an idea on the differences between these calculators, and why some of them could be more applicable to the food sector. The intent is to bring clarity to the discussion which could be a step forward in paving the way for the development of more reliable and comprehensive carbon calculators for measuring the GHG emissions of the food sector

  1. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    Science.gov (United States)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  2. Assessment of the potential REDD+ as a new international support measure for GHG reduction

    Science.gov (United States)

    Kim, Y.; Ahn, J.; Kim, H.

    2016-12-01

    As part of the Paris Agreement, the mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD+) has high potential to simultaneously contribute to greenhouse gas (GHG) mitigation through forest conservation and poverty alleviation. Some of 162 Intended Nationally Determined Contributions (INDCs) submitted by 189 countries representing approximately 98.8% of global GHG emissions include not only unconditional mitigation goals but also conditional goals based on the condition of the provision of international support such as finance, technology transfer and capacity building. Considering REDD+ as one of the main mechanisms to support such work, this study selected ten countries from among Korea's 24 ODA priority partners, taking into consideration their conditional INDC targets alongside sectoral quantified targets such as land use, land-use change and forestry (LULUCF). The ten selected countries are Indonesia, Cambodia, Vietnam, Bangladesh, Sri Lanka, Ghana, Senegal, Colombia, Peru and Paraguay. Of these countries, most REDD+ projects have been conducted in Indonesia mainly due to the fact that 85% of the country's total GHG emissions are caused by forest conversion and peatland degradation. Therefore, GHG reduction rates and associated projected costs of the Indonesia's REDD+ projects were analyzed in order to offer guidance on the potential of REDD+ to contribute to other INDCs' conditional goals. The result showed that about 0.9 t CO2 ha-1 could be reduced at a cost of USD 23 per year. Applying this estimation to the Cambodian case, which has submitted a conditional INDC target of increasing its forest coverage by 60% (currently 57%) by 2030, suggests that financial support of USD 12.8 million would reduce CO2 emissions by about 5.1 million tones by increasing forest coverage. As there is currently no consideration of LULUCF in Cambodia's INDC, this result represents the opportunity for an additional contribution to

  3. Mobilizing local safety nets for enhanced adaptive capacity to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    22 avr. 2016 ... In Zimbabwe, the increased frequency of drought, flash floods, and unpredictable rainfall has added to recurrent food deficits for poor households who depend on rainfed farming on nutrient poor soils. This brief explores how the erosion of Zunde raMambo — a traditional community safety net mechanism ...

  4. Net nitrogen mineralization in natural ecosystems across the conterminous US

    Science.gov (United States)

    LeeAnna Y. Chapman; Steven G. McNulty; Ge Sun; Yang Zhang

    2013-01-01

    Nitrogen is the primary nutrient limiting ecosystem productivity over most of the US. Although soil nitrogen content is important, knowledge about its spatial extent at the continental scale is limited. The objective of this study was to estimate net nitrogen mineralization for the conterminous US (CONUS) using an empirical modeling approach by scaling up site level...

  5. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  6. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  7. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  8. The Padanian LiMeS. Spatial Interpretation of Local GHG Emission Data

    Directory of Open Access Journals (Sweden)

    Michèle Pezzagno

    2015-04-01

    Full Text Available The relevant role of spatial planning in the enforcement of climate change mitigation, managing the development of new low-carbon infrastructures and increasing system-wide efficiencies across sectors, has been addressed at global level (IPCC, 2014 WGIII. In this context, local GHG inventories appear a relevant tool toward the definition of a coherent, inter-sectorial background for local planning, mitigation, and adaptation policies.Taking advantage of consistent GHG emissions data availability in the Lombard context, local maps of direct GHG emissions have been linked with geographic data, including municipal boundaries, population data, and land-use information, produced and organized within the research PRIN 2007 From metropolitan city to metropolitan corridor: the case of the Po Valley Corridor.The results of this mapping exercise have been evaluated on the background of consolidated knowledge about northern Italy urban patterns, including the Linear Metropolitan System – LiMeS – and preliminary observations about characteristics, potential, and limits of the tool are proposed.

  9. Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions

    Directory of Open Access Journals (Sweden)

    Chih-Chun Kung

    2015-05-01

    Full Text Available Taiwan is eager to develop renewable energy because it is vulnerable to energy price distortion and ocean level rise. Previous studies show bioenergy technologies can be applied mutually, but pay little attention on feedstocks to energy conversion rate, which has potential influences on policy making in renewable energy and environment. This study employs a price endogenous mathematical programming model to simultaneously simulate the market operations under various feedstocks to energy conversion rates, energy prices, and greenhouse gas (GHG prices. The result shows pyrolysis-based electricity can reach up to 2.75 billion kWh annually, but it will be driven out at low conversion rate and high GHG price. Pyrolysis plus biochar application will be the optimal option in terms of carbon sequestration. Market valuation on potential threats of extreme weather could have substantial influences on ethanol and renewable electricity generation. To achieve aimed GHG emission reduction and/or bioenergy production, government intervention may be involved to align the market operation with Taiwan’s environmental policy.

  10. Industry lobbying and the political economy of GHG trade in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Peter Markussen; Gert Tinggaard Svendsen [Climate Change, Elsam (Denmark)

    2005-01-01

    The European Union (EU) has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. In September 2003 the EU member states has agreed on the Directive for establishing a scheme for GHG emission allowance trading within the European Union. This directive is the outcome of a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stakeholders all had the opportunity to comment on the Green Paper and from their positions we will analyse how far they are winners or losers compared to the final directive proposal. Comparing the initial Green Paper proposal (before lobbyism) to the final directive (after lobbyism) gave us a unique possibility for measuring the effect of lobbyism. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently leads to a grandfathered permit allocation rule like the one found in the US tradeable permit systems. 24 refs., 1 fig., 4 tabs.

  11. Industry lobbying and the political economy of GHG trade in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Markussen, P. [Climate Change, Elsam (Denmark); Svendsen, G.T. [Aarhus School of Business (Denmark). Department of Economics, Danish Social Capital Project

    2005-01-01

    The European Union (EU) has committed itself to meet an 8% greenhouse gas (GHG) reduction target level following the Kyoto agreement. In September 2003 the EU member states has agreed on the Directive for establishing a scheme for GHG emission allowance trading within the European Union. This directive is the outcome of a policy process started by the EU Commission and its Green Paper from March 2000. The main industrial stakeholders all had the opportunity to comment on the Green Paper and from their positions we will analyse how far they are winners or losers compared to the final directive proposal. Comparing the initial Green Paper proposal (before lobbyism) to the final directive (after lobbyism) gave us a unique possibility for measuring the effect of lobbyism. Here, we find that the dominant interest groups indeed influenced the final design of an EU GHG market. This industrial rent-seeking most prominently leads to a grandfathered permit allocation rule like the one found in the US tradeable permit systems. (author)

  12. Soil organic carbon dynamics and non-CO2 gas fluxes from agricultural soils under organic and non-organic management - results of two meta-studies

    Science.gov (United States)

    Gattinger, Andreas; Skinner, Colin; Müller, Adrian; Mäder, Paul; Niggli, Urs

    2015-04-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. Therefore, meta-studies on soil organic carbon (SOC) and soil-derived greenhouse (GHG) fluxes, respectively, were conducted to proof this assumption. Datasets from 74 studies from pair wise comparisons of organic versus non-organic farming systems were subjected to meta-analysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18±0.06 % points (mean±95% confidence interval) for SOC concentrations, 3.50±1.08 Mg C ha-1 for stocks, and 0.45±0.21 Mg C ha-1 a-1 for sequestration rates compared to non-organic management. Meta-regression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems, i.e. without nutrient inputs from outside the system, and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98±1.50 Mg C ha-1), while the difference in sequestration rates became insignificant (0.07±0.08 Mg C ha-1 a-1). The SOC dataset mainly covers top soil and temperate zones, while only few data from tropical regions and sub soil horizons exist. For the second meta-study measured soil-derived nitrous oxide and methane flux data from soils under organic and non-organic management from 19 farming system comparisons were analysed. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492±160 kg CO2 eq. ha-1 a-1 lower than from non-organically managed soils. For arable soils the difference amounts to 497±162 kg CO2 eq. ha-1 a-1. However, yield-scaled nitrous oxide emissions are higher by 41±34 kg

  13. Stimulation of N2 O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis.

    Science.gov (United States)

    Zhou, Minghua; Zhu, Bo; Wang, Shijie; Zhu, Xinyu; Vereecken, Harry; Brüggemann, Nicolas

    2017-10-01

    Animal manure application as organic fertilizer does not only sustain agricultural productivity and increase soil organic carbon (SOC) stocks, but also affects soil nitrogen cycling and nitrous oxide (N2 O) emissions. However, given that the sign and magnitude of manure effects on soil N2 O emissions is uncertain, the net climatic impact of manure application in arable land is unknown. Here, we performed a global meta-analysis using field experimental data published in peer-reviewed journals prior to December 2015. In this meta-analysis, we quantified the responses of N2 O emissions to manure application relative to synthetic N fertilizer application from individual studies and analyzed manure characteristics, experimental duration, climate, and soil properties as explanatory factors. Manure application significantly increased N2 O emissions by an average 32.7% (95% confidence interval: 5.1-58.2%) compared to application of synthetic N fertilizer alone. The significant stimulation of N2 O emissions occurred following cattle and poultry manure applications, subsurface manure application, and raw manure application. Furthermore, the significant stimulatory effects on N2 O emissions were also observed for warm temperate climate, acid soils (pH manure application, respectively. Although manure application increased SOC stocks, our study suggested that the benefit of increasing SOC stocks as GHG sinks could be largely offset by stimulation of soil N2 O emissions and aggravated by CH4 emissions if, particularly for rice paddy soils, the stimulation of CH4 emissions by manure application was taken into account. © 2017 John Wiley & Sons Ltd.

  14. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...

  15. Life cycle GHG evaluation of organic rice production in northern Thailand.

    Science.gov (United States)

    Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate

    2017-07-01

    Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the

  16. Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia

    Directory of Open Access Journals (Sweden)

    Bista Sangita

    2017-01-01

    Full Text Available Western Australia has globally significant onshore gas resources, with over 280 trillion cubic feet of economically recoverable gas located in five shale basins. The Western Australian Government and gas industry have promoted the development of these resources as a “clean energy source” that would “help to reduce global carbon emissions” and provide a “transition fuel” to a low carbon economy. This research examines those claims by reviewing existing literature and published data to estimate the life cycle greenhouse gas (GHG pollution that would result from the development of Western Australia’s onshore gas basins using hydraulic fracking. Estimates of carbon pollution from each stage in gas development, processing, transport and end-use are considered in order to establish total life-cycle emissions in tonnes of carbon-dioxide equivalent (CO2e. The emissions estimates draw from published research on emissions from shale gas development in other jurisdictions as well as industry or government reported emissions from current technology for gas processing and end-use as applicable. The current policy and regulatory environment for carbon pollution and likely resulting GHG mitigation measures has also been considered, as well as the potential for the gas to displace or substitute for other energy sources. In areas where there is uncertainty, conservative emissions estimates have been used. Modelling of GHG emissions has been undertaken for two comparison resource development and utilisation scenarios; Australian domestic and 100% export i.e. no domestic use. Each scenario corresponds to a different proportionate allocation of emissions accounted for domestic emissions in Australia and emissions accounted for in other jurisdictions. Emissions estimates for the two scenarios are 245–502 MTCO2e/year respectively over a resource development timeframe of 20 years. This is roughly the same as Australia’s total GHG emissions in 2014

  17. Simulating Everglades Carbon Fluxes and GHG Emission of Different Landscapes Under Present and Future Climate Conditions by Applying Community Land Model

    Science.gov (United States)

    Liao, Y.; Gerber, S.

    2016-12-01

    Carbon flux in wetland distinguishes from that in other types of ecosystems due to special soil and hydrological processes. Understanding the dynamic of soil hydrology is necessary to explore the responses of the plants, the fate of massive carbon storage and greenhouse gas emissions under different climate conditions. However, contrary findings were published regarding the relationship between CO2 emission and water level variations. Both positive and negative conclusions were reached regarding the warming mitigation ability of wetland. By parameterizing the Community Land Model (CLM), our research focuses on simulating the CO2/CH4 fluxes of different landscapes in Everglades, a subtropical wetland in Florida, to explore the following questions: 1) Is it a sink or source for CO2? 2) How may the CO2/CH4 dynamics be altered with water table and soil water content? 3) What environmental factors mainly control CO2/CH4 process? 4) Does this ecosystem contribute or mitigate cliamte warming? 5) What is the difference between landscapes regarding the CO2/CH4 dynamic? We performed several simulations with CLM that address the variation of water table in soil layers and the elevated temperature to compare the impact on the carbon fluxes and GHG emission in the study area. Our results suggest the variation on water table depth has significant influence on the carbon cycle in Everglades. Deeper water table results in a higher CO2 but lower CH4 emission, partly due to the CH4 oxidization and the rapid decomposition of organic carbon. In the wet season, more CH4 is produced when the water table is shallower. Slightly elevated temperature causes a water loss through evapotranspiration which deepens the water table. However, the induced carbon loss is partly offset by the enhanced productivity of vegetation. Both long and short hydroperiod marshes are small carbon sinks in most of years but cannot mitigate the climate warming if considering CH4 emissions. Cypress swamp shows high

  18. Towards a more comprehensive modelling framework to quantify vertical and lateral carbon fluxes in the agricultural soils of the EU

    Science.gov (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-04-01

    Under the international protocols aiming at reducing the climate change impact, the land use sector is, likely, one of most complex to be accounted for greenhouse gas (GHG) emission and removal. This is related to its fragmentation and the complex biogeochemical feedbacks interacting with the human activity. Among those feedbacks, the role of erosion in the global carbon (C) cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 out of 187 Mha have C erosion rates 0.45 Mg C ha-1 yr-1. Exploring different assumptions on short-term enhancement C mineralization during soil displacement/transport, enrichment factor of eroded C and sub-soil organic C composition, we estimated an average net CO2 flux ranging from -2.28 (source) to +3.73 (sink) Tg yr-1 of CO2eq, in comparison with a baseline without erosion. Moreover, the erosion-induced sink of atmospheric carbon was comprised between 0 to 50% of the carbon transported by erosion and varied markedly across the EU. While we first integrated most of all relevant processes and C fluxes in a comprehensive model framework, additional experimental data need to be collected for representing specific processes in a more mechanistic way.

  19. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

    Science.gov (United States)

    Previous research indicates that a difference occurs in native and non-native grass species in regard to drivers of greenhouse gas (GHG, (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O))) emissions from soil. Drivers of soil nutrients could help establish best management practices to mit...

  20. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils.

    NARCIS (Netherlands)

    Pol-Van Dasselaar, van den A.; Beusichem, van M.L.; Oenema, O.

    1998-01-01

    Aerobic grasslands may consume significant amounts of atmospheric methane (CH4). We aimed (i) to assess the spatial and temporal variability of net CH4 fluxes from grasslands on aerobic sandy soils, and (ii) to explain the variability in net CH4 fluxes by differences in soil moisture content and

  1. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  2. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD

    2003-01-01

    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  3. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  4. Comparing measured and modelled soil carbon: which site-specific variables are linked to high stability?

    Science.gov (United States)

    Robertson, Andy; Schipanski, Meagan; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Changes in soil carbon (C) stocks have been studied in depth over the last two decades, as net greenhouse gas (GHG) sinks are highlighted to be a partial solution to the causes of climate change. However, the stability of this soil C is often overlooked when measuring these changes. Ultimately a net sequestration in soils is far less beneficial if labile C is replacing more stable forms. To date there is no accepted framework for measuring soil C stability, and as a result there is considerable uncertainty associated with the simulated impacts of land management and land use change when using process-based systems models. However, a recent effort to equate measurable soil C fractions to model pools has generated data that help to assess the impacts of land management, and can ultimately help to reduce the uncertainty of model predictions. Our research compiles this existing fractionation data along with site metadata to create a simplistic statistical model able to quantify the relative importance of different site-specific conditions. Data was mined from 23 published studies and combined with original data to generate a dataset of 100+ land use change sites across Europe. For sites to be included they required soil C fractions isolated using the Zimmermann et al. (2007) method and specific site metadata (mean annual precipitation, MAP; mean annual temperature, MAT; soil pH; land use; altitude). Of the sites, 75% were used to develop a generalized linear mixed model (GLMM) to create coefficients where site parameters can be used to predict influence on the measured soil fraction C stocks. The remaining 25% of sites were used to evaluate uncertainty and validate this empirical model. Further, four of the aforementioned sites were used to simulate soil C dynamics using the RothC, DayCent and RZWQM2 models. A sensitivity analysis (4096 model runs for each variable applying Latin hypercube random sampling techniques) was then used to observe whether these models place

  5. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev

    2013-09-01

    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  6. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    Science.gov (United States)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between

  7. A multi-objective programming model for assessment the GHG emissions in MSW management.

    Science.gov (United States)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-09-01

    In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A dynamic modelling approach to evaluate GHG emissions from wastewater treatment plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri

    2012-01-01

    units when evaluating the global warming potential (GWP) of a WWTP. Finally, the paper demonstrates the potential of using the proposed approach as a general model-based tool for determining the most sustainable WWTP operational strategies, which is essential in a water sector where climate change......The widened scope for wastewater treatment plants (WWTP) to consider not only water quality and cost, but also greenhouse gas (GHG) emissions and climate change calls for new tools to evaluate operational strategies/treatment technologies. The IWA Benchmark Simulation Model no. 2 (BSM2) has been...

  9. Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project

    Science.gov (United States)

    Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.

    2012-04-01

    Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and

  10. Global climate change and terrestrial net primary production

    Science.gov (United States)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  11. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  12. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  13. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  14. Harmonised GHG accounting of decentralized rapeseed fuel production in Bavaria; Harmonisierte THG-Bilanzierung der dezentralen Rapsoelkraftstoffproduktion in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, Daniela [Technologie- und Foerderzentrum (TFZ), Straubing (Germany); Engelmann, Karsten; Remmele, Edgar; Thuneke, Klaus

    2016-08-01

    The Directive 2009/28/EG (RED) requires a minimum level of greenhouse gas reduction for biofuels to be marketed. Site-specific production conditions are not considered in default values, which are specified by RED for calculating the greenhouse gas emissions. However, calculations of regional and farm specific GHG balances in accordance to the method of ExpRessBio for the production of rape seed show a considerable range of GHG-emissions in CO{sup 2}-eq (25.2-43.6 g MJ{sup -1}). For the complete product system of decentralized rapeseed oil fuel production in Bavaria a GHG reduction of 58 % can be achieved. This is slightly higher than the default value of 57 % as specified in Directive 2009/28/EG. The reason for this is that the default value under Directive 2009/28/EG is based on an industrial oil production process whereas decentralized production leads to less GHG emissions. In comparison to the application of the energy allocation method the substitution method for the assessment of rape seed cake as protein feed leads to a distinct higher GHG reduction rate of 85%.

  15. Optimization of the cultivation GHG balance of selected biofuels; Optimierung der Anbau-THG-Bilanz ausgewaehlter Biokraftstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Weirauch, Mareike; Gurgel, Andreas [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow-Pruezen (Germany). Sachgebiet Nachwachsende Rohstoffe; Schiemenz, Katja; Peters, Jana

    2016-08-01

    Biofuels should be produced more sustainable since the inception of the Renewable Energy Directive (EU-RED, 2009128/EG) in 2009. In comparison to fossil fuels biofuels have to achieve now a GHG reduction potential of 35 % (50 % from 2018). In a project at the State Research Center of Agriculture and Fisheries Mecklenburg- Vorpommern the current practical values of GHG emissions during the cultivation of rapeseed and wheat have been calculated. Bases of the calculation are operating agriculture data (harvesting 2011 until2015). The results show that the current GHG reduction potential can only be maintained at 26% of the studied rapeseed harvest quantity or at 75 %of the wheat harvest (own calculation). The default values of the EU-RED and the NUTS2 values cannot be achieved with the current agricultural production. Some calculating and agronomic optimization options for GHG reduction are available and must be implemented (for example: incorporating the oil content and the type of nitrogen fertilizer and reduced nitrogen fertilizer level). The aim is to keep the 50% GHG reduction potential of the EU-RED until 2018 to have a sure sustainable rapeseed and wheat cultivation for biofuel production.

  16. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    Science.gov (United States)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through

  17. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania

    Science.gov (United States)

    Rosenstock, Todd S.; Mpanda, Mathew; Pelster, David E.; Butterbach-Bahl, Klaus; Rufino, Mariana C.; Thiong'o, Margaret; Mutuo, Paul; Abwanda, Sheila; Rioux, Janie; Kimaro, Anthony A.; Neufeldt, Henry

    2016-06-01

    Knowledge of greenhouse gas (GHG) fluxes in soils is a prerequisite to constrain national, continental, and global GHG budgets. However, data characterizing fluxes from agricultural soils of Africa are markedly limited. We measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) fluxes at 10 farmer-managed sites of six crop types for 1 year in Kenya and Tanzania using static chambers and gas chromatography. Cumulative emissions ranged between 3.5-15.9 Mg CO2-C ha-1 yr-1, 0.4-3.9 kg N2O-N ha-1 yr-1, and -1.2-10.1 kg CH4-C ha-1 yr-1, depending on crop type, environmental conditions, and management. Manure inputs increased CO2 (p = 0.03), but not N2O or CH4, emissions. Soil cultivation had no discernable effect on emissions of any of the three gases. Fluxes of CO2 and N2O were 54-208% greater (p impact of agricultural soils on GHG budgets. A targeted effort to understand the magnitude and mechanisms underlying African agricultural soil fluxes is necessary to accurately estimate the influence of this source on the global climate system and for determining mitigation strategies.

  18. Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions.

    Science.gov (United States)

    Sharma, Naman; Nainwal, Shubham; Jain, Shivani; Jain, Siddharth

    2015-11-01

    The production of biofuels as alternative energy source over fossil fuels has gained immense interest over the years as it can contribute significantly to reduce the greenhouse gas (GHG) emissions from energy production and utilization. Also with rapidly increasing fuel price and fall in oil wells, the present scenario forces us to look for an alternative source of energy that will help us in the operation of industrial as well as the transportation sector. The pulp mills in India are one of the many options. The pulp mills in India can help us to produce bio-fuels by thermo-chemical/biochemical conversion of black liquor and wood residues. These technologies include extraction of hemi-cellulose from wooden chips and black liquor, lignin from black liquor, methanol from evaporator condensates, biogas production from waste sludge, syngas production from biomass using gasification and bio-oil production from biomass using pyrolysis. The objective of this paper is to overview these emerging bio-refinery technologies that can be implemented in Indian Forest Industry to get bio-fuels, bio-chemicals and bio-energy to reduce GHG emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies.

    Science.gov (United States)

    Puyuelo, B; Gea, T; Sánchez, A

    2014-08-01

    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Improving GHG inventories by regional information exchange: a report from Asia

    Directory of Open Access Journals (Sweden)

    Umemiya Chisa

    2006-08-01

    Full Text Available Abstract Background The Parties to the United Nations Framework Convention on Climate Change (UNFCCC are required to develop and report a national inventory of greenhouse gases not controlled by the Montreal Protocol. In the Asia region, "Workshops on Greenhouse Gas Inventories in Asia (WGIA" have been organised annually since 2003 under the support of the government of Japan. WGIAs promote information exchange in the region to support countries' efforts to improve the quality of greenhouse gas inventories. This paper reports the major outcomes of the WGIAs and discusses the key aspects of information exchange in the region for the improvement of inventories. Results The major outcomes of WGIAs intended to help countries improve GHG inventories, can be summarised as follows: (1 identification of common issues and possible solutions by sector, (2 reporting country inventory practices, and (3 verification of the UNFCCC reporting requirements. Conclusion The workshops provided the opportunity for countries to share common issues and constraints pertinent to GHG inventories and to exchange information regarding possible solutions for those issues based on their own experience. The relevance of information exchange is determined due to emission sources, emitting mechanisms from sources, and technologies used. Information exchange about emission sources that are unique to Asia, like those of the agriculture sector, contributes significantly to the accumulation of knowledge at the regional and global levels. Enabling countries to verify their national circumstances with the reporting requirements under UNFCCC is also an essential part of the WGIA information exchange activities.

  1. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16–24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services. PMID:28030599

  2. Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.

    Science.gov (United States)

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-11-01

    Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effect of urban symbiosis development in China on GHG emissions reduction

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-12-01

    Full Text Available This paper analyzes current urban symbiosis development and application in China, and then conducts a statistical analysis of the emissions reduction of CO2 and CH4 in relation to recovery of iron and steel scraps, waste paper, and waste plastics from 2011 to 2014 using the greenhouse gas (GHG emission inventory calculation method provided by the IPCC. Results indicate that the cumulative recovery of renewable resources during China's main urban symbiosis development in 2011–2014 was 803.275 Mt, and the amount of iron and steel scraps, waste paper, and waste plastic recovery was the largest, respectively accounting for 62.2%, 18.0%, and 8.2% of total recovery in 2014. In addition, the cumulative emissions reduction of GHGs in relation to recovery of iron and steel scraps, waste paper, and waste plastics in 2011–2014 was 27.962 Mt CO2-eq, 954.695 Mt CO2-eq, and 22.502 Mt CO2-eq, respectively, thereby totaling 1005.159 Mt CO2-eq. Results show a remarkable GHG emissions reduction during 2011–2014.

  4. Measuring the Regional Availability of Forest Biomass for Biofuels and the Potential of GHG Reduction

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2018-01-01

    Full Text Available Forest biomass is an important resource for producing bioenergy and reducing greenhouse gas (GHG emissions. The State of Michigan in the United States (U.S. is one region recognized for its high potential of supplying forest biomass; however, the long-term availability of timber harvests and the associated harvest residues from this area has not been fully explored. In this study time trend analyses was employed for long term timber assessment and developed mathematical models for harvest residue estimation, as well as the implications of use for ethanol. The GHG savings potential of ethanol over gasoline was also modeled. The methods were applied in Michigan under scenarios of different harvest solutions, harvest types, transportation distances, conversion technologies, and higher heating values over a 50-year period. Our results indicate that the study region has the potential to supply 0.75–1.4 Megatonnes (Mt dry timber annually and less than 0.05 Mt of dry residue produced from these harvests. This amount of forest biomass could generate 0.15–1.01 Mt of ethanol, which contains 0.68–17.32 GJ of energy. The substitution of ethanol for gasoline as transportation fuel has potential to reduce emissions by 0.043–1.09 Mt CO2eq annually. The developed method is generalizable in other similar regions of different countries for bioenergy related analyses.

  5. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Directory of Open Access Journals (Sweden)

    Lucía Gaitán

    Full Text Available Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1, compared with adjacent secondary forests (43 Mg C ha-1. We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA out of 16 farms had highest milk yields (6.2 kg cow-1day-1 and lowest emissions (1.7 kg CO2-eq. per kg milk produced. Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  6. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  7. Application of fast pyrolysis biochar to a loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, E.W.

    2011-05-15

    Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility and at the same time mitigate climate change by sequestering carbon in the soil. In general, the inherent physicochemical characteristics of biochars make these materials attractive agronomic soil conditioners. However, different pyrolysis technologies exist, i.e. slow pyrolysis, fast pyrolysis, and full gasification systems, and each of these influence the biochar quality differently. As of yet, there is only limited knowledge on the effect of applying fast pyrolysis biochar (FP-biochar) to soil. This PhD project provides new insights into the short-term impacts of adding FP-biochar to soil on the greenhouse gas (GHG) emissions and on soil carbon and nitrogen dynamics. The FP-biochars investigated in the thesis were generated at different reactor temperatures by fast pyrolysis of wheat straw employing a Pyrolysis Centrifuge Reactor (PCR). The carbohydrate content ranged from more than 35 % in FP-biochars made at a low reactor temperature (475 deg. C) down to 3 % in FP-biochars made at high temperatures (575 deg. C). The relative amount of carbohydrates in the FP-biochar was found to be correlated to the short-term degradation rates of the FP-biochars when applied to soil. Fast and slow pyrolysis of wheat straw resulted in two different biochar types with each their distinct physical structures and porosities, carbohydrate contents, particle sizes, pH values, BET surface areas, and elemental compositions. These different physicochemical properties obviously have different impacts on soil processes, which underscores that results obtained from soil studies using slow pyrolysis biochars (SP-biochar) are not necessarily applicable for FP-biochars. For example, the incorporation

  8. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits

    1987-01-01

    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  9. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  10. PolicyNet Publication System

    Data.gov (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  11. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  12. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A

    2006-01-01

    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  13. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress

    OpenAIRE

    Fu Yang; Zheng-wei Liang; Zhi-chun Wang; Yuan Chen

    2008-01-01

    The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00–10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depr...

  14. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn

    2001-01-01

    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  15. The Economics of Net Neutrality

    OpenAIRE

    Hahn, Robert W.; Wallsten, Scott

    2006-01-01

    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  16. Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau

    DEFF Research Database (Denmark)

    Song, Qingbin; Wang, Zhishi; Li, Jinhui

    2017-01-01

    The electricity generation processes represent a large contribution to the potential greenhouse gases (GHG) emissions. Macau, a Special Administrative Region of China, is not of exception. Macau has multiple electricity generation modes, including heavy oil, natural gas, and municipal solid waste...... (MSW) incineration, and coal-dominated mode which is directly imported from China mainland. On the basis of first-hand data from two power plants and one MSW incineration facility, this study performed a Life Cycle Assessment (LCA) process for three kinds of local electricity generation (heavy oil......, natural gas, and MSW incineration) to estimate the greenhouse gas (GHG) emissions under the operating practices used from 2010 to 2014. Results indicate that the mean GHG emissions of electricity production from heavy oil, natural gas, and MSW incineration were 0.71, 0.42, 0.95kg CO2 eq per k...

  17. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-04-01

    Full Text Available Biochar, a co-product of a controlled pyrolysis process, can be used as a tool for sequestering C in soil to offset greenhouse gas (GHG emissions, and as a soil amendment. Whereas the impacts of biochar application on soil chemical properties are widely known, the research information on soil physical properties is scarce. The objectives of this review are to (i synthesize available data on soil physical properties and GHG emissions, (ii offer possible mechanisms related to the biochar-amended soil processes, and (iii identify researchable priorities. Application rates of 1%–2% (w/w of biochar can significantly improve soil physical quality in terms of bulk density (BD, and water holding capacity (WHC. However, little data are available on surface area (SA, aggregation stability, and penetration resistance (PR of biochar-amended soil. While biochar amendment can initially accentuate the flux of carbon dioxide (CO2, the emission of GHGs may be suppressed over time. A 2-phase complexation hypothesis is proposed regarding the mechanisms of the interaction between soil and biochar.

  18. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  19. Scenario Analysis on Global Hydropower Development Paths and Their Contribution to GHG Mitigation Utilizing a Dynamic CGE Model

    Science.gov (United States)

    Qian, Z.; Hanasaki, N.; Fujimori, S.; Masaki, Y.; Hijioka, Y.

    2015-12-01

    Currently, hydropower accounts for 16% of the worldwide electricity power supply and 86% of the total renewable electricity energy source due to its low cost, low greenhouse gas (GHG) emission, and relatively high reliability. It is well known that the global hydropower has not yet been fully developed, but the future paths of development and corresponding contribution to GHG mitigation in each region combined with socioeconomic activities are less known. Here we investigated following three questions. How much will hydropower generation increase in the future? Will hydropower generation reach the economically exploitable capability (EEC)? If this will be the case, when and where will it occur? How much GHG emission will be reduced by adding new hydropower? In order to address these questions, we used the AIM/CGE model, a dynamic computable general equilibrium model to quantify the global hydropower development paths and corresponding GHG mitigation contribution for 17 regions in the world associated with a socio-economic scenario termed SSP2. We compared two scenarios with different assumptions on EEC. One is BAU which takes EEC from the report of "World Energy Resources", the other is FIX_BAU which fix EEC at the current hydropower generation amount throughout the research period (2005-2100) or no additional installation of hydropower plants. The comparison between two scenarios indicated that promoting hydropower development contributed to GHG emission reduction globally but the magnitude varied by region. For example we found that in North Africa, hydropower development grew fast because of the rapid economic development, but it reached EEC as soon as in 2040 because of limitation in EEC due to its climatic and geographical conditions. Conversely, in Brazil, it grew steadily and did not reach its abundant EEC. Consequently, GHG mitigation contribution of North Africa is far less than Brazil. This research provides important information for policy makers to

  20. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  1. 29 CFR 4204.13 - Net income and net tangible assets tests.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  2. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2009

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. (European Environment Agency (EEA), Copenhagen (Denmark)); Watterson, J. (AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom))

    2011-12-15

    The objective of this report is to help improve the understanding of past greenhouse gas (GHG) emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2009. (Author)

  3. Land Cover Mapping for the Development of Green House Gas (GHG) Inventories in the Eastern and Southern Africa Region

    Science.gov (United States)

    Wakhayanga, J. A.; Oduor, P.; Korme, T.; Farah, H.; Limaye, A. S.; Irwin, D.; Artis, G.

    2014-12-01

    Anthropogenic activities are responsible for the largest share of green house gas (GHG) emissions. Research has shown that greenhouse gases cause radioactive forcing in the stratosphere, leading to ozone depletion. Different land cover types act as sources or sinks of carbon dioxide (CO2), the most dominant GHG.Under the oversight of the United Nations Framework Convention on Climate Change (UNFCCC) the Eastern and Southern Africa (ESA) region countries are developing Sustainable National GHG Inventory Management Systems. While the countries in the ESA region are making substantial progress in setting up GHG inventories, there remains significant constraints in the development of quality and sustainable National GHG Inventory Systems. For instance, there are fundamental challenges in capacity building and technology transfer, which can affect timely and consistent reporting on the land use, land-use change and forestry (LULUCF) component of the GHG inventory development. SERVIR Eastern and Southern Africa is a partnership project between the National Aeronautics and Space Administration (NASA) and the Regional Center for Mapping of Resources for Development (RCMRD), an intergovernmental organization in Africa, with 21 member states in the ESA region. With support from the United States Agency for International Development (USAID), SERVIR ESA is implementing the GHG Project in 9 countries. The main deliverables of the project are land cover maps for the years 2000 and 2010 (also 1990 for Malawi and Rwanda), and related technical reports, as well as technical training in land cover mapping using replicable methodologies. Landsat imagery which is freely available forms the main component of earth observation input data, in addition to ancillary data collected from each country. Supervised classification using maximum likelihood algorithm is applied to the Landsat images. The work is completed for the initial 6 countries (Malawi, Zambia, Rwanda, Tanzania, Botswana, and

  4. GHG sustainability compliance of rapeseed-based biofuels produced in a Danish multi-output biorefinery system

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Astrup, Thomas Fruergaard

    2015-01-01

    Biofuels are likely to play an increasingly important role in the transportation sector in the coming decades. To ensure the sustainability of the biofuel chain, regulatory criteria and reduction targets for greenhouse gases (GHG) emissions have been defined in different legislative frameworks (e.......g. the European Renewable Energy Directive, RED). The provided calculation methods, however, leave room for interpretation regarding methodological choices, which could significantly affect the resulting emission factors. In this study, GHG reduction factors for a range of biofuels produced in a Danish...... shown to have the same magnitude as the direct emissions, thus indicating that the overall system should be included when assessing biofuel sustainability criteria....

  5. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2010

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark); Watterson, J. [AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom)

    2012-12-15

    The objective of this report is to help improve the understanding of past GHG emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2010. (Author)

  6. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  7. Calibration of Daycent biogeochemical model for rice paddies in three agro-ecological zones in Peninsular India to optimize cropping practices and predict GHG emissions

    Science.gov (United States)

    Rajan, S.; Kritee, K.; Keough, C.; Parton, W. J.; Ogle, S. M.

    2014-12-01

    Rice is a staple for nearly half of the world population with irrigated and rainfed lowland rice accounting for about 80% of the worldwide harvested rice area. Increased atmospheric CO2 and rising temperatures are expected to adversely affect rice yields by the end of the 21st century. In addition, different crop management practices affect methane and nitrous oxide emissions from rice paddies antagonistically warranting a review of crop management practices such that farmers can adapt to the changing climate and also help mitigate climate change. The Daily DayCent is a biogeochemical model that operates on a daily time step, driven by four ecological drivers, i.e. climate, soil, vegetation, and management practices. The model is widely used to simulate daily fluxes of various gases, plant productivity, nutrient availability, and other ecosystem parameters in response to changes in land management and climate. We employed the DayCent model as a tool to optimize rice cropping practices in Peninsular India so as to develop a set of farming recommendations to ensure a triple win (i.e. higher yield, higher profit and lower GHG emissions). We applied the model to simulate both N2O and CH4 emissions, and crop yields from four rice paddies in three different agro-ecological zones under different management practices, and compared them with measured GHG and yield data from these plots. We found that, like all process based models, the biggest constraint in using the model was input data acquisition. Lack of accurate documentation of historic land use and management practices, missing historical daily weather data, and difficulty in obtaining digital records of soil and crop/vegetation parameters related to our experimental plots came in the way of our execution of this model. We will discuss utilization of estimates based on available literature, or knowledge-based values in lieu of missing measured parameters in our simulations with DayCent which could prove to be a

  8. An evaluation of commercial NDIR sensors for a potential use in future urban GHG monitoring systems

    Science.gov (United States)

    Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Martin, H.; Hjern, L.; Laurent, O.; Vogel, F. R.

    2016-12-01

    Cities are a key contributor to climate change, as urban activities are major sources of GHG emissions. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. Recently Wu et al. (2016) suggested that a denser ground-based GHG monitoring network in Paris would have the potential allow retrieving sector specific GHG emission estimates (and potentially in certain other cities) when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for such denser observations can be the high cost of high-precision instruments or high calibration cost of cheaper, unstable instrumentation. Within a recent climate KIC project, LSCE and SenseAir AB have worked on novel inexpensive NDIR sensors for CO2 measurements for site and city-scale applications that fulfil typical repeatability and reproducibility requirements necessary for this task. We conducted laboratory tests on six prototypes and determined the sensitivity of the sensors to multiple parameters, e.g. changing pressure, temperature and water vapor. Also, we developed a correction and calibration strategy for our NDIR sensors. Furthermore, we fully integrated these NDIR sensors in a platform containing the CO2sensor, pressure and temperature sensors, gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the urban network of LSCE. In this field experiment, using weekly calibration, we find a root-mean-square difference of less than 1 ppm for hourly mean concentrations at the semi-urban site in Saclay and the urban site of Jussieu, Paris, France. Our recent results concerning sensor testing and CO2monitoring from the two sites sited above also guide our recommendations for a low cost urban environmental monitoring system based on open source hardware (Raspberry Pi) and

  9. Integrated measurements and modeling of CO2, CH4, and N2O fluxes using soil microsite frequency distributions

    Science.gov (United States)

    Davidson, Eric; Sihi, Debjani; Savage, Kathleen

    2017-04-01

    Soil fluxes of greenhouse gases (GHGs) play a significant role as biotic feedbacks to climate change. Production and consumption of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. Models of belowground processes of these GHGs should be internally consistent with respect to the biophysical processes of gaseous production, consumption, and transport within the soil, including the contrasting effects of oxygen (O2) as either substrate or inhibitor. We installed automated chambers to simultaneously measure soil fluxes of CO2 (using LiCor-IRGA), CH4, and N2O (using Aerodyne quantum cascade laser) along soil moisture gradients at the Howland Forest in Maine, USA. Measured fluxes of these GHGs were used to develop and validate a merged model. While originally intended for aerobic respiration, the core structure of the Dual Arrhenius and Michaelis-Menten (DAMM) model was modified by adding M-M and Arrhenius functions for each GHG production and consumption process, and then using the same diffusion functions for each GHG and for O2. The area under a soil chamber was partitioned according to a log-normal probability distribution function, where only a small fraction of microsites had high available-C. The probability distribution of soil C leads to a simulated distribution of heterotrophic respiration, which translates to a distribution of O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates microsite concentrations of O2, which then determine the distribution of microsite production and consumption of CH4 and N2O, and subsequently their microsite concentrations using the same diffusion function. At many moisture values, there are some microsites of production and some of consumption for each gas, and the resulting simulated microsite concentrations of CH4

  10. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  11. Africa Soil Profiles Database, Version 1.0

    NARCIS (Netherlands)

    Leenaars, J.G.B.

    2014-01-01

    The Africa Soil Profiles Database, Version 1.0, was compiled by ISRIC - World Soil Information as a project activity for the Globally integrated- Africa Soil Information Service (AfSIS) project (www.africasoils.net/data/legacyprofile). The Africa Soil Profiles Database is a compilation of

  12. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    Science.gov (United States)

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day.

    NARCIS (Netherlands)

    van de Kamp, Mirjam E; Seves, S Marije; Temme, Elisabeth H M

    2018-01-01

    The typical Western diet is associated with high levels of greenhouse gas (GHG) emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet

  14. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein

    2015-12-01

    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  15. In situ net N mineralisation and nitrification under organic and conventionally managed olive oil orchards

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Hinojosa, M. B.; García-Ruiz, R.

    2015-01-01

    Olive oil orchard occupies a great percentage of the cropland in southern Spain. Thus, changes in nitrogen (N) fertilization might have a great effect on N dynamics at least at regional scale, which should be investigated for a sustainable N fertilization program. In situ net N mineralization (NM......) and nitrification (NN) were investigated during a year in comparable organic (OR) and conventional (CV) olive oil orchards of two locations differing their N input. Soil samples were collected in two soil positions (under and between trees canopy) and both buried-bags and soil core techniques were used to quantify...... soil TN. Soil TN and PMN explained together a 50 % of the variability in soil N availability, which suggests that these two variables are good predictors of the potential of a soil to provide available N. The highest rates of soil N availability were found in spring, when olive tree demand for N...

  16. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    PRAKASH

    Global soil respiration is estimated to be 76.5 Pg C yr-1, which is 30–60 Pg C yr-1 greater than the net primary productivity. (NPP) (Raich and Potter 1995). Therefore, soil respiration is a major pathway for carbon to move from terrestrial ecosystems to the atmosphere and even small changes can strongly influence net ...

  17. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius

    2014-01-01

    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  18. Net4Care PHMR Library

    DEFF Research Database (Denmark)

    2014-01-01

    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  19. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur

    2011-01-01

    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  20. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.

    1991-01-01

    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  1. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    Science.gov (United States)

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  2. ESP v2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    Science.gov (United States)

    This product includes both a presentation and an extended abstract. We describe the Emission Scenario Projection (ESP) method, version 2.0. ESP is used to develop multi-decadal projections of U.S. greenhouse gas (GHG) and criteria pollutant emissions. The resulting future-year em...

  3. 75 FR 62739 - 2017 and Later Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent

    Science.gov (United States)

    2010-10-13

    ... emission standards. Electric drive vehicles including HEVs, PHEVs, EVs, and hydrogen fuel cell vehicles... the case of fuel cell vehicles, hydrogen fueling stations are needed to support commercialization... Administration 49 CFR Parts 531 and 533 RIN 2127-AK79 2017 and Later Model Year Light Duty Vehicle GHG Emissions...

  4. Sensitivity of Technical Choices on the GHG Emissions and Expended Energy of Hydrotreated Renewable Jet Fuel from Microalgae

    Directory of Open Access Journals (Sweden)

    Patouillard Laure

    2016-01-01

    Full Text Available Taking into account the environmental impacts of biofuel production is essential to develop new and innovative low-emission processes. The assessment of life cycle GreenHouse Gas (GHG emissions of biofuel is mandatory for the countries of the European Union. New biomass resources that hardly compete with food crops are been developed increasingly. Microalgae are an interesting alternative to terrestrial biomass thanks to their high photosynthetic efficiency and their ability to accumulate lipids. This article provides an analysis of potential environmental impacts of the production of algal biofuel for aviation using the Life Cycle Assessment (LCA. Evaluated impacts are GHG emissions and the primary energy consumption, from extraction of raw materials to final waste treatment. This study compared two management choices for oilcakes generated after oil extraction from microalgae. In the first system, these cakes are treated by energetic allocation and in the second by anaerobic digestion. In both cases, the steps of cultivation and harvesting have the highest impact on the results. Sensitivity analyzes are performed on technical choices of operating systems (choice of the type of nutrients, mode of harvesting, drying and oil extraction as well as a Monte-Carlo analysis on key parameter values for GHG emissions (concentration of microalgae in ponds, productivity and oil content. The results highlight the impact of the use of chemical fertilizers and the importance of the concentration of algae on GHG emissions and energy consumption.

  5. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    Science.gov (United States)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  6. EU Transport GHG. Routes to 2050? Towards the decarbonisation of the EU's transport sector by 2050

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, I.; Hill, N. [AEA Technology, London (United Kingdom); Van Essen, H. [CE Delft, Delft (Netherlands); Smokers, R. [TNO Science and Industry, Delft (Netherlands)

    2010-06-15

    The aim of the project was to review existing evidence on options and policy instruments for reducing transport's GHG emissions and then to identify the implications of these findings for reducing the EU's transport's GHG emissions between 2020 and 2050. Within the project, the following definitions were used: (a) Options deliver GHG emissions reductions in transport, e.g. technical (primarily those that focus on reducing the GHG intensity of the energy used and improving the energy efficiency of vehicles) and non-technical, such as those that improve the efficiency of vehicle use and improve the efficiency of the transport system more generally; and (b) Policy instruments may be implemented to promote the application of these options. Whilst recognising that these terms can be defined differently, it was decided that these definitions would be used within the project in order to avoid the potential for confusion. An important element of the project was a review of evidence of the GHG reduction potentials, costs, issues, risks and limitations associated with the various options and policy instruments. The findings of the evidence review were brought together in a series of papers, which were presented to and discussed with stakeholders. Section 2 presents a summary of the findings on technical and non-technical options for reducing transport's GHG emissions, while Section 3 summarises the findings with respect to the potential policy instruments that could be used to stimulate the uptake of these options. Section 4 introduces the concept of alternative policy frameworks that are considered in the remainder of this report to identify the policy instruments that could be introduced to reduce transport's GHG emissions. An illustrative scenarios tool called SULTAN was developed in the course of the project in order to identify a range of potential future scenarios that would deliver GHG reduction in the EU's transport sector. The main

  7. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress

    Directory of Open Access Journals (Sweden)

    Fu Yang

    2008-06-01

    Full Text Available The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00–10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00–13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.

  8. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils

    Science.gov (United States)

    Del Grosso, Stephen J.; Ojima, Dennis S.; Parton, William J.; Stehfest, Elke; Heistemann, Maik; DeAngelo, Benjamin; Rose, Steven

    2009-05-01

    Conversion of native vegetation to cropland and intensification of agriculture typically result in increased greenhouse gas (GHG) emissions (mainly N 2O and CH 4) and more NO 3 leached below the root zone and into waterways. Agricultural soils are often a source but can also be a sink of CO 2. Regional and larger scale estimates of GHG emissions are usually obtained using IPCC emission factor methodology, which is associated with high uncertainty. To more realistically represent GHG emissions we used the DAYCENT biogeochemical model for non-rice major crop types (corn, wheat, soybean). IPCC methodology estimates N losses from croplands based solely on N inputs. In contrast, DAYCENT accounts for soil class, daily weather, historical vegetation cover, and land management practices such as crop type, fertilizer additions, and cultivation events. Global datasets of weather, soils, native vegetation, and cropping fractions were mapped to a 1.9° × 1.9° resolution. Non-spatial data (e.g., rates and dates of fertilizer applications) were assumed to be identical within crop types across regions. We compared model generated baseline GHG emissions and N losses for irrigated and rainfed cropping with land management alternatives intended to mitigate GHG emissions. Reduced fertilizer resulted in lower N losses, but crop yields were reduced by a similar proportion. Use of nitrification inhibitors and split fertilizer applications both led to increased (~ 6%) crop yields but the inhibitor led to a larger reduction in N losses (~ 10%). No-till cultivation, which led to C storage, combined with nitrification inhibitors, resulted in reduced GHG emissions of ~ 50% and increased crop yields of ~ 7%.

  9. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  10. Carbon and Nitrous Oxide Exchange from a Bioenergy Crop Cultivation on a Mineral Soil Measured with Eddy Covariance Method

    Science.gov (United States)

    Lind, S.; Shurpali, N.; Martikainen, P. J.

    2009-12-01

    Increased concentration of greenhouse gases (GHG; CO2, CH4, N2O) in the atmosphere have been linked to anthropogenic activities. Energy production based on fossil fuels is the main sources of CO2 to the atmosphere. Strategies to reduce CO2 emissions include use of bioenergy crops as energy source. To evaluate the real atmospheric value of bioenergy, knowledge on CO2 and N2O balances of ecosystems under bioenergy crop cultivation is needed. Reed canary grass (RCG, Phalaris arundinaceae L.) is increasingly being used as a bioenergy crop in the Nordic countries. It grows well in northern Europe as it tolerates flooding, requires short growing season and thrives well under low temperatures. Currently RCG is cultivated on an area of about 19000 ha in Finland and it is the highest yielding grass grown for energy purpose in Finland. The long rotation period (about ten years) of RCG cultivation without tilling favors carbon allocation into soil. First results from RCG cultivations on peat soil show that it is a promising land use option on such soils favoring soil carbon sequestration with low N2O emissions (Hyvönen et al. 2009; Shurpali et al. 2009). In order to devise a sound bioenergy policy based on this grass, studies on soils with variable characteristics under different climatic and hydrological regimes is urgently needed. Micrometeorological eddy covariance technique is suitable to study GHG fluxes at an ecosystem level (Baldocchi 2003). It is useful for continuous, direct and long-term measurements. Eddy covariance technique has been successfully used for measuring CO2 exchange in various ecosystems. The eddy covariance technique has also been used to measure N2O emissions (Denmead 2008). Aims of this study are to quantify the CO2 and N2O exchange of RCG cultivation on a mineral soil employing eddy covariance technique and to identify the key factors controlling the gas exchange. The study site on mineral soil is located in Eastern Finland. RCG was sown in spring

  11. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    Directory of Open Access Journals (Sweden)

    Puneet Dwivedi

    Full Text Available Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG intensity of electricity and ethanol derived from slash pine (Pinus elliottii at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.

  12. Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils

    DEFF Research Database (Denmark)

    Tariq, Azeem; Jensen, Lars Stoumann; de Tourdonnet, Stephane

    2017-01-01

    Elevated greenhouse gas (GHG) emissions, particularly of methane (CH4) from flooded rice production systems contribute to global warming. Different crop management strategies, such as drainage of paddy soils and climate-smart residue management, are essential in order to mitigate GHG emissions from...... flooded rice systems, but they often conflict with practical management preferences.The aim of this study was to assess the potential of early-season drainage for mitigating CH4 and N2O emissions from soils with and without added organic amendments in relation to native soil organic carbon (SOC). Rice...... to the soils on the basis of an equivalent amount of C added in each organic treatment.The results revealed rapid mineralization of organic C in the double-drained system, resulting in lower total CH4 emissions in treatments under early plus midseason drainage compared to those under midseason drainage only...

  13. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  14. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)

    lremy

    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  15. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs

    2012-01-01

    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  16. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.

    2014-01-01

    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  17. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  18. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  19. The Influence of Extreme Water Pulses on Greenhouse Gas Emissions from Soils

    Science.gov (United States)

    Petrakis, S.; Vargas, R.; Seyfferth, A.; Kan, J.; Inamdar, S. P.

    2015-12-01

    Anthropogenic activity increasing the amount of radiatively active gases, or Greenhouse Gases (GHGs) in the earth's atmosphere has led to shifts in weather patterns. Climate models predict the occurrence of large storms may increase in frequency and intensity in the mid-Atlantic region. Knowing that extreme precipitation events are rare, testing the influence of large water pulses across different soil types within an ecosystem is challenging. Large additions of water could promote or inhibit microbial activity, and change soil chemistry within a few days. Rapid changes in soil moisture lead to shifts in the behavior of soils as either sinks or sources of several GHGs (i.e., CO2, CH4 and N2O). Unfortunately, it is still unclear how rewetting events could impact the magnitude of GHG fluxes and how changing soil chemical parameters influence these responses. An experiment was designed to test the influence of extreme repeated water pulses on GHG fluxes from four different soils, representing key topographic locations within a watershed in the Piedmont region (i.e., forested upland, forested lowland, creek, wetland). Intact soil cores from these four soil types were kept under constant temperature (22oC) and we measured their responses to extreme water pulses. We continuously (hourly resolution) measured CO2, CH4 and N2O fluxes using a LI-8100A (Licor, Lincoln, NE) multiplexed system coupled to a Picarro G2508 (Picarro, Santa Clara, CA). Furthermore, we used a rhizolysimeter for porewater extraction to measure pH, redox, and water chemistry throughout the experiment. We hypothesized that repeated extreme water pulses would result in non-linear responses of GHG flux magnitudes and dynamics, and these dynamics would relate to changes in soil chemistry. We found that soil moisture alone could not explain the dynamics of GHG fluxes, but these extreme water pulses influenced the overall temporal patterns of all GHGs across all soil types. We also examined the 100 year

  20. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day

    Directory of Open Access Journals (Sweden)

    Mirjam E. van de Kamp

    2018-02-01

    Full Text Available Abstract Background The typical Western diet is associated with high levels of greenhouse gas (GHG emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet quality. Methods Food consumption in the Netherlands was assessed by two non-consecutive 24-h recalls for adults aged 19–69 years (n = 2102. GHG emission of food consumption was evaluated with the use of life cycle assessments. The population was stratified by gender and according to tertiles of dietary GHG emission. Scenarios were developed to lower GHG emissions of people in the highest tertile of dietary GHG emission; 1 reducing red and processed meat consumed during dinner by 50% and 75%, 2 replacing 50% and 100% of alcoholic and soft drinks (including fruit and vegetable juice and mineral water by tap water, 3 replacing cheese consumed in between meals by plant-based alternatives and 4 two combinations of these scenarios. Effects on GHG emission as well as nutrient content of the diet were assessed. Results The mean habitual daily dietary GHG emission in the highest tertile of dietary GHG emission was 6.7 kg CO2-equivalents for men and 5.1 kg CO2-equivalents for women. The scenarios with reduced meat consumption and/or replacement of all alcoholic and soft drinks were most successful in reducing dietary GHG emissions (ranging from − 15% to − 34% and also reduced saturated fatty acid intake and/or sugar intake. Both types of scenarios lead to reduced energy and iron intakes. Protein intake remained adequate. Conclusions Reducing the consumption of red and processed meat during dinner and of soft and alcoholic drinks throughout the day leads to significantly lower dietary GHG emissions of people in the Netherlands in the highest tertile of dietary GHG emissions, while also having health benefits. For subgroups of the

  1. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day.

    Science.gov (United States)

    van de Kamp, Mirjam E; Seves, S Marije; Temme, Elisabeth H M

    2018-02-20

    The typical Western diet is associated with high levels of greenhouse gas (GHG) emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet quality. Food consumption in the Netherlands was assessed by two non-consecutive 24-h recalls for adults aged 19-69 years (n = 2102). GHG emission of food consumption was evaluated with the use of life cycle assessments. The population was stratified by gender and according to tertiles of dietary GHG emission. Scenarios were developed to lower GHG emissions of people in the highest tertile of dietary GHG emission; 1) reducing red and processed meat consumed during dinner by 50% and 75%, 2) replacing 50% and 100% of alcoholic and soft drinks (including fruit and vegetable juice and mineral water) by tap water, 3) replacing cheese consumed in between meals by plant-based alternatives and 4) two combinations of these scenarios. Effects on GHG emission as well as nutrient content of the diet were assessed. The mean habitual daily dietary GHG emission in the highest tertile of dietary GHG emission was 6.7 kg CO 2 -equivalents for men and 5.1 kg CO 2 -equivalents for women. The scenarios with reduced meat consumption and/or replacement of all alcoholic and soft drinks were most successful in reducing dietary GHG emissions (ranging from - 15% to - 34%) and also reduced saturated fatty acid intake and/or sugar intake. Both types of scenarios lead to reduced energy and iron intakes. Protein intake remained adequate. Reducing the consumption of red and processed meat during dinner and of soft and alcoholic drinks throughout the day leads to significantly lower dietary GHG emissions of people in the Netherlands in the highest tertile of dietary GHG emissions, while also having health benefits. For subgroups of the population not meeting energy or iron requirements as a

  2. Impacts of agricultural management and climate change on future soil organic carbon dynamics in North China Plain.

    Science.gov (United States)

    Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang

    2014-01-01

    Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km × 10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) - and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha-1 yr-1. With a moderate rate of manure application (i.e., 2000 kg ha-1 yr-1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha-1 yr-1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha-1 yr-1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha-1 during 2010s to the current worldwide average of ∼ 55 Mg ha-1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.

  3. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  4. Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view

    OpenAIRE

    Cerri, Carlos Eduardo Pellegrino; Galdos, Marcelo Valadares; Carvalho, João Luís Nunes; Feigl, Brigitte Josefine; Cerri, Carlos Clemente

    2013-01-01

    Strategies to mitigate climate change through the use of biofuels (such as ethanol) are associated not only to the increase in the amount of C stored in soils but also to the reduction of GHG emissions to the atmosphere.This report mainly aimed to propose appropriate methodologies for the determinations of soil organic carbon stocks and greenhouse gas fluxes in agricultural phase of the sugarcane production. Therefore, the text is a piece of contribution that may help to obtain data not only ...

  5. Army Net Zero Prove Out. Army Net Zero Training Report

    Science.gov (United States)

    2014-11-20

    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  6. Army Net Zero Prove Out. Net Zero Waste Best Practices

    Science.gov (United States)

    2014-11-20

    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , the...technology and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  7. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    The conversion of biomass to four different outputs via gasification is a renewable technology that could reduce the use of fossil fuels and greenhouse gas (GHG) emissions. This study investigates the energy aspects for a new concept of biomass based quad-generation plant producing power, heat......, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.......3 and 7.2. The lowest limit corresponds to the wood chips-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim...

  8. Incentives to reduce GHG emissions from deforestation. Lessons learned from Costa Rica and Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Karousakis, K. [Organisation for Economic Co-operation and Development OECD, Paris (France)

    2007-04-15

    Global deforestation occurs today at a fast rate, around 13 million ha/yr, with South America and Africa experiencing the largest losses. Deforestation has serious adverse consequences for the global environment and is responsible for habitat destruction, irreversible losses of biodiversity, has negative impacts on agricultural productivity and affects the livelihoods of millions of rural people. Deforestation is also responsible for one-fifth of global anthropogenic greenhouse gas (GHG) emissions, with emissions in the 1990s estimated at 5.8Gt/CO2/yr, and is thus a major contributor to climate change. A market-based instrument to capture the carbon values of forests, and thus to reduce emissions from deforestation in developing countries (RED), could serve to: (1) address a large fraction of global anthropogenic GHG emissions (20%), (2) provide strong incentives for developing countries to take actions to reduce emissions from deforestation, (3) ensure long-term and sustainable funding and (4) minimise the global economic costs of achieving emissions reductions of countries with targets. This paper aims to develop some lessons learned and good practices for an incentive instrument to capture and market the carbon values of forests. This is based primarily on two case studies of Payment for Environmental Services (PES) programmes that have been implemented to capture the forest values in developing countries (namely in Costa Rica and Mexico), as well as other experiences from the existing climate change framework under the UNFCCC and the Kyoto Protocol. The focus of the case studies is on PES schemes because such incentive mechanisms aim to internalize the external values of environmental services. PES schemes operationalise this by compensating landowners directly for the non-market benefits they provide via financial payments. As such, a carbon crediting instrument to reduce greenhouse gas (GHG) emissions from deforestation in developing countries could be

  9. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Yuying Wang

    Full Text Available The production and consumption of the greenhouse gases (GHGs methane (CH4, carbon dioxide (CO2 and nitrous oxide (N2O in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1 year(-1 in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS. The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.

  10. Managing U.S. cropland to sequester carbon in soil

    Energy Technology Data Exchange (ETDEWEB)

    Lal, R. [Ohio State Univ., Columbus, OH (United States). School of Natural Resources; Follett, R.F. [USDA-ARS, Fort Collins, CO (United States); Kimble, J. [USDA-NRCS, Lincoln, NE (United States). National Soil Survey Center; Cole, C.V. [Colorado State Univ., Estes Park, CO (United States)

    1999-01-01

    The effects of human activities on atmospheric concentrations of carbon dioxide (CO{sub 2}) and other greenhouse gases (GHGs) are under intensive study in the United States and worldwide. Since conversion to cropland during the 17th and 18th centuries, the vegetation and soils of the US forests, grasslands, and wetlands have undergone extensive change. Clearing, tilling, and draining of these soils for long-term cropland use released large amounts of CO{sub 2}, a GHG, to the atmosphere from the soils` fertile soil organic matter (SOM). The SOM in topsoil often was depleted by up to half of its soil organic carbon (SOC). Now, improved farming technologies, increased farmland productivity, and government programs to return highly erodible lands to permanent vegetation are producing unanticipated benefits by letting soils become major sinks for atmospheric CO{sub 2} that is stored in them as increasing levels of SOC.

  11. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    Science.gov (United States)

    Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...

  12. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network

    Science.gov (United States)

    Priesack, Eckart; Schuh, Max

    2014-05-01

    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor (sceme.de GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  13. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  14. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library

    DONG, SHUCHUANG; HU, FUXIANG; KUMAZAWA, TAISEI; SIODE, DAISUKE; TOKAI, TADASHI

    2016-01-01

      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  15. Greenhouse Gas (GHG) Source Detection and Attribution in the San Francisco Bay Area of California Using a Mobile Measurement Platform

    Science.gov (United States)

    Guha, A.; Bower, J.; Martien, P. T.; Perkins, I.; Randall, S.; Stevenson, E.; Young, A.; Hilken, H.

    2016-12-01

    The Bay Area Air Quality Management District is the greater San Francisco Bay metropolitan area's chief air quality regulatory agency. Aligning itself with the Governor's Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 2016 Clean Air Plan will lay out the agency's vision and actions to put the region on a path forward towards achieving the 2050 goal while also reducing air pollution and related health impacts. The 2016 Plan has three overarching objectives: 1) develop a multi-pollutant emissions control strategy, (2) reduce population exposure to harmful air pollutants, especially in vulnerable communities, and (3) protect climate through a comprehensive Regional Climate Protection Strategy. To accomplish one of 2016 Plan's control measures (SL3 - Greenhouse Gas Monitoring and Measurement Network), the Air District has fabricated a mobile measurement platform i.e. a GHG research van to perform targeted CH4 emissions hotspot detection and source attribution. The van is equipped with analyzers capable of measuring CH4, CO2 and N2O in ambient plumes at fast sampling rates. The coincident measurement of source tracers like isotopic methane (13C - CH4), CO and ethane (C2H6) provide the capability to distinguish between biogenic, combustion-based and fossil-based fugitive methane sources, respectively. The GHG research van is a comprehensive mobile tool to perform tracer-based GHG source identification and apportionment. We report observation-based source-specific tracer-to-tracer emission ratios from a region-wide survey of well-known area sources like landfills, wastewater treatment facilities and dairies, and compare those with similar ratios in the Air District's GHG inventory. We also investigate plumes from potentially under-inventoried sources like anaerobic digesters, composting operations, active and plugged oil and gas wells, and a natural gas storage

  16. Isolated unit tests in .Net

    OpenAIRE

    Haukilehto, Tero

    2013-01-01

    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  17. Modeling the Relative GHG Emissions of Conventional and Shale Gas Production

    Science.gov (United States)

    2011-01-01

    Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. There is little publicly available data comparing unconventional and conventional gas production. Existing studies rely on national inventories, but it is not generally possible to separate emissions from unconventional and conventional sources within these totals. Even if unconventional and conventional sites had been listed separately, it would not be possible to eliminate site-specific factors to compare gas production methods on an equal footing. To address this difficulty, the emissions of gas production have instead been modeled. In this way, parameters common to both methods of production can be held constant, while allowing those parameters which differentiate unconventional gas and conventional gas production to vary. The results are placed into the context of power generation, to give a ″well-to-wire″ (WtW) intensity. It was estimated that shale gas typically has a WtW emissions intensity about 1.8–2.4% higher than conventional gas, arising mainly from higher methane releases in well completion. Even using extreme assumptions, it was found that WtW emissions from shale gas need be no more than 15% higher than conventional gas if flaring or recovery measures are used. In all cases considered, the WtW emissions of shale gas powergen are significantly lower than those of coal. PMID:22085088

  18. The best (and worst of GHG Emission Trading Schemes: Comparing the EU ETS with its followers

    Directory of Open Access Journals (Sweden)

    Simone Borghesi

    2016-07-01

    Full Text Available The European Emission Trading System (EU ETS is generally considered as the prototype system for the other Emission Trading Systems (ETSs for the reduction of Greenhouse Gases (GHG that are rapidly spreading around the world. To get a deeper understanding on the actual capacity of the EU ETS to stand as a model for the other ETSs, the present paper discusses the differences and similarities of the EU ETS with respect to the other main ETSs and the emerging trends that these systems seem to share, comparing the different cap and trade regimes in order to identify the best practices and the desirable features that future ETSs should have. As emerges from the comparative analysis performed in this article, although the followers share some common flaws with the EU ETS, they have also shown the capacity to innovate and possibly devise alternative ways to manage their own ETS regimes, which may in the long term jeopardise the EU leadership in the ETSs context.

  19. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    Science.gov (United States)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  20. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni

    2008-01-01

    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  1. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W

    2003-01-01

    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  2. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  3. PsychoNet: a psycholinguistc commonsense ontology

    OpenAIRE

    Mohtasseb, Haytham; Ahmed, Amr

    2010-01-01

    Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization...

  4. Comparative studies on energy efficiency and GHG emissions between conventional and organic olive groves in Greece and Portugal

    OpenAIRE

    Balafoutis, A; Baptista, F; Briassoulis, D.; Silva, LL; Panagakis , P; Murcho, D

    2014-01-01

    Nowadays, traditional farming based on achieving high yields using high inputs, shifts gradu-ally towards maximum possible crop yield using minimal inputs in an optimized way or to-wards organic farming. This is usually accomplishing by low yield of high quality products without using conventional agrochemicals (i.e. fertilizers, pesticides). In general, this last ap-proach leads to lower energy consumption per unit area of land, therefore lower cost and reduced greenhouse gas (GHG) emissions...

  5. Life-Cycle Analyses of Energy Consumption and GHG Emissions of Natural Gas-Based Alternative Vehicle Fuels in China

    OpenAIRE

    Xunmin Ou; Xiliang Zhang

    2013-01-01

    Tsinghua life-cycle analysis model (TLCAM) has been used to examine the primary fossil energy consumption and greenhouse gas (GHG) emissions for natural gas- (NG-) based alternative vehicle fuels in China. The results show that (1) compress NG- and liquid NG-powered vehicles have similar well-to-wheels (WTW) fossil energy uses to conventional gasoline- and diesel-fueled vehicles, but differences emerge with the distance of NG transportation. Additionally, thanks to NG having a lower carbon c...

  6. 78 FR 72451 - Net Investment Income Tax

    Science.gov (United States)

    2013-12-02

    ... Revenue Service 26 CFR Part 1 RIN 1545-BL74 Net Investment Income Tax AGENCY: Internal Revenue Service...). These regulations provide guidance on the computation of net investment income. The regulations affect... lesser of: (A) The individual's net investment income for such taxable year, or (B) the excess (if any...

  7. 47 CFR 69.302 - Net investment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account...

  8. 47 CFR 65.450 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  9. 47 CFR 65.500 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  10. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David

    2014-01-01

    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  11. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro

    1995-01-01

    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...

  12. 27 CFR 4.37 - Net contents.

    Science.gov (United States)

    2010-04-01

    ... the volume of wine within the container, except that the following tolerances shall be allowed: (1... THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is...

  13. GHG mitigation in the construction industry – analysis of the efficiency of legislation in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Luiza Helena Nunes Laera

    2012-07-01

    Full Text Available In the year of 2007 a Protocol of Intentions was organized to set up mitigation engagement for the global warming effects in the municipality of Rio de Janeiro in 2007. However, targets for reducing emissions of greenhouse gases (GHG were only established in 2009 through the "Sustainable Rio Program”. One of the actions set out under the Protocol and the Program is the legal determination of the compensation of GHG emissions by the civil construction sector, through planting trees. This article examines the evolution of this legal framework and investigates the effectiveness of Law 613/84 and Decree 31.180/09, under the environmental point of view, in relation to the dynamics of CO2.These legal instruments determine planting trees by the civil construction sector, in an amount calculated based on the total area of construction. The analysis was focused on the period from January to July 2010, which corresponds to the first semester after legal determination of the compensation of GHG emissions by the civil construction sector through planting trees. In the analysis we compared the estimates of emissions by new constructions licensed by the City Hall in the first six months of institutionalization of the emissions offsetting scheme and the estimate of total carbon to be sequestered by planting trees, legally required in the licensing of buildings. This analysis shows that current legislation is ineffective in offsetting the emissions generated in licensed buildings in the city of Rio de Janeiro, through planting of trees.

  14. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  15. NET 40 Generics Beginner's Guide

    CERN Document Server

    Mukherjee, Sudipta

    2012-01-01

    This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy.

  16. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding

    2015-01-01

    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...... marker is proven to erroneously yield a positive NRI. Some insight into this phenomenon is provided. Since large values for the NRI statistic may simply be due to use of poorly fitting risk models, we suggest caution in using the NRI as the basis for marker evaluation. Other measures of prediction...

  17. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.

    Directory of Open Access Journals (Sweden)

    Sara Farchi

    Full Text Available Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid.We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005-2006, average 406 gr/week beef and 245 gr/week processed meat, we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP coefficient to total consumption and to a low carbon food substitution in adult diet.The deaths avoidable (as percentage change compared to baseline according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4.0% for

  18. Reporting and Recording Post 2012 GHG Mitigation Commitments, Actions and Support

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This study assesses the long-term economic and environmental effects of introducing price caps and price floors in hypothetical climate change mitigation architecture, which aims to reduce global energy-related CO2 emissions by 50% by 2050. Based on abatement costs in IPCC and IEA reports, this quantitative analysis confirms what qualitative analyses have already suggested: introducing price caps could significantly reduce economic uncertainty. This uncertainty stems primarily from unpredictable economic growth and energy prices, and ultimately unabated emission trends. In addition, the development of abatement technologies is uncertain. With price caps, the expected costs could be reduced by about 50% and the uncertainty on economic costs could be one order of magnitude lower. Reducing economic uncertainties may spur the adoption of more ambitious policies by helping to alleviate policy makers' concerns of economic risks. Meanwhile, price floors would reduce the level of emissions beyond the objective if the abatement costs ended up lower than forecasted. If caps and floors are commensurate with the ambition of the policy pursued and combined with slightly tightened emission objectives, climatic results could be on average similar to those achieved with 'straight' objectives (i.e. with no cost-containment mechanism). This papers reviews current proposals in the UNFCCC negotiations for future mechanisms to report and record Parties' GHG mitigation actions and commitments, as well as support provided for such actions. It explores the possible purposes, coverage and form of a reporting/recording mechanism post-2012 and highlights the decision points that are needed in order to establish such a mechanism. It examines what information such a mechanism could include in terms of actions, commitments and support, as well as the institutional implications of different design options.

  19. Integrating Satellite, Aircraft, and Ground-Based Observations to Improve a GHG Inventory Network

    Science.gov (United States)

    Midzik, M.; Abbate, J.; Raheja, G.

    2016-12-01

    Methane (CH4) is the second-most effective greenhouse gas, with a global warming potential up to 70 times that of carbon dioxide (CO2) over the span of 25 years. With a majority of these emissions attributed to livestock, landfill, and wastewater treatment, CH4 emissions are a concern for both urban and rural landscapes. Though Earth-observing satellites can effectively monitor mid-to-upper tropospheric CH4 on a global scale, current instrumentation is limited in its capacity to accurately measure near-surface CH4 on a local scale. The Bay Area Air Quality Management District (BAAQMD) regulates stationary sources of air pollution in the nine counties surrounding San Francisco Bay. BAAQMD traditionally estimates emissions using a bottom-up approach, combining emissions factor and activity data to estimate source emissions per sector. However, recent literature suggests that these bottom-up approaches are underestimating CH4 emissions by nearly 50% in many regions of California. In efforts to address the discrepancy, this project compares BAAQMD's current CH4 spatial emissions inventory with top-down sub-Planetary Boundary Layer aircraft measurements from the NASA Alpha Jet Atmospheric eXperiment (AJAX). Together, these different approaches were used to identify CH4 hot-spots in the San Francisco Bay Area. In addition, sources of high-CH4 anomalies were identified using USGS high resolution aerial imagery and trajectory analysis. Furthermore, this project used NASA Landsat 8 imagery and USGS orthoimagery to classify the types of indicated emissions and infer other points of interest not included in the current BAAQMD inventory. These findings help pinpoint specific sites for BAAQMD's upcoming Mobile GHG Measurement Network; furthermore, results from this project suggest future sites for coincident data collection between advancing bottom-up and top-down instruments.

  20. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  1. Inoculation of soil native cyanobacteria to restore arid degraded soils

    Science.gov (United States)

    Raúl Román Fernández, José; Roncero Ramos, Beatriz; Chamizo de la Piedra, Sonia; Rodríguez Caballero, Emilio; Ángeles Muñoz Martín, M.; Mateo, Pilar; Cantón Castilla, Yolanda

    2017-04-01

    Restoration projects in semiarid lands often yield poor results. Water scarcity, low soil fertility, and poor soil structure strongly limit the survival and growth of planted seedlings in these areas. Under these conditions, a previous stage that improves edaphic conditions would turn out to a successful plant restoration. By successfully colonizing arid soils, cyanobacteria naturally provide suitable edaphic conditions, enhancing water availability, soil fertility and soil stability. Furthermore, cyanobacteria can be easily isolated and cultured ex-situ to produce high quantities of biomass, representing a potential tool to restore large areas efficiently. The objective of this study was to test the effect of inoculated cyanobacteria on degraded soils at three different semiarid areas from southeast Spain: Tabernas badlands, a limestone quarry located in Gádor, and grazed grassland in Las Amoladeras (Cabo de Gata). Soil native cyanobacteria belonging to three representative N-fixing genera (Nostoc, Scytonema and Tolypothrix) were isolated from such soils and cultured in BG110 medium. Each strain was inoculated (6 g m-2), separately and mixed (all in the same proportion), on Petri dishes with 80 g of each soil. Biocrust development was monitored during 3 months in these soils under laboratory conditions, at a constant temperature of 25oC. During the experiment, two irrigation treatments were applied simulating a dry (180 mm) and a wet (360 mm) rainfall year (average recorded in the study sites). After 3 months, net CO2 flux, spectral response and soil surface microtopography (1 mm spatial resolution) of inoculated and control soils was measured under wet conditions, all of them as a surrogate of biocrust development. Samples of the surface crust were collected in order to determine total soil organic carbon (SOC) content. The inoculated soils showed positive values of net CO2 flux, thus indicating a net CO2 uptake, whereas control soils showed CO2 fluxes closed to

  2. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands

    NARCIS (Netherlands)

    Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brooks, A.J.; Igual, J.M.; Mortimer, S.R.; Putten, van der W.H.

    2006-01-01

    1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community

  3. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands : Ecology

    NARCIS (Netherlands)

    Risch, Anita C.; Schütz, Martin; Vandegehuchte, Martijn L.; van der Putten, Wim H.; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J.; Busse, Matt D.; Page-Dumroese, Deborah S.; Zimmermann, Stephan

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect

  4. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands

    NARCIS (Netherlands)

    Risch, A.C.; Schütz, Martin; Vandegehuchte, Martijn L.; Putten, Van Der W.H.; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, D.J.; Busse, M.D.; Page-Dumroese, D.S.; Zimmermann, Stephan

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined

  5. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  6. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano

    2010-01-01

    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  7. Soil organic carbon erosion and its subsequent fate in the Karoo rangeland

    Science.gov (United States)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus

    2016-04-01

    The rangelands of the Great Karoo region in South Africa have experienced a number of environmental changes. With the settling of European farmers in the second half of the 18th century, agricultural activities increased, leading to overgrazing and probably representing a trigger to land degradation. Ongoing land-use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and complex gully systems in valley bottoms. Many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods, as a consequence of agricultural intensification. Most of the dams soon in-filled with sediment and many were eventually breached. Such a process offers the potential to use these breached dams as an environmental archive to analyse land use changes as well as carbon (C) erosion and deposition during the last ca. 100 years. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping and sediment analysis have been employed to determine whether land degradation in the Karoo has resulted in the reversion from a net sink of C to a net source of C. Firstly, drone imagery will be used to produce a high-resolution digital elevation model for areas especially prone to erosion and for determining the volume calculation of eroded sediment in the catchment area. Secondly, sediment deposits from the same silted-up reservoir were analysed for varying physicochemical parameters, in order to analyse and reconstruct erosional and depositional patterns. Total Carbon (TC) content was recorded and the sharp decrease in total C content with decreasing depth suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the then relatively fertile surface soils. This presumably resulted in the rapid in-filling of reservoirs with carbon-rich surface material which is found at the base of

  8. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  9. NETS - Danish participation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alsen, S. (Grontmij - Carl Bro, Glostrup (Denmark)); Theel, C. (Baltic Sea Solutions, Holeby (Denmark))

    2008-12-15

    Within the NICe-funded project 'Nordic Environmental Technology Solutions (NETS)' a new type of networking at the Nordic level was organized in order to jointly exploit the rapidly growing market potential in the environmental technology sector. The project aimed at increased and professionalized commercialization of Nordic Cleantech in energy and water business segments through 1) closer cooperation and joint marketing activities, 2) a website, 3) cleantech product information via brochures and publications 4) and participating in relevant trade fairs and other industry events. Facilitating business-to-business activities was another core task for the NETS project partners from Norway, Sweden, Finland and Denmark with the aim to encourage total solutions for combined Cleantech system offers. The project has achieved to establish a Cleantech register of 600 Nordic Cleantech companies, a network of 86 member enterprises, produced several publications and brochures for direct technology promotion and a website for direct access to company profiles and contact data. The project partners have attended 14 relevant international Cleantech trade fairs and conferences and facilitated business-to-business contacts added by capacity building offers through two company workshops. The future challenge for the project partners and Nordic Cleantech will be to coordinate the numerous efforts within the Nordic countries in order to reach concerted action and binding of member companies for reliable services, an improved visibility and knowledge exchange. With Cleantech's growing market influence and public awareness, the need to develop total solutions is increasing likewise. Marketing efforts should be encouraged cross-sectional and cross-border among the various levels of involved actors from both the public and the private sector. (au)

  10. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    Directory of Open Access Journals (Sweden)

    Pilar M Gil M

    2009-03-01

    Full Text Available In Chile, avocado (Persea americana Mill. orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2 as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted outdoors in containers filled with heavy loam clay soil with moisture content sustained at field capacity. Plants were divided into two treatments, (a H2O2 injected into the soil through subsurface drip irrigation and (b soil with no H2O2 added (control. Stem and root vascular anatomical characteristics were determined for plants in each treatment in addition to physical soil characteristics, net CO2 assimilation (A, transpiration (T, stomatal conductance (gs, stem water potential (SWP, shoot and root biomass, water use efficiency (plant biomass per water applied [WUEb]. Injecting H2O2 into the soil significantly increased the biomass of the aerial portions of the plant and WUEb, but had no significant effect on measured A, T, gs, or SWP. Xylem vessel diameter and xylem/phloem ratio tended to be greater for trees in soil injected with H2O2 than for controls. The increased biomass of the aerial portions of plants in treated soil indicates that injecting H2O2 into heavy loam clay soils may be a useful management tool in poorly aerated soil.En Chile, los huertos de palto (Persea americana Mill. se ubican comúnmente en suelos pobremente drenados con bajo contenido de oxígeno, lo que limita producción y calidad de fruta. El objetivo de este estudio fue evaluar el efecto de la inyección de peróxido de hidrógeno (H2O2 al suelo como fuente de O2, sobre el estado hídrico, asimilación de CO2, biomasa y anatomía de paltos en suelo franco arcilloso con

  11. Mapping the international flows of GHG emissions within a more feasible consumption-based framework

    DEFF Research Database (Denmark)

    Caro, Dario; Pulselli, Federico; Borghesi, Simone

    2017-01-01

    as an alternative to the IPCC accounting, some concerns arise from the feasibility and the actual implementation of this methodology. In this paper, we apply a simplified framework recently introduced by Caro et al. (2014a), called NCI (National Carbon Intensity) method, and estimate the total CO2 emissions due...... and consumed outside its boundaries. A relevant example is the export from China to consumers located in the USA, Japan, and Germany. A focus on the Mediterranean area, that resulted as a net importer of CO2 embodied in traded goods, identifies the export of emissions from Italy and Spain to France and from...

  12. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically....... Balbo and W. Reisig, 18 submitted papers, and seven project papers. The submitted papers and project presentations were selectedby the programme committee and a panel of referees from a large number of submissions....

  13. Are You Neutral About Net Neutrality

    Science.gov (United States)

    2007-06-20

    Information Resources Management College National Defense University Are You Neutral About Net Neutrality ? A presentation for Systems & Software...author uses Verizon FiOS for phone, TV, and internet service 3 Agenda Net Neutrality —Through 2 Lenses Who Are the Players & What Are They Saying...Medical Treatment Mini-Case Studies Updates Closing Thoughts 4 Working Definitions of Net Neutrality "Network Neutrality" is the concept that

  14. Texture Based Image Analysis With Neural Nets

    Science.gov (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.

    1990-03-01

    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  15. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    Directory of Open Access Journals (Sweden)

    Graves Patricia M

    2011-12-01

    Full Text Available Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use. Methods Generalized linear latent and mixed models (GLLAMM were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy; net factors (condition, age, net density; household factors (number of rooms [2006] or sleeping spaces [2007], IRS, women's knowledge and school attendance [2007 only], wealth, altitude; and cluster level factors (rural or urban were investigated in univariate and multi-variable models for each survey. Results In 2006, increased net use was associated with: age 25-49 years (adjusted (a OR = 1.4, 95% confidence interval (CI 1.2-1.7 compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5; fewer nets with holes (Ptrend = 0.002; and increasing net density (Ptrend [all nets in HH good] = 1.6; 95% CI 1.2-2.1; increasing net density (Ptrend [per additional space] = 0.6, 95% CI 0.5-0.7; more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7; and increasing household altitude (Ptrend Conclusion In both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density, and improving net condition while focusing on education and promotion of net use, especially in school-age children

  16. Pro Agile NET Development with Scrum

    CERN Document Server

    Blankenship, Jerrel; Millett, Scott

    2011-01-01

    Pro Agile .NET Development with SCRUM guides you through a real-world ASP.NET project and shows how agile methodology is put into practice. There is plenty of literature on the theory behind agile methodologies, but no book on the market takes the concepts of agile practices and applies these in a practical manner to an end-to-end ASP.NET project, especially the estimating, requirements and management aspects of a project. Pro Agile .NET Development with SCRUM takes you through the initial stages of a project - gathering requirements and setting up an environment - through to the development a

  17. Pro ASP.NET MVC 4

    CERN Document Server

    Freeman, Adam

    2012-01-01

    The ASP.NET MVC 4 Framework is the latest evolution of Microsoft's ASP.NET web platform. It provides a high-productivity programming model that promotes cleaner code architecture, test-driven development, and powerful extensibility, combined with all the benefits of ASP.NET. ASP.NET MVC 4 contains a number of significant advances over previous versions. New mobile and desktop templates (employing adaptive rendering) are included together with support for jQuery Mobile for the first time. New display modes allow your application to select views based on the browser that's making the request whi

  18. Professional Visual Basic 2010 and .NET 4

    CERN Document Server

    Sheldon, Bill; Sharkey, Kent

    2010-01-01

    Intermediate and advanced coverage of Visual Basic 2010 and .NET 4 for professional developers. If you've already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is your book. You'll find a quick review of introductory topics-always helpful-before the author team of experts moves you quickly into such topics as data access with ADO.NET, Language Integrated Query (LINQ), security, ASP.NET web programming with Visual Basic, Windows workflow, threading, and more. You'll explore all the new features of Visual Basic 2010 as well as all t

  19. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  20. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    When designing complex systems, mechanisms for structuring, composing, and reusing system components are crucial. Today, there are many approaches for equipping Petri nets with such mechanisms. In the context of defining a standard interchange format for Petri nets, modular PNML was defined....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high...

  1. Methane, Carbon Dioxide and Nitrous Oxide Fluxes in Soil Profile under a Winter Wheat-Summer Maize Rotation in the North China Plain

    NARCIS (Netherlands)

    Wang, Y.Y.; Hu, C.S.; Ming, H.; Oenema, O.; Schaefer, D.A.; Dong, W.X.; Zhang, Y.M.; Li, X.X.

    2014-01-01

    The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300

  2. Scenarios for use of biogas for heavy-duty vehicles in Denmark and related GHG emissions impacts

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Winther, Morten; Jørgensen, Uffe

    2017-01-01

    , and potential use of the limited biogas resource taking into account alternative fuel options available for transportation (electricity, hydrogen, biofuels). Further, the total differences in fuel consumption and GHG emissions due to the replacement of diesel-powered heavy-duty vehicles by gas-powered heavy......Biogas may be a promising alternative fuel, mainly for heavy-duty vehicles, that can reduce CO2 emissions via substitution of fossil fuels and further reduce methane emissions from agricultural manure handling. However, as methane is a potent climate gas loss of methane from production to use......-duty vehicles are estimated in a well-to-wheel perspective taking into account methane losses....

  3. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  4. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  5. Nitrogen as a regulatory factor of methane oxidation in soils and sediments

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Laanbroek, H.J.

    2004-01-01

    The oxidation of methane by methane-oxidising microorganisms is an important link in the global methane budget. Oxic soils are a net sink while wetland soils are a net source of atmospheric methane. It has generally been accepted that the consumption of methane in upland as well as lowland systems

  6. Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil specific predictions from integrated empirical models

    Science.gov (United States)

    Hillier, J.; Brentrup, F.; Wattenbach, M.; Walter, C.; Garcia-Suarez, T.; Mila-i-Canals, L.; Smith, P.

    2012-04-01

    Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertiliser, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertiliser type, optimising fertiliser application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertiliser induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model in order to determine optimal mitigation options as a function of soil type, climate, and fertilisation rates. After Monte Carlo sampling of input variables we aggregated the outputs according to climate, soil and fertiliser factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per hectare basis. The optimal mitigation for each soil-climate-region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (since they are calibrated on globally or continentally observed phenomena). However, since they are relatively simple in structure, they may not be applicable for accurate site specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterisation of the yield effect on a given crop before recommending any mitigation practice.

  7. Smallholder adoption of conservation agriculture and ghg reduction potential in Mozambique and Lesotho

    OpenAIRE

    Lambert, Dayton M.; McNair, W.E.; D. O.; Bisangwa, E.; Simone, T.; Neal S. Eash; Wilcox, M.; Walker, Forbes; Marake, Makoala V.; Thierfelder, Christian

    2013-01-01

    Current agricultural practices in Mozambique and Lesotho lead to localized externalities and systematic “macro” erosion. However, conservation agriculture, which promotes minimal tillage, intercropping, and maintaining a soil cover, can be applied to moderate erosion and improve food security while sequestering carbon. This presentation examines the greenhouse gas reduction potential Sustainable Agriculture and Natural Resource Management (SANREM) Collaborative Research Support Program’s 5 ye...

  8. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  9. Price smarter on the Net.

    Science.gov (United States)

    Baker, W; Marn, M; Zawada, C

    2001-02-01

    Companies generally have set prices on the Internet in two ways. Many start-ups have offered untenably low prices in a rush to capture first-mover advantage. Many incumbents have simply charged the same prices on-line as they do off-line. Either way, companies are missing a big opportunity. The fundamental value of the Internet lies not in lowering prices or making them consistent but in optimizing them. After all, if it's easy for customers to compare prices on the Internet, it's also easy for companies to track customers' behavior and adjust prices accordingly. The Net lets companies optimize prices in three ways. First, it lets them set and announce prices with greater precision. Different prices can be tested easily, and customers' responses can be collected instantly. Companies can set the most profitable prices, and they can tap into previously hidden customer demand. Second, because it's so easy to change prices on the Internet, companies can adjust prices in response to even small fluctuations in market conditions, customer demand, or competitors' behavior. Third, companies can use the clickstream data and purchase histories that it collects through the Internet to segment customers quickly. Then it can offer segment-specific prices or promotions immediately. By taking full advantage of the unique possibilities afforded by the Internet to set prices with precision, adapt to changing circumstances quickly, and segment customers accurately, companies can get their pricing right. It's one of the ultimate drivers of e-business success.

  10. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  11. An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part Two: A Net Zero Energy Tourist Village

    Directory of Open Access Journals (Sweden)

    Fahd Diab

    2015-07-01

    Full Text Available The main objective of this study is to discuss the economical and the environmental analysis of a net zero energy (NZE tourist village in Alexandria, Egypt, by maximizing the renewable energy fraction and minimizing the greenhouse gases (GHG emissions. The hybrid photovoltaics (PV/wind/diesel/battery system is found to be the optimum hybrid renewable energy system (HRES for the proposed tourist village under the study. The optimum HRES consists of 1600 kW of PV panels (58.09% solar energy penetration, 1000 kW of wind turbines (41.34% wind energy penetration, 1000 kW of power converters, 200 kW diesel generator (only 0.57% diesel generator penetration in addition to 2000 batteries with the capacity of 589 Ah each. The levelized cost of energy (COE from the optimum HRES is $0.17/kWh and the total net present cost (NPC of this system is $15,383,360. Additionally, the maximum renewable energy fraction is 99.1% and the amount of GHG emitted from the optimum HRES is only 31,289 kg/year, which is negligible in comparison with the other system configurations, therefore the optimum HRES can be considered as a green system. In addition to this, the achieved percentage of the capacity shortage and the unmet load in the optimal HRES is only 0% for both.

  12. 78 FR 72393 - Net Investment Income Tax

    Science.gov (United States)

    2013-12-02

    ... Investment Income Tax; Final and Proposed Rules #0;#0;Federal Register / Vol. 78, No. 231 / Monday, December... Parts 1 and 602 RIN 1545-BK44 Net Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury... Investment Income Tax and the computation of Net Investment Income. The regulations affect individuals...

  13. 77 FR 72611 - Net Investment Income Tax

    Science.gov (United States)

    2012-12-05

    ... December 5, 2012 Part V Department of the Treasury Internal Revenue Service 26 CFR Part 1 Net Investment... Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of proposed rulemaking...) the individual's net investment income for such taxable year, or (B) the excess (if any) of (i) the...

  14. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  15. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.

    2010-01-01

    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  16. Using the MVC architecture on . NET platform

    OpenAIRE

    Ježek, David

    2011-01-01

    This thesis deals with usage of MVC (Model View Controller) technology in web development on ASP.NET platform from Microsoft. Mainly it deals with latest version of framework ASP.NET MVC 3. First part describes MVC architecture and the second describes usage of MVC in certain parts of web application an comparing with PHP.

  17. Analysis of Petri Nets and Transition Systems

    Directory of Open Access Journals (Sweden)

    Eike Best

    2015-08-01

    Full Text Available This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.

  18. 27 CFR 7.27 - Net contents.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 7.27 Section 7.27 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... the net contents are displayed by having the same blown, branded, or burned in the container in...

  19. Petri nets and other models of concurrency

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Sassone, Vladimiro

    1998-01-01

    This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency.......This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency....

  20. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    This report is identical to an earlier version of May 1978 except that Chapter 5 has been revised. A new paper: "A Petri Net Definition of a System Description Language", DAIMI, April 1979, 20 pages, extends the Petri net model to include a data state representing the program variables. Delta...

  1. Net neutrality and inflation of traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, Florian

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate the short-run effects of different net neutrality rules. Content differs in its

  2. Net Neutrality and Inflation of Traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, F.

    2015-01-01

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate different net neutrality rules. Content differs in its sensitivity to delay.

  3. The Net Neutrality Debate: The Basics

    Science.gov (United States)

    Greenfield, Rich

    2006-01-01

    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and…

  4. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  5. Teaching and Learning with the Net Generation

    Science.gov (United States)

    Barnes, Kassandra; Marateo, Raymond C.; Ferris, S. Pixy

    2007-01-01

    As the Net Generation places increasingly greater demands on educators, students and teachers must jointly consider innovative ways of teaching and learning. In this, educators are supported by the fact that the Net Generation wants to learn. However, these same educators should not fail to realize that this generation learns differently from…

  6. Verification of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær

    2011-01-01

    Timed-Arc Petri Nets (TAPN) are an extension of the classical P/T nets with continuous time. Tokens in TAPN carry an age and arcs between places and transitions are labelled with time intervals restricting the age of tokens available for transition firing. The TAPN model posses a number...

  7. A Brief Introduction to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1997-01-01

    Coloured Petri Nets (CP-nets or CPN) is a graphical oriented language for design, specification, simulation and verification of systems. It is in particular well- suited for systems in which communication, synchronisation and resource sharing are important. Typical examples of application areas a...

  8. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  9. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    Science.gov (United States)

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  10. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    Science.gov (United States)

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-07

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  11. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  12. Gill net and trammel net selectivity in the northern Aegean Sea, Turkey

    Directory of Open Access Journals (Sweden)

    F. Saadet Karakulak

    2008-09-01

    Full Text Available Fishing trials were carried out with gill nets and trammel nets in the northern Aegean Sea from March 2004 to February 2005. Four different mesh sizes for the gill nets and the inner panel of trammel nets (16, 18, 20 and 22 mm bar length were used. Selectivity parameters for the five most economically important species, bogue (Boops boops, annular sea bream (Diplodus annularis, striped red mullet (Mullus surmuletus, axillary sea bream (Pagellus acarne and blotched picarel (Spicara maena, caught by the two gears were estimated. The SELECT method was used to estimate the selectivity parameters of a variety of models. Catch composition and catch proportion of several species were different in gill and trammel nets. The length frequency distributions of the species caught by the two gears were significantly different. The bi-modal model selectivity curve gave the best fit for gill net and trammel net data, and there was little difference between the modal lengths of these nets. However, a clear difference was found in catching efficiency. The highest catch rates were obtained with the trammel net. Given that many discard species and small fish are caught by gill nets and trammel nets with a mesh size of 16 mm, it is clear that these nets are not appropriate for fisheries. Consequently, the best mesh size for multispecies fisheries is 18 mm. This mesh size will considerably reduce the numbers of small sized individuals and discard species in the catch.

  13. Utilization of vinasses as soil amendment: consequences and perspectives.

    Science.gov (United States)

    Moran-Salazar, R G; Sanchez-Lizarraga, A L; Rodriguez-Campos, J; Davila-Vazquez, G; Marino-Marmolejo, E N; Dendooven, L; Contreras-Ramos, S M

    2016-01-01

    Vinasses are a residual liquid generated after the production of beverages, such as mezcal and tequila, from agave (Agave L.), sugarcane (Saccharum officinarum L.) or sugar beet (Beta vulgaris L.). These effluents have specific characteristics such as an acidic pH (from 3.9 to 5.1), a high chemical oxygen demand (50,000-95,000 mg L(-1)) and biological oxygen demand content (18,900-78,300 mg L(-1)), a high total solids content (79,000 and 37,500 mg L(-1)), high total volatile solids 79,000 and 82,222 mg L(-1), and K(+) (10-345 g L(-1)) content. Vinasses are most commonly discarded onto soil. Irrigation of soil with vinasses, however, may induce physical, chemical and biochemical changes and affect crop yields. Emission of greenhouse gases (GHG), such as carbon dioxide, nitrous oxide and methane, might increase from soils irrigated with vinasses. An estimation of GHG emission from soil irrigated with vinasses is given and discussed in this review.

  14. Organic matter loss from cultivated peat soils in Sweden

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  15. Simultaneous Measurements of Soil CO2 and CH4 Fluxes Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Rachhpal S. Jassal

    2016-04-01

    Full Text Available We present a method of simultaneously measuring soil CO and CH fluxes using a laser-based cavity ring-down spectrometer (CRDS coupled to an automated non-steady-state chamber system. The differential equation describing the change in the greenhouse gas (GHG mixing ratio in the chamber headspace following lid closure is solved for the condition when a small flow rate of chamber headspace air is pulled through the CRDS by an external pump and exhausted to the atmosphere. The small flow rate allows calculation of fluxes assuming linear relationships between the GHG mixing ratios and chamber lid closure times of a few minutes. We also calibrated the chambers for effective volume ( and show that adsorption of the GHGs on the walls of the chamber caused to be 7% higher than the geometric volume, with the near-surface soil porosity causing another 4% increase in .

  16. Discrete, continuous, and hybrid petri nets

    CERN Document Server

    David, René

    2004-01-01

    Petri nets do not designate a single modeling formalism. In fact, newcomers to the field confess sometimes to be a little puzzled by the diversity of formalisms that are recognized under this "umbrella". Disregarding some extensions to the theoretical modeling capabilities, and looking at the level of abstraction of the formalisms, Condition/Event, Elementary, Place/Transition, Predicate/Transition, Colored, Object Oriented... net systems are frequently encountered in the literature. On the other side, provided with appropriate interpretative extensions, Controled Net Systems, Marking Diagrams (the Petri net generalization of State Diagrams), or the many-many variants in which time can be explicitly incorporated -Time(d), Deterministic, (Generalized) Stochastic, Fuzzy...- are defined. This represents another way to define practical formalisms that can be obtained by the "cro- product" of the two mentioned dimensions. Thus Petri nets constitute a modeling paradigm, understandable in a broad sense as "the total...

  17. Pro visual C++/CLI and the net 35 platform

    CERN Document Server

    Fraser, Stephen

    2008-01-01

    Pro Visual C++/CLI and the .NET 3.5 Platform is about writing .NET applications using C++/CLI. While readers are learning the ins and outs of .NET application development, they will also be learning the syntax of C++, both old and new to .NET. Readers will also gain a good understanding of the .NET architecture. This is truly a .NET book applying C++ as its development language not another C++ syntax book that happens to cover .NET.

  18. Fungal mycelia in soils - a new method for quantification of their biomass

    Science.gov (United States)

    Drabløs Eldhuset, Toril; Lange, Holger; Svetlik, Jan; Børja, Isabella

    2013-04-01

    All plant-bearing soils are interwoven with fungal hyphae. Their structure and function are affected by environmental factors like drought, which might be a stress factor of increasing importance in many world regions due to climate change. The fungal mycelium in soil is important both for mycorrhizal symbiosis with plant roots and for litter decomposition, and thereby also for carbon turnover in soils. However, the mycelium biomass has been difficult to assess. Here we describe a simple and feasible method to quantify the biomass of fungal mycelium. We report on a manipulation study in the field where drought stress has been induced. The experiment was performed in a Norway spruce (Picea abies) 20 years old stand planted on former agricultural land, with a control plot and a roofed plot where precipitation was excluded. To investigate the fungal mycelium, nylon nets (mesh size 1 mm, width 7 cm and length 25 cm), were inserted vertically into the soil down to 20 cm depth. The nets were left in the soil from October to June, removed and replaced by new nets that were left in the soil from June to October. After removal, by cutting a block of soil around each net, the nets were cleaned from residual soil and scanned using the image scanner CanoScan 9000F. The resulting images were analyzed using the image processing software ImageJ. The image analysis was based on the distribution of grey values in the individual pixels which characterize the different components in the image (voids, hyphae, the nylon net, and soil). Based on the repeated visual evaluation of hyphal coverage in the net segments, we obtained an exponential equation allowing us to determine automatically the coverage of net windows by hyphae in percentage for each net scanned. In this way we can compare the hyphal coverage in the control and the drought-exposed plots. Based on the hyphal coverage scans together with hyphal dry weight on clean nets, we account for the soil particles adhering to the nets

  19. Linking soil and sediment properties for research on biogeochemical cycles

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2013-04-01

    Conventional perspectives on soil erosion include the on-site damage to soil and reductions in crop yield, as well as the resulting off-site effects on water quality, runoff and sediment loads in rivers. Our evolving understanding of the Earth System has added a new dimension to the role of soil erosion within the global geochemical cycles. First, the relevance of soil as a nutrient and Carbon (C) pool was recognized. Initially, the role of soils in the global C cycle was largely considered to be limited to a vertical exchange of greenhouse house gases (GHG) between vegetation, soil and atmosphere and thus mostly studied by soil scientists, plant ecologists and climatologists. Even Critical Zone research focused mostly on weathering and regolith properties and ignored lateral fluxes of dissolved or particulate organic matter. Since the late 1990s, a wider role of soils in biogeochemical cycles has emerged. Recent estimates place the lateral movement of C between soil and sediment pools in terrestrial ecosystems (including rivers and lakes) at approximately 0.6 to 1.5 Gt per year. Some of the eroded C is replaced by photosynthesis from the atmosphere, but at a cost of additional emissions, for example due to fertilizer production. The long-term fate of the eroded and deposited soil organic matter is subject to an open debate and suffers from a lack of reliable spatial information on lateral C fluxes and its subsequent fate in terrestrial ecosystems. The connection between soil C pool, GHG emissions and erosion illustrates the relevance of surface processes for the C fluxes between Earth's spheres. Accordingly, soil is now considered as mobile system to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks. This expanded perspective on soils as dynamic pool of weathering regolith, sediment, nutrients and C at the interface between the geospheres requires the analysis of relevant soil properties

  20. Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Ye, Chen; Cheng, Xiaoli; Liu, Wenzhi; Zhang, Quanfa

    2015-06-01

    Revegetations in riparian ecosystem are important in regulating soil nitrogen (N) dynamics. However, impacts of revegetation on soil N cycling and thereby on ecosystem functioning are not fully understood. We conducted an in situ incubation in the water level fluctuation zone (WLFZ) of the Three Gorges Reservoir region to evaluate soil N transformation including net N mineralization rate, net ammonification rate, net nitrification rate, net denitrification rate, N leaching and plant N uptake as well as the soil inorganic N (NH4(+)-N and NO3(-)-N) concentration in the top soils (0-20 cm) following revegetations (implementing tree, shrub and herb plantations) over two years. The soil inorganic N concentration and N leaching were lower in the tree soils than in herb and shrub soils. Tree plantations decreased net N mineralization rate and net ammonification rate compared to herb and shrub soils, possibly due to lower soil organic carbon (SOC) input and soil temperatures. Whereas tree plantations increased soil net denitrification rate compared to herb and shrub soils because of higher tree NO3(-)-N uptake together with higher net nitrification rate. The inorganic N in the tree and shrub soils were lower in fall and summer, respectively, which was dependent on the seasonal variations in plant N uptake, soil N transformation, and N leaching. Thus, our results suggest that tree plantations could decrease soil inorganic N concentration and N leaching by altering both the quantity and quality of SOC and thereby potentially improve water quality in the riparian zone. Copyright © 2015 Elsevier B.V. All rights reserved.