WorldWideScience

Sample records for net shortwave radiation

  1. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  2. Effect of the Aerosol Type Selection for the Retrieval of Shortwave Ground Net Radiation: Case Study Using Landsat 8 Data

    Directory of Open Access Journals (Sweden)

    Cristiana Bassani

    2016-08-01

    Full Text Available This paper discusses the aerosol radiative effects involved in the accuracy of shortwave net radiation, R n . s w , with s w ∈ (400–900 nm, retrieved by the Operational Land Imager (OLI, the new generation sensor of the Landsat mission. Net radiation is a key parameter for the energy exchange between the land and atmosphere; thus, R n . s w retrieval from space is under investigation by exploiting the increased spatial resolution of the visible and near-infrared OLI data. We adopted the latest version of the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV atmospheric radiative transfer model implemented in the atmospheric correction algorithm (OLI Atmospherically-Corrected Reflectance Imagery (OLI@CRI developed specifically for OLI data. The values of R n . s w were obtained by varying the microphysical properties of the aerosol during the OLI@CRI retrieval of both the OLI surface reflectance, ρ p x l o l i , and the incoming solar irradiance at the surface. The analysis of the aerosol effects on the R n . s w was carried out on a spectrally-homogeneous desert area located in the southwestern Nile Delta. The results reveal that the R n . s w available for energy exchange between the land and atmosphere reduces the accuracy (NRMSE ≃ 14% when the local aerosol microphysical properties are not considered during the processing of space data. Consequently, these findings suggest that the aerosol type should be considered for variables retrieved by satellite observations concerning the energy exchange in the natural ecosystems, such as Photosynthetically-Active Radiation (PAR. This will also improve the accuracy of land monitoring and of solar energy for power generation when space data are used.

  3. Biological effects and mechanisms of shortwave radiation: a review.

    Science.gov (United States)

    Yu, Chao; Peng, Rui-Yun

    2017-01-01

    With the increasing knowledge of shortwave radiation, it is widely used in wireless communications, radar observations, industrial manufacturing, and medical treatments. Despite of the benefits from shortwave, these wide applications expose humans to the risk of shortwave electromagnetic radiation, which is alleged to cause potential damage to biological systems. This review focused on the exposure to shortwave electromagnetic radiation, considering in vitro, in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave. Additionally, some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.

  4. Global distribution of Earth's surface shortwave radiation budget

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2005-01-01

    Full Text Available The monthly mean shortwave (SW radiation budget at the Earth's surface (SRB was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2. The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR and European Center for Medium Range Weather Forecasts (ECMWF Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA, covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR is equal to 171.6 Wm-2, whereas the net downward (or absorbed surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade, indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to

  5. The Spectral Signature of Cloud Spatial Structure in Shortwave Radiation

    Science.gov (United States)

    Song, Shi

    In this thesis, we aim to systematically understand the relationship between cloud spatial structure and its radiation imprints, i.e., three-dimensional (3D) cloud effects, with the ultimate goal of deriving accurate radiative energy budget estimates from space, aircraft, or ground-based observations under spatially inhomogeneous conditions. By studying the full spectral information in the measured and modeled shortwave radiation fields of heterogeneous cloud scenes sampled during aircraft field experiments, we find evidence that cloud spatial structure reveals itself through spectral signatures in the associated irradiance and radiance fields in the near-ultraviolet and visible spectral range. The spectral signature of 3D cloud effects in irradiances is apparent as a domain- wide, consistent correlation between the magnitude and spectral dependence of net horizontal photon transport. The physical mechanism of this phenomenon is molecular scattering in conjunction with cloud heterogeneity. A simple parameterization with a single parameter epsilon is developed, which holds for individual pixels and the domain as a whole. We then investigate the impact of scene parameters on the discovered correlation and find that it is upheld for a wide range of scene conditions, although the value of epsilon varies from scene to scene. The spectral signature of 3D cloud effects in radiances manifests itself as a distinct relationship between the magnitude and spectral dependence of reflectance, which cannot be reproduced in the one-dimensional (1D) radiative transfer framework. Using the spectral signature in radiances and irradiances, it is possible to infer information on net horizontal photon transport from spectral radiance perturbations on the basis of pixel populations in sub-domains of a cloud scene. We show that two different biases need to be considered when attempting radiative closure between measured and modeled irradiance fields below inhomogeneous cloud fields: the

  6. Energy and carbon balances in cheatgrass, an essay in autecology. [Shortwave radiation, radiowave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, W.T.

    1975-01-01

    An experiment to determine the fates of energy and carbon in cheatgrass (Bromus tectorum L.) was carried out on steep (40/sup 0/) north- and south-facing slopes on a small earth mound, using many small lysimeters to emulate swards of cheatgrass. Meteorological conditions and energy fluxes that were measured included air and soil temperatures, relative humidity, wind speed, incoming shortwave radiation, net all-wave radiation, heat flux to the soil, and evaporation and transpiration separately. The fate of photosynthetically fixed carbon during spring growth was determined by analysis of the plant tissues into mineral nutrients, crude protein, crude fat, crude fiber, and nitrogen-free extract (NFE) for roots, shoots, and seeds separately. (auth)

  7. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    Science.gov (United States)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  8. A database on downward shortwave radiation for Africa and Europe

    Science.gov (United States)

    Lefevre, M.; Cros, S.; Albuisson, M.; Wald, L.

    2003-04-01

    Shortwave (SW) radiation is an element of the radiation budget, an essential component in climate studies. The network of stations measuring radiation is very scarce in the ocean and coastal areas.[1] and [2] demonstrate that a proper processing of satellite data provides better results than interpolation techniques. Several methods are available for the conversion of spaceborne observations made in the visible range by geostationnary satellites into SW radiation available at ocean level. Our concern is the series of Meteosat satellites that observe Africa, Europe and the Eastern Atlantic Ocean for several years. When operated on a routine basis, many of these methods exhibit several drawbacks, one of them being the poor accuracy in irradiance [3]. We designed a new method that is capable of processing long time-series of images acquired by the series of sensors aboard the Meteosat satellites. The method is using the same principle than several methods of proven quality: [4] [5] [6] [7] [8] [9] [10] [11]. With respect to these methods, the new one, called Heliosat-II, offers several improvements in operation and accuracy. These improvements are due to several causes: (i) the Meteosat data are calibrated and converted into radiances [12]; (ii) we use a new database of monthly values of the atmospheric optical turbidity for clear skies available on cells of 5’ of arc angle in size (SoDa Web site: http://www.soda-is.com); (iii) we use terrain elevation TerrainBase database using the same cell size (useful for land / ocean separation); (iv) a better modelling of the irradiation under clear-skies and overcast skies was performed [13]; (v) more physical description of the optical processes was made possible by the calibration step; known proven models are implemented in the method; (vi) observations of [14] were used to model the spatial distribution of radiances of the very thick clouds; (vii) changes in ocean albedo due to sun glitter are taken into account. We made

  9. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  10. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  11. Window model. Part 1. Short-wave solar radiation; Fenstermodell. Teil 1. Kurzwellige Solarstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, J. [Georg-Simon-Ohm-Fachhochschule Nuernberg (Germany)

    2005-05-01

    Modern external walls and window sizes require detailed calculations. The first part of the contribution discusses short-wave solar radiation while the second part will go into thermal exchange processes. (orig.)

  12. The Effect of Surface Striations on the Absorption of Shortwave Radiation

    Science.gov (United States)

    Carroll, John J.

    1982-11-01

    Most natural surfaces have shortwave albedos that are directly dependent on solar zenith angle. Strong dependences are well known for liquid water and have recently been reiterated for snow surfaces [Carroll and Fitch, 1981]. Many surfaces (e.g., water and dry snow) develop systematic macroscale ripple structures due to wind action (i.e., waves and sastrugi). This paper reports calculations of the effects of such structures on the solar radiation absorbed as a function of latitude, season, ripple amplitude, and ripple orientation. The ripples are represented as having triangular cross sections with the two upper faces tilted at angle B from the horizontal. The absorption of diffuse radiation is equal on all surfaces and computed by using the minimum surface albedo. Direct radiation absorbed is calculated by using the appropriate albedo for the solar zenith angle measured from each surface normal. Shadowing and interfacial reflections are included. The net solar radiation is normalized to a unit horizontal area (QNR) and compared to that calculated for a flat horizontal surface (QNH). Generally the ratio R ≡ QNH/QNR is slightly greater than one at high sun elevations and decreases with increasing tilt angle and increasing latitude. Minimum values of R (<0.5) are found for water at higher latitudes in winter. Model calculations indicate that surfaces with no albedo dependence on solar elevation also exhibit sensitivity to the presence of ripple structures.

  13. Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario

    Science.gov (United States)

    Kashimura, Hiroki; Abe, Manabu; Watanabe, Shingo; Sekiya, Takashi; Ji, Duoying; Moore, John C.; Cole, Jason N. S.; Kravitz, Ben

    2017-03-01

    This study evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr-1 of SO2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysis shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m-2, depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m-2 and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (˜ -4 W m-2) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds.

  14. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  15. Global analysis of radiative forcing from fire-induced shortwave albedo change

    OpenAIRE

    G. López-Saldaña; Bistinas, I.; Pereira, J.M.C.

    2014-01-01

    Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated at continental and global scale. The main goal of this study therefore, is to quantify the changes in albedo produced by biomass burning activities and their associated shortwave radiative forcing....

  16. Daytime Variation of Shortwave Direct Radiative Forcing of Biomass Burning Aerosols from GOES-8 Imager.

    Science.gov (United States)

    Christopher, Sundar A.; Zhang, Jianglong

    2002-02-01

    Hourly Geostationary Operational Environmental Satellite-8 (GOES-8) imager data (1344-1944 UTC) from 20 July-31 August 1998 were used to study the daytime variation of shortwave direct radiative forcing (SWARF) of smoke aerosols over biomass burning regions in South America (4°-16°S, 51°-65°W). Vicarious calibration procedures were used to adjust the GOES visible channel reflectance values for the degradation in signal response. Using Mie theory and discrete ordinate radiative transfer (DISORT) calculations, smoke aerosol optical thickness (AOT) was estimated at 0.67 m. The GOES-retrieved AOT was then compared against ground-based AOT retrieved values. Using the retrieved GOES-8 AOT, a four-stream broadband radiative transfer model was used to compute shortwave fluxes for smoke aerosols at the top of the atmosphere (TOA). The daytime variation of smoke AOT and SWARF was examined for the study area. For selected days, the Clouds and the Earth's Radiant Energy System (CERES) TOA shortwave (SW) fluxes are compared against the model-derived SW fluxes.Results of this study show that the GOES-derived AOT is in excellent agreement with Aerosol Robotic Network (AERONET)-derived AOT values with linear correlation coefficient of 0.97. The TOA CERES-estimated SW fluxes compare well with the model-calculated SW fluxes with linear correlation coefficient of 0.94. For August 1998 the daytime diurnally averaged AOT and SWARF for the study area is 0.63 ± 0.39 and 45.8 ± 18.8 W m2, respectively. This is among the first studies to estimate the daytime diurnal variation of SWARF of smoke aerosols using satellite data.

  17. Characterising cloud regimes associated with the Southern Ocean shortwave radiation bias

    Science.gov (United States)

    Mason, S.; Jakob, C.; Protat, A.

    2013-12-01

    The high-latitude Southern Ocean is the site of persistent cloud biases in GCMs. A deficit of shortwave cloud radiative effect especially between 50-65S causes an excess of absorbed shortwave radiation, which has been associated with other biases in the global circulation. Recent model evaluation studies have found that the shortwave radiation bias is potentially associated with low- and mid-level clouds in the cold-air part of extratropical cyclones and ahead of transient ridges. However a coherent description of the cloud properties and cloud processes most associated with the bias has not yet emerged. This study focuses on three cloud regimes that are most frequent in the area of the shortwave radiation bias during the austral summer. They are selected from the cloud regimes derived for the Southern Ocean from International Satellite Cloud Climatology Project (ISCCP) cloud observations. We characterise the selected cloud regimes in terms of their meteorological conditions using the ECMWF Interim reanalysis. We also study their vertical macrophysical structure and microphysical properties based on active satellite observations using the DARDAR (raDAR/liDAR) combined CloudSat and CALIPSO data product. We find that two cloud regimes identified as mid-topped in the ISCCP based data set are associated with distinct meteorological processes. An optically thin mid-level top cloud regime is related to cold mid-levels, cold-air advection and moderate subsidence, while an optically thicker cloud regime is associated with a broader range of conditions resembling weak to moderate frontal events, with warm and moist mid-levels, moderate ascent and warm-air advection. The vertical cloud structure derived from DARDAR profiles show that both these regimes contain mostly low clouds, but both also include frequent occurrences of mid-level cloud. We use a clustering method to quantify the differences in microphysical properties between the regimes. We find that the optically

  18. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  19. The Effects of Topography on Shortwave solar radiation modelling: The JGrass-NewAge System way

    Science.gov (United States)

    Abera, Wuletawu; Formetta, Giuseppe; Rigon, Riccardo

    2013-04-01

    The NewAGE-SwRB and NewAGE-DEC-MOD's are the two components of JGrass-NewAge hydrological modeling system to estimate the shortwave incident radiation. Shortwave solar radiation at the land surface is influenced by topographic parameters such as slope, aspect, altitude, and skyview factor, hence, detail analyses and discussions on their effect is the way to improve the modeling approach. The NewAGE-SwRB accounts for slope, aspect, shadow and the topographical information of the sites to estimate the cloudless irradiance. The first part of the paper is on the topographic parameter analysis using Udig GIS spatial toolbox, which is integrated in JGrass-NewAge system, and indicates the effect of each topographic parameters on the shortwave radiation. A statistical study on station topographic geometry (slope, aspect, altitude and Sky-view factor) and correlation of pairs of measurements of station analyzed to get closer look at the impact of rugged topography. The jackknife correlation coefficients has been used to analyze the estimate bias between shortwave radiations in different topographic geometric position, thereby helping to develop generalized linear models to explain the impacts of those topographic features. In addition to the NewAGE-SwRB accounts for the topographical parameters, there are three (an estimation of the visibility extent(V), the single-scattering albedo fraction of incident energy scattered to total attenuation by aerosols (Wo), and fraction of forward scattering to total scattering (Fs )) parameter needed to run the NewAGE-DEC-MOD's component. Sufficient knowledge regarding the magnitude and spatial distribution of the these parameters are very crucial. In this paper, the particle swarm NewAge component of the NewAge System used for automatic calibration of NewAGE-DEC-MOD's parameters for each stations based on different optimization and objective functions. Finally, the estimated parameters for all measurements station are interpolated in

  20. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study

    Science.gov (United States)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René

    2010-05-01

    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  1. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Jui-Yuan [University of Reading (United Kingdom)

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  2. Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates

    Directory of Open Access Journals (Sweden)

    C. Rodriguez-Puebla

    2008-05-01

    Full Text Available Incident shortwave radiation at the Earth's surface is the driving force of the climate system. Understanding the relationship between this forcing and the sea surface temperature, in particular, over the tropical Pacific Ocean is a topic of great interest because of possible climatic implications. The objective of this study is to investigate the relationship between downwelling shortwave radiative fluxes and sea surface temperature by using available data on radiative fluxes. We assess first the shortwave radiation from three General Circulation Models that participated in the second phase of the Atmospheric Model Intercomparison Project (AMIP II against estimates of such fluxes from satellites. The shortwave radiation estimated from the satellite is based on observations from the International Satellite Cloud Climatology Project D1 data and the University of Maryland Shortwave Radiation Budget model (UMD/SRB. Model and satellite estimates of surface radiative fluxes are found to be in best agreement in the central equatorial Pacific, according to mean climatology and spatial correlations. We apply a Canonical Correlation Analysis to determine the interrelated areas where shortwave fluxes and sea surface temperature are most sensitive to climate forcing. Model simulations and satellite estimates of shortwave fluxes both capture well the interannual signal of El Niño-like variability. The tendency for an increase in shortwave radiation from the UMD/SRB model is not captured by the AMIP II models.

  3. An information theory approach for evaluating earth radiation budget (ERB) measurements - Nonuniform sampling of reflected shortwave radiation

    Science.gov (United States)

    Barkstrom, Bruce R.; Direskeneli, Haldun; Halyo, Nesim

    1992-01-01

    An information theory approach to examine the temporal nonuniform sampling characteristics of shortwave (SW) flux for earth radiation budget (ERB) measurements is suggested. The information gain is computed by computing the information content before and after the measurements. A stochastic diurnal model for the SW flux is developed, and measurements for different orbital parameters are examined. The methodology is applied to specific NASA Polar platform and Tropical Rainfall Measuring Mission (TRMM) orbital parameters. The information theory approach, coupled with the developed SW diurnal model, is found to be promising for measurements involving nonuniform orbital sampling characteristics.

  4. Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites

    Science.gov (United States)

    Varnai, Tamas

    2010-01-01

    This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.

  5. Orography-Induced Gravity Wave Drag Parameterization in the Global WRF: Implementation and Sensitivity to Shortwave Radiation Schemes

    Science.gov (United States)

    2010-01-01

    display a currently valid OMB control number. 1. REPORT DATE 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE...simulated clima - tology to shortwave radiation schemes is also investigated in order to re-evaluate present physics options in the WRF model in global

  6. The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties

    NARCIS (Netherlands)

    Bunnik, N.J.J.

    1978-01-01

    Relations between morphological properties of uniform canopies. optical properties of the leaves and reflection of shortwave radiation, in the visible light region and the near infrared, by crops are the subject of this thesis.

    The aim of the study was a further investigation of

  7. Estimation of daily average downward shortwave radiation from MODIS data using principal components regression method: Fars province case study

    Science.gov (United States)

    Barzin, Razieh; Shirvani, Amin; Lotfi, Hossein

    2017-01-01

    Downward shortwave radiation is a key quantity in the land-atmosphere interaction. Since the moderate resolution imaging spectroradiometer data has a coarse temporal resolution, which is not suitable for estimating daily average radiation, many efforts have been undertaken to estimate instantaneous solar radiation using moderate resolution imaging spectroradiometer data. In this study, the principal components analysis technique was applied to capture the information of moderate resolution imaging spectroradiometer bands, extraterrestrial radiation, aerosol optical depth, and atmospheric water vapour. A regression model based on the principal components was used to estimate daily average shortwave radiation for ten synoptic stations in the Fars province, Iran, for the period 2009-2012. The Durbin-Watson statistic and autocorrelation function of the residuals of the fitted principal components regression model indicated that the residuals were serially independent. The results indicated that the fitted principal components regression models accounted for about 86-96% of total variance of the observed shortwave radiation values and the root mean square error was about 0.9-2.04 MJ m-2 d-1. Also, the results indicated that the model accuracy decreased as the aerosol optical depth increased and extraterrestrial radiation was the most important predictor variable among all.

  8. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors.

    Science.gov (United States)

    Yoon, H W; Eppeldauer, G P

    2008-01-21

    The measurement of thermal radiation from ambient-temperature objects using short-wave infrared detectors and regular glass optics is described. The detectors are chosen to operate in the 2.0 microm to 2.5 microm atmospheric window. Selection of detectors with high shunt resistance along with the 4-stage thermo-electric cooling of the detectors to -85 degrees C results in detectivity, D*, of 4 x 10(13) cm Hz(1/2)/W which is near the background limited performance at 295 K. Furthermore, the use of regular-glass commercial optics to collect the thermal radiation results in diffraction-limited imaging. The use of a radiation thermometer constructed with these elements for the measurement of a blackbody from 20 degrees C to 50 degrees C results in noise-equivalent temperature difference (NETD) of thermal sensors also leads to lower sensitivity to the emissivity of the object in determining the temperature of the object. These elements are used to construct a calibrator for an infrared collimator, and such a system demonstrates noise-equivalent irradiances of thermal infrared detectors.

  9. An Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2017-01-01

    Full Text Available Net radiation plays an essential role in determining the thermal conditions of the Earth’s surface and is an important parameter for the study of land-surface processes and global climate change. In this paper, an improved satellite-based approach to estimate the daily net radiation is presented, in which sunshine duration were derived from the geostationary meteorological satellite (FY-2D cloud classification product, the monthly empirical as and bs Angstrom coefficients for net shortwave radiation were calibrated by spatial fitting of the ground data from 1997 to 2006, and the daily net longwave radiation was calibrated with ground data from 2007 to 2010 over the Heihe River Basin in China. The estimated daily net radiation values were validated against ground data for 12 months in 2008 at four stations with different underlying surface types. The average coefficient of determination (R2 was 0.8489, and the averaged Nash-Sutcliffe equation (NSE was 0.8356. The close agreement between the estimated daily net radiation and observations indicates that the proposed method is promising, especially given the comparison between the spatial distribution and the interpolation of sunshine duration. Potential applications include climate research, energy balance studies and the estimation of global evapotranspiration.

  10. The shortwave radiative forcing bias of liquid and ice clouds from MODIS observations

    Directory of Open Access Journals (Sweden)

    L. Oreopoulos

    2009-08-01

    Full Text Available We present an assessment of the plane-parallel bias of the shortwave cloud radiative forcing (SWCRF of liquid and ice clouds at 1 deg scales using global MODIS (Terra and Aqua cloud optical property retrievals for four months of the year 2005 representative of the meteorological seasons. The (negative bias is estimated as the difference of SWCRF calculated using the Plane-Parallel Homogeneous (PPH approximation and the Independent Column Approximation (ICA. PPH calculations use MODIS-derived gridpoint means while ICA calculations use distributions of cloud optical thickness and effective radius. Assisted by a broadband solar radiative transfer algorithm, we find that the absolute value of global SWCRF bias of liquid clouds at the top of the atmosphere is about 6 W m−2 for MODIS overpass times while the SWCRF bias for ice clouds is smaller in absolute terms by about 0.7 W m−2, but with stronger spatial variability. If effective radius variability is neglected and only optical thickness horizontal variations are accounted for, the absolute SWCRF biases increase by about 0.3–0.4 W m−2 on average. Marine clouds of both phases exhibit greater (more negative SWCRF biases than continental clouds. Finally, morning (Terra–afternoon (Aqua differences in SWCRF bias are much more pronounced for ice clouds, up to about 15% (Aqua producing stronger negative bias on global scales, with virtually all contribution to the difference coming from land areas. The substantial magnitude of the global SWCRF bias, which for clouds of both phases is collectively about 4 W m−2 for diurnal averages, should be considered a strong motivation for global climate modelers to accelerate efforts linking cloud schemes capable of subgrid condensate variability with appropriate radiative transfer schemes.

  11. BOREAS RSS-14 Level-2 GOES-7 Shortwave and Longwave Radiation Images

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Gu, Jiujing; Smith, Eric A.

    2000-01-01

    The BOREAS RSS-14 team collected and processed several GOES-7 and GOES-8 image data sets that covered the BOREAS study region. This data set contains images of shortwave and longwave radiation at the surface and top of the atmosphere derived from collected GOES-7 data. The data cover the time period of 05-Feb-1994 to 20-Sep-1994. The images missing from the temporal series were zero-filled to create a consistent sequence of files. The data are stored in binary image format files. Due to the large size of the images, the level-1a GOES-7 data are not contained on the BOREAS CD-ROM set. An inventory listing file is supplied on the CD-ROM to inform users of what data were collected. The level-1a GOES-7 image data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). See sections 15 and 16 for more information. The data files are available on a CD-ROM (see document number 20010000884).

  12. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcing (ΔF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  13. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China

    Science.gov (United States)

    Yang, Fan; Lu, Hui; Yang, Kun; He, Jie; Wang, Wei; Wright, Jonathon S.; Li, Chengwei; Han, Menglei; Li, Yishan

    2017-11-01

    Precipitation and shortwave radiation play important roles in climatic, hydrological and biogeochemical cycles. Several global and regional forcing data sets currently provide historical estimates of these two variables over China, including the Global Land Data Assimilation System (GLDAS), the China Meteorological Administration (CMA) Land Data Assimilation System (CLDAS) and the China Meteorological Forcing Dataset (CMFD). The CN05.1 precipitation data set, a gridded analysis based on CMA gauge observations, also provides high-resolution historical precipitation data for China. In this study, we present an intercomparison of precipitation and shortwave radiation data from CN05.1, CMFD, CLDAS and GLDAS during 2008-2014. We also validate all four data sets against independent ground station observations. All four forcing data sets capture the spatial distribution of precipitation over major land areas of China, although CLDAS indicates smaller annual-mean precipitation amounts than CN05.1, CMFD or GLDAS. Time series of precipitation anomalies are largely consistent among the data sets, except for a sudden decrease in CMFD after August 2014. All forcing data indicate greater temporal variations relative to the mean in dry regions than in wet regions. Validation against independent precipitation observations provided by the Ministry of Water Resources (MWR) in the middle and lower reaches of the Yangtze River indicates that CLDAS provides the most realistic estimates of spatiotemporal variability in precipitation in this region. CMFD also performs well with respect to annual mean precipitation, while GLDAS fails to accurately capture much of the spatiotemporal variability and CN05.1 contains significant high biases relative to the MWR observations. Estimates of shortwave radiation from CMFD are largely consistent with station observations, while CLDAS and GLDAS greatly overestimate shortwave radiation. All three forcing data sets capture the key features of the

  14. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  15. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  16. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  17. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-08-15

    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  18. Long-Term Validation and Variability of the Shortwave and Longwave Radiation Data of the GEWEX Surface Radiation Budget (SRB) Project

    Science.gov (United States)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephan J.; Mikovitz, Colleen; Hinkelman, Laura M.

    2006-01-01

    In this investigation, we make systematic Surface Radiation Budget-Baseline Surface Radiation Network (SRB-BSRN), Surface Radiation Data Centre (SRB-WRDC) and Surface Radiation Budget-Global Energy Balance Archive (SRB-GEBA) comparisons for both shortwave and longwave daily and monthly mean radiation fluxes at the Earth's surface. We first have an overview of all the comparable pairs of data in scatter or scatter density plots. Then we show the time series of the SRB data at grids in which there are ground sites where longterm records of data are available for comparison. An overall very good agreement between the SRB data and ground observations is found. To see the variability of the SRB data during the 21.5 years, we computed the global mean and its linear trend. No appreciable trend is detected at the 5% level. The empirical orthogonal functions (EOF) of the SRB deseasonalized shortwave downward flux are computed over the Pacific region, and the first EOF coefficient is found to be correlated with the ENSO Index at a high value of coefficient of 0.7083.

  19. Upscaling instantaneous to daily evapotranspiration using modelled daily shortwave radiation for remote sensing applications: an artificial neural network approach

    Science.gov (United States)

    Wandera, Loise; Mallick, Kaniska; Kiely, Gerard; Roupsard, Olivier; Peichl, Mathias; Magliulo, Vincenzo

    2017-04-01

    Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ETi) to daily evapotranspiration (ETd) is a key challenge in mapping regional ET using polar orbiting sensors. Various studies have unanimously cited the shortwave incoming radiation (RS) to be the most robust reference variable explaining the ratio between ETd and ETi . This study aims to contribute in ETi upscaling for global studies using the ratio between daily and instantaneous incoming shortwave radiation (RSd / RSi) as a factor for converting ETi to ETd. This paper proposes an artificial neural network (ANN) machine-learning algorithm first to predict RSd from RSi followed by using the RSd / RSi ratio to convert ETi to ETd across different terrestrial ecosystems. Using RSi and RSd observations from multiple sub-networks of the FLUXNET database spread across different climates and biomes (to represent inputs that would typically be obtainable from remote sensors during the overpass time) in conjunction with some astronomical variables (e.g. solar zenith angle, day length, exoatmospheric shortwave radiation), we developed the ANN model for reproducing RSd and further used it to upscale ETi to ETd. The efficiency of the ANN is evaluated for different morning and afternoon times of day, under varying sky conditions, and also at different geographic locations. RS-based upscaled ETd produced a significant linear relation (R 2 = 0.65 to 0.69), low bias (-0.31 to -0.56 MJ m-2 d -1 ; approx. 4 %), and good agreement (RMSE 1.55 to 1.86 MJ m-2 d -1 ; approx. 10 %) with the observed ETd, although a systematic overestimation of ETd was also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall information in ANN training reduced the systematic overestimation tendency in predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust performance of the ANNdriven RS

  20. Comparative Assessment of Satellite-Retrieved Surface Net Radiation: An Examination on CERES and SRB Datasets in China

    Directory of Open Access Journals (Sweden)

    Xin Pan

    2015-04-01

    Full Text Available Surface net radiation plays an important role in land–atmosphere interactions. The net radiation can be retrieved from satellite radiative products, yet its accuracy needs comprehensive assessment. This study evaluates monthly surface net radiation generated from the Clouds and the Earth’s Radiant Energy System (CERES and the Surface Radiation Budget project (SRB products, respectively, with quality-controlled radiation data from 50 meteorological stations in China for the period from March 2000 to December 2007. Our results show that surface net radiation is generally overestimated for CERES (SRB, with a bias of 26.52 W/m2 (18.57 W/m2 and a root mean square error of 34.58 W/m2 (29.49 W/m2. Spatially, the satellite-retrieved monthly mean of surface net radiation has relatively small errors for both CERES and SRB at inland sites in south China. Substantial errors are found at northeastern sites for two datasets, in addition to coastal sites for CERES. Temporally, multi-year averaged monthly mean errors are large at sites in western China in spring and summer, and in northeastern China in spring and winter. The annual mean error fluctuates for SRB, but decreases for CERES between 2000 and 2007. For CERES, 56% of net radiation errors come from net shortwave (NSW radiation and 44% from net longwave (NLW radiation. The errors are attributable to environmental parameters including surface albedo, surface water vapor pressure, land surface temperature, normalized difference vegetation index (NDVI of land surface proxy, and visibility for CERES. For SRB, 65% of the errors come from NSW and 35% from NLW radiation. The major influencing factors in a descending order are surface water vapor pressure, surface albedo, land surface temperature, NDVI, and visibility. Our findings offer an insight into error patterns in satellite-retrieved surface net radiation and should be valuable to improving retrieval accuracy of surface net radiation. Moreover, our

  1. Heat input into a room due to short-wave solar radiation. Pt. 1; Waermeeintrag in den Raum aufgrund kurzwelliger Einstrahlung. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, C. [Institut fuer Luft- und Kaeltetechnik gemeinnuetzige Gesellschaft mbH Dresden (Germany); Rouvel, L.

    2007-07-15

    The calculation of short-wave solar radiation onto components of any orientation or inclination as well as the transmittance of transparent components is quantified. An evaluation factor permits the calculation of diffuse and direct insolation depending on the degree of cloudiness and the position of the sun. The energy input via transparent components is evaluated by the total energy transmittance - separate for direct and diffuse radiation with the sunscreen drawn. (orig.)

  2. Heat input into a room due to short-wave solar radiation. Pt. 2; Waermeeintrag in den Raum aufgrund kurzwelliger Einstrahlung. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, C. [Institut fuer Luft- und Kaeltetechnik gGmbH, Dresden (Germany); Rouvel, L.

    2007-09-15

    The calculation of short-wave solar radiation onto components of any orientation or inclination as well as the transmittance of transparent components is quantified. An evaluation factor permits the calculation of diffuse and direct insolation depending on the degree of cloudiness and the position of the sun. The energy input via transparent components is evaluated by the total energy transmittance - separate for direct and diffuse radiation with the sunscreen drawn. (orig.)

  3. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second

  4. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R H; Martinez-Cob, A

    2009-01-01

    values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...... or developed for specific climate regimes, the predictions of the physically based model had slightly lower bias and scatter than the empirical models. When used with their original model coefficients, the physically based model had a higher bias than the measurement error of the net radiation instruments used...

  6. RadNet (Environmental Radiation Ambient Monitoring System)

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet, formerly Environmental Radiation Ambient Monitoring System (ERAMS), is a national network of monitoring stations that regularly collect air, precipitation,...

  7. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units

    Energy Technology Data Exchange (ETDEWEB)

    Shields, Nora [School of Physiotherapy, La Trobe University, Victoria 3086 (Australia); O' Hare, Neil [Department of Medical Physics and Bioengineering, St James' s Hospital, Dublin 8 (Ireland); Gormley, John [School of Physiotherapy, Trinity College Dublin, Trinity Centre for Health Sciences, St James' s Hospital, Dublin 8 (Ireland)

    2004-07-07

    Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.

  8. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units

    Science.gov (United States)

    Shields, Nora; O'Hare, Neil; Gormley, John

    2004-07-01

    Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.

  9. Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    Science.gov (United States)

    Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.

    1981-01-01

    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.

  10. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    Directory of Open Access Journals (Sweden)

    E. Bauer

    2014-07-01

    Full Text Available Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial–interglacial climate changes.

  11. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    Directory of Open Access Journals (Sweden)

    C. A. Randles

    2013-03-01

    Full Text Available In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere, with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  12. A Polarized Atmospheric Radiative Transfer Model for Calculations of Spectra of the Stokes Parameters of Shortwave Radiation Based on the Line-by-Line and Monte Carlo Methods

    Directory of Open Access Journals (Sweden)

    Boris Fomin

    2012-10-01

    Full Text Available This paper presents a new version of radiative transfer model called the Fast Line-by-Line Model (FLBLM, which is based on the Line-by-Line (LbL and Monte Carlo (MC methods and rigorously treats particulate and molecular scattering alongside absorption. The advantage of this model consists in the use of the line-by-line model that allows for the computing of high-resolution spectra quite quickly. We have developed the model by taking into account the polarization state of light and carried out some validations by comparison against benchmark results. FLBLM calculates the Stokes parameters spectra of shortwave radiation in vertically inhomogeneous atmospheres. This update makes the model applicable for the assessment of cloud and aerosol influence on radiances as measured by the SW high-resolution polarization spectrometers. In sample results we demonstrate that the high-resolution spectra of the Stokes parameters contain more detailed information about clouds and aerosols than the medium- and low-resolution spectra wherein lines are not resolved. The presented model is rapid enough for many practical applications (e.g., validations and might be useful especially for the remote sensing. FLBLM is suitable for development of the reliable technique for retrieval of optical and microphysical properties of clouds and aerosols from high-resolution satellites data.

  13. Analysis of the decrease in the tropical mean outgoing shortwave radiation at the top of atmosphere for the period 1984-2000

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2005-01-01

    Full Text Available A decadal-scale trend in the tropical radiative energy budget has been observed recently by satellites, which however is not reproduced by climate models. In the present study, we have computed the outgoing shortwave radiation (OSR at the top of atmosphere (TOA at 2.5° longitude-latitude resolution and on a mean monthly basis for the 17-year period 1984-2000, by using a deterministic solar radiative transfer model and cloud climatological data from the International Satellite Cloud Climatology Project (ISCCP D2 database. Anomaly time series for the mean monthly pixel-level OSR fluxes, as well as for the key physical parameters, were constructed. A significant decreasing trend in OSR anomalies, starting mainly from the late 1980s, was found in tropical and subtropical regions (30° S-30° N, indicating a decadal increase in solar planetary heating equal to 1.9±0.3Wm-2/decade, reproducing well the features recorded by satellite observations, in contrast to climate model results. This increase in solar planetary heating, however, is accompanied by a similar increase in planetary cooling, due to increased outgoing longwave radiation, so that there is no change in net radiation. The model computed OSR trend is in good agreement with the corresponding linear decadal decrease of 2.5±0.4Wm-2/decade in tropical mean OSR anomalies derived from ERBE S-10N non-scanner data (edition 2. An attempt was made to identify the physical processes responsible for the decreasing trend in tropical mean OSR. A detailed correlation analysis using pixel-level anomalies of model computed OSR flux and ISCCP cloud cover over the entire tropical and subtropical region (30° S-30° N, gave a correlation coefficient of 0.79, indicating that decreasing cloud cover is the main reason for the tropical OSR trend. According to the ISCCP-D2 data derived from the combined visible/infrared (VIS/IR analysis, the tropical cloud cover has decreased by 6.6±0.2% per decade, in relative

  14. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  15. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    Science.gov (United States)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  16. Derivation of Surface Net Radiation at the Valencia Anchor Station from Top of the Atmosphere Gerb Fluxes by Means of Linear Models and Neural Networks

    Science.gov (United States)

    Geraldo Ferreira, A.; Lopez-Baeza, Ernesto; Velazquez Blazquez, Almudena; Soria-Olivas, Emilio; Serrano Lopez, Antonio J.; Gomez Chova, Juan

    2012-07-01

    In this work, Linear Models (LM) and Artificial Neural Networks (ANN) have been developed to estimate net radiation (RN) at the surface. The models have been developed and evaluated by using the synergy between Geostationary Earth Radiation Budget (GERB-1) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, both instruments onboard METEOSAT-9, and ``in situ'' measurements. The data used in this work, corresponding to August 2006 and June to August 2007, proceed from Top of the Atmosphere (TOA) broadband fluxes from GERB-1, every 15 min, and from net radiation at the surface measured, every 10 min, at the Valencia Anchor Station (VAS) area, having measured independently the shortwave and the longwave radiation components (downwelling and upwelling) for different land uses and land cover. The adjustment of both temporal resolutions for the satellite and in situ data was achieved by linear interpolation that showed less standard deviation than the cubic one. The LMs were developed and validated by using satellite TOA RN and ground station surface RN measurements, only considering cloudy free days selected from the ground data. The ANN model was developed both for cloudy and cloudy-free conditions using seven input variables selected for the training/validation sets, namely, hour, day, month, surface RN, solar zenith angle and TOA shortwave and longwave fluxes. Both, LMs and ANNs show remarkably good agreement when compared to surface RN measurements. Therefore, this methodology can be successfully applied to estimate RN at surface from GERB/SEVIRI data.

  17. Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications

    Directory of Open Access Journals (Sweden)

    S. Nyeki

    2017-08-01

    Full Text Available A large number of radiometers are traceable to the World Standard Group (WSG for shortwave radiation and the interim World Infrared Standard Group (WISG for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland. The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014, although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN. Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR time series over the 2006–2015 period were analysed at four stations (polar and mid-latitude locations. DLR was found to increase by up to 3.5 and 5.4 W m−2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.

  18. ARM Shortwave and Longwave Radiometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2017-03-23

    This presentation provides a high-level overview of shortwave and longwave calibrations performed at the U.S. Department of Energy's Atmospheric Radiation Measurement program Southern Great Plains site.

  19. NASA/GEWEX shortwave surface radiation budget: Integrated data product with reprocessed radiance, cloud, and meteorology inputs, and new surface albedo treatment

    Science.gov (United States)

    Cox, Stephen J.; Stackhouse, Paul W.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2017-02-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current Release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), and temperature and moisture profiles from nnHIRS.

  20. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations

    Directory of Open Access Journals (Sweden)

    Xiaotong Zhang

    2016-03-01

    Full Text Available Solar radiation incident at the Earth’s surface (Rs is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses (NCEP–NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55 using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total and the Earth’s Radiant Energy System (CERES EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from −2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 were obtained over land, ocean, and the globe, respectively.

  1. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA using Satellite and Surface Observations

    Science.gov (United States)

    Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J.

    2016-12-01

    Solar radiation incident at the Earth's surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses [NCEP-NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55] using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth's Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from -2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 was obtained over land, ocean, and the globe, respectively.

  2. Computation of Domain-Averaged Shortwave Irradiance by a One-Dimensional Algorithm Incorporating Correlations between Optical Thickness and Direct Incident Radiation

    Science.gov (United States)

    Kato, S.

    2003-01-01

    A one-dimensional radiative transfer algorithm that accounts for correlations between the optical thickness and the incident direct solar radiation is developed to compute the domain-averaged shortwave irradiance profile. It divides the direct irradiance into four components and treats the direct irradiance in two separate, clear and cloudy columns to account for the fact that clouds attenuate the direct irradiance more than clear-sky. The horizontal inhomogeneity of clouds in the cloudy column is treated by the gamma weighted two-stream approximation, which assumes that the optical thickness of clouds follows a gamma distribution. The algorithm inputs the cloud fraction, cumulative cloud fraction as a function of height, and a parameter expressing the shape of the probability density function of the cloud optical thickness distribution in addition to inputs required for a two-stream radiative transfer model. These cloud property inputs can be obtained using ground- and satellite-based instruments. Therefore, the algorithm can treat realistic cloud overlap features and horizontal inhomogeneity of clouds in a framework of one- dimensional radiative transfer. Heating rates computed by the algorithm using cloud fields generated by cloud resolving models agree with those computed with a Monte Carlo model. If optical properties in computational layers that divide a vertically extensive cloud are correlated, the irradiance profile computed by the algorithm further improves.

  3. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    Science.gov (United States)

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  4. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  6. Evaluation of clear-sky incoming radiation estimating equations typically used in remote sensing evapotranspiration algorithms

    CSIR Research Space (South Africa)

    Sun, Z

    2013-09-01

    Full Text Available Net radiation is a key component of the energy balance, whose estimation accuracy has an impact on energy flux estimates from satellite data. In typical remote sensing evapotranspiration (ET) algorithms, the outgoing shortwave and longwave...

  7. Validation of Empirical and Semi-empirical Net Radiation Models versus Observed Data for Cold Semi-arid Climate Condition

    Directory of Open Access Journals (Sweden)

    aliakbar sabziparvar

    2017-03-01

    Full Text Available Introduction: Solar Net Radiation (Rn is one of the most important component which influences soil heat flux, evapotranspiration rate and hydrological cycle. This parameter (Rn is measured based on the difference between downward and upward shortwave (SW and longwave (LW irradiances reaching the Earth’s surface. Field measurements of Rn are scarce, expensive and difficult due to the instrumental maintenance. As a result, in most research cases, Rn is estimated by the empirical, semi-empirical and physical radiation models. Almorox et al. (2008 suggested a net radiation model based on a linear regression model by using global solar radiation (Rs and sunshine hours. Alados et al. (2003 evaluated the relation between Rn and Rs for Spain. They showed that the models based on shortwave radiation works perfect in estimating solar net radiation. In another work, Irmak et al. (2003 presented two empirical Rn models, which worked with the minimum numbers of weather parameters. They evaluated their models for humid, dry, inland and coastal regions of the United States. They concluded that both Rn models work better than FAO-56 Penman-Monteith model. Sabziparvar et al. (2016 estimated the daily Rn for four climate types in Iran. They examined various net radiation models namely: Wright, Basic Regression Model (BRM, Linacre, Berliand, Irmak, and Monteith. Their results highlighted that on regional averages, the linear BRM model has the superior performance in generating the most accurate daily ET0. They also showed that for 70% of the study sites, the linear Rn models can be reliable candidates instead of sophisticated nonlinear Rn models. Having considered the importance of Rn in determining crop water requirement, the aim of this study is to obtain the best performance Rn model for cold semi-arid climate of Hamedan. Materials and Methods: We employed hourly and daily weather data and Rn data, which were measured during December 2011 to June 2013 in

  8. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  9. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    Directory of Open Access Journals (Sweden)

    C. Di Biagio

    2016-08-01

    Full Text Available Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between  ∼  160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84–0.70 between 370 and 950 nm are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.77 and 0.002–0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE, i.e. the DRE per unit of optical depth, at the surface (−160/−235 W m−2 τ−1 at 60° solar zenith angle and at the Top-Of-Atmosphere (−137/−92

  10. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    Science.gov (United States)

    Di Biagio, Claudia; Formenti, Paola; Doppler, Lionel; Gaimoz, Cécile; Grand, Noel; Ancellet, Gerard; Attié, Jean-Luc; Bucci, Silvia; Dubuisson, Philippe; Fierli, Federico; Mallet, Marc; Ravetta, François

    2016-08-01

    Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω) of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ˜ 160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84-0.98 at 370 nm and 0.70-0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84-0.70 between 370 and 950 nm) are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41-1.77 and 0.002-0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE) to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE), i.e. the DRE per unit of optical depth, at the surface (-160/-235 W m-2 τ-1 at 60° solar zenith angle) and at the Top-Of-Atmosphere (-137/-92 W m-2 τ-1) for ω varying between its maximum and minimum value

  11. The Relationship between Decadal Changes in Surface Shortwave Radiation,Cloud Cover and other Atmospheric Processes in Europe

    Science.gov (United States)

    Chiacchio, M.; Wild, M.

    2009-04-01

    This study is an analysis of the surface long-term solar radiation variability in Europe beginning in 1970 through 2000 using surface observations from the Global Energy Balance Archive (GEBA). The time series of their annual and seasonal means are presented with a major focus on the seasonal dependence of their variations. Based on the 1970-1985 period from the annual means, there is a statistically significant decline of -3.0% decade-1 (-3.8 Wm-2 decade-1) followed by a rise of 0.3% decade-1 (0.4 Wm-2 decade-1) during 1985-2000. For the winter mean time series a trend close to zero is reported but does give some indication for a slight overall increase. The behavior of the solar radiation for spring is similar to the annual series and has the strongest increases of 1.6% decade-1 (2.5 Wm-2 decade-1) during 1985-2000. In summer the changes show a similar evolution to the annual and spring time series but are slightly greater with a trend of -3.2% decade-1 (-6.8 Wm-2 decade-1) for 1970-1985. The autumn series shows a statistically significant downward trend of -2.5% decade-1 (-2.1 Wm-2 decade-1) from 1970-2000. While the annual mean evolution over Europe as a whole is in line with reported changes in aerosols, circulation and associated cloud cover changes play a major role to explain the seasonal mean variations. Further discussion is made with regard to the circulation pattern to explain the seasonal mean trends.

  12. Global Surface Net-Radiation at 5 km from MODIS Terra

    Directory of Open Access Journals (Sweden)

    Manish Verma

    2016-09-01

    Full Text Available Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years from the FLUXNET and Surface Radiation budget network (SURFRAD showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites. Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1° but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES. Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the

  13. Shortwave Direct Radiative Effects of Above-Cloud Aerosols Over Global Oceans Derived From 8 Years of CALIOP and MODIS Observations

    Science.gov (United States)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros

    2016-01-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and

  14. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2016-03-01

    Full Text Available In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs of above-cloud aerosols (ACAs over global oceans using 8 years (2007–2014 of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP–MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA to be positive (i.e., warming in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2 at TOA. The DREs at surface and within the atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2, and 0.17 W m−2 (range of 0.11 to 0.24 W m−2, respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July–August seasonal mean cloudy-sky DRE is about 0.7 W m−2 (range of 0.2 to 1.2 W m−2 at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  16. A study of 15-year aerosol optical thickness and direct shortwave aerosol radiative effect trends using MODIS, MISR, CALIOP and CERES

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Reid, Jeffrey S.; Christopher, Sundar

    2017-11-01

    By combining Collection 6 Moderate Resolution and Imaging Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer (MISR) aerosol products with Cloud and Earth's Radiant Energy System (CERES) flux products, the aerosol optical thickness (AOT, at 0.55 µm) and shortwave (SW) aerosol radiative effect (SWARE) trends are studied over ocean for the near-full Terra (2000-2015) and Aqua (2002-2015) data records. Despite differences in sampling methods, regional SWARE and AOT trends are highly correlated with one another. Over global oceans, weak SWARE (cloud-free SW flux) and AOT trends of 0.5-0.6 W m-2 (-0.5 to -0.6 W m-2) and 0.002 AOT decade-1 are found using Terra data. Near-zero AOT and SWARE trends are also found for using Aqua data, regardless of the angular distribution models (ADMs) used. Regionally, positive AOT and cloud-free SW flux (negative SWARE) trends are found over the Bay of Bengal, the Arabian Sea, the Arabian/Persian Gulf and the Red Sea, while statistically significant negative trends are derived over the Mediterranean Sea and the eastern US coast. In addition, the global mean instantaneous SW aerosol direct forcing efficiencies are found to be ˜ -60 W m-2 AOT-1, with corresponding SWARE values of ˜ -7 W m-2 from both Aqua and Terra data, again regardless of CERES ADMs used. Regionally, SW aerosol direct forcing efficiency values of ˜ -40 W m-2 AOT-1 are found over the southwest coast of Africa where smoke aerosol particles dominate in summer. Larger (in magnitude) SW aerosol direct forcing efficiency values of -50 to -80 W m-2 AOT-1 are found over several other dust- and pollutant-aerosol-dominated regions. Lastly, the AOT and SWARE trends from this study are also intercompared with aerosol trends (such as active-based ones) from several previous studies. Findings suggest that a cohesive understanding of the changing aerosol skies can be achieved through the analysis of observations from both passive- and active

  17. Downward shortwave radiation trends in Europe since the 20th century: what we know from direct measurements and sunshine duration records

    Science.gov (United States)

    Sanchez-Lorenzo, A.; Wild, M.; Calbo Angrill, J.; Brunetti, M.; van den Besselaar, E.; Guijarro, J. A.; Sanchez-Romero, A.; Klein Tank, A.; Manara, V.; Vicente-Serrano, S. M.; Palle Bago, E.; Wang, K.; Hakuba, M.; Trentmann, J.

    2014-12-01

    The first part of this work presents results based on the longest series measuring downward shortwave radiation (DSR) available at the Global Energy Balance Archive (GEBA) over Europe. Particular emphasis is placed upon the quality control and homogenization of the dataset, which has been checked for temporal homogeneity by means of different relative homogeneity tests. The mean annual DSR series shows an increase from the 1930s to the early 1950s (i.e. early brightening period), followed by a reduction until mid-1980s (i.e., dimming period), and ending with an increase up to the present (i.e., brightening period). Unfortunately, there exists a substantial gap in direct measurements of DSR as only few stations in Europe provide records before the 1960s. To overcome the lack of direct measurements, the analysis can be supported with other proxy variables more widely measured, such as sunshine duration (SD) records. Thus, in this work we also present the reconstructed DSR variations since late 19th century in Europe based on the SD series over Europe with around one century of records, some of them starting in the 1880s. The reconstructed DSR variations have been estimated by using the relationship found between the SD series and a satellite-derived DSR dataset (0.03 x 0.03 of spatial resolution), provided by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF), during the common 1983-2005 subperiod. The reconstructed records have been validated by using the GEBA series described in the first part of this work. The temporal evolution of the mean DSR annual series since the 1950s is characterized by the well-known dimming and brightening periods. Moreover, an early brightening period is also detected during the first half of the 20th century, although regional differences are observed with areas over Europe where the DSR show no increase in this subperiod. Interestingly, the reconstructed DSR also highlight an absolute minimum in 1912, which

  18. Temporal variation of aerosol optical depth and associated shortwave radiative forcing over a coastal site along the west coast of India

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Harilal B., E-mail: harilalm@gmail.com [Department of Marine Sciences, Goa University, Taleigao Plateau, Panjim, Goa 403602 (India); Shirodkar, Shilpa [Department of Marine Sciences, Goa University, Taleigao Plateau, Panjim, Goa 403602 (India); Kedia, Sumita; Ramachandran, S. [Physical Research Laboratory, Navarangpura, Ahmedabad, Gujarat State 380009 (India); Babu, Suresh; Moorthy, K. Krishna [Space Physics Laboratory, Vikram Sarabhai Space Center, Thiruvananthapuram, Kerala (India)

    2014-01-01

    Optical characterization of aerosol was performed by assessing the columnar aerosol optical depth (AOD) and angstrom wavelength exponent (α) using data from the Microtops II Sunphotometer. The data were collected on cloud free days over Goa, a coastal site along the west coast of India, from January to December 2008. Along with the composite aerosol, the black carbon (BC) mass concentration from the Aethalometer was also analyzed. The AOD{sub 0}.{sub 500} {sub μm} and angstrom wavelength exponent (α) were in the range of 0.26 to 0.7 and 0.52 to 1.33, respectively, indicative of a significant seasonal shift in aerosol characteristics during the study period. The monthly mean AOD{sub 0.500} {sub μm} exhibited a bi-modal distribution, with a primary peak in April (0.7) and a secondary peak in October (0.54), whereas the minimum of 0.26 was observed in May. The monthly mean BC mass concentration varied between 0.31 μg/m{sup 3} and 4.5 μg/m{sup 3}, and the single scattering albedo (SSA), estimated using the OPAC model, ranged from 0.87 to 0.97. Modeled aerosol optical properties were used to estimate the direct aerosol shortwave radiative forcing (DASRF) in the wavelength range 0.25 μm4.0 μm. The monthly mean forcing at the surface, at the top of the atmosphere (TOA) and in the atmosphere varied between − 14.1 W m{sup −2} and − 35.6 W m{sup −2}, − 6.7 W m{sup −2} and − 13.4 W m{sup −2} and 5.5 W m{sup −2} to 22.5 W m{sup −2}, respectively. These results indicate that the annual SSA cycle in the atmosphere is regulated by BC (absorbing aerosol), resulting in a positive forcing; however, the surface forcing was governed by the natural aerosol scattering, which yielded a negative forcing. These two conditions neutralized, resulting in a negative forcing at the TOA that remains nearly constant throughout the year. - Highlights: • Temporal variation of AOD during the year 2008 exhibits a bimodal distribution. • SSA in the atmosphere is

  19. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  20. Estimating daily net radiation in the FAO Penman-Monteith method

    Science.gov (United States)

    Carmona, Facundo; Rivas, Raúl; Kruse, Eduardo

    2017-07-01

    In this work, we evaluate the procedures of the Manual No. 56 of the FAO (United Nations Food and Agriculture Organization) for predicting daily net radiation using measures collected in Tandil (Argentina) between March 2007 and June 2010. In addition, a new methodology is proposed for estimating daily net radiation over the reference crop considered in the FAO Penman-Monteith method. The calculated and observed values of daily net radiation are compared. Estimation errors are reduced from ±22 to ±12 W m-2 considering the new model. From spring-summer data, estimation errors of less than ±10 % were observed for the new physical model, which represents an error of just ±0.4 mm d-1 for computing reference evapotranspiration. The new model presented here is not restricted to a climate regime and is mainly appropriate for application in the FAO Penman-Monteith method to determine the reference crop evapotranspiration.

  1. Hyperion net: A distributed measurement system for monitoring background ionizing radiation

    Directory of Open Access Journals (Sweden)

    Šaponjić Đorđe P.

    2003-01-01

    Full Text Available The distributed measurement system - HYPERION NET, based on the concept of FieldBus technology, has been developed, implemented, and tested as a pilot project, the first WEB enabled on-line networked ionizing radiation monitoring and measurement system. The Net has layered the structure, tree topology, and is based on the Internet infrastructure and TCP/IP communication protocol. The Net' s core element is an intelligent GM transmitter, based on GM tube, used for measuring the absorbed dose in air in the range of 0.087 to 720 μGy/h. The transmitter makes use of an advanced count rate measurement algorithm capable of suppressing the statistical fluctuations of the measured quantity, which significantly improves its measurement performance making it suitable for environmental radiation measurements.

  2. Consistency Study of Enhanced Shortwave Cloud Absorption Using GEBA Data

    Science.gov (United States)

    Zhang, Ming-Hua; Chou, Ming-Dah (Technical Monitor)

    2001-01-01

    Under the support of this project, we have obtained the following results:(1) Shortwave radiative fluxes in current atmospheric general circulation models (GCMs) cannot simultaneously match Earth Radiation Budget Experiment (ERBE) at the top of the atmosphere (TOA) and Global Energy Balance Archive (GEBA) at the surface. This inconsistency of model results with observation is a result of insufficient absorption of solar radiation in the model atmosphere; (2) Current state-of-the art global datasets describing the energy balance of the atmosphere cannot close the atmospheric energy budget if algorithm-derived surface shortwave radiative fluxes are used. The deficient amount of 20 W/sq m is similar to the recently reported enhanced absorption of solar radiation in the atmosphere; (3) We have clarified several sampling problems in the analysis of the collocated monthly GEBA/ERBE data sets which are germane to the interpretation of the clear-sky absorption of shortwave radiation in the atmosphere. As a result, the collocated monthly ERBE/GEBA data can be effectively used to infer enhanced absorption of atmospheric radiation in measurements relative to models, but it cannot be unambiguously used to answer whether the enhanced absorption is in clouds or in clear sky. Other field data are needed to resolve this issue; and (4) Analysis of aircraft measurements during Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) field campaign supports the enhanced absorption of solar radiation in clouds.

  3. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing

    Czech Academy of Sciences Publication Activity Database

    Geleyn, J.- F.; Mašek, Jan; Brožková, Radmila; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N.

    2017-01-01

    Roč. 143, č. 704 (2017), s. 1313-1335 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) LO1415 Keywords : numerical weather prediction * climate models * clouds * parameterization * atmospheres * formulation * absorption * scattering * accurate * database * longwave radiative transfer * broadband approach * idealized optical paths * net exchanged rate decomposition * bracketing * selective intermittency Impact factor: 3.444, year: 2016

  4. Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh Choobari

    2013-05-01

    Full Text Available Direct radiative forcing by mineral dust is important as it significantly affects the climate system by scattering and absorbing short-wave and long-wave radiation. The multi-angle imaging spectro radiometer (MISR and cloud–aerosol lidar with orthogonal polarisation (CALIOP aerosol data are used to observe mineral dust distribution over Australia. In addition, the weather research and forecasting with chemistry (WRF/Chem model is used to estimate direct radiative forcing by dust. At the surface, the model domain clear-sky short-wave and long-wave direct radiative forcing by dust averaged for a 6-month period (austral spring and summer was estimated to be −0.67 W m−2 and 0.13 W m−2, respectively. The long-wave warming effect of dust therefore offsets 19.4% of its short-wave cooling effect. However, over Lake Eyre Basin where coarse particles are more abundant, the long-wave warming effect of dust offsets 60.9% of the short-wave cooling effect. At the top of the atmosphere (TOA, clear-sky short-wave and long-wave direct radiative forcing was estimated to be −0.26 W m−2 and −0.01 W m−2, respectively. This leads to a net negative direct radiative forcing of dust at the TOA, indicating cooling of the atmosphere by an increase in outgoing radiation. Short-wave and long-wave direct radiative forcing by dust is shown to have a diurnal variation due to changes in solar zenith angle and in the intensity of infrared radiation. Atmospheric heating due to absorption of short-wave radiation was simulated, while the interaction of dust with long-wave radiation was associated with atmospheric cooling. The net effect was cooling of the atmosphere near the surface (below 0.2 km, with warming of the atmosphere at higher altitudes.

  5. Effects of UVB radiation on net community production in the upper global ocean

    KAUST Repository

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  6. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  7. Numerical Computation of Net Radiative Heat Transfer within a Non Absorbing Furnace Enclosure

    Directory of Open Access Journals (Sweden)

    Shuaibu Ndache MOHAMMED

    2006-07-01

    Full Text Available The numerical evaluation of the net radiative heat transfer rate in a single zone, non absorbing furnace enclosure is reported. In this analysis, simplified mathematical furnace model namely, the long furnace model is used to determine furnace performance. The formulation assumes some known temperature values. Thus, heat transfer equations were set up and solved numerically. A FORTRAN computer program was developed and debugged. Results obtained from this study compare favourably well with the results from the traditional graphical method. Also, the computer program developed can handle variations in furnace operating conditions, temperatures, thermal properties and dimensions.

  8. Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors

    Science.gov (United States)

    Naik, Vaishali; Mauzerall, Denise; Horowitz, Larry; Schwarzkopf, M. Daniel; Ramaswamy, V.; Oppenheimer, Michael

    2005-12-01

    emissions of NOx, CO, and NMHCs, changes in O3 and CH4 concentrations result in a net negative radiative forcing (cooling). Thus we conclude that simultaneous reductions of CO, NMHCs, and NOx lead to a net reduction in radiative forcing due to resulting changes in tropospheric O3 and CH4 while reductions in NOx emissions alone do not.

  9. 21 CFR 890.5290 - Shortwave diathermy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shortwave diathermy. 890.5290 Section 890.5290... diathermy. (a) Shortwave diathermy for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. A shortwave diathermy for use in applying therapeutic deep heat for selected...

  10. Grid-cell aerosol direct shortwave radiative forcing calculated using the SBDART model with MODIS and AERONET observations: An application in winter and summer in eastern China

    Science.gov (United States)

    Fu, Yunfei; Zhu, Jiachen; Yang, Yuanjian; Yuan, Renmin; Liu, Guosheng; Xian, Tao; Liu, Peng

    2017-08-01

    Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing (ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth (AOD) occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo (SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere (TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity. Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.

  11. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  12. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  13. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination...... was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...

  14. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    Science.gov (United States)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  15. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method

    CERN Document Server

    Nechayev, Sergey; Baldo, Marc A; Rotschild, Carmel

    2016-01-01

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump ...

  16. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  17. Measurements of emission levels during microwave and shortwave diathermy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ruggera, P.S.

    1980-05-01

    Shortwave and microwave diathermy treatments are used to relieve pain through the noninvasive application of electromagnetic energy to body tissues. In administering these treatments, not all of the energy is confined to the treatment area. This stray radiation exposes unintended tissue of the patient and also can expose the operator (physical therapist, coach, and so forth). This study was conducted to quantify the exposure levels experienced by the operator during diathermy treatments. For the three microwave units surveyed, with the operator standing at the controls of the diathermy console, the maximum measured power density was 1.3 mW/cm/sup 2/ (equivalent to 70 V/m and 0.19 A/m in free space). For the six shortwave units surveyed, with the operator standing at the controls of the diathermy console, the maximum measured field strengths were 0.47 A/m and 250 V/m (equivalent to free-space power densities of 8.3 mw/cm/sup 2/ and 16.6 mW/cm/sup 2/). If the operator moved closer to the applicator during the treatment, the exposures would be much higher. This survey indicates a need for suppression of unnecessary radiation from the applicators of microwave diathermy units, and from the applicators and cables of shortwave diathermy units.

  18. First Global Estimates of Anthropogenic Shortwave Forcing by Methane

    Science.gov (United States)

    Collins, William; Feldman, Daniel; Kuo, Chaincy

    2017-04-01

    Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric

  19. On the safe use of microwave and shortwave diathermy units.

    Science.gov (United States)

    Delpizzo, V; Joyner, K H

    1987-01-01

    Diathermy is a common treatment modality used to relieve pain through localized heating. This paper briefly discusses the mechanisms through which heat is generated in tissue and the absorption characteristics of the applied electromagnetic radiation. The adverse effects of this radiation are reviewed with particular emphasis on the current exposure limits for operators and non-patients in the vicinity of diathermy devices. The newly introduced codes of practice for the 'Safe Use of Shortwave (Radiofrequency) and Microwave Diathermy' are also discussed. Copyright © 1987 Australian Physiotherapy Association. Published by . All rights reserved.

  20. Remote sensing as a tool for watershed-wide estimation of net solar radiation and water loss to the atmosphere

    Science.gov (United States)

    Khorram, S.; Thomas, R. W.

    1976-01-01

    Results are presented for a study intended to develop a general remote sensing-aided cost-effective procedure to estimate watershed-wide water loss to the atmosphere via evapotranspiration and to estimate net solar radiation over the watershed. Evapotranspiration estimation employs a basic two-stage two-phase sample of three information resolution levels. Net solar radiation is taken as one of the variables at each level of evapotranspiration modeling. The input information for models requiring spatial information will be provided by Landsat digital data, environmental satellite data, ground meteorological data, ground sample unit information, and topographic data. The outputs of the sampling-estimation/data bank system will be in-place maps of evapotranspiration on a data resolution element basis, watershed-wide evapotranspiration isopleths, and estimates of watershed and subbasin total evapotranspiration with associated statistical confidence bounds. The methodology developed is being tested primarily on the Spanish Creek Watershed Plumas County, California.

  1. A more accurate formula for calculating the net longwave radiation flux in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2007-12-01

    Full Text Available A new, more accurate formula for calculating the net longwave radiation fluxLW ↑↓ has been devised for the Baltic Sea region. To this end,the following sets of simultaneously measured data regarding the longwave radiation of the sea andthe atmosphere were used: the temperatures of the sea surface and its contiguous air layer,the water vapour pressure in the air above the water, and the cloud cover.These data were gathered during numerous research cruises in the Baltic in 2000-03 and were supplemented by satellitedata from Karlsson (2001 characterising the cloud cover over the whole Baltic. The formulaestablished for LW ↑↓ can be written in the form of three alternative equations,differing with respect to their cloud cover functions:LW ↑↓ =0.985σT4s - σT4a (0.685+0.00452e{(1 + d n2 average for all cloud types (Z1(1 + din2 separately for low-, mid- and high-level clouds (Z2(1 + dinϒi separately for low-, mid- and high-level clouds (Z3where σ - Stefan-Boltzmann constant; Ts - sea surface temperature [K]; Ta - air temperature [K]; e - water vapour pressure [mbar]; n - total cloud amount [0 - 1]; d - mean empirical dimensionless coefficient, determined for all cloud types or for particular months (see Tables 3 and 4; da - empirical coefficient determined for the quadratic function: d1 = 0.39 for low-level clouds, d2 = 0.305 for mid-level clouds, d3 = 0.22 for high-level clouds; di - empirical coefficient determined as follows: d1 = 0.39 for low-level clouds when γ1 = 1.3, d2 = 0.29 for mid-level clouds when γ2 = 1.1; d3 = 0.17 for high-level clouds when γ3 = 0.96. The improved accuracy of this formula (RMSE ≅ 10 W m-2 is due chiefly to the establishment of functions and coefficients characterising the cloud cover over the Baltic in particular months of the year and their incorporation into it.

  2. Wireless shortwave: A new coagulation procedure.

    Science.gov (United States)

    Al-Khuwaitir, S A; El-Hazmi, M A; Al-Mofleh, I; Al-Tuwaijri, A

    1986-01-01

    Wireless shortwave (27.12 MHz) was tested in controlling bleeding of surgical cuts on the ears of experimental rabbits and found to be effective and less traumatic in comparison with infrared and high-frequency diathermy, more common methods of coagulation. Twenty-eight rabbits were traumatized with small surgical incisions on their ears and were divided into groups of seven for surgical control, wireless shortwave, infrared and HF diathermy. Comparison was based on measurement of the area of divitalization, scar size and depth of necrosis. Results indicate that shortwave coagulation can be used effectively with less trauma and risk of sepsis than the other methods.

  3. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4 ) emissions. Here, we quantify the thaw-induced increase in CH4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO2 ) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland-to-forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH4 emission of ~13 g CH4  m-2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4  m-2 . In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr-1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4  m-2  yr-1 in landscape CH4 emissions. A long-term net CO2 uptake of >200 g CO2  m-2  yr-1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long-term net CO2 uptake between 49 and 157 g CO2  m-2  yr-1 . Thus, thaw-induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.

  4. Global and Regional Climate Responses Solar Radiation Management: Results from a climateprediction.net Geoengineering Experiment

    Science.gov (United States)

    Ricke, Katharine; Allen, Myles; Ingram, William; Keith, David; Granger Morgan, M.

    2010-05-01

    To date modeling studies suggest that, while significant hydrological anomalies could result from the artificial addition of reflecting aerosols in the stratosphere for the purpose of solar radiation management (SRM), even at the regional level such a geoengineered world would bear a much closer resemblance to a low CO2 world, than to an unmodified high CO2 world. These previous modeling studies have generally compared one or two SRM forcing scenarios to various business-as-usual controls. However, such approaches cannot provide much information about regional sensitivities to the levels of SRM that might realistically result. Should engaging in SRM every be seriously contemplated, such regional analysis of a range of realistic scenarios will be an essential input to any process of geopolitical decision-making. Here we present the results from a large-ensemble experiment that used the HadCM3L GCM, implemented through climateprediction.net. The analysis examines 135 globally-uniform stratospheric optical depth modification scenarios designed to stabilize global temperatures under SRES A1B. Scenarios were tested using ten-member subensembles which made small perturbations to initial conditions. All simulations use identical standard settings of model physics parameters and are initiated from historically-forced runs from 1920-2005. A total of 7,331 simulations of the years 2000-2080 were performed for this experiment using computing resources donated by the general public. Our analysis of regional temperature and precipitation anomalies, normalized to account for variability, shows that SRM compensations for anthropogenic greenhouse gas forcing do generally return regional climates closer to their baseline climate states than the no-geoengineering, business-as-usual scenarios. However, we find that the magnitudes and sensitivities of regional responses to this type of activity, as modeled in HadCM3L, are highly variable. As the amount of SRM increases to compensate

  5. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The...

  6. Results from the first ARM diffuse horizontal shortwave irradiance comparison

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J J.(New York, State Univ Of); Dolce, R (Zipp and Zonen, Inc.); Dutton, E. G.(NOAA/CMDL); Haeffelin, Martial (VISITORS); Major, G (Budabest University of Economic Sciences); Schlemmer, J A.; Slater, Donald W.(BATTELLE (PACIFIC NW LAB)); Hickey, J R.(The Eppley Laboratory, Inc.); Jeffries, W Q.(Yankee Environmental Systems); Los, A (Kipp and Zonen, Inc.); Mathias, D (Carter-Scott Design); McArthur, LJ B.(Meteorlogical Service of Canada); Philipona, R (Physikalish - Meteorologiisches Observatorium and World); Reda, I (National Renewable Energy Laboratory); Stoffel, T (National Renewable Energy Laboratory)

    2003-02-07

    The first intensive observation period (IOP) dedicated exclusively to the measurement of diffuse horizontal shortwave irradiance was held in the Fall 2001 at the central facility of the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site with the cooperation of the Baseline Surface Radiation Network (BSRN) community. Fourteen simultaneous measurements were obtained over a two-week period under mostly clear skies with low to moderate aerosol loading. Overcast data were obtained during the morning of one day. The purpose of the comparison was to assess the level of agreement in diffuse irradiance measurements among most commercial pyranometers and a few prototypes calibrated independently using current practices. The hope was to achieve a consensus for this measurement with the goal of improving the uncertainty of shortwave diffuse irradiance measurements. All diffuse broadband measurements were made using the same type of two-axis tracker with the direct beam blocked by shading balls. Tracking was very good during the IOP with no outages associated with tracker problems. Five of the measurements are reproducible to about 2 W/m2 at the 95% confidence level. Four more agree with the most consistent group to about 4 W/m2 at the 95% confidence level after correction for thermal offsets. The prototypes agree less well with the most consistent group.

  7. Some observations on stray magnetic fields and power outputs from short-wave diathermy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R.W.M.; Dunscombe, P.B.

    1984-04-01

    Recent years have seen increasing interest in the possible hazards arising from the use of nonionizing electromagnetic radiation. Relatively large and potentially hazardous fields are to be found in the vicinity of short-wave and microwave equipment used in physiotherapy departments to produce therapeutic temperature rises. This note reports the results of measurements of the stray magnetic field and power output of a conventional short-wave diathermy unit when applied to tissue-equivalent phantoms. The dependence of these quantities on the variables, i.e. power setting of the unit, capacitor plate size, phantom size and phantom-capacitor plate separation, are discussed.

  8. Heating patterns produced by shortwave diathermy applicators in tissue substitute models.

    Science.gov (United States)

    Lehmann, J F; McDougall, J A; Guy, A W; Warren, C G; Esselman, P C

    1983-12-01

    To be a deep-heating modality, shortwave diathermy applicators have to heat the musculature more than the subcutaneous fat. In this study, commercially available and prototype shortwave diathermy applicators were tested using tissue substitute models which allow rapid thermographic scanning of the initial linear transient temperature rise in the subcutaneous fat and muscle. The specific absorption rates (SAR) of the electromagnetic radiation were calculated throughout the tissues. Great differences were found in the deep-heating capability of these applicators. Some of the applicators heated the subcutaneous fat more than the muscle, while others were more efficient in heating the musculature.

  9. Means and Trends of Shortwave Irradiance at the Surface Estimated From GEBA and WRDC Data.

    Science.gov (United States)

    Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.; Tsvetkov, A.

    2004-05-01

    On most continents, shortwave irradiance decreases on the order of 2% per decade. This result was obtained from an analysis of the observed time series of shortwave irradiances stored in the Global Energy Balance Archive (GEBA). These time series covered the period from 1950 through to 1990. For the reevaluation of the irradiance means and trends up to the present the pyranometer data stored in the GEBA are currently extended with data from the World Radiation Data Center (WRDC). The combination of these databases provides a comprehensive source of worldwide monthly irradiance values. Preliminary results of the analysis of the extended dataset will be presented.

  10. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  11. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Directory of Open Access Journals (Sweden)

    Laura Zoratti

    Full Text Available In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L. and the cultivated highbush blueberry (V. corymbosum L..The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness.The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period.Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  12. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  13. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    Objectives In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). Methods The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. Results The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Conclusions Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species. PMID:26288240

  14. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    Full Text Available We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by

  15. Impact of land-use change in the net radiation of the Cerrado of the southern Mato Grosso

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fausto

    2016-04-01

    Full Text Available Changes resulting from land use and occupation modify the surface radioactive balance. This paper evaluated the impact on the net radiation caused by the conversion of a Cerrado area in an agricultural zone in the southern Mato Grosso using Landsat 5 TM sensor imagery acquired between June and October 2011. The analyses were performed of the following land use classes: Cerrado, riparian vegetation, sugarcane, soybean, pasture, bare soil and water. The replacement of Cerrado by agricultural areas changed the biophysical indices of the surface due to the change in biomass and the optical properties of the surface as observed in this study. The NDVI values were higher in the typical Cerrado vegetation and Riparian Forest than in agricultural areas. The surface temperature and the surface albedo showed an inverse pattern of NDVI, with lower values in the typical Cerrado vegetation and Riparian Forest and higher values in agricultural areas and bare soil. The replacement of Cerrado by cultivated crops in the south of Mato Grosso decreased the available energy at the surface, as indicated by the radiation balance.

  16. Applying Artificial Neural Networks to Estimate Net Radiation at Surface Using the Synergy between GERB-SEVIRI and Ground Data

    Science.gov (United States)

    Geraldo Ferreira, A.; Soria, Emilio; Lopez-Baeza, Ernesto; Vila, Joan; Serrano, Antonio J.; Martinez, Marcelino; Velazquez Blazquez, Almudena; Clerbaux, Nicolas

    This paper describes the results obtained using Artificial Neural Networks (AAN) models to estimate the diurnal cycle of net radiation (Rn) at surface. The data used as input parameter in the AAN model were that measured by Geostationary Earth Radiation Budget (GERB-1) instrument, on board Meteosat 9 satellite. The data concerning Rn at the surface were collected at the Valencia Anchor Station (VAS), a ground reference meteorological station for the validation of low spatial resolution sensors situated near de city of Valencia, Spain. This data refers to the periods July 31st -August 6th 2006 and June 19th -August 18th 2007. Both, GERB-1 and VAS data are used to train and validate the AAN model. The same data set is also used to develop and validate a Multivariate Linear Regression (MLR) model. A comparison between the estimates provided by the AAN and the MLR models has been carried out; the results obtained with the neural model outperform the linear model. Moreover, the low values of the error indexes show that neural models can be used as an alternative methodology to make atmospheric corrections.

  17. Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping process

    Science.gov (United States)

    Knopp, Jonathan

    Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.

  18. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  19. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    1996-10-01

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  20. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  1. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  2. Cloud effects on the solar and thermal radiation budgets of the Mediterranean basin

    Science.gov (United States)

    Pyrina, M.; Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Papadimas, C. D.; Pavlakis, K. G.; Vardavas, I.

    2015-01-01

    The cloud effects on the shortwave (SW), longwave (LW) and net all-wave radiation budgets of the Mediterranean basin were computed using a detailed radiative transfer model together with satellite and reanalysis data for surface and atmospheric properties. The model radiation fluxes at TOA were validated against CERES and ERBE satellite data, while at the Earth's surface they were validated against ground-based GEBA and BSRN station measurements. The cloud radiative effects were obtained for low, middle, high-level clouds, and for total cloud cover. Overall for the basin, the effect on solar radiation is to produce radiative cooling at the top of atmosphere (TOA) and at the surface that more than balances the warming effects on terrestrial radiation. The result is a net radiative cooling at TOA and at the surface, equal to - 18.8 and - 15.9 Wm- 2, respectively. The low-level clouds are most important for the TOA budget through significant SW reflection and little LW emission to space. High clouds play an important role in net surface cooling (- 9.8 Wm- 2) through the combination of SW reflection to space and a much reduced LW warming effect at the surface. The geographical patterns of the effects are mainly characterized by a strong south to north increasing gradient. The seasonal variation of net radiative effects is dominated by solar radiation with maxima in spring and minima in winter.

  3. Earth radiation budget from a surface perspective and its representation in CMIP5 models

    Science.gov (United States)

    Wild, M.

    2012-04-01

    The genesis and evolution of Earth's climate is largely regulated by the global energy balance. Despite the central importance of the global energy balance for the climate system and climate change, substantial uncertainties still exist in the quantification of its different components, and their representation in climate models (e.g., Wild et al. 1998 Clim. Dyn., Wild 2008 Tellus). While the net radiative energy flow in and out of the climate system at the top of atmosphere (TOA) is known with considerable accuracy from new satellite programs such as CERES, much less is known about the energy distribution within the climate system and at the Earth surface. Here we use direct surface observations from the Baseline Surface Radiation Network (BSRN) and the Global Energy Balance Archive (GEBA) to provide better constraints on the surface radiative components as well as to investigate their temporal changes. We analyze radiation budgets of the latest generation of global climate models as used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and in the upcoming Fifth IPCC assessment report (IPCCAR5). Compared to a comprehensive set of surface observations, the CMIP5 models overestimate the shortwave radiation incident at the surface by 5-10 Wm-2 on average, due to a lack of absorption in the atmosphere. This suggests that the best estimate for the global mean absorbed shortwave radiation at the surface should be lower than the simulated estimates, which are on average slightly below 170 Wm-2, so that a value of no more than 160 Wm-2 might be the most realistic estimate for the global mean absorbed shortwave radiation at the surface. In contrast, the longwave downward radiation at the surface is underestimated by a similar amount in these models, suggesting that the best estimate for the global mean downward longwave radiation should be rather around 345 Wm-2 than the model average of 338 Wm-2. There is further increasing evidence from the direct

  4. Comparative Assessment of Satellite-Retrieved Surface Net Radiation: An Examination on CERES and SRB Datasets in China

    National Research Council Canada - National Science Library

    Xin Pan; Yuanbo Liu; Xingwang Fan

    2015-01-01

    ...) and the Surface Radiation Budget project (SRB) products, respectively, with quality-controlled radiation data from 50 meteorological stations in China for the period from March 2000 to December 2007...

  5. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    Science.gov (United States)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  6. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL\\'s High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  7. The short-wave broadband communication device for transmission the analog narrowband signals

    Directory of Open Access Journals (Sweden)

    Andreyev O.V.

    2016-12-01

    Full Text Available The transmission of information via the radio channel always involves the selection of radio waves modulation and the frequency band occupied by the radio signal. For the narrowband analog signals, the transmission via the radio channels in areas with difficult terrain the short-wave range is widely used. The majority of radio stations use frequency modulation of the transmitter without any message encryption. This gives the opportunity to detect and intercept messages that are transmitted. The use of the voice scramblers allows to hide information that is transmitted via the communication channel, but it is impossible to hide the radiation of the transmitter. The article suggests the use of a broadband signal with a modulation which is not associated with the change of the frequency of the transmitter in accordance with information, which is transmitted. The calculations showed that the proposed communication system can operate in a common frequency band with existing narrowband means of the short-wave range not creating them the substantial interference. The calculated signal/noise ratio on the input of the radio signals monitoring receiver is almost two orders less than for existing narrowband means of the short-wave range.

  8. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  9. Continuous short-wave (radio-frequency) diathermy.

    Science.gov (United States)

    Goats, G C

    1989-06-01

    Continuous shortwave diathermy is the technique of choice when uniform marked elevation of temperature is required in the deep tissues. This heating can be targeted accurately by using an appropriate applicator positioned correctly. SWD also allows superficial structures to be heated selectively, although for this the various methods of surface heating are usually preferable. Sub-acute or chronic conditions respond best to continuous shortwave diathermy which, when used properly, can be as effective as ultrasound. Acute lesions are better treated with pulsed shortwave diathermy. Continuous shortwave diathermy can help to relieve pain and muscle spasm, resolve inflammatory states and reduce swelling, promote vasodilation, increase the compliance of connective tissue, increase joint range and decrease joint stiffness.

  10. Changes in Intramuscular Blood Volume Induced by Continuous Shortwave Diathermy

    National Research Council Canada - National Science Library

    Karasuno, Hiroshi; Morozumi, Kazunori; Fujiwara, Takayuki; Goh, Ah Cheng; Yamamoto, Iwao; Senga, Fujitoshi

    2005-01-01

    ...) under continuous shortwave diathermy (CSWD) and compare them with the electric hot pack (EHP). The subjects consisted of 41 healthy adults, who received one of three interventions: CSWD (n=17), EHP (n=12...

  11. Radiation components of beech stands in southwest Germany

    Energy Technology Data Exchange (ETDEWEB)

    Holst, T.; Mayer, H. [Meteorological Inst., Univ. of Freiburg (Germany)

    2005-04-01

    Within the framework of an interdisciplinary project on the impact of climate and forest management on beech dominated deciduous forests, forest meteorological measurements are carried out within and above different beech stands (Fagus sylvatica L.) on opposite slopes of a narrow valley located in the Swabian Jura mountain range (south-west Germany). Referring to test plots on both slopes, the following cycles of radiation components are discussed: (1) Monthly mean values of transmission and extinction of global solar irradiance, photosynthetically active radiation as well as UV-A and UV-B radiation through the canopy, (2) diurnal courses of surface albedo {alpha}, net short-wave radiation K{sup *}, net long-wave radiation L{sup *} and net all-wave radiation Q{sup *} for a cloudless day in March (leafless period) and a cloudless day in July (fully-leaved period) above and below the canopy of different beech stands, and (3) monthly mean values of {alpha}, K{sup *}, L{sup *} and Q{sup *} for the same stand conditions as for (2). The results point out the combined impact on the investigated radiation components emanating from seasonally variable canopy density (quantified by the plant area index), exposure and sun elevation. (orig.)

  12. Continuous short-wave (radio-frequency) diathermy.

    OpenAIRE

    Goats, G C

    1989-01-01

    Continuous shortwave diathermy is the technique of choice when uniform marked elevation of temperature is required in the deep tissues. This heating can be targeted accurately by using an appropriate applicator positioned correctly. SWD also allows superficial structures to be heated selectively, although for this the various methods of surface heating are usually preferable. Sub-acute or chronic conditions respond best to continuous shortwave diathermy which, when used properly, can be as ef...

  13. Top-of-the-Atmosphere Shortwave Flux Estimation from UV Observations: An Empirical Approach

    Science.gov (United States)

    Gupta, P.; Joiner, Joanna; Vasilkov, A.; Bhartia, P. K.; da Silva, Arlindo

    2012-01-01

    Measurements of top of the atmosphere (TOA) radiation are essential to the understanding of Earth's climate. Clouds, aerosols, and ozone (0,) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths, and Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long- and short-wave. OMI measurements have been successfully utilized to derive the information on trace gases (e.g., 0 1, NO" and SO,), clouds, and absorbing aerosols. TOA SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). In this paper, OMI retrievals of cloud/aerosol parameters and 0 1 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. This input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column 0" and sun-satellite viewing geometry from OMI as well as wind speed and water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of

  14. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  15. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  16. Uncertainties in assessing radiative forcing by mineral dust

    Science.gov (United States)

    Claquin, T.; Schulz, M.; Balkanski, Y.; Boucher, O.

    1998-11-01

    The assessment of the climatic effects of an aerosol with a large variability like mineral dust requires some approximations whose validity is investigated in this paper. Calculations of direct radiative forcing by mineral dust (short-wave, long-wave and net) are performed with a single-column radiation model for two standard cases in clear sky condition: a desert case and an oceanic case. Surface forcing result from a large diminution of the short-wave fluxes and of the increase in down-welling long-wave fluxes. Top of the atmosphere (TOA) forcing is negative when short-wave backscattering dominates, for instance above the ocean, and positive when short-wave or long-wave absorption dominates, which occurs above deserts. We study here the sensitivity of these mineral forcings to different treatments of the aerosol complex refractive index and size distribution. We also describe the importance of the dust vertical profile, ground temperature, emissivity and albedo. Among these parameters, the aerosol complex refractive index has been identified as a critical parameter given the paucity and the incertitude associated with it. Furthermore, the imaginary part of the refractive index is inadequate if spectrally averaged. Its natural variability (linked to mineralogical characteristics) lead to variations of up to ± 40% in aerosol forcing calculations. A proper representation of the size distribution when modelling mineral aerosols is required since dust optical properties are very sensitive to the presence of small particles. In addition we demonstrate that LW forcing imply a non-negligible sensitivity to the vertical profiles of temperature and dust, the latter being an important constraint for dust effect calculations.

  17. Cryogenic optical mounting for short-wave infrared spectrometers

    Science.gov (United States)

    Grant, J.; Wood, T.; Bhatti, I.; Cañas, A.; Reddick, P.; van Wyk, P.; Bharadia, S.; Storey, T.; Potterton, T.; Rits, W.; Meijer, H.

    2014-07-01

    In order to measure atmospheric concentrations of carbon monoxide, methane, water and carbon dioxide from spaceborne platforms, Short-Wave Infrared (SWIR) immersed grating spectrometers are employed. Due to the need to minimise detector dark current and internal black body radiation from the spectrometer's own structure, these instruments are operated at cryogenic temperatures. ESA's Sentinel 5-Precursor is a small satellite science mission; the platform comprises the Tropospheric Monitoring Instrument (TROPOMI), which includes a SWIR module. Optical mounts have been developed for the SWIR module which meet the requirements to cope with the differences in thermal expansion between the optical elements and their structural mounts over cryogenic temperature ranges, be robust against the mechanical environment during launch, and maintain optical alignment stability with a tight volume constraint. Throughout the design of the SWIR spectrometer, flexures were deployed to control deformations due to thermal expansion, the design of interfaces between materials of differing coefficient of thermal expansion was carefully managed, and the geometry of adhesive pads was tightly controlled. Optical mounting concepts were evaluated using finite element analysis (FEA). A breadboard programme was undertaken to verify these concepts. FEA and breadboard results were correlated to provide confidence in the design. The breadboard programme consisted of thermal cycling and pull-testing of adhesive joints, as well as environmental and optical testing of representative subsystems. Analysis and breadboarding demonstrated that the optical mounting design will survive the mechanical and thermal environments, and verified the stability of the optical alignment requirements. Novel optical mounting structures have been designed, analysed, assembled, tested and integrated into the optical assemblies of the TROPOMI SWIR spectrometer, creating a compact and robust state of the art instrument

  18. Shortwave Array Spectroradiometer–Hemispheric (SASHe) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Shortwave Array Spectroradiometer–Hemispheric (SASHe) provides measurements of direct solar, hemispheric diffuse, and total hemispheric shortwave irradiance over a continuous spectral range from approximately 300 nm to 1700 nm at a rate of about 30 seconds. The SASHe design connects an optical collector located outdoors to a pair of spectrometers and data collections systems located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector uses a small Spectralon button as a hemispheric diffuser with a shadowband to distinguish signal from diffuse sky and direct sun.

  19. Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

    Science.gov (United States)

    Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne

    2015-01-01

    Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.

  20. Efficacy of ice and shortwave diathermy in the management of ...

    African Journals Online (AJOL)

    This study was designed to compare the effects of shortwave diathermy (SWD) and ice on pain, range of motion and function in osteoarthritis (OA) of the knee. Subjects were fourteen patients (4 males and 10 females) aged 40-70years diagnosed as having OA of the knee. Subjects were assigned into either the SWD or ice ...

  1. Wheel-rail interaction at short-wave irregularities

    NARCIS (Netherlands)

    Steenbergen, M.J.M.M.

    2008-01-01

    Short-wave irregularities in the wheel-rail interface are at the basis of track and vehicle damage and deterioration. On the short term, they result into high dynamic train-track interaction forces and a high energy input into the system that must be dissipated in the different system components or

  2. Pulsed Shortwave Diathermy and Prolonged Long-Duration Stretching Increase Dorsiflexion Range of Motion More Than Identical Stretching Without Diathermy.

    Science.gov (United States)

    Peres, Steven E; Draper, David O; Knight, Kenneth L; Ricard, Mark D

    2002-03-01

    OBJECTIVE: To compare the effects of 3 treatments on ankle dorsiflexion range of motion: prolonged long-duration stretching, pulsed shortwave diathermy followed by stretching, and pulsed shortwave diathermy, stretching, and ice combined. DESIGN AND SETTING: A 2 x 5 x 15 repeated-measures (on 2 factors) design guided this study. Range-of-motion change in triceps surae flexibility was the dependent variable. The 3 independent variables were treatment group, pretest and posttest measurements, and day. Treatment group had 4 levels: control, stretching (10 minutes of stretching via the weight and pulley), diathermy and stretching (20 minutes of diathermy and 10 minutes of stretching), and diathermy, stretching, and ice (20 minutes of diathermy, 10 minutes of stretching applied after 15 minutes of diathermy, and 5 minutes of ice applied during the last 5 minutes of stretching). Each subject received 14 treatments throughout 3 weeks, with a follow-up measurement taken 6 days after the last treatment. SUBJECTS: Forty-four healthy college-student volunteers not involved in any flexibility program. MEASUREMENTS: We measured ankle dorsiflexion using a digital inclinometer before and after treatment. RESULTS: After 14 days of treatment, the range-of-motion increase was greater after heat and stretching than after stretching alone. After 6 additional days of rest, the heat and stretching range-of-motion increase was greater than that for stretching alone. CONCLUSION: Pulsed shortwave diathermy application before prolonged long-duration static stretching was more effective than stretching alone in increasing flexibility throughout 3 weeks. After 14 treatments, prolonged long-duration stretching combined with pulsed shortwave diathermy followed by ice application caused greater immediate and net range-of-motion increases than prolonged long-duration stretching alone.

  3. Pulsed Shortwave Diathermy and Prolonged Long-Duration Stretching Increase Dorsiflexion Range of Motion More Than Identical Stretching Without Diathermy

    Science.gov (United States)

    Peres, Steven E.; Draper, David O.; Knight, Kenneth L.; Ricard, Mark D.

    2002-01-01

    Objective: To compare the effects of 3 treatments on ankle dorsiflexion range of motion: prolonged long-duration stretching, pulsed shortwave diathermy followed by stretching, and pulsed shortwave diathermy, stretching, and ice combined. Design and Setting: A 2 × 5 × 15 repeated-measures (on 2 factors) design guided this study. Range-of-motion change in triceps surae flexibility was the dependent variable. The 3 independent variables were treatment group, pretest and posttest measurements, and day. Treatment group had 4 levels: control, stretching (10 minutes of stretching via the weight and pulley), diathermy and stretching (20 minutes of diathermy and 10 minutes of stretching), and diathermy, stretching, and ice (20 minutes of diathermy, 10 minutes of stretching applied after 15 minutes of diathermy, and 5 minutes of ice applied during the last 5 minutes of stretching). Each subject received 14 treatments throughout 3 weeks, with a follow-up measurement taken 6 days after the last treatment. Subjects: Forty-four healthy college-student volunteers not involved in any flexibility program. Measurements: We measured ankle dorsiflexion using a digital inclinometer before and after treatment. Results: After 14 days of treatment, the range-of-motion increase was greater after heat and stretching than after stretching alone. After 6 additional days of rest, the heat and stretching range-of-motion increase was greater than that for stretching alone. Conclusion: Pulsed shortwave diathermy application before prolonged long-duration static stretching was more effective than stretching alone in increasing flexibility throughout 3 weeks. After 14 treatments, prolonged long-duration stretching combined with pulsed shortwave diathermy followed by ice application caused greater immediate and net range-of-motion increases than prolonged long-duration stretching alone. PMID:12937443

  4. Relationships between radiation, clouds, and convection during DYNAMO.

    Science.gov (United States)

    Ciesielski, Paul E; Johnson, Richard H; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-16

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  5. Using the Synergy Between GERB/SEVIRI and Micrometeorological Data to Study the Relationship Between Surface Net Radiation and Soil Heat Flux at Local and Regional Scales

    Science.gov (United States)

    Ferreira, A. G.; Velázquez Blázquez, A.; Soria, E.; Lopez-Baeza, E.

    2009-04-01

    The surface energy exchange between the land surface and the atmosphere can be described by the energy balance equation Rn - H - LE - G = 0, where Rn represents net radiation, H the sensible heat flux, LE, the latent heat flux and G the soil heat flux. In this work the relationship between Rn and G is studied over vineyard crops, a relative sparse vegetation cover crop where, according to the literature, it is expected that G consumes a significant proportion of Rn. In order to study this relationship at local and regional scales, micrometeorological observations and METEOSAT Second Generation (MSG) satellite data have been used. MSG through the GERB (Geostationary Earth Radiation Budget) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensors can provide estimates of net radiation and required land surface temperature (LST) information with a frequency of 15 min intervals. The necessary micrometeorological parameters, to compare with satellite data, were collected during the full vine growing season of 2007 (May to September) in a field experiment carried out at the Valencia Anchor Station (VAS) site area. The VAS is a robust reference meteorological station which is successfully used preferentially for validation of low spatial resolution satellite data and products. It is located on the natural region of the Utiel-Requena Plateau, at about 80 km west from the city of Valencia, Spain, and represents a reasonable homogeneous area of about 50 km x 50 km dedicated primarily to growing vines. The methodology utilized to study the relationship between Rn and G at local and regional scales, was that proposed by Santanello and Friedel (2002), where surface temperature can be obtained from SEVIRI that provides estimates of LST with unprecedented frequency of 15 min intervals with a spatial resolution of 3.1 km, thus totally covering its diurnal course. The preliminary results show that: 1- the correlation between the ground measurements and SEVIRI LST is

  6. Estimativa do saldo de radiação em girassol como função da radiação solar global Estimation of net radiation in sunflower as a function of solar radiation

    Directory of Open Access Journals (Sweden)

    Arno B Heldwein

    2012-02-01

    Full Text Available Objetivou-se com este trabalho a obtenção de modelos para a estimativa do saldo de radiação (Q* a partir da radiação solar global incidente (Rg sobre dosseis de plantas de girassol. Os experimentos foram conduzidos na área experimental da Universidade Federal de Santa Maria, nos anos de 2007, 2008 e 2009. O Q* foi medido com saldos radiômetros instalados acima das plantas e a Rg em estações meteorológicas automáticas. Para fins de cálculo foram efetuadas as somas diárias de Q* e de Rg, obtendo-se a relação entre Q* e Rg para cada dia. Obtiveram-se, então, modelos com elevado coeficiente de determinação e baixo RQME no teste entre valores medidos e estimados de um banco de dados independente, indicando precisão na estimativa do saldo de radiação em dosseis de girassol, independendo da época de cultivo no ano. A função linear geral obtida com dados de diferentes épocas de cultivo foi: Q* = 0,5285 Rg (R² = 0,95, que no teste apresentou RQME = 1,04 MJ m-2 d-1. Conclui-se que o saldo de radiação (Q* pode ser estimado utilizando-se a radiação solar global medida em estações automáticas, com precisão suficiente para os diferentes fins na agrometeorologia do girassol.This study aimed to develop models for estimating the net radiation (Q * from the incident solar radiation (Rg on canopies of sunflower plants. The experiments were conducted at the Plant Science Department of the Federal University of Santa Maria in 2007, 2008 and 2009 years. Q* was measured by net radiometers above the plants and Rg by automatic weather stations. For purposes of calculation, daily sums of Q* and Rg were performed, obtaining the relationship between Q* and Rg for each day. Models with high coefficient of determination and low RQME were obtained in test between measured and estimated values from an independent database, indicating precision to estimate net radiation in sunflower canopies, regardless of cultivation time in year. The general

  7. The case for over-the-counter shortwave therapy: safe and effective devices for pain management.

    Science.gov (United States)

    Rawe, Ian M

    2014-01-01

    Pulsed shortwave diathermy, an electromagnetic therapy, has been in clinical use for acute and chronic musculoskeletal pain for many decades. Innovation, miniaturization and advances in technology have allowed for the development of a new generation of shortwave devices that deliver a localized, low fixed dose of shortwave therapy. Clinical research has shown that these novel shortwave devices can be used safely in order to reduce acute and chronic pain, as well as the need for pain medications. Their ease of use and safety profile make low-dose shortwave devices an attractive alternative, or adjunct therapy, to pharmacological-based pain therapies.

  8. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  9. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  10. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  11. Apparent Multi-Decadal Trend in Shortwave Cloud Forcing Over the Tropical Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, R C J; Potter, G L; Kanamitsu, M; Hnilo, J J; Woolen, J

    2000-10-03

    The NCEP/NCAR reanalysis (Kalnay et al. 1996) of atmospheric data beginning in 1948 has provided an opportunity to study a consistent half-century record of assimilated weather observations. Through the examination of several fields, we find an apparent long-term decrease in relative humidity, and hence a decrease in inferred cloud amount, in a large region in the central tropical Pacific. As a result, the apparent short-wave cloud radiative forcing in that region decreased by nearly 15 Wm{sup -2} Over the duration of the period. Two major questions arise from these preliminary results. The first question involves the extent to which the apparent trend over the 50-year period is a real phenomenon rather than an artifact, either of the reanalysis methodology or of observing system evolution. The second question is, if the phenomenon is not entirely an artifact, but is at least partially real, what is its cause?

  12. SW radiative effect of aerosol in GRAPES_GFS

    Science.gov (United States)

    Chen, Qiying

    2017-04-01

    The aerosol particles can scatter and absorb solar radiation, and so change the shortwave radiation absorbed by the atmosphere, reached the surface and that reflected back to outer space at TOA. Since this process doesn't interact with other processes, it is called direct radiation effect. The clear sky downward SW and net SW fluxes at the surface in GRAPES_GFS of China Meteorological Administration are overestimated in Northern multitudes and Tropics. The main source of these errors is the absence of aerosol SW effect in GRAPES_GFS. The climatic aerosol mass concentration data, which include 13 kinds of aerosol and their 14 SW bands optical properties are considered in GRAPES_GFS. The calculated total optical depth, single scatter albedo and asymmetry factor are used as the input to radiation scheme. Compared with the satellite observation from MISER, the calculated total optical depth is in good consistent. The seasonal experiments show that, the summer averaged clear sky radiation fluxes at the surface are improved after including the SW effect of aerosol. The biases in the clear sky downward SW and net SW fluxes at the surface in Northern multitudes and Tropic reduced obviously. Furthermore, the weather forecast experiments also show that the skill scores in Northern hemisphere and East Asia also become better.

  13. Radiative Impact of Aerosols on the Regional Boundary Layer Features in Strong and Weak Wind Conditions using WRF Modeling System

    Science.gov (United States)

    Rajagopalan, R. A.; Sharan, M.

    2015-12-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Radiation is the main source that regulates the surface energy budget. Surface temperature and planetary boundary layer (PBL) height depends on accurate calculation of both shortwave and longwave radiation. The weakening of the ambient winds is known to influence the structure of PBL. This study examines the sensitivity of the performance of Weather Research Forecasting (WRF) ARW Model to the use of different radiation schemes [For Long wave Radiation: Rapid Radiative Transfer Model (RRTM), Eta Geophysical Fluid Dynamics Laboratory (GFDL), Goddard, New Goddard, NCAR Community Atmosphere Model (CAM 3.0), New Goddard scheme, Fu-Liou-Gu scheme and for Short wave Radiation: Dudhia scheme, Eta Geophysical Fluid Dynamics Laboratory (GFDL), NCAR Community Atmosphere Model (CAM 3.0), New Goddard scheme]. Two different simulations are conducted one for the summer (14-15 May 2009) and winter (14-15 Dec 2008) season characterized by strong and weak wind conditions over India. Comparison of surface temperatures from different schemes for different cities (New Delhi, Ahmedabad, Lucknow, Kanpur, Jaipur and Jodhpur) on 14-15 May 2009 and 14-15 Dec 2008 with those observed shows the simulation with RRTM , New Goddard, and Fu-Liou-Gu schemes are closer to the observations as compared to other schemes. The temperature simulated from all the radiation schemes have more than 0.9 correlation coefficient but the root mean square error is relatively less in summer compared to winter season. It is surmised that Fu-Liou-Gu scheme performs better in almost all the cases. The reason behind can be the greater absorption of solar and IR radiative fluxes in the atmosphere and the surface provided in Fu-Liou-Gu radiation scheme than those computed in

  14. CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.R.; Algieri, C.A.; Ong, J.R.; Collins, W.D.

    2011-04-01

    Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensively validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.

  15. RadNet Air Data From Little Rock, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Pittsburgh, PA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Montgomery, AL

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Toledo, OH

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Honolulu, HI

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. Physical Medicine Devices; Reclassification of Shortwave Diathermy for All Other Uses, Henceforth To Be Known as Nonthermal Shortwave Therapy. Final order; technical correction.

    Science.gov (United States)

    2015-10-13

    The Food and Drug Administration (FDA) is issuing a final order to reclassify shortwave diathermy (SWD) for all other uses, a preamendments class III device, into class II (special controls), and to rename the device "nonthermal shortwave therapy'' (SWT). FDA is also making a technical correction in the regulation for the carrier frequency for SWD and SWT devices.

  1. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    Science.gov (United States)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  2. Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements

    Directory of Open Access Journals (Sweden)

    Jing Su

    2008-05-01

    Full Text Available The impact of Asian dust on cloud radiative forcing during 2003–2006 is studied by using the Clouds and Earth's Radiant Energy Budget Scanner (CERES data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are −138.9, 69.1, and −69.7 Wm−2, which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of dust indirect and semi-direct shortwave radiative forcing (SWRF is 82.2 Wm−2, which is 78.4% of the total dust effect. The dust direct effect is only 22.7 Wm−2, which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  3. Bias of atmospheric shortwave absorption in the NCAR Community Climate Models 2 and 3: Comparison with monthly ERBE/GEBA measurements

    Science.gov (United States)

    Zhang, M. H.; Lin, W. Y.; Kiehl, J. T.

    1998-04-01

    A direct comparison is made of collocated shortwave reflection at the top of the atmosphere and insolation at the surface between the National Center for Atmospheric Research Community Climate Models 2 and 3 (CCM2 and CCM3) and monthly Earth Radiation Budget Experiment/Global Energy Balance Archive (ERBE/GEBA) measurements. It is shown that atmospheres in the models are brighter at the top of the atmosphere than ERBE measurements and meanwhile transmit more solar radiation to the surface than GEBA measurements. As a consequence, the models underestimate atmospheric shortwave absorption. The amount of this underestimation is about 20 W m-2 in CCM2 and 17 W m-2 in CCM3. It is emphasized that regardless of whether the bias is in clear sky or in clouds, this underestimation has important implications for the intensity of the hydrological cycle and thus circulation in the models.

  4. Assessing surface solar radiation fluxes in CMIP5 model simulations

    Science.gov (United States)

    Loew, Alexander; Itkin, Mikhail; Andersson, Axel; Trentmann, Jörg; Fennig, Karsten; Schröder, Marc

    2014-05-01

    Sophisticated Earth System models (ESM) are an essential research tool for better understanding the global climate system and its interactions. They are indispensable tools for providing projections about potential evolutions of the Earth climate in the future. Given the complexity of these deterministic models, it is essential to have a solid knowledge of the uncertainties of the model results in difference aspects of the models. The present paper presents results from a comprehensive study analyzing the shortwave surface radiation fluxes. State-of-the-art globals datasets of surface radiation components (surface solar radiation flux, surface albedo, surface net radiation flux) are used to benchmark results from the recent Coupled Model Intercomparison Project (CMIP5) in a standardized manner at the regional to global scale. Different skill score metrices are compared. All CMIP5 models are ranked according to their performance skill scores. The uncertainties from current observational records compared to uncertainties in climate model simulations are also analyzed. The results indicate that there are still large uncertainties (inconsistencies) among the different existing global surface radiation dataset which lead to rather different (relative) model rankings. In other words, the rank of a model is not only determined by the skill of the model itself, but also largely by the choice of a benchmarking (reference) dataset. As the differences resulting from the choice of different observational datasets are larger than between different models, progress in surface radiation flux simulations of climate models might depend on further progress in achieving consistent observations of surface radiation fluxes from space.

  5. Heat distribution in the lower leg from pulsed short-wave diathermy and ultrasound treatments.

    Science.gov (United States)

    Garrett, C L; Draper, D O; Knight, K L

    2000-01-01

    To compare tissue temperature rise and decay after 20-minute diathermy and ultrasound treatments. We inserted 3 26-gauge thermistor microprobes into the medial aspect of the anesthetized triceps surae muscle at a depth of 3 cm and spaced 5 cm apart. Eight subjects received the diathermy treatment first, followed by the ultrasound treatment. This sequence was reversed for the remaining 8 subjects. The diathermy was applied at a frequency of 27.12 MHz at the following settings: 800 bursts per second, 400-microsecond burst duration, 850-microsecond interburst interval, peak root mean square amplitude of 150 W per burst, and an average root mean square output of 48 W per burst. The ultrasound was delivered at a frequency of 1 MHz and an intensity of 1.5 W/cm(2) in the continuous mode for 20 minutes over an area of 40 times the effective radiating area. The study was performed in a ventilated research laboratory. Sixteen (11 men, 5 women) healthy subjects (mean age = 23.56 +/- 4.73 years) volunteered to participate in this study. We recorded baseline, final, and decay temperatures for each of the 3 sites. The average temperature increases over baseline temperature after pulsed short-wave diathermy were 3.02 degrees C +/- 1.02 degrees C in site 1, 4.58 degrees C +/- 0.87 degrees C in site 2, and 3.28 degrees C +/- 1.64 degrees C in site 3. The average temperature increases over baseline temperature after ultrasound were only 0.17 degrees C +/- 0.40 degrees C, 0.09 degrees C +/- 0.56 degrees C, and -0.43 degrees C +/- 0.41 degrees C in sites 1, 2, and 3, respectively. The temperature dropped only 1 degrees C in 7.65 +/- 4.96 minutes after pulsed short-wave diathermy. We conclude that pulsed short-wave diathermy was more effective than 1-MHz ultrasound in heating a large muscle mass and resulted in the muscles' retaining heat longer.

  6. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  7. Evaluation of the effects of shortwave diathermy in patients with chronic low back pain.

    Science.gov (United States)

    Ahmed, Md Shaik; Shakoor, Md Abdus; Khan, Aminuddin A

    2009-04-01

    A prospective experimental study on 97 patients of chronic low back pain was conducted to find out the effects of shortwave diathermy. They were divided randomly into two groups and treated with nonsteroidal anti-inflammatory drugs, exercises, activities of daily living instructions and with or without shortwave diathermy. After six weeks of treatment, improvements were observed in both the groups. But significant difference in improvement was found in shortwave diathermy group than in placebo group. The present study suggests that shortwave diathermy is effective for the treatment of patients with chronic low back pain.

  8. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  9. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  10. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  11. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  12. Shortwave Array Spectroradiometer–Zenith (SASZe) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Shortwave Array Spectroradiometer – Zenith (SASZe) provides measurements of zenith spectral shortwave radiance at 1Hz over a continuous spectral range from approximately 300 nm to 1700 nm. The SASZe design connects an optical collector located outdoors to a pair of spectrometers and data collections system located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector incorporates a collimator yielding a 1-degree Full Width at Half Maximum (FWHM) field of view. The data-acquisition electronics and spectrometers include an in-line fiber optic shutter and two Avantes fiber-coupled grating spectroradiometers within a temperature-controlled container. The Avantes Avaspec ULS 2048 charge-coupled device (CCD) spectrometer covers the wavelength range from about 300-1100 nm with a pixel spacing of less than 0.6 nm and a spectral resolution of about 2.4 nm FWHM. The Avantes Avaspec NIR256-1.7 spectrometer covers the wavelength range from about 950 nm to 1700 nm with a pixel spacing of less than 4 nm and a spectral resolution of about 6 nm FWHM.

  13. [Circulatory changes in local and segmental use of shortwave diathermy].

    Science.gov (United States)

    Pages, I H

    1993-01-01

    6 healthy volunteers were examined for dose-effect relations, with a view to obtaining substantiated information for dosage in medical short-wave therapy. Venous occlusion plethysmography was used to measure total blood flow in the legs. So-called segmental treatment was checked, in addition to locally delimited high-frequency action. Low, medium, and high amounts of energy were therapeutically applied to the probands for 5, 10 and 20 minutes. Close correlations were found to exist between magnitude of blood flow, length of treatment and therapeutic intensity. The 20-minute variant proved to be the most effective application which differed from the literature according to which maximum intensification of blood flow was recorded at 10 minutes. The medium level of energy application was considered to be a highly favorable approach in terms of intensity. While higher doses usually provide the highest increase in blood flow, they may well cause discomfort. Blood flow remained increased after termination of therapy, usually for up to 60 minutes, in response to 20-minute medium-intensity short-wave treatment. Segmental high-frequency application likewise resulted in increased blood flow in both legs, though intensity values thus achieved were below results of locally delimited calf treatment.

  14. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  15. "Toward the development of a diffuse horizontal shortwave irradiance working standard"

    Energy Technology Data Exchange (ETDEWEB)

    J. Michalsky; R. Dolce; E.G. Dutton; M. Haeffelin; W. Jeffries; T. Stoffel; J. Hickey; A. Los; D. Mathias; L.J.B. McArthur; D. Nelson; R. Philipona; I. Reda; K. Rutledge; G. Zerlaut; B. Forgan; P. Kiedron; C. Long; and C. Gueymard

    2005-04-01

    The first intensive observation period (IOP) to simultaneously measure diffuse horizontal shortwave irradiance (scattered solar radiation that falls on a horizontal surface) with a wide array of shaded pyranometers suggested that a consensus might be reached that would permit the establishment of a standard with a smaller uncertainty than previously achieved. A second IOP has been held to refine the first IOP measurements using a uniform calibration protocol, offset corrections for all instruments and validation of those corrections, improvements in some of the instruments, and better data acquisition. The venue for both IOPs was the Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in northern Oklahoma. The nine days of measurements in October 2003 included a better mixture of clear and overcast conditions than during the first IOP and revealed considerable differences among the instruments responses for different cloud conditions. Four of the 15 instruments were eliminated as candidates to be included in the standard because of noisy signals, inadequate offset correction, or instability with respect to the majority of the measurements. Eight pyranometers agreed to within {+-}2% for clear-sky conditions. Three others have a high bias on clear days relative to these eight, but all eleven agree within {+-}2% on overcast days. The differences and causes of this behavior under clear and cloudy skies are examined.

  16. Development and application of a quality control procedure for short-wave diathermy units.

    Science.gov (United States)

    Shields, N; O'Hare, N; Boyle, G; Gormley, J

    2003-01-01

    Short-wave diathermy (SWD) is a form of radiofrequency (RF) radiation, operating at 27.12 MHz, that is used therapeutically by physiotherapists. Although this form of therapy is widely available, the management of the equipment is not often addressed by either physiotherapists or by medical physics/clinical engineering. A quality control protocol for SWD units, examining power output and electrical and mechanical condition, was developed and applied to 20 units used in clinical practice. In addition, an environmental assessment of where the units were used was also included. Results showed that the power output was generally stable (coefficient of variation range 0-8.8%) and reproducible (coefficient of variation range 0-6.8%). When the outputs from 12 similar units were compared, it was found that the relationship between the units' intensity settings and power output measurements was non-linear. Two units with mechanical timers were found to have inaccuracies that could contribute, under a 'worst-case' scenario, to a dosage error of up to 45%. Environmental analysis found that all treatment plinths in use contained metal parts, which could constitute a fire hazard, and no department examined was equipped with an RF screened room, a facility that would ensure that other persons in the vicinity were not exposed to excessive stray radiation.

  17. Research on the shortwave infrared hyperspectral imaging technology based on Integrated Stepwise filter

    Science.gov (United States)

    Wei, Liqing; Xiao, Xizhong; Wang, Yueming; Zhuang, Xiaoqiong; Wang, Jianyu

    2017-11-01

    Space-borne hyperspectral imagery is an important tool for earth sciences and industrial applications. Higher spatial and spectral resolutions have been sought persistently, although this results in more power, larger volume and weight during a space-borne spectral imager design. For miniaturization of hyperspectral imager and optimization of spectral splitting methods, several methods are compared in this paper. Spectral time delay integration (TDI) method with high transmittance Integrated Stepwise Filter (ISF) is proposed.With the method, an ISF imaging spectrometer with TDI could achieve higher system sensitivity than the traditional prism/grating imaging spectrometer. In addition, the ISF imaging spectrometer performs well in suppressing infrared background radiation produced by instrument. A compact shortwave infrared (SWIR) hyperspectral imager prototype based on HgCdTe covering the spectral range of 2.0-2.5 μm with 6 TDI stages was designed and integrated. To investigate the performance of ISF spectrometer, a method to derive the optimal blocking band curve of the ISF is introduced, along with known error characteristics. To assess spectral performance of the ISF system, a new spectral calibration based on blackbody radiation with temperature scanning is proposed. The results of the imaging experiment showed the merits of ISF. ISF has great application prospects in the field of high sensitivity and high resolution space-borne hyperspectral imagery.

  18. Spatial autocorrelation of radiation measured by the Earth Radiation Budget Experiment: Scene inhomogeneity and reciprocity violation

    Science.gov (United States)

    Davies, Roger

    1994-01-01

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles less than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.

  19. Pulsed Shortwave Diathermy and Prolonged Long-Duration Stretching Increase Dorsiflexion Range of Motion More Than Identical Stretching Without Diathermy

    OpenAIRE

    Peres, Steven E.; Draper, David O.; Knight, Kenneth L.; Ricard, Mark D.

    2002-01-01

    Objective: To compare the effects of 3 treatments on ankle dorsiflexion range of motion: prolonged long-duration stretching, pulsed shortwave diathermy followed by stretching, and pulsed shortwave diathermy, stretching, and ice combined.

  20. Short-wave diathermy: current clinical and safety practices.

    Science.gov (United States)

    Shields, Nora; Gormley, John; O'Hare, Neil

    2002-01-01

    Short-wave diathermy (SWD) is widely available, yet a comprehensive examination of current clinical practice remains absent from the literature. The present paper aims to assess clinical and safety issues in continuous (CSWD) and pulsed (PSWD) short-wave diathermy application and subsequently indicate areas for future research. A postal survey was carried out among 116 senior physiotherapists in 41 Irish hospital-based physiotherapy departments. The response rate to the study was 75%. Analysis found that PSWD was the preferred mode of treatment with 27% of respondents using it more than once daily. Respondents considered both modes of treatment indicated for a variety of conditions. CSWD was rated as an effective treatment for chronic osteoarthritis, polyarthritis, non-specific arthrosis and haematomas. PSWD was reported an effective modality for acute soft tissue injury, haematomas, acute osteoarthritis, sinusitis and rheumatoid arthritis. Dose selection varied greatly but tended to be based on the type, nature and duration of the condition. Analysis of safety practices uncovered concerning findings. Although a high level of agreement was found on measures for patient safety, 30% of respondents reported that no measures for operator safety were taken and only five respondents stated they remained a specified distance from SWD equipment. Measures to ensure the safety of other personnel in the physiotherapy department were also lacking. Given the availability of SWD equipment and its apparent efficacy in certain conditions, future research should aim to establish this by means of controlled clinical trials. The findings on safety practices underline the urgent need for comprehensive guidelines to ensure the safety of operators, patients and the general public during SWD application.

  1. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa; Efecto de la radiacion gamma sobre la fotosintesis neta y la respiracion de Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Fernandez, J.

    1983-07-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs.

  2. Assessment of physiotherapists' occupational exposure to radiofrequency electromagnetic fields from shortwave and microwave diathermy devices: a literature review.

    Science.gov (United States)

    Shah, Syed Ghulam Sarwar; Farrow, Alexandra

    2013-01-01

    We reviewed studies reporting the strength of radiofrequency (RF) electromagnetic fields (EMF) in physiotherapists' occupational environment. Studies from academic journals published from January 1990 to June 2010 were identified in nine online bibliographic databases. EMF strength was compared with occupational exposure limits (OELs) recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). In the reviewed studies, EMFs were measured at different distances (range 0.2 m to 6 m) from the console of diathermy devices, electrodes, and cables. For continuous shortwave diathermy (CSWD) (27.12 megahertz, MHz), measurements of EMFs at shortwave diathermy (PSWD) (27.12 MHz), EMF measurements at diathermy (MWD) (2.45 gigahertz, GHz), the maximum power density measured at diathermy devices may well be higher than OELs at specific distances, i.e., at 1 m, which is currently designated to be a safe distance for physiotherapists. The minimum safe distance for physiotherapists should be revised to at least 2 m for CSWD and 1.5 m for PSWD. The reviewed studies did not provide evidence of exceeding the ICNIRP's reference levels for occupational exposure at 1 m from MWD devices.

  3. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  4. Shortwave-infrared (SWIR emitters for biological imaging: a review of challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Thimsen Elijah

    2017-06-01

    Full Text Available Shortwave infrared radiation (SWIR is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400–650 nm and near-infrared (NIR, 700–900 nm wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a the effect of the energy gap between the excited and ground state on the quantum efficiency, (b the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented.

  5. Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities

    Science.gov (United States)

    Thimsen, Elijah; Sadtler, Bryce; Berezin, Mikhail Y.

    2017-06-01

    Shortwave infrared radiation (SWIR) is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400-650 nm) and near-infrared (NIR, 700-900 nm) wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a) the effect of the energy gap between the excited and ground state on the quantum efficiency, (b) the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c) the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented.

  6. New Shortwave Array Spectroradiometer-Hemispheric (SAS-He): Hyperspectral Design and Initial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Flynn, Connor J M.; Barnard, James C.; Ermold, Brian D.; Berg, Larry K.

    2016-10-31

    Aerosol optical depth (AOD) derived from hyperspectral measurements can serve as an invaluable input for simultaneous retrievals of particle size distributions and major trace gases. The required hyperspectral measurements are provided by a new ground-based radiometer, the so-called Shortwave Array Spectroradiometer-Hemispheric (SAS-He), recently developed with support from the Department of Energy (DOE) Office Atmospheric Radiation Measurement (ARM) Program. The SAS-He has wide spectral coverage (350-1700nm) and high spectral resolution: about 2.4 nm and 6 nm within 350-1000 nm and 970-1700 nm spectral ranges, respectively. To illustrate an initial performance of the SAS-He, we take advantage of integrated dataset collected during the ARM-supported Two-Column Aerosol Project (TCAP) over the US coastal region (Cape Cod, Massachusetts). This dataset includes AODs derived using data from Aerosol Robotic Network (AERONET) sunphotometer and Multi-Filter Rotating Shadowband Radiometer (MFRSR). We demonstrate that, on average, the SAS-He AODs closely match the MFRSR and AERONET AODs in the ultraviolet and visible spectral ranges for this area with highly variable AOD. Also, we discuss corrections of SAS-He total optical depth for gas absorption in the near-infrared spectral range and their operational implementation.

  7. Noise suppression algorithm of short-wave infrared star image for daytime star sensor

    Science.gov (United States)

    Wang, Wenjie; Wei, Xinguo; Li, Jian; Wang, Gangyi

    2017-09-01

    As an important development trend of star sensor technology, research on daytime star sensor technology can expand the applications of star sensor from spacecrafts to airborne vehicles. The biggest problem for daytime star sensor is the detection of dim stars from strong atmospheric background radiation. The use of short-wave infrared (SWIR) technology has been proven to be an effective approach to solve this problem. However, the SWIR star images inevitably contain stripe nonuniformity noise and defective pixels, which degrade the quality of the acquired images and affect the subsequent star spot extraction and star centroiding accuracy seriously. Because the characteristics of stripe nonuniformity and defective pixels in the SWIR star images change with time during a long term continuous operation, the method of one-time off-line calibration is not applicable. To solve this problem, an algorithm of noise suppression for SWIR star image is proposed. It firstly extracts non-background pixels by one-dimensional mean filtering. Then through one-dimensional feature point descriptor, which is used to distinguish the bright star spots pixels from defective pixels, various types of defective pixels are accurately detected. Finally, the method of moment matching is adopted to remove the stripe nonuniformity and the defective pixels are compensated effectively. The simulation experiments results indicates that the proposed algorithm can adaptively and effectively suppress the influence of stripe nonuniformity and defective pixels in SWIR star images and it is beneficial to obtain higher star centroiding accuracy.

  8. Reduction of radiofrequency exposure to the operator during short-wave diathermy treatments.

    Science.gov (United States)

    Skotte, J

    1986-01-01

    Radiofrequency electromagnetic fields near short-wave diathermy equipment operating at a frequency of 27.12 MHz can expose the physical therapist to levels above those recommended in standards for radiofrequency exposure in Western countries. Electric and magnetic fields around air-gap, diplode, monode and circuplode applicators were mapped by the author. Large differences in stray field intensities were found for the various applicators. The air-gap electrodes caused the highest levels of unwanted radiation, and the circuplode caused the lowest levels. The use of the circuplode would normally ensure an operator exposure far below the levels in recommended standards. In order to reduce the exposure during the first few minutes of a treatment, when air-gap electrodes or diplode are used, the operator should stand at the end of the diathermy console opposite to the applicator and cables and not, as is often the case, at one side. It is recommended that manufacturers change the design of the diathermy console (a minor modification) in order to ensure this operating position.

  9. Shortwave diathermy effects on 35S-sulfate uptake and glycosaminoglycan concentration in rabbit knee tissue.

    Science.gov (United States)

    Vanharanta, H; Eronen, I; Videman, T

    1982-01-01

    The effect of shortwave diathermy on glycosaminoglycan metabolism in different connective tissues of rabbit knee was studied by both autoradiography and radioactivity measurements and quantification of the separated glycosaminoglycans. Of 30 rabbits used, 12 received 100W shortwave diathermy to the right knee 10 minutes a day for 5 days. Autoradiography clearly showed a higher uptake of 35S-sulfate by the capsular tissues of the knee treated with shortwave diathermy than in the contralateral knee. The most prominent feature of the biochemical analysis was the increase in the galactosamine (43%) and glucosamine (26%) concentrations of the collateral ligament glycosaminoglycans of the treated knee.

  10. GALILEO PROBE NET FLUX RADIOMETER DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Galileo Probe Net Flux Radiometer (NFR) measured net and upward radiation fluxes in Jupiter's atmosphere between about 0.44 bars and 14 bars, using five spectral...

  11. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  12. Shortwave infrared for night vision applications at Fraunhofer IOSB

    Science.gov (United States)

    Adomeit, Uwe; Krieg, Jürgen

    2017-09-01

    "Nightglow" is an illumination phenomenon created by luminance processes in the higher earth atmosphere. It covers the spectral range from the ultraviolet up to the thermal infrared, but its maximum is found in the shortwave infrared (SWIR). Although known for a long time the advent of high sensitive SWIR detectors in the last decade enables today's use for night vision applications. In 2013 Fraunhofer IOSB started its assessment of SWIR for night vision applications. The approach was twofold. Continuous measurements were started to get an understanding of the highly variable illumination levels created by the nightglow under different environmental conditions. Future goal here is the standardization of the SWIR illumination levels corresponding to the defined visual full moon, quarter moon, starlight and overcast starlight ones. Additionally, performance assessment of SWIR detectors in comparison to the visual image intensifiers respectively low light focal plane array detectors were conducted in the laboratory as well as in the field. The paper gives history and status of IOSBs assessment of SWIR for night vision applications. It explains the ideas behind the illumination characterization, the conducted measurements and the inherent problem of artificial stray light. For sensor assessment it presents recent work on the influence of the spectral coverage (e. g. broadband versus atmospheric window only) on system performance for different environmental conditions.

  13. Pulsed short-wave diathermy effects on human fibroblast proliferation.

    Science.gov (United States)

    Hill, Jonathan; Lewis, Martyn; Mills, Pauline; Kielty, Cay

    2002-06-01

    To investigate the influence of pulsed short-wave diathermy (PSWD) on fibroblast and chondrocyte cell proliferation rates and to establish the influences of different dosages applied. Four single-blind trials. Laboratory, in vitro study. Human adult dermal fibroblast and chondrocyte cells were plated at known concentrations and incubated for 5 days. Exposure to PSWD, twice daily, on days 2, 3, and 4. After crystal violet staining (day 5), optical density (cell number) was determined spectrophotometrically. PSWD, given at mean power of 48W for 10 minutes, increased fibroblast proliferation compared with control groups (P<.001). There was a relationship between cell proliferation and the amount of energy given (P<0.001). The optimal mean power for proliferation was estimated to be 13.8W. While keeping mean power constant at 6W, altering pulse duration and pulse repetition rate dosage parameters did not have a significant effect on proliferation (P=.519). Chondrocyte proliferation also increased with PSWD exposure of 6W at 10 minutes duration (P=.015). In addition, treatment time was significantly associated with chondrocyte proliferation (P<.001). PSWD is associated with increased rates of fibroblast and chondrocyte proliferation in vitro, which is dose dependent. These results contribute to an understanding of the physiologic mechanisms underlying the therapeutic effects of PSWD. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  14. Shortwave Infrared Imaging Spectroscopy for Analysis of Ancient Paintings.

    Science.gov (United States)

    Wu, Taixia; Li, Guanghua; Yang, Zehua; Zhang, Hongming; Lei, Yong; Wang, Nan; Zhang, Lifu

    2017-05-01

    Spectral analysis is one of the main non-destructive techniques used to examine cultural relics. Hyperspectral imaging technology, especially on the shortwave infrared (SWIR) band, can clearly extract information from paintings, such as color, pigment composition, damage characteristics, and painting techniques. All of these characteristics have significant scientific and practical value in the study of ancient paintings and other relics and in their protection and restoration. In this study, an ancient painting, numbered Gu-6541, which had been found in the Forbidden City, served as a sample. A ground-based SWIR imaging spectrometer was used to produce hyperspectral images with high spatial and spectral resolution. Results indicated that SWIR imaging spectral data greatly facilitates the extraction of line features used in drafting, even using a single band image. It can be used to identify and classify mineral pigments used in paintings. These images can detect alterations and traces of daub used in painting corrections and, combined with hyperspectral data analysis methods such as band combination or principal component analysis, such information can be extracted to highlight outcomes of interest. In brief, the SWIR imaging spectral technique was found to have a highly favorable effect on the extraction of line features from drawings and on the identification of colors, classification of paintings, and extraction of hidden information.

  15. RadNet Air Quality (Deployable) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet Deployable Monitoring is designed to collect radiological and meteorological information and data asset needed to establish the impact of radiation levels on...

  16. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data

    Science.gov (United States)

    Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.

    2009-05-01

    Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.

  17. Muscle heating with Megapulse II shortwave diathermy and ReBound diathermy

    National Research Council Canada - National Science Library

    Draper, David O; Hawkes, Amanda R; Johnson, A Wayne; Diede, Mike T; Rigby, Justin H

    2013-01-01

    .... To compare the effects of the ReBound diathermy with an established deep-heating diathermy, the Megapulse II pulsed shortwave diathermy, on tissue temperature in the human triceps surae muscle. Crossover study...

  18. Shortwave diathermy and prolonged stretching increase hamstring flexibility more than prolonged stretching alone

    National Research Council Canada - National Science Library

    Draper, David O; Castro, Jennifer L; Feland, Brent; Schulthies, Shane; Eggett, Dennis

    2004-01-01

    A randomized, counterbalanced 2x3x5 repeated-measures design. To compare changes in hamstring flexibility after treatments of pulsed shortwave diathermy and prolonged stretch, sham diathermy and prolonged stretch, and control...

  19. Retrieval of ice cloud properties with visible/near-/shortwave-infrared (VNIR/SWIR) and thermal-infrared (TIR) obaservations

    Science.gov (United States)

    Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Yang, P.; Ding, J.

    2016-12-01

    An optical-estimation (OE) based ice cloud retrieval algorithm is developed with visible/near-/shortwave-infrared (VNIR/SWIR) and thermal-infrared (TIR) observations. It is known that VNIR/SWIR observations are more sensitive to optically thick clouds, while TIR observations are more sensitive to optically thin clouds. The combination of both VNIR/SWIR and TIR observations is expected to improve the overall ice cloud retrieval performance. In this study, we develop an optimal method to select different bands for retrieving different types of ice clouds (e.g., thin cirrus or deep convective cloud). With the optimally selected bands, retrieval uncertainties are minimized and information content are maximized. The retrieval algorithm is based on a clear-sky transmittance module and a radiative transfer model that cover the VNIR/SWIR and TIR regions. The forward model is computational efficiency and therefore can be used to a wide variaty of remote sensing applications.

  20. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    Science.gov (United States)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  1. Radiação, fotossíntese, rendimento e qualidade de frutos em macieiras 'Royal Gala' cobertas com telas antigranizo Radiation, photosynthesis, yield, and fruit quality of 'Royal Gala' apples under hail protection nets

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2007-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a intensidade e a qualidade da radiação solar disponibilizada às plantas e os seus impactos sobre a fotossíntese, rendimento e qualidade dos frutos, em macieiras 'Royal Gala', cobertas ou não com telas antigranizo nas cores branca e preta. A tela preta provocou redução maior na densidade de fluxo de fótons fotossinteticamente ativos acima do dossel das plantas (24,8%, em comparação à tela branca (21,2%. O interior do dossel das plantas sob tela preta recebeu menores valores de radiação ultravioleta, azul, verde, vermelho e vermelho distante, bem como da relação vermelho:vermelho distante, em relação às plantas descobertas. Estas alterações na quantidade e qualidade da luz sob tela preta aumentaram o teor de clorofila total e a área específica nas folhas, e reduziram a taxa fotossintética potencial, o peso de frutos por cm² de seção transversal de tronco e a coloração vermelha dos frutos. As telas antigranizo branca e preta reduziram a incidência de queimadura de sol, porém não tiveram efeito sobre a severidade de "russeting" e sobre o número de sementes por fruto.The objective of this work was to assess the amount and quality of the light supplied to plants, and the resulting impacts on photosynthesis, yield, and fruit quality of 'Royal Gala' apple trees uncovered or covered with white and black hail protection nets. The black net caused a higher reduction (24.8% of photosynthetic photon flux density, accumulated over the plant canopy during the day, than the white net (21.2%. The canopy internal portion of plants covered by black net received lower levels of ultraviolet, blue, green, red, and far red radiation, and light with a lower red:far red ratio, in comparison to uncovered plants; these ligth changes increased chlorophyll content and specific area of the leaves, and reduced the potential photosynthesis, the weight of fruits per cm² of trunk cross section area, and the

  2. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  3. Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance

    Science.gov (United States)

    Roberts, Yolanda, L.; Pilewskie, P.; Kindel, B. C.; Feldman, D. R.; Collins, W. D.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system that has been designed to monitor the Earth's climate with unprecedented absolute radiometric accuracy and SI traceability. Climate Observation System Simulation Experiments (OSSEs) have been generated to simulate CLARREO hyperspectral shortwave imager measurements to help define the measurement characteristics needed for CLARREO to achieve its objectives. To evaluate how well the OSSE-simulated reflectance spectra reproduce the Earth s climate variability at the beginning of the 21st century, we compared the variability of the OSSE reflectance spectra to that of the reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Principal component analysis (PCA) is a multivariate decomposition technique used to represent and study the variability of hyperspectral radiation measurements. Using PCA, between 99.7%and 99.9%of the total variance the OSSE and SCIAMACHY data sets can be explained by subspaces defined by six principal components (PCs). To quantify how much information is shared between the simulated and observed data sets, we spectrally decomposed the intersection of the two data set subspaces. The results from four cases in 2004 showed that the two data sets share eight (January and October) and seven (April and July) dimensions, which correspond to about 99.9% of the total SCIAMACHY variance for each month. The spectral nature of these shared spaces, understood by examining the transformed eigenvectors calculated from the subspace intersections, exhibit similar physical characteristics to the original PCs calculated from each data set, such as water vapor absorption, vegetation reflectance, and cloud reflectance.

  4. Simulação do saldo de radiação na Serra da Mantiqueira Simulation of net radiation in the Mantiqueira mountain

    Directory of Open Access Journals (Sweden)

    Pabricio M. O. Lopes

    2013-07-01

    Full Text Available A influência do desmatamento da Mata Atlântica sobre o microclima da Serra da Mantiqueira ainda não é totalmente compreendida. Para conhecer as consequências do desmatamento sobre o clima serrano é necessário realizar estudos sobre o balanço de radiação na superfície. A falta de dados possibilita conjugar imagens de satélite com dados meteorológicos em um Sistema de Informação Geográfica na determinação do balanço de radiação. O presente estudo teve por objetivo avaliar o modelo MTCLIM em dias de céu claro ou nublado para simular o balanço de radiação na Serra da Mantiqueira, divisa entre os estados de São Paulo, Minas Gerais e Rio de Janeiro, Brasil. Imagens diárias, semanais e dezesseis dias do sensor MODIS disponíveis em 2003 foram utilizadas em rotinas específicas do MTCLIM. Alvos específicos foram selecionados para avaliar o comportamento do balanço de radiação. Observou-se que o balanço de radiação acompanhou a topografia local e é influenciado pelo tipo de uso da terra. Conclui-se que a temperatura da superfície contribui para aumentar a temperatura do ar implicando em diminuição do balanço de radiação sobre pastagem. O modelo MTCLIM demonstrou boa correlação para a temperatura do ar (R² = 0,82 e para a radiação solar global (R² = 0,71.The influence of deforestation of the Atlantic Forest on the microclimate of the mountain Mantiqueira is not yet fully understood. To understand the consequences of deforestation on the highland climate research is needed about the surface radiation balance. The lack of data allows combining satellite images with meteorological data in a Geographic Information System in determining the radiation balance. The study aimed to evaluate the MTCLIM model in cloudless days or cloudy sky and simulate the radiation balance in the Mantiqueira mountain, between São Paulo, Minas Gerais and Rio de Janeiro, Brazil. Daily images, weekly and sixteen days MODIS available in

  5. The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011

    KAUST Repository

    Banks, Jamie R.

    2014-12-16

    © 2014. American Geophysical Union. All Rights Reserved. The direct clear-sky radiative effect (DRE) of atmospheric mineral dust is diagnosed over the Bordj Badji Mokhtar (BBM) supersite in the central Sahara during the Fennec campaign in June 2011. During this period, thick dust events were observed, with aerosol optical depth values peaking at 3.5. Satellite observations from Meteosat-9 are combined with ground-based radiative flux measurements to obtain estimates of DRE at the surface, top-of-atmosphere (TOA), and within the atmosphere. At TOA, there is a distinct daytime cycle in net DRE. Both shortwave (SW) and longwave (LW) DRE peak around noon and induce a warming of the Earth-atmosphere system. Toward dusk and dawn, the LW DRE reduces while the SW effect can switch sign triggering net radiative cooling. The net TOA DRE mean values range from -9 Wm-2 in the morning to heating of +59 Wm-2 near midday. At the surface, the SW dust impact is larger than at TOA: SW scattering and absorption by dust results in a mean surface radiative cooling of 145Wm-2. The corresponding mean surface heating caused by increased downward LW emission from the dust layer is a factor of 6 smaller. The dust impact on the magnitude and variability of the atmospheric radiative divergence is dominated by the SW cooling of the surface, modified by the smaller SW and LW effects at TOA. Consequently, dust has a mean daytime net radiative warming effect on the atmosphere of 153Wm-2.

  6. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  7. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  8. RadNet Air Data From Salt Lake City, UT

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. Mapeamento do saldo de radiação com imagens Landsat 5 e modelo de elevação digital Mapping net radiation using Landsat 5 imagery and digital elevation model

    Directory of Open Access Journals (Sweden)

    Frederico T. Di Pace

    2008-08-01

    Full Text Available O saldo de radiação é um importante componente do balanço de energia e tem grande relevância em estudos de evapotranspiração em áreas irrigadas e em bacias hidrográficas. Obteve-se, através do estudo, a estimativa do saldo de radiação à superfície terrestre, mediante imagens multiespectrais do Mapeador Temático do satélite Landsat 5, utilizando-se o SEBAL (Surface Energy Balance Algorithm for Land e o MED (Modelo de Elevação Digital. Os cálculos foram realizados com e sem utilização do MED, nos dias 04 de dezembro de 2000 e 04 de outubro de 2001. A temperatura da superfície (Ts e os valores do albedo estimados com o MED em 04/12/2000, foram um pouco superiores aos valores de Ts estimados sem a utilização deste modelo. Os resultados demonstraram que na estimativa do saldo de radiação com base em imagens MT - Landsat 5, se deve levar em consideração os efeitos topográficos da região de estudo.Net radiation is an important component of the surface energy balance in studies of evapotranspiration of irrigated crops and in evaporation of hydrological basins. The objective of this research was to determine the surface radiation balance, by using multispectral imagery of the Thematic Mapper (Landsat 5 satellite. In this study the SEBAL (Surface Energy Balance Algorithm for Land and DEM (Digital Elevation Model were used in order to correct the albedo and vegetation indices under the influence of the slope aspects were used for each study area. TM (Thematic Mapper imageries were used for two different dates (December 4, 2000 and October 4, 2001. The calculations were accomplished with and without use of the DEM. The land surface temperature and albedo values with DEM were larger than without DEM in both years, for two selected areas. Results also show that for obtaining net radiation based on imagery of the TM - Landsat 5 the topographical effects of the study area must be considered.

  10. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  11. Using surface remote sensors to derive radiative characteristics of Mixed-Phase Clouds: an example from M-PACE

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2011-12-01

    Full Text Available Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE Atmospheric Radiation Measurement (ARM Mixed-Phase Arctic Clouds Experiment (M-PACE between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice water paths are found to range between 11.0–366.4 (0.5–114.1 gm−2, and cloud physical thicknesses fall between 286–2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm−2.

  12. MODIS/Terra+Aqua Surface Radiation Daily/3-Hour L3 Global 5km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MCD18A1 Version 6 is a MODIS Terra and Aqua combined Downward Shortwave Radiation (DSR) gridded L3 product produced daily at 5 kilometer pixel resolution with...

  13. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  14. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  15. Top-of-the-atmosphere shortwave flux estimation from UV observations: An empirical approach using A-Train Satellite data

    Science.gov (United States)

    Gupta, P.; Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.

    2012-12-01

    Measurements of top of the atmosphere (TOA) radiation are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in the orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long-wave and short-wave region of electromagnetic spectrum, and the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths. Top of the atmosphere SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). OMI measurements have been successfully utilized to derive the information on trace gases (e.g., O3, NO2, and SO2), clouds, and absorbing aerosols. In this paper, OMI retrievals of cloud/aerosol parameters and O3 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. These input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column O3, and sun-satellite viewing geometry from OMI as well as wind speed and total column water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content from SeaWiFs satellite. We

  16. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  17. Pregnancy outcome following exposure to shortwaves among female physiotherapists in Israel.

    Science.gov (United States)

    Lerman, Y; Jacubovich, R; Green, M S

    2001-05-01

    The findings of the few epidemiological studies on the possible association between shortwave diathermy use by pregnant physiotherapists and adverse pregnancy outcome are inconsistent. We investigated such an association among physiotherapists in Israel. Individualized data on exposure to shortwaves, ultrasound, and heavy lifting were collected by questionnaires and telephone interviews. The 434 studied women included 930 pregnancies: 175 ended in spontaneous abortions, 45 had fetal malformations, 47 were delivered prematurely, and 33 infants had low birth weight. The remaining 630 normal pregnancies comprised the control group. Univariate analysis showed that exposure to shortwaves was associated with a significantly increased odds ratio (O.R.) for congenital malformations (O.R. 2.24, CI 1.27-4.83, P =.006) and low birth weight (O.R. 2.99, CI 1.32-6,79, P =.006). This effect increased in a dose-related manner. After controlling for potential confounding variables, only low birth weight reached statistical significance (O.R. 2.75, CI 1.07-7.04, P =.03). From the potentially confounding variables tested, febrile disease during pregnancy was found to be significantly associated with low birth weight (O.R. 3.37, CI 1.38-8.25, P =.01). The findings of our study suggest that shortwaves have potentially harmful effects on pregnancy outcome, specifically low birth weight. Copyright 2001 Wiley-Liss, Inc.

  18. Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation

    Science.gov (United States)

    Kim, Jinwon; Waliser, Duane E.; Cesana, Gregory V.; Jiang, Xianan; L'Ecuyer, Tristan; Neena, J. M.

    2017-04-01

    The cloud water content (CW) and radiative heating rate (QR) structures related to northward propagating boreal summer intraseasonal oscillations (BSISOs) are analyzed using data from A-train satellites in conjunction with the ERA-Interim reanalysis. It is found that the northward movement of CW- and QR anomalies are closely synchronized with the northward movement of BSISO precipitation maxima. Commensurate with the northward propagating BSISO precipitation maxima, the CW anomalies exhibit positive ice (liquid) CW maxima in the upper (middle/low) troposphere with a prominent tilting structure in which the low-tropospheric (upper-tropospheric) liquid (ice) CW maximum leads (lags) the BSISO precipitation maximum. The BSISO-related shortwave heating (QSW) heats (cools) the upper (low) troposphere; the longwave heating (QLW) cools (heats) the upper (middle/low) troposphere. The resulting net radiative heating (QRN), being dominated by QLW, cools (heats) the atmosphere most prominently above the 200 hPa level (below the 600 hPa level). Enhanced clouds in the upper and middle troposphere appears to play a critical role in increasing low-level QLW and QRN. The vertically-integrated QSW, QLW and QRN are positive in the region of enhanced CW with the maximum QRN near the latitude of the BSISO precipitation maximum. The bottom-heavy radiative heating anomaly resulting from the cloud-radiation interaction may act to strengthen convection.

  19. Saldo de radiação diurno em dosséis de batata como função da radiação solar global Daytime net radiation on potato canopies as a function of global solar radiation

    Directory of Open Access Journals (Sweden)

    Arno Bernardo Heldwein

    2012-03-01

    Full Text Available Objetivou-se determinar a relação entre o saldo de radiação (Rn e a radiação solar global incidente (Rg sobre dosséis de plantas de batata em diferentes épocas de cultivo e fases de desenvolvimento para a geração de modelos lineares que representem essa relação. Os experimentos foram conduzidos na área experimental da Universidade Federal de Santa Maria, RS, nos anos de 2004 a 2007. O Rn foi medido acima do dossel de plantas de seis experimentos de batata e a Rg em uma estação meteorológica automática distante 30 a 80 m dos experimentos. Para fins de cálculo, foram efetuadas as somas do período diurno, de Rn e de Rg, obtendo-se a relação entre Rn e Rg para cada dia. Também foi estimado o índice de área foliar das plantas. Foram obtidos modelos com elevado coeficiente de determinação e baixa raiz do quadrado médio do erro no teste entre valores independentes medidos e estimados, indicando boa precisão para a estimativa do saldo de radiação em dosséis de batata, em função da radiação solar global, independentemente da época do ano. A função linear geral obtida com dados de diferentes anos, épocas de cultivo e genótipos não foi sensível ao índice de área foliar, resultando em: Rn = 0,6410 Rg (R² = 0,976, que no teste apresentou RQME = 0,75 MJ m-2 dia-1. Conclui-se que o Rn pode ser estimado por meio da Rg medida nas estações automáticas com precisão suficiente para fins de modelagem.The objective of this work was to determine the relationship between net radiation (Rn and incident solar radiation (Rg in potato canopy at six different cultivation periods and stages of development in order to generate linear models that describe this relationship. The experiments were conducted in the experimental area of University of Santa Maria, RS, in the years of 2004 to 2007. Rn was measured by net radiometers in six experiments and Rg by automatic weather station, situated 30 to 80 m from the experiments. For

  20. Human projected area factors for detailed direct and diffuse solar radiation analysis

    DEFF Research Database (Denmark)

    Kubaha, K.; Fiala, D.; Toftum, Jørn

    2004-01-01

    Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...

  1. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  2. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    Science.gov (United States)

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer

    NARCIS (Netherlands)

    Wilde Barbaro, E.; Vilà-Guerau de Arellano, J.; Krol, M.C.; Holtslag, A.A.M.

    2013-01-01

    We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depthequilibrium for different vertical profiles of

  4. BOREAS Follow-On HMet-01 Level-2 GOES-8 1996 Shortwave and Longwave Radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS RSS-14 team collected and processed several Level-1 GOES-7 and GOES-8 image data sets for 1994-1996, and GOES-7 Level-2 for 1994 over the BOREAS study...

  5. Global analysis of radiative forcing from fire-induced shortwave albedo change

    NARCIS (Netherlands)

    López-Saldaña, G.; Bistinas, I.; Pereira, J. M.C.

    2015-01-01

    Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale.

  6. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  7. Radiation budget changes with dry forest clearing in temperate Argentina.

    Science.gov (United States)

    Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G

    2013-04-01

    Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.

  8. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  9. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2017-05-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human (R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  10. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  11. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  12. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  13. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  14. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  15. Pain relief at trigger points: a comparison of moist heat and shortwave diathermy.

    Science.gov (United States)

    McCray, R E; Patton, N J

    1984-01-01

    This study compared the pain-relieving effects of shortwave diathermy and moist heat on trigger points. Patients with trigger points on the neck or back were randomly assigned one of these treatments. The sensitivity of each trigger point was measured with a pressure algometer before treatment, 5 minutes after treatment, and 30 minutes after treatment. Sensitive trigger points, at which 2000 grams of force or less caused pain, were more responsive to treatment than moderate trigger points (painful only at 2000 grams or greater force). Both treatments were effective in relieving the pain of sensitive trigger points but shortwave diathermy was more effective at decreasing the sensitivity of both sensitive and moderate trigger points (P > 0.0581). The pressure algometer was shown to be a useful device for objectively measuring pain and may be useful in selecting the most effective type of treatment for trigger points.J Orthop Sports Phys Ther 1984;5(4):175-178.

  16. 730-nm optical parametric conversion from near- to short-wave infrared band

    DEFF Research Database (Denmark)

    Boggio, J.M.C.; Windmiller, J.R.; Knutzen, M.

    2008-01-01

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling sin...... single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.......A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling...

  17. Accounting for the effects of Sastrugi in the CERES Clear-Sky Antarctic shortwave ADMs

    OpenAIRE

    Corbett, J.; Su, W.

    2015-01-01

    The Cloud and Earth's Radiant Energy System (CERES) Instruments on NASA's Terra, Aqua and Soumi-NPP satellites are used to provide a long-term measurement of the Earth's energy budget. To accomplish this, the radiances measured by the instruments must be inverted to fluxes by the use of a scene-type dependent angular distribution model (ADM). For permanent snow scenes over Antarctica, shortwave ADMs are created by compositing radiance measurements over the full viewing zenith and azimuth...

  18. Net clinical benefit analysis of radiation therapy oncology group 0525: a phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma.

    Science.gov (United States)

    Armstrong, Terri S; Wefel, Jeffrey S; Wang, Meihua; Gilbert, Mark R; Won, Minhee; Bottomley, Andrew; Mendoza, Tito R; Coens, Corneel; Werner-Wasik, Maria; Brachman, David G; Choucair, Ali K; Mehta, Minesh

    2013-11-10

    Radiation Therapy Oncology Group trial 0525 tested whether dose-intensifying temozolomide versus standard chemoradiotherapy improves overall survival (OS) or progression-free survival (PFS) in newly diagnosed glioblastoma. Tests of neurocognitive function (NCF) and symptoms (using the MD Anderson Symptom Inventory-Brain Tumor module; MDASI-BT) and of quality of life (European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire [EORTC QLQ] -C30/BN20) examined the net clinical benefit (NCB) of therapy. NCF tests (Hopkins Verbal Learning Test-Revised, Trail Making Test, and Controlled Oral Word Association), MDASI-BT, and EORTC QLQ-C30/BN20 were completed in a subset of patients. Multivariate Cox proportional hazard regression modeling determined the prognostic value of baseline and early change from baseline to cycle 1 for OS and PFS. Two-sample proportional test statistic was used to evaluate differences between treatments (dose-dense v standard-dose) on NCB measures from baseline to cycle 4 in stable patients. Overall, 182 patients participated in the study. Baseline NCF tests and the physical functioning quality of life scale were associated with OS and PFS. Baseline to cycle 1 in all NCB components were associated with OS and PFS. There was greater deterioration in the dose-dense arm from baseline to cycle 4 in the Global Health and Motor Function subscales (EORTC QLQ-C30/BN20) as well as in overall symptom burden, overall symptom interference, and activity-related symptom interference subscales (MDASI-BT). There were no between-arm differences in NCF. Longitudinal collection of NCB measures is feasible in cooperative group studies and provides an added dimension to standard outcome measures. Greater adverse symptom burden and functional interference, as well as decreased global health and motor function were observed in patients randomly assigned to the dose-dense arm. Baseline and early change in NCB measures were associated with

  19. Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet

    Science.gov (United States)

    Pirazzini, R.; Räisänen, P.; Vihma, T.; Johansson, M.; Tastula, E.-M.

    2015-12-01

    The albedo of a snowpack depends on the single-scattering properties of individual snow crystals, which have a variety of shapes and sizes, and are often bounded in clusters. From the point of view of optical modelling, it is essential to identify the geometric dimensions of the population of snow particles that synthesize the scattering properties of the snowpack surface. This involves challenges related to the complexity of modelling the radiative transfer in such an irregular medium, and to the difficulty of measuring microphysical snow properties. In this paper, we illustrate a method to measure the size distribution of a snow particle parameter, which roughly corresponds to the smallest snow particle dimension, from two-dimensional macro photos of snow particles taken in Antarctica at the surface layer of a melting ice sheet. We demonstrate that this snow particle metric corresponds well to the optically equivalent effective radius utilized in radiative transfer modelling, in particular when snow particles are modelled with the droxtal shape. The surface albedo modelled on the basis of the measured snow particle metric showed an excellent match with the observed albedo when there was fresh or drifted snow at the surface. In the other cases, a good match was present only for wavelengths longer than 1.4 μm. For shorter wavelengths, our modelled albedo generally overestimated the observations, in particular when surface hoar and faceted polycrystals were present at the surface and surface roughness was increased by millimetre-scale cavities generated during melting. Our results indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of millimetre-scale surface roughness on the shortwave infrared albedo.

  20. Comparison of three temperature control systems applications for a special homemade shortwave infrared spatial remote sensor

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band ranging from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper compares three different kinds of methods to control temperature of the sensor. First design uses a temperature control chip Max1978 from Maxim Company. Second design uses ADN8830 from ANALOG Company. Third design is based on FPGA device APA300. Experiment shows that MAX1978 has driving mosfet inside its chip which makes the stability is not appropriate for this homemade shortwave sensor. While the ADN8830 the supply power is limited to 5V, which also limits the driving power of the chip, experiments show that ADN8830 works very well when the voltage is below 5V, but the result is not acceptable when sensor demand more driving current. The FPGA design covers all the disadvantages above, but it introduced a new problem, the electrical circuit takes much more board resources than MAX1978 and ADN8830.

  1. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  2. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  3. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  4. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    Science.gov (United States)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  5. Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis

    Science.gov (United States)

    Li, Jiandong; Wang, Wei-Chyung; Dong, Xiquan; Mao, Jiangyu

    2017-11-01

    This study uses 2001-2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of - 40 W m- 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

  6. Atmospheric radiative feedbacks associated with transient climate change and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Colman, Robert A.; Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne, VIC (Australia)

    2010-06-15

    This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO{sub 2} increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO{sub 2}. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback - in contrast to the dominant negative low

  7. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  8. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  9. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  10. Annual and Seasonal Variability of Net Heat Budget in the Northern Indian Ocean

    Science.gov (United States)

    Pinker, Rachel T.; Bentamy, Abderrahim; Chen, Wen; Kumar, M. R. Ramesh; Mathew, Simi; Venkatesan, Ramasamy

    2017-04-01

    In this study we investigate the spatial and temporal features of the net heat budget over the Northern Indian Ocean (focusing on the Arabian Sea and the Bay of Bengal), using satellite and numerical model estimates. The main objective is to characterize the annual, seasonal, and inter-annual patterns over this basin of climatic significance. To assess the temporal variability, several turbulent and radiative fluxes are used The turbulent fluxes are based on information from the Institut Français pout la Recherche et l'Exploitation de la MER (IFREMER V3), the Hamburg Ocean-Atmosphere Parameters from Satellite (HOAPS V3), the SEAFLUX V1, the Japanese Ocean Flux Data sets with Use of Remote Sensing Observations (J-OFURO V2), the Objective Analysis Fluxes (OAFlux V2), the European Center for Medium Weather Forecasts (ECMWF), the ERA Interim, the National centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis, CFSR, and the National Aeronautics Space Administration (NASA) Modern Era Retrospective Analysis for Research and Application (MERRA). The radiative fluxes, both shortwave and longwave, include those produced at the University of Maryland (UMD) as well as those derived from several of the above mentioned numerical models. An attempt will be made to evaluate the various fluxes against buoy observations such as those from the RAMA array. The National Institute of Ocean Technology, Chennai, India under its Ocean Observation Program has deployed a series of OMNI Buoys both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure the radiation as well as other parameters. Comparison has been done with the OMNI observations and good agreement has been found with the current set-up of the instrument at a 3 m level. We found significant differences between the various products at specific locations. The ultimate objective is to investigates the sources of the differences in terms of atmospheric variables (surface

  11. Radiation in controlled environments: influence of lamp type and filter material

    Science.gov (United States)

    Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.

    1988-01-01

    Radiation in controlled environments was characterized using fluorescent and various high-intensity-discharge (HID) lamps, including metal halide, low-pressure sodium, and high-pressure sodium as the radiation source. The effects of water, glass, or Plexiglas filters on radiation were determined. Photosynthetic photon flux (PPF, 400 to 700 nm), spectra (400 to 1000 nm), shortwave radiation (285-2800 nm), and total radiation (300 to 100,000 nm) were measured, and photosynthetically active radiation (PAR, 400 to 700 nm) and longwave radiation (2800 to 100,000 nm) were calculated. Measurement of PPF alone was not an adequate characterization of the radiation environment. Total radiant flux varied among lamp types at equal PPF. HID lamps provided a lower percentage of longwave radiation than fluorescent lamps, but, when HID lamps provided PPF levels greater than that possible with fluorescent lamps, the amount of longwave radiation was high. Water was the most effective longwave radiation filter. Glass and Plexiglas similarly filtered longwave more than shortwave radiation, but transmission of nonphotosynthetic shortwave radiation was less with Plexiglas than glass. The filter materials tested would not be expected to influence photomorphogenesis because radiation in the action spectrum of phytochrome was not altered, but this may not be the only pigment involved.

  12. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Science.gov (United States)

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  13. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  14. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  15. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  16. Ultraviolet radiation in the rhône river lenses of low salinity and in marine waters of the northwestern mediterranean sea: attenuation and effects on bacterial activities and net community production.

    Science.gov (United States)

    Joux, Fabien; Jeffrey, Wade H; Abboudi, Maher; Neveux, Jacques; Pujo-Pay, Mireille; Oriol, Louise; Naudin, Jean-Jacques

    2009-01-01

    The high content in nutrients of freshwater outflows induces highly productive and buoyant plumes spreading over marine waters (MW). As a consequence, the growth of organisms developing in these low-salinity waters (LSW) might be potentially affected by UV-R (280-400 nm). This study investigated the penetration of UV-R and its impact on net community production (NCP) and bacterial protein (B(PROT)S) and DNA (B(DNA)S) synthesis in mesotrophic-LSW formed from the Rhône River and in oligotrophic MW of the Northwestern Mediterranean Sea (Gulf of Lions) in May 2006. High concentrations of chlorophyll a (up to 8 microg L(-1)) measured in the LSW (<37.8 psu, 0-10 m) were the main factor influencing the diffuse attenuation coefficients (K(d)) of both UV-R and photosynthetically active radiation (PAR). The mean ratio of the K(d) measured between the LSW and the MW increased with wavelength from 2.4 at 305 nm to 2.9 at 380 nm and 3.1 for PAR indicating more similarity in the UV region. NCP was severely inhibited by UV-R at the surface of the LSW, whereas no effect was measured in the surrounding MW. In contrast, B(PROT)S and B(DNA)S were affected deeper by UV-R in the MW (up to 8 m depth) compared to the LSW where inhibition was only observed at the surface. Differences in response of bacteria in LSW and MW are largely explained by differences in UV-R transparency; however, transplant experiments indicate that bacterial assemblages from the MW were also more sensitive to UV-R than those present in the LSW. We also observed that higher activity of bacteria after nutrient additions increased their sensitivity to UV-R during the day, but favored their recovery during the night incubation period for both LSW and MW. Results suggest that riverine and nutrient inputs may alter the effects of UV-R on microbial activity by attenuating the UV-R penetration and by modifying the physiology of bacteria.

  17. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  18. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  19. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  20. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  1. Evaluation of a model to Simulate Net Radiation Over a Vineyar cv. Cabernet Sauvignon Evaluación de un Modelo para Simular el Flujo de Radiación Neta Sobre un Viñedo cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Marcos Carrasco

    2008-06-01

    Full Text Available Net radiation (Rn is the main energy balance component controlling evaporation and transpiration processes. In this regard, this study evaluated two models to estimate Rno above a commercial vineyard (Vitis vinifera cv. Cabernet Sauvignon located in Pencahue Valley, Maule Region (35º22’ S; 71°47’ Wl; 75 m.a.s.l.. An automatic meteorological station (AMS was installed in the central part of the vineyard and used to measure Rn, solar radiation (Rsi, air temperature (Ta, canopy temperature (Tf and relative humidity (RH. On a 30 min interval, results indicated that model Rne1 (assuming Ta ≠ Tf and model Rne2 (assuming Ta = Tf were able to estimate Rn with a mean absolute error (MAE of less than 40 W m-2 and root mean square error (RMSE of less than 61 W m-2. On daily intervals, the two models estimated Rno with MAE and RMSE values of less than 1.68 and 1.75 MJ m-2 d-1, respectively. In global terms, the models presented errors below 9 and 11% on 30 min and daily intervals, respectively. Furthermore, this study indicated that the incorporation of canopy temperature did not improve the Rno estimation substantially, in spite of having a temperature gradient (dT = Tf - Ta between -3 and to 4ºC. These results suggest that an Rne2 model could be used to estimate Rno using Rsi, Ta and RH measurements.El flujo de radiación neta (Rn es el principal componente del balance de energía que determina los procesos de evaporación y transpiración. En este contexto, este estudio evaluó dos modelos para estimar Rno sobre un viñedo (Vitis vinifera L. cv. Cabernet Sauvignon comercial ubicado en el Valle de Pencahue, Región del Maule (35º22’ S; 71º47’ Oeste; 75 m.s.n.m.. Para esto, se ubicó una estación meteorológica automática (AME en la parte central del viñedo para medir Rn, radiación solar (Rsi, temperatura del aire (Ta, temperatura del dosel (Tf y humedad relativa (HR. En intervalos de tiempo de 30 min, los resultados indicaron que el

  2. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes.

    Science.gov (United States)

    Naczynski, Dominik Jan; Sun, Conroy; Türkcan, Silvan; Jenkins, Cesare; Koh, Ai Leen; Ikeda, Debra; Pratx, Guillem; Xing, Lei

    2015-01-14

    Shortwave infrared (SWIR or NIR-II) light provides significant advantages for imaging biological structures due to reduced autofluorescence and photon scattering. Here, we report on the development of rare-earth nanoprobes that exhibit SWIR luminescence following X-ray irradiation. We demonstrate the ability of X-ray-induced SWIR luminescence (X-IR) to monitor biodistribution and map lymphatic drainage. Our results indicate X-IR imaging is a promising new modality for preclinical applications and has potential for dual-modality molecular disease imaging.

  3. High-power parametric conversion from near-infrared to short-wave infrared.

    Science.gov (United States)

    Billat, Adrien; Cordette, Steevy; Tseng, Yu-Pei; Kharitonov, Svyatoslav; Brès, Camille-Sophie

    2014-06-16

    We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output up to 700 mW of power at 1940 nm. The source is tunable over wavelength intervals comprised between 1850 nm and 2070 nm depending on its configuration. The output can be single or multimode while the optical signal to noise ratio ranges from 25 and 40 dB. The architecture is based on the integrated association of a fiber optical parametric amplifier and a Thulium doped fiber amplifier.

  4. Comparative study of shortwave heating patterns in phantoms with polyethylene and silk partitions.

    Science.gov (United States)

    Moon, C Y; Kantor, G; Athey, T W; Ho, H S

    1988-01-01

    Specific absorption rate (SAR) and effective depths of heating patterns induced by a shortwave, pancake diathermy applicator in fat-muscle phantom are measured. Midplane partitions of polyethylene and silk screen with and without contact chemicals are used. Thermographically obtained SAR data show nearly the same value for silk-screen partitions with and without contact chemicals and slightly lower values with polyethylene partitions, provided that the partition midplanes are tightly pressed against each other. Thermometry data indicate that for low-power exposures the major error in thermographic measurements obtained after termination of heating is due to thermal diffusion and not evaporative cooling in the opened midplane of the phantom.

  5. 730-nm optical parametric conversion from near- to short-wave infrared band.

    Science.gov (United States)

    Chavez Boggio, J M; Windmiller, J R; Knutzen, M; Jiang, R; Bres, C; Alic, N; Stossel, B; Rottwitt, K; Radic, S

    2008-04-14

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.

  6. Investigation of optical and radiative properties of aerosols during an intense dust storm: A regional climate modeling approach

    Science.gov (United States)

    Bran, Sherin Hassan; Jose, Subin; Srivastava, Rohit

    2018-03-01

    The dynamical and optical properties of aerosols during an intense dust storm event over the Arabian Sea have been studied using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and space borne instruments such as MODIS, MISR, CALIPSO and CERES during the period 17 to 24 March, 2012. The model captures the spatio-temporal and vertical variations of meteorological and optical parameters, however an overestimation in simulated aerosol optical parameters are observed when compared to satellite retrievals. The correlation coefficients (R) between simulated and observed AOD from MODIS and MISR are found to be 0.54 and 0.32 respectively. Model simulated AOD on dusty days (20 and 21 March 2012) increased by 2-3 times compared to non-dusty days (17 and 24 March 2012) and the single scattering albedo (SSA) and the asymmetry parameter increased from 0.96 to 0.99 and from 0.56 to 0.66, respectively. The R between simulated shortwave (SW) radiation at top of the atmosphere (TOA) and TOA SW radiation obtained from CERES is found to be 0.43, however the model simulated SW radiation at the TOA showed an underestimation with respect to CERES. The shortwave aerosol radiative forcing (SWARF) during the event over surface and TOA are ∼ -19.3 and ∼ -14.2 Wm-2 respectively, which is about 2-5 times higher when compared to the respective forcing values during non-dust days. Estimated net radiative forcing was in the range of -13 to -21 Wm-2 at TOA and -12 to -20 Wm-2 at the surface. The heating rate during event days within the lower atmosphere near 850 hPa is found to 0.32 - 0.4 K day-1 and 0.18 - 0.22 K day-1 on dusty and non-dusty days, respectively. Results of this study may be useful for a better modeling of atmospheric aerosols and its optical and radiative properties over oceanic region.

  7. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  8. Environmental Radiation Data (ERD) Journal Report 166

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of April - June 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  9. Environmental Radiation Data (ERD) Journal Report 156

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of October - December 2013. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  10. Environmental Radiation Data (ERD) Journal Report 161

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of January - March 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  11. Environmental Radiation Data (ERD) Journal Report 158

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of April - June 2014. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  12. Environmental Radiation Data (ERD) Journal Report 157

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of January - March 2014. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  13. Environmental Radiation Data (ERD) Journal Report 160

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of October - December 2014. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  14. Environmental Radiation Data (ERD) Journal Report 163

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of July - September 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  15. Environmental Radiation Data (ERD) Journal Report 159

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of July - September 2014. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  16. Environmental Radiation Data (ERD) Journal Report 167

    Science.gov (United States)

    RadNet Environmental Radiation Data (ERD) journal report for the period of July – September 2016. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  17. Environmental Radiation Data (ERD) Journal Report 154

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of April - June 2013. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  18. Environmental Radiation Data (ERD) Journal Report 155

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of July - September 2013. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  19. Environmental Radiation Data (ERD) Journal Report 162

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of April - June 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  20. Environmental Radiation Data (ERD) Journal Report 165

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of January - March 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  1. Environmental Radiation Data (ERD) Journal Report 164

    Science.gov (United States)

    RadNet environmental radiation monitoring data report for the period of October - December 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  2. Environmental Radiation Data (ERD) Journal Report 168

    Science.gov (United States)

    RadNet Environmental Radiation Data (ERD) journal report for the period of October - December 2016. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  3. Preliminary results of a three-dimensional radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    O`Hirok, W. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  4. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    Science.gov (United States)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  5. La plataforma .NET

    OpenAIRE

    Fornas Estrada, Miquel

    2008-01-01

    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  6. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  7. Miscarriages among female physical therapists who report using radio- and microwave-frequency electromagnetic radiation.

    Science.gov (United States)

    Ouellet-Hellstrom, R; Stewart, W F

    1993-11-15

    Physical therapists are exposed to radio- and microwave-frequency electromagnetic radiation by operating shortwave and microwave diathermy units. Recent studies suggest that use of shortwave diathermy is associated with an excess risk of birth defects, perinatal deaths, and late spontaneous abortions among the offspring of exposed female therapists. To assess the impact of occupational use of microwave and shortwave diathermy at the time of conception, the authors mailed questionnaires to 42,403 physical therapists in 1989. Both occupational and reproductive histories were obtained. Exposures to shortwave and microwave diathermy were both assessed in the same fashion and were examined in relation to early recognized fetal loss in a nested case-control design. A total of 1,753 case pregnancies (miscarriages) were matched to 1,753 incidence density control pregnancies (other pregnancies except ectopic pregnancies). A pregnancy was considered "exposed" if the mother reported using microwave or shortwave diathermy anytime during the 6 months prior to the first trimester or during the first trimester. Pregnancies of mothers reporting microwave use 6 months prior to the pregnancy or during the first trimester were more likely to result in miscarriage (odds ratio (OR) = 1.28, 95% confidence interval (CI) 1.02-1.59). The odds ratio increased with increasing level of exposure (chi 2 = 7.25, p shortwave diathermy equipment (OR = 1.07, 95% CI 0.91-1.24). The odds ratio in the highest exposure group was 0.87.

  8. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  9. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  10. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  11. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  12. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  13. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  14. Automatic handling of shade net and irrigation in greenhouse with tomatoes

    Directory of Open Access Journals (Sweden)

    Federico Hahn

    2011-03-01

    Full Text Available Greenhouse vegetable production in México and worldwide has become important. Following greenhouses automation, a simple controller was designed to open and close shading nets to reduce incident radiation and excessive evapotranspiration. Irrigation period were radiation controlled and did not turn on the pump with clouds or moon radiation, saving 35% of water. The nets remained closed during the night and were opened during scarce radiation. In the tomato greenhouse experiment, every three months analysis was carried on manual and automatic net control. Maximum incident radiation was achieved in May and August when no shading nets were used. Air temperature increased to 28°C in August decreasing by 50% fruit size. Fruit temperature decreased 2.5°C when nets were used decreasing tomato cracking.

  15. Shortwave diathermy and prolonged stretching increase hamstring flexibility more than prolonged stretching alone.

    Science.gov (United States)

    Draper, David O; Castro, Jennifer L; Feland, Brent; Schulthies, Shane; Eggett, Dennis

    2004-01-01

    A randomized, counterbalanced 2x3x5 repeated-measures design. To compare changes in hamstring flexibility after treatments of pulsed shortwave diathermy and prolonged stretch, sham diathermy and prolonged stretch, and control. Heat and stretch techniques have been touted for years. To date, the effect of shortwave diathermy and hamstring stretching has not been studied. Because diathermy heats a large area and penetrates deep into the muscle, use of this device prior to or during hamstring stretching may increase flexibility. Thirty college-age students (mean age, 21.5 years) with tight hamstrings (inability to achieve greater than 160 degrees knee extension at 90 degrees hip flexion) participated. Subjects were assigned to 1 of 3 groups: diathermy and stretch, sham diathermy and stretch, and control). Range of motion was recorded before and after each treatment for 5 days and on day 8. A straight leg-raise stretch was performed using a mechanical apparatus. Subjects in the diathermy-and-stretch group received 10 minutes of diathermy (distal hamstrings) followed by 5 minutes of simultaneous diathermy and stretch, followed by 5 minutes of stretching only. Subjects in the sham-diathermy-and-stretch group followed the same protocol, but with the diathermy unit turned off. Subjects in the control group lay on the table for 20 minutes. Data were analyzed using an ANOVA and post hoc t tests. Mean (+/- pooled SE) increases in knee extension after 5 days were 15.8 degrees 2.2 degrees for the diathermy-and-stretch group, 5.2 degrees +/- 2.2 degrees for the sham-diathermy-and-stretch group, and -0.3 degrees +/- 2.2 degrees for the control group. Seventy-two hours after the last treatment, the diathermy-and-stretch group lost 1.9 degrees +/- 2.2 degrees, the sham-diathermy-and-stretch group lost 3.0 degrees +/- 2.2 degrees, and the control group changed -0.4 degrees +/- 2.2 degrees. These results suggest that hamstring flexibility can be greatly improved when shortwave

  16. Video rate nine-band multispectral short-wave infrared sensor.

    Science.gov (United States)

    Kutteruf, Mary R; Yetzbacher, Michael K; DePrenger, Michael J; Novak, Kyle M; Miller, Corey A; Downes, Trijntje Valerie; Kanaev, Andrey V

    2014-05-01

    Short-wave infrared (SWIR) imaging sensors are increasingly being used in surveillance and reconnaissance systems due to the reduced scatter in haze and the spectral response of materials over this wavelength range. Typically SWIR images have been provided either as full motion video from framing panchromatic systems or as spectral data cubes from line-scanning hyperspectral or multispectral systems. Here, we describe and characterize a system that bridges this divide, providing nine-band spectral images at 30 Hz. The system integrates a custom array of filters onto a commercial SWIR InGaAs array. We measure the filter placement and spectral response. We demonstrate a simple simulation technique to facilitate optimization of band selection for future sensors.

  17. Pulsating shortwave diathermy: value in treatment of recent ankle and foot sprains.

    Science.gov (United States)

    Pasila, M; Visuri, T; Sundholm, A

    1978-08-01

    The effects of 2 pulsating shortwave diathermy treatments (Diapulse and Curapuls) were compared with placebo treatment in recent ligamentous injuries of ankle and foot in 300 outpatients. The areas of comparison were reduction in swelling, recovery of strength and range of motion of the injured ankle, improvement of walking ability, and duration of disability. There were only slight differences between Diapulse and Curapuls treatment groups. No statistically significant differences could be observed in the recovery of strength and range of motion or in the duration of disability among the 3 groups, although walking ability in the Diapulse group recovered better than in the placebos (p less than 0.01) and reduction of swelling was significantly better for Curapuls (p less than 0.001 than for placebos.

  18. Management of chronic pelvic inflammatory disease with shortwave diathermy. A case report.

    Science.gov (United States)

    Balogun, J A; Okonofua, F E

    1988-10-01

    Patients with pelvic inflammatory disease (PID) are not routinely referred for physical therapy until the condition is found to be resistant to antibiotic therapy. A 39-year-old black woman with an eight-year history of PID was treated with shortwave diathermy (SWD) using a modified "cross-fire" technique. A thermal dosage treatment lasting between 20 and 30 minutes (for each half of the cross-fire technique treatment) was administered. At the beginning of every treatment session, the patient rated her pain perception on a 10-point ratio scale. The patient received a total of nine treatments, after which she was completely pain free. The results of this case study suggest that SWD may be effective in the management of pelvic infections that are unresponsive to chemotherapy. Further studies using larger sample sizes and a control group, however, are needed before conclusive statements can be made on the relative efficacy of SWD in the management of chronic PID.

  19. [Research on shortwave NIR spectroscopy and its application to in situ flammable liquid detection].

    Science.gov (United States)

    Wu, Juan; Du, Zhen-hui; Liu, Jin; Xu, Ke-zin

    2008-09-01

    Fast, accurate and highly effective detection in situ was important to the control of illegal transportation and the use of liquid state dangerous goods. The present article used the strong penetrability of the shortwave near-infrared ray to the packing material and liquid and measured the absorption spectra of some flammable liquids such as the absolute ethyl alcohol, absolute methanol, ammonia, turpentine, gasoline, diesel oil, petroleum etc and the partial liquors in the short wavelength region of NIR (667-1000 nm). The primitive spectral data were standardized and compressed, and then, the characteristic wavelength of the absorption spectra was analyzed using the SPSS statistics software. A math model for flammable liquid distinction was established based on the designated characteristic wavelength and can correctly detect flammable liquid using the absorbency of 3 wavelengths (881, 935 and 981 nm). According to the above the authors may construct the inexpensive spectrum instrument to check the flammable liquid non-destructively in situ.

  20. Food Safety Nets:

    OpenAIRE

    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane

    2013-01-01

    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  1. Net technical assessment

    OpenAIRE

    Wegmann, David G.

    1989-01-01

    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  2. Lack of maintenance of shortwave diathermy equipment has a negative impact on power output.

    Science.gov (United States)

    Guirro, Rinaldo Roberto de Jesus; Guirro, Elaine Caldeira de Oliveira; Alves de Sousa, Natanael Teixeira

    2014-04-01

    Although shortwave diathermy has been widely used by physiotherapists, there are a few studies assessing the performance of the equipment in use. The aim of the present study was to evaluate the procedures adopted by physiotherapists as users of shortwave diathermy continuous (CSWD), as well as to measure the power output and frequency of CSWD equipment. [Subjects and Methods] Twenty-three physical therapists were interviewed and 23 CSWD equipment were evaluated. Admeasurement was carried out by using a standard phantom to simulate the electrode-skin distance, which ranged from 0.5 to 3.0 cm. Data analysis was performed by using descriptive statistics, ANOVA, and a post-hoc Tukey's test or Pearson's correlation coefficient. [Results] The questionnaires showed that 48% of the interviewees use the correct electrode-skin distance, 70% use a single electrical outlet, and 35% use a grounded electrical outlet, and that 48% of the physiotherapy tables and 61% of the plinths were made of wood. However, only 13% of the interviewees perform yearly preventive maintenance. The highest power (95.56 W) was achieved at electrode-skin distances ranging from 1.0 to 1.5 cm, with distances of 2.5 cm and 3.0 cm being null in four and eight equipment, respectively. There was a negative correlation between power output and electrode-skin distance as well as between power output and purchase date. [Conclusion] The physiotherapists involved in this study had inadequate knowledge about the correct use of CSWD equipment, which may adversely affect its performance and patient safety.

  3. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German

    1998-01-01

    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  4. Global impact of 3D cloud-radiation interactions

    Science.gov (United States)

    Schäfer, Sophia; Hogan, Robin; Fielding, Mark; Chiu, Christine

    2017-04-01

    Clouds have a decisive impact on the Earth's radiation budget and on the temperature of the atmosphere and surface. However, in global weather and climate models, cloud-radiation interaction is treated in only the vertical dimension using several non-realistic assumptions, which contributes to the large uncertainty on the climatic role of clouds. We provide a first systematic investigation into the impact of horizontal radiative transport for both shortwave and longwave radiation on a global, long-term scale. For this purpose, we have developed and validated the SPARTACUS radiation scheme, a method for including three-dimensional radiative transfer effects approximately in a one-dimensional radiation calculation that is numerically efficient enough for global calculations, allowing us to conduct 1D and quasi-3D radiation calculations for a year of global of ERA-Interim re-analysis atmospheric data and compare the results of various radiation treatments. SPARTACUS includes the effects of cloud internal inhomogeneity, horizontal in-region transport and the spatial distribution of in-cloud radiative fluxes.The impact of varying three-dimensional cloud geometry can be described by one parameter, the effective cloud scale, which has a characteristic value for each cloud type. We find that both the 3D effects of cloud-side transport and of horizontal in-cloud radiative transport in the shortwave are significant. Overall, 3D cloud effects warm the Earth by about 4 W m -2 , with warming effects in both the shortwave and the longwave. The dominant 3D cloud effect is the previously rarely investigated in-region horizontal transfer effect in the shortwave, which significantly decreases cloud reflectance and warms the Earth system by 5 W m -2 , partly counteracted by the cooling effect of shortwave 3D cloud-side transport. Longwave heating and cooling at various heights is strengthened by up to 0.2 K d ^{-1} and -0.3 K d ^{-1} respectively. These 3D effects, neglected by

  5. Latest results from the GreenHouse gas Observations of the Stratosphere and Troposphere (GHOST) airborne shortwave infrared spectrometer

    Science.gov (United States)

    Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Vick, Andy

    2017-04-01

    GHOST is a novel, compact shortwave infrared grating spectrometer, designed for remote sensing of tropospheric columns of greenhouse gases (GHGs) from an airborne platform. GHOST observes solar radiation at medium to high spectral resolution which has been reflected by the surface, using similar methods to those used by polar orbiting satellites such as the JAXA GOSAT mission, the NASA OCO-2 mission and the forthcoming Copernicus Sentinel 5-Precursor. By using an original design comprising optical fibre inputs along with a single diffraction grating and detector array, GHOST is able to observe CO2 absorption bands centred around 1.61 μm and 2.06 μm (the same wavelength regions used by OCO-2 and GOSAT) whilst simultaneously measuring CH4 absorption at 1.65 μm (also observed by GOSAT), and both CH4 and CO at 2.30 μm (to be observed by Sentinel 5-P once launched later in 2017). The overlapping spectral ranges and comparable spectral resolutions mean that GHOST has unique potential for providing validation opportunities for these platforms, particularly over the ocean where ground-based validation measurements are not available. Here we present the latest results from the spectral analysis, using an optimal estimation based retrieval method, of CO2 and CH4 from GHOST flight spectra for the 1.6 μm band which utilise recently updated laboratory calibration measurements. GHOST took part in two science flights on board the NASA Global Hawk unmanned aerial vehicle based at the Armstrong Flight Research Centre in Edwards, California, in March 2015. These flights involved long approximately north-south transects over the eastern Pacific Ocean. In addition to observing spatial trends in GHG column concentrations over a regional scale, the second of these flights (on 10th March) allows inter-comparisons of GHOST retrievals with observations from OCO-2 and GOSAT, which both passed directly over the Global Hawk during clear sky conditions. We will show results from these

  6. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.

    2002-01-01

    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  7. Teaching Tennis for Net Success.

    Science.gov (United States)

    Young, Bryce

    1989-01-01

    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  8. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten

    2012-01-01

    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  9. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Science.gov (United States)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  10. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    L. Rontu

    2017-07-01

    Full Text Available This paper provides an overview of the HLRADIA shortwave (SW and longwave (LW broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE

  11. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  12. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne

    2006-01-01

    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  13. Design and evaluation of net radiometers

    Science.gov (United States)

    Fritschen, Leo J.; Fritschen, Charles L.

    Net radiometer designs were evaluated with respect to long and short wave sensitivities and to the effect of ambient wind on the signal. The design features of the instrument with the best overall performance include: equal sensitivity to long and short wave radiation, a thermal pile which is thermally isolated from the frame, a white guard ring, pathways for internal circulation between the top and bottom hemispheres, and self-supporting windshields. The windshields have O-ring seals, a ball joint is provided for ease of leveling, and ample desiccant is enclosed in the mounting pipe. Under a high radiant load, the net radiometer signal decreased by 2.5, 3.7, and 4.3 percent at wind speeds of 12.5, 4.6, and 7.5 m/s.

  14. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  15. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2011-07-01

    Full Text Available This paper focuses on three interconnected topics: (1 quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2 surface-based approach for measuring cloud albedo; (3 multiscale (diurnal, annual and inter-annual variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM Program at the Great Southern Plains (SGP site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997–2009 sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  16. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn

    DEFF Research Database (Denmark)

    Wu, Chaoyang; Chen, Xi Jing; Black, T. Andrew

    2013-01-01

    ) and 13 evergreen needleleaf forests (ENF) across North America and Europe (212 site‐years) were used to explore the relationships between the yearly anomalies of annual NEP and several carbon flux based phenological indicators, including the onset/end of the growing season, onset/end of the carbon uptake...... period, the spring lag (time interval between the onset of growing season and carbon uptake period) and the autumn lag (time interval between the end of the carbon uptake period and the growing season). Meteorological variables, including global shortwave radiation, air temperature, soil temperature...

  17. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    Science.gov (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426

  18. Downward Atmospheric longwave radiation in the city of São Paulo

    NARCIS (Netherlands)

    Barbaro, E.W.; Oliveira, A.P.; Soares, J.; Ferreira, M.J.; Boznar, M.Z.; Mlakar, P.

    2009-01-01

    This work evaluates objectively the consistency and quality of a 9 year dataset based on 5 minute average values of downward longwave atmospheric (LW) emission, shortwave radiation, temperature and relative humidity. All these parameters were observed simultaneously and continuously from 1997 to

  19. Impact of aerosol heat radiation absorption on the dynamics of an atmospheric boundary layer in equilibrium

    NARCIS (Netherlands)

    Barbaro, E.W.; Vilà-Guerau de Arellano, J.; Krol, M.C.; Holtslag, A.A.M.

    2012-01-01

    The objective of this work is to investigate the influence of the shortwave radiation (SW) absorption by aerosols on the dynamics and heat budget of the atmospheric boundary layer (ABL). This study is relevant for areas characterized by large concentrations of light-absorbing aerosol, which are

  20. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    Science.gov (United States)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  1. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover

    Science.gov (United States)

    Lapotre, Mathieu G. A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  2. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

    Science.gov (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-12-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  3. Mapeamento e quantificação de parâmetros biofísicos e radiação líquida em área de algodoeiro irrigado Mapping and quantification of biophysical parameters and net radiation over irrigated cotton fields

    Directory of Open Access Journals (Sweden)

    Valéria Peixoto Borges

    2010-04-01

    Full Text Available O sensoriamento remoto tem se mostrado eficaz na avaliação de fluxos de energia e de propriedades biofísicas de superfícies vegetadas em escala regional. No presente trabalho, utilizou-se o algoritmo SEBAL - Surface Energy Balance Algorithm for Land e imagens TM - Landsat 5 para mapeamento e quantificação do albedo (α, NDVI, temperatura da superfície (Ts e radiação líquida (Rn em área de algodão irrigado por pivô central, na Fazenda Busato (13,25º S; 43,42º W; 436 m, município de Bom Jesus da Lapa, Bahia. Seis imagens de céu limpo ao longo do período da cultura (janeiro a agosto de 2007 e os respectivos dados meteorológicos foram utilizados para implementação do algoritmo. Após o processamento digital das imagens, verificou-se nítida relação dos parâmetros α, Ts e NDVI com o desenvolvimento da cultura. Os menores valores de α (10 a 20% e Ts (0,75 ocorreram na fase de máxima cobertura do solo. A radiação líquida (Rn diminuiu progressivamente com o tempo, influenciada, principalmente, pela diminuição da radiação solar incidente com o aumento do ângulo zenital. Os valores de Rn variaram de 430 W m-2 a 700 W m-2 nos pivos cultivados. A técnica de sensoriamento empregada capturou de forma nítida a variabilidade temporal e espacial de Rn e dos parâmetros biofísicos, cujos valores encontrados são compatíveis com os reportados na literatura para a mesma cultura sob regime de irrigação.Remote sensing is currently an important tool for evaluation of net radiation and biophysical parameters over vegetated surfaces on a regional scale. In this research, the SEBAL - Surface Energy Balance Algorithm for Land and TM - Landsat 5 images were used to map and quantify the albedo (α, NDVI, surface temperature (Ts and net radiation (Rn of center-pivot irrigated cotton fields in the Busato Farm (13.25º S; 43.42º W; 436 m asl, western of State of Bahia, Brazil. Images from six clear-sky days during the cropping season

  4. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    Science.gov (United States)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame

  5. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  6. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...

  7. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An

  8. Inherent Fluorescence Detection of Latent Fingermarks by Homemade Shortwave Ultraviolet Laser.

    Science.gov (United States)

    Cai, Nengbin; Zou, Yun; Almog, Joseph; Wang, Guiqiang; Mi, Zhongliang

    2017-01-01

    Detection of latent fingermarks on various substrates is critical in crime investigations. Conventional chemical methods using reagents could contaminate or even destruct biological information of samples. Here, an optical method and successful case application of detecting latent fingermarks through long-wave ultraviolet (UV) fluorescence (300-400 nm) by shortwave UV laser excitation is reported. Experimental results indicate that the recovery rate of the latent fingermarks on various paper items is in the range of 70-80% without chemical treatments. Moreover, the optical method allows for the preservation of samples for further examination, such as polymerase chain reaction (PCR) testing. The technique has also been successfully applied to a criminal case in identifying the suspect, which, to the best of our knowledge, has never been reported in real crime investigations. Therefore, such a method as UV-excited UV fluorescence in detecting latent fingermarks may be better for examination in cases where biological information of samples is needed for consequent testing. © 2016 American Academy of Forensic Sciences.

  9. Muscle heating with Megapulse II shortwave diathermy and ReBound diathermy.

    Science.gov (United States)

    Draper, David O; Hawkes, Amanda R; Johnson, A Wayne; Diede, Mike T; Rigby, Justin H

    2013-01-01

    A new continuous diathermy called ReBound recently has been introduced. Its effectiveness as a heating modality is unknown. To compare the effects of the ReBound diathermy with an established deep-heating diathermy, the Megapulse II pulsed shortwave diathermy, on tissue temperature in the human triceps surae muscle. Crossover study. University research laboratory. Participants included 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). Each modality treatment was applied to the triceps surae muscle group of each participant for 30 minutes. After 30 minutes, we removed the modality and recorded temperature decay for 20 minutes. We horizontally inserted an implantable thermocouple into the medial triceps surae muscle to measure intramuscular tissue temperature at 3 cm deep. We measured temperature every 5 minutes during the 30-minute treatment and each minute during the 20-minute temperature decay. Tissue temperature at a depth of 3 cm increased more with Megapulse II than with ReBound diathermy over the course of the treatment (F₆,₆₆ = 10.78, P diathermy did not produce as much intramuscular heating, leading to a slower heat dissipation rate than the Megapulse II (F₂₀,₂₂₀ = 28.84, P diathermy at increasing deep, intramuscular tissue temperature of the triceps surae muscle group.

  10. Histomorphochemical effects of shortwave diathermy on healing of experimental muscular injury in dogs.

    Science.gov (United States)

    Bansal, P S; Sobti, V K; Roy, K S

    1990-08-01

    The biceps femoris muscle was surgically incised and sutured in 10 clinically healthy mongrel dogs, aged 1-2 yr and weighing 10-15 kg. The surgical wounds of 5 dogs were exposed to shortwave diathermy for 5 min daily for 7 days, starting a day after the creation of trauma. The remaining 5 dogs served as control. After 15 days of healing, the tissues from biceps femoris muscle were collected and subjected to histomorphological and histochemical examination. Mature collagen bundles were seen at healing site in diathermy treated animals while there were immature collagen fibres and more number of fibroblasts in control animals. Normal muscle fibres could be seen on either side of the healing tissue in treated animals whereas in control animals, atrophied and necrosed muscle fibres were encountered. The neutral and acid mucopolysaccharides, lipid droplets in the intermyofibrillar area and the activity of alkaline phosphatase, adenosine triphosphatase and lactate dehydrogenase at the healing site was better in treated as compared to controls.

  11. Effects of repetitive shortwave diathermy for reducing synovitis in patients with knee osteoarthritis: an ultrasonographic study.

    Science.gov (United States)

    Jan, Mei-Hwa; Chai, Huei-Ming; Wang, Chung-Li; Lin, Yeong-Fwu; Tsai, Li-Ying

    2006-02-01

    Shortwave (SW) diathermy can be used to improve vascular circulation and reduce inflammation and pain for patients with osteoarthritis. However, reduction in synovial inflammation has never been explored. The purpose of this study was to investigate whether repetitive SW diathermy, using ultrasonographic examination, could reduce synovitis in patients with knee osteoarthritis. Thirty subjects with 44 osteoarthritic knees participated in this study. Eleven subjects received SW, and 10 subjects received SW and nonsteroidal anti-inflammatory drugs. Nine subjects received no treatment and served as a control group. Synovial sac thickness superior, medial, and lateral to the patella was measured using ultrasonography. The sum of these 3 measurements was taken as the total synovial sac thickness. Subjects in the treatment groups underwent ultrasonographic examination before and after 10, 20, and 30 treatments, whereas control subjects underwent ultrasonographic examination before the experiment and then once every 2 or 3 weeks for a total of 3 follow-up measurements. After 10 SW diathermy treatments, the total synovial sac thickness in both treatment groups was significantly less than the initial thickness, and the synovial sac continued to become significantly thinner with 20 sessions of treatment. These observations were not made in the control subjects. The results indicate that SW diathermy in patients with knee osteoarthritis can significantly reduce both synovial thickness and knee pain. Such reductions of synovial sac thickness and pain index continue over treatment sessions.

  12. Accounting for the effects of Sastrugi in the CERES Clear-Sky Antarctic shortwave ADMs

    Science.gov (United States)

    Corbett, J.; Su, W.

    2015-01-01

    The Cloud and Earth's Radiant Energy System (CERES) Instruments on NASA's Terra, Aqua and Soumi-NPP satellites are used to provide a long-term measurement of the Earth's energy budget. To accomplish this, the radiances measured by the instruments must be inverted to fluxes by the use of a scene-type dependent angular distribution model (ADM). For permanent snow scenes over Antarctica, shortwave ADMs are created by compositing radiance measurements over the full viewing zenith and azimuth range. However, the presence of small-scale wind blown roughness features called sastrugi cause the BRDF of the snow to vary significantly based upon the solar azimuth angle and location. This can result in monthly regional biases as large as ±15 Wm-2 in the inverted TOA SW flux. In this paper we created a set of ADMs that account for the sastrugi effect by using measurements from the Multi-Angle Imaging Spectro-Radiometer (MISR) instrument to derive statistical relationships between radiance from different viewing angles. These ADMs reduce the monthly regional biases to ±5 Wm-2 and the monthly-mean biases are reduced by up to 50%. These improved ADMs are used as part of the next edition of the CERES data.

  13. Lunar calibration improvements for the short-wave infrared bands in Aqua and Terra MODIS

    Science.gov (United States)

    Wilson, Truman; Angal, Amit; Shrestha, Ashish; Xiong, Xiaoxiong

    2017-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among a suite of remote sensing instruments on board the Terra and Aqua spacecrafts. Since the beginning of each mission, regularly scheduled lunar observations have been used in order to track the on-orbit gain changes of the reflective solar bands. However, for the short-wave infrared bands, 5-7 and 26, the measured signal is contaminated by both electronic crosstalk and an out-of-band response due to transmission through the MODIS filters at undesired wavelengths. These contaminating signals cause significant oscillations in the derived gain from lunar observations for these bands, which limits their use in determining the scan mirror response versus scan angle at these wavelengths. In this paper, we show a strategy for correcting the electronic crosstalk contamination using lunar observations, where the magnitude and the source of the contaminating signal is clear. For Aqua MODIS, we find that the magnitude of the electronic crosstalk contamination is small, and the lunar calibration remains relatively unaffected. For Terra MODIS, the contamination is more significant, and the electronic crosstalk correction shows a significant reduction in the oscillations of the lunar calibration results.

  14. Construction of a shortwave near-infrared spectrofluorometer with diode laser source and CCD detection

    Science.gov (United States)

    Silzel, John W.; Obremski, Robert J.

    1993-05-01

    Spectrofluorometers employing xenon arc lamp excitation and photomultiplier tube detectors afford sensitivity over the UV/VIS spectral region for which these instruments were designed, but suffer sensitivity limitations in the short-wave near infrared (NIR) region (800 - 1000 nm) because of their limited source energy and low detector quantum efficiency. To achieve high sensitivity in the NIR region, a 30 mW diode laser source, an imaging spectrograph, and a cryogenically cooled charge-coupled device (CCD) have been combined in a spectrofluorometer specifically designed for use in the NIR region. The diode laser source incorporates integral source filters, optics, and a beam trap, and utilizes a vertical beam geometry which provides an illuminated volume oriented conveniently for the imaging of fluorescence emissions on the entrance slit of the spectrograph. Data is presented which demonstrates that the temporal and spectral stability of the source is equal or superior to that of an arc lamp for solution-phase fluorometry. In addition to spectral information, the CCD detector provides spatial resolution of fluorescence emissions along the vertical path of the excitation beam. An absolute photometric calibration of the CCD detector, and measurement of its read noise, fixed pattern noise, and linear dynamic range is performed using the photon transfer technique of Janesick, et al. Improvement in the instrument performance by more than six decades is demonstrated by measured LOD of NIR dyes using a commercial SLM 4800 instrument and the new diode laser/CCD arrangement. Origin of the present detection limits is discussed.

  15. Comparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometers.

    Science.gov (United States)

    Kiedron, P W; Michalsky, J J; Berndt, J L; Harrison, L C

    1999-04-20

    Absolute calibration of spectral shortwave radiometers is usually performed with National Institute of Standards and Technology (NIST) or NIST-traceable incandescent lamps. We compare 18 irradiance standards from NIST and three commercial vendors using the same spectrometer to assess their agreement with our working standard. The NIST procedure is followed for the 1000-W FEL lamps from NIST, Optronics, and EG&G. A modified calibration procedure developed by Li-Cor is followed for their 200-W tungsten-halogen lamps. Results are reproducible from one day to the next to approximately 0.1% using the same spectrometer. Measurements taken four months apart using two similar but different spectrometers were reproducible to 0.5%. The comparisons suggest that even NIST standards may disagree with each other beyond their stated accuracy. Some of the 1000-W commercial lamps agreed with the NIST lamps to within their stated accuracy, but not all. Surprisingly, the lowest-cost lamps from Li-Cor agreed much better with the NIST lamps than their stated accuracy of 4%, typically within 2%. An analysis of errors leads us to conclude that we can transfer the calibration from a standard lamp to a secondary standard lamp with approximately 1% added uncertainty. A field spectrometer was calibrated with a secondary standard, producing a responsivity for the spectrometer that was within 5% of the responsivity obtained by Langley calibration using routine field measurements.

  16. Short-Wave Near-Infrared Spectrometer for Alcohol Determination and Temperature Correction

    Directory of Open Access Journals (Sweden)

    Qingbo Fu

    2012-01-01

    Full Text Available A multichannel short-wave near-infrared (SW-NIR spectrometer module based on charge-coupled device (CCD detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp. in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C. And an 2 better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.

  17. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  18. INFLUENCE OF THE SHORT-WAVE DIATHERMY UPON GLYCEMIA IN THE PATIENTS WITH THE INSULIN-INDEPENDENT DIABETES

    Directory of Open Access Journals (Sweden)

    Slaviša Djurdjevic

    2002-01-01

    Full Text Available In 18 patients with NIDDM diabetes on the oral hypoglycemic therapy there has been a short-wave diathermy (KTD applied upon the Head pancreas zones for 10 minutes and in 10 days series. The values of glycemia before KTD were X+SD=9,72+0,25 mmol/1 while on the tenth day they amounted to X+SD=7,28+0,32 mmol/1 thus recording a significant drop

  19. INFLUENCE OF THE SHORT-WAVE DIATHERMY UPON GLYCEMIA IN THE PATIENTS WITH THE INSULIN-INDEPENDENT DIABETES

    OpenAIRE

    Slaviša Djurdjevic

    2002-01-01

    In 18 patients with NIDDM diabetes on the oral hypoglycemic therapy there has been a short-wave diathermy (KTD) applied upon the Head pancreas zones for 10 minutes and in 10 days series. The values of glycemia before KTD were X+SD=9,72+0,25 mmol/1 while on the tenth day they amounted to X+SD=7,28+0,32 mmol/1 thus recording a significant drop

  20. Effects of short-wave therapy in patients with knee osteoarthritis: a systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Haiming; Zhang, Chi; Gao, Chengfei; Zhu, Siyi; Yang, Lijie; Wei, Quan; He, Chengqi

    2017-05-01

    To evaluate the efficacy and safety of short-wave therapy with sham or no intervention for the management of patients with knee osteoarthritis. We searched the following databases from their inception up to 26 October 2016: MEDLINE, CENTRAL, EMBASE, Physiotherapy Evidence Database, CINAHL and OpenGrey. Studies included randomized controlled trials compared with a sham or no intervention in patients with knee osteoarthritis. The results were calculated via standardized mean difference (SMD) and risk ratio for continuous variables outcomes as well as dichotomous variables, respectively. Heterogeneity was explored by the I2 test and inverse-variance random effects analysis was applied to all studies. Eight trials (542 patients) met the inclusion criteria. The effect of short-wave therapy on pain was found positive (SMD, -0.53; 95% CI, -0.84 to -0.21). The pain subgroup showed that patients received pulse modality achieved clinical improvement (SMD, -0.83; 95% CI, -1.14 to -0.52) and the pain scale in female patients decreased (SMD, -0.53; 95% CI, -0.98 to -0.08). In terms of extensor strength, short-wave therapy was superior to the control group ( p physical function (SMD, -0.16; 95% CI, -0.36 to 0.05). For adverse effects, there was no significant difference between the treatment and control group. Short-wave therapy is beneficial for relieving pain caused by knee osteoarthritis (the pulse modality seems superior to the continuous modality), and knee extensor muscle combining with isokinetic strength. Function is not improved.

  1. Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models

    OpenAIRE

    Corbett, J.; Su, W.

    2015-01-01

    The Cloud and the Earth's Radiant Energy System (CERES) instruments on NASA's Terra, Aqua and Soumi NPP satellites are used to provide a long-term measurement of Earth's energy budget. To accomplish this, the radiances measured by the instruments must be inverted to fluxes by the use of a scene-type-dependent angular distribution model (ADM). For permanent snow scenes over Antarctica, shortwave (SW) ADMs are created by compositing radiance measurements over the full viewin...

  2. Seasonality of net radiation in two sub-basins of Paracatu by the use of modis sensor products Sazonalidade do saldo de radiação em duas sub-bacias do Paracatu por meio da utilização de produtos do sensor modis

    Directory of Open Access Journals (Sweden)

    Evaldo de P. Lima

    2012-12-01

    Full Text Available The net radiation (Rn represents the main source of energy for physical and chemical processes that occur in the surface-atmosphere interface, and it is used for air and soil heating, water transfer, in the form of vapor from the surface to the atmosphere, and for the metabolism of plants, especially photosynthesis. If there is no record of net radiation in certain areas, the use of information is important to help determine it. Among them we can highlight those provided by remote sensing. In this context, this work aims to estimate the net radiation, with the use of products of MODIS sensor, in the sub-basins of Entre Ribeiros creek and Preto River, located between the Brazilian states of Goiás and Minas Gerais. The SEBAL (Surface Energy Balance Algorithm for Land was used to obtain the Rn in four different days in the period of July to October, 2007. The Rn results obtained were consistent with others cited in the literature and are important because the orbital information can help determine the Rn in areas where there are not automatic weather stations to record the net radiation.O saldo de radiação (Rn representa a principal fonte de energia para os processos físico-químicos que ocorrem na interface superfície-atmosfera, sendo utilizado no aquecimento do ar e do solo, transferência da água, na forma de vapor da superfície para a atmosfera, e metabolismo das plantas, especialmente a fotossíntese. Se não houver o registro do saldo de radiação em determinadas áreas, torna-se importante a utilização de informações que ajudem a determiná-lo. Entre elas, podemos destacar as fornecidas por sensoriamento remoto. Neste contexto, este trabalho tem o objetivo de determinar o saldo de radiação, com a utilização de produtos do sensor MODIS, nas sub-bacias do Ribeirão Entre Ribeiros e Rio Preto, que ficam entre os Estados de Goiás e Minas Gerais. O SEBAL (Surface Energy Balance Algorithm for Land foi utilizado para a obten

  3. MODIS/Terra+Aqua BRDF/Albedo Black Sky Albedo Shortwave Daily L3 Global 30ArcSec CMG V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MCD43D51 Version 6 Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) Black Sky Albedo near shortwave broadband data set is a daily 16-day...

  4. Avaliação de modelos de estimativa do saldo de radiação e do método de Priestley-Taylor para a região de Dourados, MS Evaluation of models to estimate net radiation and the Priestley-Taylor method in the region of Dourados, MS, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos R. Fietz

    2009-08-01

    Full Text Available Este trabalho foi realizado com o objetivo de avaliar modelos de estimativa da radiação líquida e o método de Priestley-Taylor para a região de Dourados. O ajuste dos parâmetros dos modelos foi realizado com base em uma série de 1.421 dados diários de radiação líquida, radiação solar global, radiação extraterrestre, temperaturas máxima e mínima. Uma segunda série de dados com 360 observações diárias foi utilizada para validar as equações geradas. A evapotranspiração de referência (ET0 foi estimada pela equação de Priestley-Taylor, como função da radiação solar global. Os valores de ET0 foram comparados com 218 medidas lisimétricas. As estimativas de radiação líquida geradas com base apenas nas temperaturas máximas e mínimas não foram satisfatórias, mas o modelo que utilizou radiação extraterrestre, além dessas duas variáveis, apresentou performance mediana. Os modelos que utilizaram a radiação solar global como variável independente tiveram desempenho classificados como ótimos. O método de Prietley-Taylor apresentou desempenho muito bom, possibilitando estimar a evapotranspiração de referência diária da região de Dourados com base na radiação solar global e na temperatura média do ar.The objective of this work was to evaluate models to estimate net radiation and the Priestley-Taylor method in Dourados, in the State of Mato Grosso do Sul, Brazil. For the purpose, 1,421 daily observations of net radiation, global radiation, extraterrestrial radiation, and maximum and minimum air temperatures were used. Another database containing 360 of these same daily variables was used to independently test the models The reference evapotranspiration (ET0 was estimated by the Priestley-Taylor method as a function of global radiation. The estimated values of ETo were compared with 218 lysimeter data. The equation based only on the maximum and minimum air temperatures showed unsatisfactory performance. A

  5. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    Science.gov (United States)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  6. On the Relative Stability of CERES Reflected Shortwave and MISR and MODIS Visible Radiance Measurements During the Terra Satellite Mission

    Science.gov (United States)

    Corbett, J. G.; Loeb, N. G.

    2015-01-01

    Fifteen years of visible, near-infrared, and broadband shortwave radiance measurements from Clouds and the Earth's Radiant Energy System (CERES), Multiangle Imaging Spectroradiometer (MISR), and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board NASA's Terra satellite are analyzed in order to assess their long-term relative stability for climate purposes. A regression-based approach between CERES, MODIS, and MISR (An camera only) reflectances is used to calculate the bias between the different reflectances relative to a reference year. When compared to the CERES shortwave broadband reflectance, relative drift between the MISR narrowbands is within 1%/decade. Compared to the CERES shortwave reflectance, the MODIS narrowband reflectances show a relative drift of less than -1.33%/decade. When compared to MISR, the MODIS reflectances show a relative drift of between -0.36%/decade and -2.66%/decade. We show that the CERES Terra SW measurements are stable over the time period relative to CERES Aqua. Using this as evidence that CERES Terra may be absolutely stable, we suggest that the CERES, MISR, and MODIS instruments meet the radiometric stability goals for climate applications set out in Ohring et al. (2005).

  7. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate is still rudimentary. The present dissertation investigates dust direct radiative effect on MENA climate during summer with a special emphasis on the sensitivity of climate response to dust shortwave absorption, which is one of the most uncertain components of dust direct radiative effect. Simulations are conducted with and without dust radiative effect, to differentiate the effect of dust on climate. To elucidate the sensitivity of climate response to dust shortwave absorption, simulations with dust assume three different cases of dust shortwave absorption, representing dust as a very efficient, standard and inefficient shortwave absorber. The non-uniformly distributed dust perturb circulations at various scales. Therefore, the present study takes advantage of the high spatial resolution capabilities of an Atmospheric General Circulation Model (AGCM), High Resolution Atmospheric Model (HiRAM), which incorporates global and regional circulations. AMIP-style global high-resolution simulations are conducted at a spatial resolution of 25 km. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Similarly, the temperature under rainbelt cools and that over subtropical deserts warms. Inter-comparison of various dust shortwave absorption cases shows that the response of the MENA tropical rainbelt is extremely sensitive to the

  8. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  9. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  10. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD

    2003-01-01

    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  11. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  12. An observational radiative constraint on hydrologic cycle intensification

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Anthony M.; Qu, Xin; Zelinka, Mark D.; Hall, Alex

    2015-12-09

    Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems1,2. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1–3 per cent per kelvin)3,4,5. Part of the uncertainty may originate from atmosphere–radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget6,7. Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.

  13. Sol-Rad Net Flux (L 1.0, 1.5, 2.0)

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  14. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    Science.gov (United States)

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  15. GeSn/Ge quantum well photodetectors for short-wave infrared photodetection: experiments and modeling

    Science.gov (United States)

    Tsai, Chia-Ho; Chang, Guo-En

    2017-05-01

    Group-IV GeSn material systems have recently considered as a new material for sensitive photodetection in the short-wave infrared (SWIR) region. The introduction of Sn into Ge can effectively narrow the bandgap energies, thereby extending the absorption edges toward the longer wavelengths and enabling effective photodetection in SWIR region. Here we present an experimental and modeling study of GeSn/Ge quantum well (QW) photodetectors on silicon substrates for effective SRIW photodetection. Epitaxial growth of pseudomorphic GeSn/Ge QW structures was realized on Ge-buffered silicon substrates using low-temperature molecular beam epitaxy. Normal incident GeSn/Ge QW photodetectors were then fabricated and characterized. The optical responsivity experiments demonstrate that the photodetection cutoff wavelengths is extended to beyond 1800 nm, enabling effective photodetection in SWIR spectral region. We then develop theoretical models to calculate the composition-dependent strained electron band structures, oscillation strengths, and optical absorption spectra for the pseudomorphic GeSn/Ge QW structures. The results show that Ge1-xSnx well sandwiched by Ge barriers can achieve a critical type-I alignment at Γ point to provide necessary quantum confinement of carriers. With an increase in the Sn content, the band offsets between the GeSn well and Ge barreirs increases, thus enhancing the oscillation strengths of direct interband transitions. In addition, despite stronger quantum confinement with increasing Sn content, the absorption edge can be effectively shifted to longer wavelengths due to the direct bandgap reduction caused by Sn-alloying. These results suggest that GeSn/Ge QW photodetectors are promising for low-cost, high-performance SWIR photodetection applications.

  16. ON THE USE OF SHORTWAVE INFRARED FOR TREE SPECIES DISCRIMINATION IN TROPICAL SEMIDECIDUOUS FOREST

    Directory of Open Access Journals (Sweden)

    M. P. Ferreira

    2015-08-01

    Full Text Available Tree species mapping in tropical forests provides valuable insights for forest managers. Keystone species can be located for collection of seeds for forest restoration, reducing fieldwork costs. However, mapping of tree species in tropical forests using remote sensing data is a challenge due to high floristic and spectral diversity. Little is known about the use of different spectral regions as most of studies performed so far used visible/near-infrared (390-1000 nm features. In this paper we show the contribution of shortwave infrared (SWIR, 1045-2395 nm for tree species discrimination in a tropical semideciduous forest. Using high-resolution hyperspectral data we also simulated WorldView-3 (WV-3 multispectral bands for classification purposes. Three machine learning methods were tested to discriminate species at the pixel-level: Linear Discriminant Analysis (LDA, Support Vector Machines with Linear (L-SVM and Radial Basis Function (RBF-SVM kernels, and Random Forest (RF. Experiments were performed using all and selected features from the VNIR individually and combined with SWIR. Feature selection was applied to evaluate the effects of dimensionality reduction and identify potential wavelengths that may optimize species discrimination. Using VNIR hyperspectral bands, RBF-SVM achieved the highest average accuracy (77.4%. Inclusion of the SWIR increased accuracy to 85% with LDA. The same pattern was also observed when WV-3 simulated channels were used to classify the species. The VNIR bands provided and accuracy of 64.2% for LDA, which was increased to 79.8 % using the new SWIR bands that are operationally available in this platform. Results show that incorporating SWIR bands increased significantly average accuracy for both the hyperspectral data and WorldView-3 simulated bands.

  17. Temperature change in human muscle during and after pulsed short-wave diathermy.

    Science.gov (United States)

    Draper, D O; Knight, K; Fujiwara, T; Castel, J C

    1999-01-01

    A time series design was used, with the dependent variable being gastrocnemius muscle temperature at a depth of 3 cm. To determine the rate of temperature rise and the rate of post-treatment temperature decline in skeletal muscle following the application of pulsed short-wave diathermy (PSWD). Data on PSWD rate and longevity of heating are 20 years old and outdated. With the recent introduction of advanced diathermy equipment, results of our study would provide clinicians with much needed information regarding treatment duration. A 23-gauge thermistor was inserted into the center of the medial head of the anesthetized gastrocnemius muscle, 3 cm below the skin's surface of 20 subjects. The PSWD (27.12 MHz frequency) was applied using the following parameters: 800 bursts per second; 400 microseconds burst duration; 850 microseconds interburst interval; with a peak root mean square (RMS) amplitude of 150 W per burst and an average RMS output of 48 W. Temperature changes were documented every 5 minutes during the treatment and additionally at 5 and 10 minutes following treatment. The average baseline and peak temperatures were 35.84 +/- 0.93 degrees C and 39.80 +/- 0.83 degrees C, respectively. Mean temperature increases were: 1.36 +/- 0.90 degrees C (5 min); 2.87 +/- 1.44 degrees C (10 min); 3.78 +/- 1.19 degrees C (15 min); 3.49 +/- 1.13 degrees C (20 min). After the treatment terminated, intramuscular temperature dropped 0.97 +/- 0.68 degree C in 5 minutes and 1.78 +/- 0.69 degrees C in 10 minutes. PSWD is an effective modality if temperature elevation of deep tissue over a large area is the clinical objective.

  18. Comparison of the efficacy of ketoprofen phonophoresis, ultrasound, and short-wave diathermy in knee osteoarthritis.

    Science.gov (United States)

    Boyaci, Ahmet; Tutoglu, Ahmet; Boyaci, Nurefsan; Aridici, Rifat; Koca, Irfan

    2013-11-01

    The present study aimed to compare the efficacy of three different deep heating modalities: phonophoresis (PH), short-wave diathermy (SWD), and ultrasound (US), in knee osteoarthritis. Patients who consented to participate in the study were randomly divided into the following three groups. Group 1 (n = 33) received PH, Group 2 (n = 33) received US, and Group 3 (n = 35) received SWD. These deep heating therapies were applied by the same therapist. Each therapy began with 20-min hot pack application. Each of the three physical therapy modalities was applied 5 days a week for 2 weeks (a total of 10 sessions). The patients were evaluated using visual analogue scale (VAS) at rest, 15-m walking time, and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) both before and after the treatment. Moreover, at the end of the treatment, both the physician and the patient made an overall evaluation, by rating the treatment efficacy. The results of the study showed that VAS, 15-m walking time, and WOMAC parameters were improved with all three deep heating modalities, and all the three modalities were effective. However, there was no significant difference between the three modalities in terms of efficacy. There was also no significant difference between the three groups in terms of post-treatment general evaluation of the physician and the patient. The present study is the first to suggest that choosing one of PH/US/SWD therapy options would provide effective results and none of them are superior to the others, and we believe that these findings will be a basis for further studies.

  19. Effect of pulse repetition rate on the perception of thermal sensation with pulsed shortwave diathermy.

    Science.gov (United States)

    Murray, C C; Kitchen, S

    2000-01-01

    Pulsed shortwave diathermy (PSWD) is a form of therapy commonly used to enhance tissue repair and reduce pain. It is normally considered to be an athermal form of treatment; however, there is some evidence to suggest that thermal effects can arise with adequate dosage. The purpose of this study was to determine the pulse repetition rate (PRR) required to generate a 'possible' and 'definite' thermal sensation when PSWD was applied to the thigh. Thirty healthy subjects were randomly assigned to placebo or treatment groups. The treatment group was exposed to PSWD at a constant setting of pulse duration (400 microseconds) and pulse power (190 W) while the PRR was increased from 26 Hz to 400 Hz in 10 increments. Each dose was applied for a period of two minutes. At the end of each application, subjects were asked if they felt a (1) 'possible' or (2) 'definite' thermal sensation. Skin temperature was measured immediately after each application. Placebo subjects were exposed to PSWD at its lowest settings throughout the experiment (pulse power = 5 W; pulse duration = 65 microseconds and PRR = 26 Hz). The results showed a significant correlation (p < 0.048) between PRR at 'definite' thermal sensation and skin temperature post-treatment and PRR at 'possible' thermal sensation (p < 0.001). Mean skin temperature increased significantly as PRR was increased, from 28.69 (+/- 0.75) degrees C pre-treatment to 31.14 (+/- 1.04) degrees C post-treatment, a mean difference of 2.34 degrees C. These results suggest that PSWD at adequate dosages can generate thermal effects, and that there is a relationship between these thermal effects and the PRR used. These results may have significant implications for the safe use of PSWD in the clinical arena.

  20. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev

    2013-09-01

    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  1. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    Science.gov (United States)

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  2. Cloud types and the tropical Earth radiation budget, revised

    Science.gov (United States)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  3. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  4. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  5. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  6. Detector with internal gain for short-wave infrared ranging applications

    Science.gov (United States)

    Fathipour, Vala; Mohseni, Hooman

    2017-09-01

    Abstarct.Highly sensitive photon detectors are regarded as the key enabling elements in many applications. Due to the low photon energy at the short-wave infrared (SWIR), photon detection and imaging at this band are very challenging. As such, many efforts in photon detector research are directed toward improving the performance of the photon detectors operating in this wavelength range. To solve these problems, we have developed an electron-injection (EI) technique. The significance of this detection mechanism is that it can provide both high efficiency and high sensitivity at room temperature, a condition that is very difficult to achieve in conventional SWIR detectors. An EI detector offers an overall system-level sensitivity enhancement due to a feedback stabilized internal avalanche-free gain. Devices exhibit an excess noise of unity, operate in linear mode, require bias voltage of a few volts, and have a cutoff wavelength of 1700 nm. We review the material system, operating principle, and development of EI detectors. The shortcomings of the first-generation devices were addressed in the second-generation detectors. Measurement on second-generation devices showed a high-speed response of ˜6 ns rise time, low jitter of less than 20 ps, high amplification of more than 2000 (at optical power levels larger than a few nW), unity excess noise factor, and low leakage current (amplified dark current ˜10 nA at a bias voltage of -3 V and at room temperature. These characteristics make EI detectors a good candidate for high-resolution flash light detection and ranging (LiDAR) applications with millimeter scale depth resolution at longer ranges compared with conventional p-i-n diodes. Based on our experimentally measured device characteristics, we compare the performance of the EI detector with commercially available linear mode InGaAs avalanche photodiode (APD) as well as a p-i-n diode using a theoretical model. Flash LiDAR images obtained by our model show that the EI

  7. Short-Wave Diathermy Pretreatment and Inflammatory Myokine Response After High-Intensity Eccentric Exercise.

    Science.gov (United States)

    Vardiman, John P; Moodie, Nicole; Siedlik, Jacob A; Kudrna, Rebecca A; Graham, Zachary; Gallagher, Philip

    2015-06-01

    Various modalities have been used to pretreat skeletal muscle to attenuate inflammation. To determine the effects of short-wave diathermy (SWD) preheating treatment on inflammation and stress markers after eccentric exercise. Controlled laboratory study. University laboratory setting. Fifteen male (age = 22 ± 4.9 years, height = 179.75 ± 9.56 cm, mass = 82.22 ± 12.67 kg) college-aged students. Seven participants were selected randomly to receive 40 minutes of SWD heat treatment (HT), and 8 participants served as the control (CON) group and rested without SWD. Both groups completed 7 sets of 10 repetitions of a high-intensity eccentric exercise protocol (EEP) at 120% of the 1-repetition maximum (1-RM) leg extension. We biopsied muscles on days 1, 3 (24 hours post-EEP), and 4 (48 hours post-EEP) and collected blood samples on days 1, 2 (4 hours post-EEP), 3, and 4. We determined 1-RM on day 2 (24 hours post-SWD) and measured 1-RM on days 3 and 4. We analyzed the muscle samples for interleukin 6 (IL-6), tumor necrosis factor α, and heat shock protein 70 and the blood for serum creatine kinase. We found a group × time interaction for intramuscular IL-6 levels after SWD (F2,26 = 7.13, P = .003). The IL-6 decreased in HT (F1,6 = 17.8, P = .006), whereas CON showed no change (P > .05). We found a group × time interaction for tumor necrosis factor α levels (F2,26 = 3.71, P = .04), which increased in CON (F2,14 = 7.16, P = .007), but saw no changes for HT (P > .05). No group × time interactions were noted for 1-RM, heat shock protein 70, or creatine kinase (P > .05). The SWD preheating treatment provided a treatment effect for intramuscular inflammatory myokines induced through high-intensity eccentric exercise but did not affect other factors associated with intense exercise and inflammation.

  8. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits

    1987-01-01

    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  9. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  10. PolicyNet Publication System

    Data.gov (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  11. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  12. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A

    2006-01-01

    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  13. Evaluation of reproductive function of female rats exposed to radiofrequency fields (27. 12 MHz) near a shortwave diathermy device

    Energy Technology Data Exchange (ETDEWEB)

    Brown-Woodman, P.D.; Hadley, J.A.; Richardson, L.; Bright, D.; Porter, D.

    1989-04-01

    In recent years, there has been increased concern regarding effects of operator exposure to the electromagnetic (EM) field associated with shortwave diathermy devices. The present study was designed to investigate the effects, on rats, of repeated exposure to such an EM field. Following repeated exposure for 5 wk, a reduction in fertility occurred as indicated by a reduced number of matings in exposed rats compared to sham-irradiated rats and a reduction in the number of rats that conceived after mating. The data suggest that female operators could experience reduced fertility, if they remained close to the console for prolonged periods. This has particular significant for the physiotherapy profession.

  14. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard; Ceccato, Pietro; Proud, Simon Richard

    2013-01-01

    . In this study we explored the potential of using reflectance data in the Red, Near Infrared (NIR), and Shortwave Infrared (SWIR) spectral regions for detecting short term variations in land surface moisture in the Sahel, by analyzing data from three test sites and observations from the geostationary Meteosat......In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue...

  15. Evaluation of reproductive function of female rats exposed to radiofrequency fields (27.12 MHz) near a shortwave diathermy device.

    Science.gov (United States)

    Brown-Woodman, P D; Hadley, J A; Richardson, L; Bright, D; Porter, D

    1989-04-01

    In recent years, there has been increased concern regarding effects of operator exposure to the electromagnetic (EM) field associated with shortwave diathermy devices. The present study was designed to investigate the effects, on rats, of repeated exposure to such an EM field. Following repeated exposure for 5 wk, a reduction in fertility occurred as indicated by a reduced number of matings in exposed rats compared to sham-irradiated rats and a reduction in the number of rats that conceived after mating. The data suggest that female operators could experience reduced fertility, if they remained close to the console for prolonged periods. This has particular significant for the physiotherapy profession.

  16. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn

    2001-01-01

    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  17. The Economics of Net Neutrality

    OpenAIRE

    Hahn, Robert W.; Wallsten, Scott

    2006-01-01

    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  18. Redutions in global radiation cause large increases in river flows in northern regions

    Science.gov (United States)

    Kasurinen, Ville; Berninger, Frank

    2017-04-01

    The water flow in boreal and arctic rivers has increased over the past decades. We use long term time series of river flow, surface radiation and precipitation to investigate changes in evapotranspiration. Evapotranspiration was estimated using water balance calculation as well as recession analysis to attribute the changes in river runoff to changes in evapotranspiration and precipitation. We found that a decrease in evapotranspiration was responsible for about 1/3 of the increase in runoff. We used the Priestley Taylor equation, driven by a network of long term irradiance measurements to attribute the decrease in evapotranspiration largely to a decrease in incoming shortwave radiation. This decrease in shortwave radiation is caused by increases in the atmospheric aerosol depth due to air pollution.

  19. Analytic radiative-advective equilibrium as a model for high-latitude climate

    Science.gov (United States)

    Cronin, Timothy W.; Jansen, Malte F.

    2016-01-01

    We propose radiative-advective equilibrium as a basic-state model for the high-latitude atmosphere. Temperature profiles are determined by a competition between stabilization by atmospheric shortwave absorption and advective heat flux convergence, and destabilization by surface shortwave absorption. We derive analytic expressions for temperature profiles, assuming power law atmospheric heating profiles as a function of pressure and two-stream windowed-gray longwave radiative transfer. We discuss example profiles with and without an atmospheric window and show that the sensitivity of surface temperature to forcing depends on the nature of the forcing, with greatest sensitivity to radiative forcing by increased optical thickness and least sensitivity to increased atmospheric heat transport. These differences in sensitivity of surface temperature to forcing can be explained in terms of a forcing-dependent lapse-rate feedback.

  20. Effectiveness of manual therapy or pulsed shortwave diathermy in addition to advice and exercise for neck disorders: a pragmatic randomized controlled trial in physical therapy clinics.

    Science.gov (United States)

    Dziedzic, Krysia; Hill, Jonathan; Lewis, Martyn; Sim, Julius; Daniels, Jane; Hay, Elaine M

    2005-04-15

    To determine whether manual therapy or pulsed shortwave diathermy, in addition to advice and exercise, provide better clinical outcome at 6 months than advice and exercise alone in primary care patients with nonspecific neck disorders. This was a multicenter, 3-arm randomized controlled trial in 15 physical therapy departments. Of the 735 screened patients, 350 were recruited to the study (mean age 51 years) from July 2000 to June 2002. Participants were randomized to advice and exercise plus manual therapy, advice and exercise plus pulsed shortwave, or advice and exercise alone. Assessments were undertaken at baseline, 6 weeks, and 6 months. The primary outcome was the Northwick Park Neck Pain Questionnaire. Analysis was by intention to treat. Of the participants, 115 were allocated to advice and exercise, 114 to advice and exercise plus manual therapy, and 121 to advice and exercise plus pulsed shortwave; 98% received the allocated treatment. There was 93% followup at 6 months. The mean +/- SD fall in Northwick Park score at 6 months was 11.5 +/- 15.7 for advice and exercise alone, 10.2 +/- 14.1 for advice and exercise plus manual therapy, and 10.3 +/- 15.0 for advice and exercise plus pulsed shortwave. There were no statistically significant differences in mean changes between groups. The addition of pulsed shortwave or manual therapy to advice and exercise did not provide any additional benefits in the physical therapy treatment of neck disorders.

  1. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, pmanagement and net erosion/deposition on total SOC stocks and tillage impacts on respiration by increasing decomposition from the breaking of soil aggregates and enhanced mineralization. In WRF-VPRM, respiration is calculated with a regression equation based on air

  2. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    Energy Technology Data Exchange (ETDEWEB)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  3. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  4. 29 CFR 4204.13 - Net income and net tangible assets tests.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  5. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    Science.gov (United States)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  6. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  7. Physics-Based GOES Satellite Product for Use in NREL's National Solar Radiation Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Habte, A.; Gotseff, P.; Weekley, A.; Lopez, A.; Molling, C.; Heidinger, A.

    2014-07-01

    The National Renewable Energy Laboratory (NREL), University of Wisconsin, and National Oceanic Atmospheric Administration are collaborating to investigate the integration of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) products into future versions of NREL's 4-km by 4-km gridded National Solar Radiation Database (NSRDB). This paper describes a method to select an improved clear-sky model that could replace the current SASRAB global horizontal irradiance and direct normal irradiances reported during clear-sky conditions.

  8. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein

    2015-12-01

    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  9. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius

    2014-01-01

    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  10. Net4Care PHMR Library

    DEFF Research Database (Denmark)

    2014-01-01

    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  11. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur

    2011-01-01

    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  12. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.

    1991-01-01

    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  13. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India

    Energy Technology Data Exchange (ETDEWEB)

    Seethala, C.; Pandithurai, G.; Fast, Jerome D.; Polade, Suraj D.; Reddy, M. S.; Peckham, Steven E.

    2012-01-24

    We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 to 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of particulate

  14. United States radiation safety and regulatory considerations for radiofrequency hyperthermia systems.

    Science.gov (United States)

    Bassen, H I; Coakley, R F

    1981-06-01

    The control of Radiofrequency (RF) radiation (including microwave radiation) that is emitted by therapeutic medical devices is the responsibility of the Food and Drug Administration's (FDA) Bureau of Radiological Health (BRH). Several studies of RF emissions from various shortwave (27 MHz) and microwave (2450 MHz) diathermy devices have been conducted by the Electromagnetics Branch of the Bureau's Division of Electronic Products. BRH studies have led to a proposed standard for microwave diathermy devices operating above 900 MHz. Shortwave diathermy devices used in physical therapy situations have been found to produce relatively high levels of unintended exposures (sometimes exceeding present U.S. exposure standards) to device operators and to the nonprescribed tissues of the patient. BRH is initiating further studies to ascertain the need for controls to be placed on these shortwave devices to ensure safety and medical effectiveness. Radiation safety standards, which presently exist in the United States, allow much higher unintended human exposures than do the standards existing in the several eastern European countries. A trend to lower permissible exposures to 5 mW/cm2 or even 1 mW/cm2 is under way in the U.S. The various provisions of FDA's Medical Device regulations apply to investigational as well as commercially-marketed RF/microwave devices and require both safety and medical effectiveness aspects of performance to be addressed by their manufacturer. A set of microwave radiation safety considerations has been developed by BRH for newly emerging cancer therapy protocols which utilize microwave hyperthermia devices.

  15. Radiative forcing by contrails

    Directory of Open Access Journals (Sweden)

    R. Meerkötter

    1999-08-01

    Full Text Available A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm-2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.Key words. Atmospheric composition and structure (aerosols and particles · Meteorology and atmospheric dynamics (climatology · radiative processes

  16. Radiative forcing by contrails

    Directory of Open Access Journals (Sweden)

    R. Meerkötter

    Full Text Available A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm-2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

    Key words. Atmospheric composition and structure (aerosols and particles · Meteorology and atmospheric dynamics (climatology · radiative processes

  17. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)

    lremy

    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  18. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs

    2012-01-01

    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  19. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.

    2014-01-01

    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  20. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  1. Downward shortwave surface irradiance from 17 sites for the FIRE/SRB Wisconsin experiment

    Science.gov (United States)

    Whitlock, Charles H.; Hay, John E.; Robinson, David A.; Cox, Stephen K.; Wardle, David I.; Lecroy, Stuart R.

    1990-01-01

    A field experiment was conducted in Wisconsin during Oct. to Nov. 1986 for purposes of both intensive cirrus cloud measurments and SRB algorithm validation activities. The cirrus cloud measurements were part of the FIRE. Tables are presented which show data from 17 sites in the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment/Surface Radiation Budget (FIRE/SRB) Wisconsin experiment region. A discussion of intercomparison results and calibration inconsistencies is also included.

  2. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  3. Effect of short-wave diathermy on mobility and radiological stage of the knee in the development of experimental osteoarthritis.

    Science.gov (United States)

    Vanharanta, H

    1982-04-01

    The objective of the study was to determine the effect of short-wave diathermy on joint mobility and radiographic changes during the development of osteoarthritis. An experimental model for osteoarthritis was developed by periodic immobilization of rabbit knees. Nine rabbits was given short wave diathermy in the same knee 55 times for 5 minutes with a power of 50 W for 11 weeks. An identically immobilized group of 17 rabbits was used as control. The most significant effect on the mobility of the treated knee was the development of extension deficiency. This limitation developed within a week and was permanent. A smaller effect was found on flexion mobility. Flexion deficiency decreased at the end of the immobilization period and increased during remobilization, though at the end of the experiment there were no differences compared with the control. Radiographic changes were similar during the development of osteoarthritis in treated and non-treated groups.

  4. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  5. High spatial resolution burn severity mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave infrared imagery

    Science.gov (United States)

    Timothy A. Warner; Nicholas S. Skowronski; Michael R. Gallagher

    2017-01-01

    The WorldView-3 (WV-3) sensor, launched in 2014, is the first highspatial resolution scanner to acquire imagery in the shortwave infrared (SWIR). A spectral ratio of the SWIR combined with the nearinfrared (NIR) can potentially provide an effective differentiation of wildfire burn severity. Previous high spatial resolution sensors were limited to data fromthe visible...

  6. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  7. An 18-day stretching regimen, with or without pulsed, shortwave diathermy, and ankle dorsiflexion after 3 weeks.

    Science.gov (United States)

    Brucker, Jody B; Knight, Kenneth L; Rubley, Mack D; Draper, David O

    2005-01-01

    The amount of retained ankle flexibility gains and the effects of diathermy on those gains are unclear. To determine the retention of flexibility 3 weeks after an 18-day stretching regime and the effect of pulsed, shortwave diathermy on that retention. We used a 2x4 factorial with repeated measures on day (1, 19, 24, and 39). The other independent variable was treatment (stretch only versus diathermy and stretch). The dependent variable was ankle-dorsiflexion angular displacement as measured on a digital inclinometer. Therapeutic Modality Research Laboratory. 23 healthy college-aged volunteers (8 males, 15 females; age = 22.7 +/- 2.1 years, height = 171.1 +/- 8.8 cm, mass = 70.4 +/- 13.5 kg). All subjects performed 3 weeks (not including weekends) of low-load, prolonged, long-duration stretching. One group performed stretching only; the other group also received diathermy. After an 18-day stretching regime and 7-day retention study, subjects returned 14 days later for the 3-week retention measure. The angle of inclination from the posterior Achilles tendon to the sole of the shoe near the heel was measured on each treatment and test day. Regardless of group (F(1,21) = 0.74, P = 0.40), the flexibility gained between days 1 (99.7 +/- 4.0 degrees), 19 (102.9 +/- 5.8 degrees), and 24 (105.0 +/- 6.2 degrees) were maintained at day 39 (104.8+/- 7.2 degrees) (P shortwave diathermy during stretching did not appear to influence the chronic retention of flexibility gains in normal subjects.

  8. Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models

    Science.gov (United States)

    Corbett, J.; Su, W.

    2015-08-01

    The Cloud and the Earth's Radiant Energy System (CERES) instruments on NASA's Terra, Aqua and Soumi NPP satellites are used to provide a long-term measurement of Earth's energy budget. To accomplish this, the radiances measured by the instruments must be inverted to fluxes by the use of a scene-type-dependent angular distribution model (ADM). For permanent snow scenes over Antarctica, shortwave (SW) ADMs are created by compositing radiance measurements over the full viewing zenith and azimuth range. However, the presence of small-scale wind blown roughness features called sastrugi cause the BRDF (bidirectional reflectance distribution function) of the snow to vary significantly based upon the solar azimuth angle and location. This can result in monthly regional biases between -12 and 7.5 Wm-2 in the inverted TOA (top-of-atmosphere) SW flux. The bias is assessed by comparing the CERES shortwave fluxes derived from nadir observations with those from all viewing zenith angles, as the sastrugi affect fluxes inverted from the oblique viewing angles more than for the nadir viewing angles. In this paper we further describe the clear-sky Antarctic ADMs from Su et al. (2015). These ADMs account for the sastrugi effect by using measurements from the Multi-Angle Imaging Spectro-Radiometer (MISR) instrument to derive statistical relationships between radiance from different viewing angles. We show here that these ADMs reduce the bias and artifacts in the CERES SW flux caused by sastrugi, both locally and Antarctic-wide. The regional monthly biases from sastrugi are reduced to between -5 and 7 Wm-2, and the monthly-mean biases over Antarctica are reduced by up to 0.64 Wm-2, a decrease of 74 %. These improved ADMs are used as part of the Edition 4 CERES SSF (Single Scanner Footprint) data.

  9. Army Net Zero Prove Out. Army Net Zero Training Report

    Science.gov (United States)

    2014-11-20

    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  10. Army Net Zero Prove Out. Net Zero Waste Best Practices

    Science.gov (United States)

    2014-11-20

    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , the...technology and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  11. Heating rate profiles and radiative forcing due to a dust storm in the Western Mediterranean using satellite observations

    Science.gov (United States)

    Peris-Ferrús, C.; Gómez-Amo, J. L.; Marcos, C.; Freile-Aranda, M. D.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2017-07-01

    We analyze the vertically-resolved radiative impact due to a dust storm in the Western Mediterranean. The dust plume travels around 3-5 km altitude and the aerosol optical depth derived by MODIS at 550 nm ranges from 0.33 to 0.52 at the overpass time (13:05 UT). The aerosol radiative forcing (ARF), forcing efficiency (FE) and heating rate profile (AHR) are determined throughout the dust trajectory in shortwave (SW) and longwave (LW) ranges. To do this, we integrate different satellite observations (CALIPSO and MODIS) and detailed radiative transfer modeling. The combined (SW + LW) effect of the dust event induces a net cooling in the studied region. On average, the FE at 22.4° solar zenith angle is -190.3 W m-2 and -38.1 W m-2, at surface and TOA, respectively. The corresponding LW/SW offset is 14% and 38% at surface and TOA, respectively. Our results at TOA are sensitive to the surface albedo in the SW and surface temperature in the LW. The absolute value of FE decrease (increase) in the SW (LW) with the surface albedo, resulting in an increasing LW/SW offset, up to 76%. The AHR profiles show a net warming within the dust layer, with a maximum value of 3.3 Kd-1. The ARF, FE and AHR are also highly sensitive to the dust optical properties in SW and LW. We evaluate this sensitivity by comparing the results obtained using two set of dust properties as input in our simulations: a) the prescribed dust model by Optical Properties of Aerosols and Clouds (OPAC) and; b) the dust optical properties derived from measurements of the size distribution and refractive index. Experimentally derived dust properties present larger SSA and asymmetry parameter in the SW than OPAC dust. Conversely, OPAC dust presents higher AOD in the LW range. These parameters drive the FE and AHR sensitivities in the SW and LW ranges, respectively. Therefore, when measured dust properties are used in our simulations: the ARF in the LW substantially reduces at surface and TOA (up to 57%); the

  12. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  13. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library

    DONG, SHUCHUANG; HU, FUXIANG; KUMAZAWA, TAISEI; SIODE, DAISUKE; TOKAI, TADASHI

    2016-01-01

      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  14. Figure4

    Data.gov (United States)

    U.S. Environmental Protection Agency — NetCDF files of PBL height (m), Shortwave Radiation, 10 m wind speed from WRF and Ozone from CMAQ. The data is the standard deviation of these variables for each...

  15. LES and radiative properties of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Chlond, A.; Schulz, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1997-12-01

    A large eddy simulation (LES) model has been used to investigate the role of various external parameters and physical processes in the life-cycle of contrails. The model simulations indicate that the contrail evolution is controlled primarily by humidity, temperature and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, the contrails generated from LESs have been used within a two-dimensional radiative transfer scheme to elucidate the effect of cloud inhomogeneity on the area averaged radiative properties of contrails. The results obtained indicate that differences in shortwave cloud albedo between homogeneous and inhomogeneous conditions remain small as long as the optical depth is smaller than one. For higher optical depths larger differences were obtained at which the albedo for horizontally homogeneous conditions is always larger than the corresponding value for inhomogeneous conditions. (orig.) 144 figs., 42 tabs., 497 refs.

  16. Isolated unit tests in .Net

    OpenAIRE

    Haukilehto, Tero

    2013-01-01

    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  17. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  18. On the relative role of clouds and aerosols in the decadal changes of solar radiation

    Science.gov (United States)

    Chiacchio, M.; Vitolo, R.; Wild, M.

    2009-04-01

    This study aims at quantifying the most important factors for the decadal variations in the surface shortwave downward radiation. With reports describing global variations of this radiation parameter using surface and satellite-derived measurements, emphasis has recently been placed on regional studies to further understand the mechanisms that are contributing to the local changes in solar radiation. Analysis of this radiative parameter is performed on surface observations in Europe from the Global Energy Balance Archive (GEBA) from 1970 through 2005. This dataset is comprised of monthly mean surface downward radiation around the globe. The time series of these measurements are evaluated on an annual and seasonal basis to determine their trends using linear regression techniques. Since cloud cover and aerosols are major contributors for the variability of solar radiation, we assess the relative role of these two factors. Time series of cloud cover are taken from the Carbon Dioxide Information Analysis Center (CDIAC) from 1971 to 1996. Monthly averages from this dataset are used to compute annual and seasonal trends. In addition, decadal changes in the total aerosol optical depth from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model are analysed. The effect of cloud cover and aerosols on surface shortwave downward radiation is evaluated through generalized linear models where these two factors act as covariates.

  19. Radiative forcing by contrails

    Energy Technology Data Exchange (ETDEWEB)

    Meerkoetter, R.; Schumann, U. [DLR Oberpfaffenhofen, Wessling (Germany). Inst. fuer Phys. der Atmosphaere; Doelling, D.R.; Minnis, P. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Nakajima, T.; Tsushima, Y. [Tokyo Univ. (Japan). Center for Climate System Research

    1999-08-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, midlatitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm{sup -2} daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover. (orig.) 78 refs.

  20. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  1. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni

    2008-01-01

    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  2. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W

    2003-01-01

    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  3. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  4. ERBE and GEBA Short-Wave monthly mean surface radiance comparisons

    Science.gov (United States)

    Fernandez, J. R.; Kato, S.; Bedka, K. M.; Minnis, P.; Rose, F. G.; Rutan, D. A.; Shrestha, A. K.; Miller, W. F.; Fillmore, D. W.

    2012-12-01

    Using the NASA Earth Radiation Budget Experiment (ERBE), downward short wave surface radiance measurements were processed for the year 1986. In this process, a new table lookup method was used for aerosols retrievals as well as MOA product based on MERRA database. New SSF product based on Advanced Very High Resolution Radiometer (AVHRR) was used for cloud property retrievals. In addition, a climatology dataset for surface albedo map retrievals was incorporated in this processing. ERBE surface radiances were produced for months April, July, October, and December of 1986. To validate this product, we use the Global Energy Balance Archive (GEBA) dataset for the same months. GEBA database stores energy flux monthly means that have been measured at 1500 stations at the earth's surface. In this work, comparisons of monthly short wave radiance averages at the surface between ERBE and GEBA datasets are presented. Preliminary results show a good agreement between both datasets.

  5. Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance

    Science.gov (United States)

    Hu, Mingke; Zhao, Bin; Ao, Xianze; Pei, Gang

    2017-05-01

    A radiative cooler based on aluminum-evaporated polyvinyl-fluoride surface was employed to investigate the effect of precipitable water vapor amount on its radiative cooling performance. A mathematic model of steady heat transfer that considers the spectral radiant distribution of the sky, the transparent cover and the collecting surface was established. The results indicate that the amount of precipitable water vapor shows a remarkable and negative effect on radiative cooling performance of the radiative cooler. Both the temperature difference between the cooler and surroundings and the net radiative cooling power decrease as the precipitable water vapor amount increases. The net radiative cooling power drops by about 41.0% as the the precipitable water vapor amount changes from 1.0 cm to 7.0 cm. Besides, the radiative cooler shows better cooling performance in winter than in summer. The net radiative cooling power in summer of Hefei is about 82.2% of that in winter.

  6. PsychoNet: a psycholinguistc commonsense ontology

    OpenAIRE

    Mohtasseb, Haytham; Ahmed, Amr

    2010-01-01

    Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization...

  7. 78 FR 72451 - Net Investment Income Tax

    Science.gov (United States)

    2013-12-02

    ... Revenue Service 26 CFR Part 1 RIN 1545-BL74 Net Investment Income Tax AGENCY: Internal Revenue Service...). These regulations provide guidance on the computation of net investment income. The regulations affect... lesser of: (A) The individual's net investment income for such taxable year, or (B) the excess (if any...

  8. 47 CFR 69.302 - Net investment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account...

  9. 47 CFR 65.450 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  10. 47 CFR 65.500 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  11. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David

    2014-01-01

    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  12. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro

    1995-01-01

    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...

  13. 27 CFR 4.37 - Net contents.

    Science.gov (United States)

    2010-04-01

    ... the volume of wine within the container, except that the following tolerances shall be allowed: (1... THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is...

  14. An assessment of hazards caused by electromagnetic interaction on humans present near short-wave physiotherapeutic devices of various types including hazards for users of electronic active implantable medical devices (AIMD).

    Science.gov (United States)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both-GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment).

  15. An Assessment of Hazards Caused by Electromagnetic Interaction on Humans Present near Short-Wave Physiotherapeutic Devices of Various Types Including Hazards for Users of Electronic Active Implantable Medical Devices (AIMD

    Directory of Open Access Journals (Sweden)

    Jolanta Karpowicz

    2013-01-01

    Full Text Available Leakage of electromagnetic fields (EMF from short-wave radiofrequency physiotherapeutic diathermies (SWDs may cause health and safety hazards affecting unintentionally exposed workers (W or general public (GP members (assisting patient exposed during treatment or presenting there for other reasons. Increasing use of electronic active implantable medical devices (AIMDs, by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users. Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated. Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment.

  16. Quantification of the aerosol direct radiative effect from smoke over clouds using passive space-borne spectrometry

    Science.gov (United States)

    de Graaf, M.; Stammes, P.; Tilstra, L. G.

    2013-05-01

    The solar radiative absorption by smoke layers above clouds is quantified, using the unique broad spectral range of the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from the ultraviolet (UV) to the shortwave infrared (SWIR). Aerosol radiative effects in the UV are separated from cloud radiative effects in the shortwave infrared (SWIR). In the UV, aerosol absorption from smoke is strong, creating a strong signal in the measured reflectance. In the SWIR, absorbing and scattering effects from smoke are negligible, allowing the retrieval of cloud parameters from the measured spectrum using existing retrieval techniques. The spectral signature of the cloud can be modelled using a radiative transfer model (RTM) and the cloud parameters retrieved in the SWIR. In this way, the aerosol effects can be determined from the measured aerosol-polluted cloud shortwave spectrum and the modelled aerosol-unpolluted cloud shortwave spectrum. This can be used to derive the aerosol direct radiative effect (DRE) over marine clouds, independent of aerosol parameter retrievals, significantly improving the current accuracy of aerosol DRE estimates. Only cloud parameters are needed to model the aerosolunpolluted cloud reflectance, while the effects of the aerosol absorption are in the aerosol-polluted cloud reflectance measurements. In this paper we present a case study of the above method using SCIAMACHY data over the South Atlantic Ocean west of Africa on 13 August 2006, when a huge plume of smoke was present over persistent cloud fields. The aerosol DRE over clouds was as high as 128 ± 8 Wm-2 for this case, while the aerosol DRE over clouds averaged through August 2006 was found to be 23 ± 8 Wm-2 with a mean variation over the region in this month of 22 Wm-2.

  17. Shortwave Radiometer Calibration Methods Comparison and Resulting Solar Irradiance Measurement Differences: A User Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-11-21

    Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibration service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These

  18. NET 40 Generics Beginner's Guide

    CERN Document Server

    Mukherjee, Sudipta

    2012-01-01

    This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy.

  19. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding

    2015-01-01

    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...... marker is proven to erroneously yield a positive NRI. Some insight into this phenomenon is provided. Since large values for the NRI statistic may simply be due to use of poorly fitting risk models, we suggest caution in using the NRI as the basis for marker evaluation. Other measures of prediction...

  20. Radiation Therapy

    Science.gov (United States)

    ... Be extra careful not to spend time with children or pregnant women. Internal Radiation Therapy Makes You Give Off Radiation With systemic radiation, your body fluids ( urine , sweat, and saliva ) will give off radiation for a while. With ...

  1. Radiation enteritis

    Science.gov (United States)

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  2. Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought

    Science.gov (United States)

    Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.

    2017-10-01

    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.

  3. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  4. A Non-Destructive Distinctive Method for Discrimination of Automobile Lubricant Variety by Visible and Short-Wave Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yong He

    2012-03-01

    Full Text Available A novel method which is a combination of wavelet packet transform (WPT, uninformative variable elimination by partial least squares (UVE-PLS and simulated annealing (SA to extract best variance information among different varieties of lubricants is presented. A total of 180 samples (60 for each variety were characterized on the basis of visible and short-wave infrared spectroscopy (VIS-SWNIR, and 90 samples (30 for each variety were randomly selected for the calibration set, whereas, the remaining 90 samples (30 for each variety were used for the validation set. The spectral data was split into different frequency bands by WPT, and different frequency bands were obtained. SA was employed to look for the best variance band (BVB among different varieties of lubricants. In order to improve prediction precision further, BVB was processed by UVE-PLS and the optimal cutoff threshold of UVE was found by SA. Finally, five variables were mined, and were set as inputs for a least square-support vector machine (LS-SVM to build the recognition model. An optimal model with a correlation coefficient (R of 0.9850 and root mean square error of prediction (RMSEP of 0.0827 was obtained. The overall results indicated that the method of combining WPT, UVE-PLS and SA was a powerful way to select diagnostic information for discrimination among different varieties of lubricating oil, furthermore, a more parsimonious and efficient LS-SVM model could be obtained.

  5. Satellite-based forest monitoring: spatial and temporal forecast of growing index and short-wave infrared band

    Directory of Open Access Journals (Sweden)

    Caroline Bayr

    2016-04-01

    Full Text Available For detecting anomalies or interventions in the field of forest monitoring we propose an approach based on the spatial and temporal forecast of satellite time series data. For each pixel of the satellite image three different types of forecasts are provided, namely spatial, temporal and combined spatio-temporal forecast. Spatial forecast means that a clustering algorithm is used to group the time series data based on the features normalised difference vegetation index (NDVI and the short-wave infrared band (SWIR. For estimation of the typical temporal trajectory of the NDVI and SWIR during the vegetation period of each spatial cluster, we apply several methods of functional data analysis including functional principal component analysis, and a novel form of random regression forests with online learning (streaming capability. The temporal forecast is carried out by means of functional time series analysis and an autoregressive integrated moving average model. The combination of the temporal forecasts, which is based on the past of the considered pixel, and spatial forecasts, which is based on highly correlated pixels within one cluster and their past, is performed by functional data analysis, and a variant of random regression forests adapted to online learning capabilities. For evaluation of the methods, the approaches are applied to a study area in Germany for monitoring forest damages caused by wind-storm, and to a study area in Spain for monitoring forest fires.

  6. Satellite-based forest monitoring: spatial and temporal forecast of growing index and short-wave infrared band.

    Science.gov (United States)

    Bayr, Caroline; Gallaun, Heinz; Kleb, Ulrike; Kornberger, Birgit; Steinegger, Martin; Winter, Martin

    2016-04-18

    For detecting anomalies or interventions in the field of forest monitoring we propose an approach based on the spatial and temporal forecast of satellite time series data. For each pixel of the satellite image three different types of forecasts are provided, namely spatial, temporal and combined spatio-temporal forecast. Spatial forecast means that a clustering algorithm is used to group the time series data based on the features normalised difference vegetation index (NDVI) and the short-wave infrared band (SWIR). For estimation of the typical temporal trajectory of the NDVI and SWIR during the vegetation period of each spatial cluster, we apply several methods of functional data analysis including functional principal component analysis, and a novel form of random regression forests with online learning (streaming) capability. The temporal forecast is carried out by means of functional time series analysis and an autoregressive integrated moving average model. The combination of the temporal forecasts, which is based on the past of the considered pixel, and spatial forecasts, which is based on highly correlated pixels within one cluster and their past, is performed by functional data analysis, and a variant of random regression forests adapted to online learning capabilities. For evaluation of the methods, the approaches are applied to a study area in Germany for monitoring forest damages caused by wind-storm, and to a study area in Spain for monitoring forest fires.

  7. Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect.

    Science.gov (United States)

    Brächer, T; Fabre, M; Meyer, T; Fischer, T; Auffret, S; Boulle, O; Ebels, U; Pirro, P; Gaudin, G

    2017-12-13

    The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co 8 Fe 72 B 20 /MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

  8. Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones.

    Science.gov (United States)

    Bosten, Jenny M; Bargary, Gary; Goodbourn, Patrick T; Hogg, Ruth E; Lawrance-Owen, Adam J; Mollon, J D

    2014-04-01

    Distinct neural populations carry signals from short-wave (S) cones. We used individual differences to test whether two types of pathways, those that receive excitatory input (S+) and those that receive inhibitory input (S-), contribute independently to psychophysical performance. We also conducted a genome-wide association study (GWAS) to look for genetic correlates of the individual differences. Our psychophysical test was based on the Cambridge Color Test, but detection thresholds were measured separately for S-cone spatial increments and decrements. Our participants were 1060 healthy adults aged 16-40. Test-retest reliabilities for thresholds were good (ρ=0.64 for S-cone increments, 0.67 for decrements and 0.73 for the average of the two). "Regression scores," isolating variability unique to incremental or decremental sensitivity, were also reliable (ρ=0.53 for increments and ρ=0.51 for decrements). The correlation between incremental and decremental thresholds was ρ=0.65. No genetic markers reached genome-wide significance (pindividual differences in S-cone sensitivity in a normal adult population. Though a portion of the variance in sensitivity is shared between incremental and decremental sensitivity, over 26% of the variance is stable across individuals, but unique to increments or decrements, suggesting distinct neural substrates. Some of the variability in sensitivity is likely to be genetic. We note that four of the suggestive associations found in the GWAS are with genes that are involved in glucose metabolism or have been associated with diabetes.

  9. Effect of pulsed short-wave diathermy on pain and function of subjects with osteoarthritis of the knee: a placebo-controlled double-blind clinical trial.

    Science.gov (United States)

    Laufer, Y; Zilberman, R; Porat, R; Nahir, A M

    2005-05-01

    To examine the effects of pulsed short-wave diathermy (PSWD), delivered at an intensity sufficient to induce a thermal sensation and at an athermal intensity, in comparison with a placebo short-wave diathermy treatment, on reported pain, stiffness and functional ability and on mobility performance of patients with osteoarthritis of the knee. A placebo-controlled double-blind trial with sequential allocation of patients to different treatment groups. Outpatient physiotherapy department. One hundred and three consecutive patients, mean age 73.7 (+/-6.6) years with osteoarthritis of one or both knees for at least three months. All participants received three 20-min-long treatments per week for three weeks. One group received PSWD with mean power of 18 W (thermal effect), one group received PSWD with mean power of 1.8 W (athermal effect), and one group received sham short-wave diathermy treatment. Patients were assessed before the initial treatment, immediately following the last treatment, and at a three-month follow-up. Outcome measures included the WOMAC Osteoarthritis Index, which assessed reported pain, stiffness, and functional ability, and four measures of mobility performance: Timed Get Up and Go test (TGUG), stair-climbing, stair, descending and a 3-min walk. A difference across time was observed for the pain and stiffness categories of the WOMAC Osteoarthritis Index (p = 0.033 and p = 0.008, respectively), with no differences between groups. No other significant differences across time or between groups were observed in any of the other measures. The findings do not demonstrate pulsed short-wave diathermy, as it is utilized in clinical settings, to be effective in the treatment of osteoarthritis of the knee.

  10. Validação do balanço de radiação obtido a partir de dados MODIS/TERRA na Amazônia com medidas de superfície do LBA Validation of net radiation obtained from MODIS/TERRA data in Amazonia with LBA surface measurements

    Directory of Open Access Journals (Sweden)

    Gabriel de Oliveira

    2013-09-01

    Full Text Available Este estudo tem como objetivo estimar os componentes do balanço de radiação em duas regiões do estado de Rondônia (sudoeste da Amazônia brasileira, a partir de dados do Moderate Resolution Imaging Spectroradiometer (MODIS/TERRA por intermédio do modelo Surface Energy Balance Algorithms for Land (SEBAL, e validar os resultados com informações adquiridas por torres micrometeorológicas do projeto LBA sob as condições de pastagem (Fazenda Nossa Senhora Aparecida e floresta (Reserva Biológica do Jaru. A implementação do modelo SEBAL foi realizada diretamente sobre os dados MODIS e incluiu etapas envolvendo o cômputo de índices de vegetação, albedo e transmitância atmosférica. A comparação das estimativas geradas a partir de dados MODIS com as observações resultou em erros relativos para a condição de pastagem variando entre 0,2 e 19,2%, e para a condição de floresta variando entre 0,8 e 15,6%. A integração de dados em diferentes escalas constituiu uma proposição útil para a estimativa e espacialização dos fluxos de radiação na região amazônica, o que pode contribuir para a melhor compreensão da interação entre a floresta tropical e a atmosfera e gerar informações de entrada necessárias aos modelos de superfície acoplados aos modelos de circulação geral da atmosfera.This study aims to estimate the components of net radiation in two regions located in the state of Rondônia (southwest of the Brazilian Amazon, using Moderate Resolution Imaging Spectroradiometer (MODIS/TERRA data based on Surface Energy Balance Algorithms for Land (SEBAL model, and to validate the results with information acquired by the micrometeorological towers of LBA under the conditions of pasture (Fazenda Nossa Senhora Aparecida and forest (Reserva Biológica do Jaru. Implementation of SEBAL model was performed directly on the MODIS data and included steps involving the computation of vegetation indices, albedo and atmospheric

  11. Short-wave contributions in the storm surge associated with Xynthia, February 2010, western France

    Science.gov (United States)

    Bertin, X.; Li, K.; Roland, A.; Breilf, J. F.; Chaumillon, E.

    2012-04-01

    This study aims to hindcast and analyze the storm surge caused by Xynthia, a mid-latitude storm that severely hit the central part of the Bay of Biscay on the 27-28th of February 2010. This storm surge locally exceeded 1.5 m and peaked at the same time as a high spring tide (Bertin et al., 2012). A new storm surge modeling system was applied, based on the unstructured-grid circulation model SELFE (Zhang and Batista, 2008) and the spectral wave model WWM II (Roland et al., 2008). These two models are fully coupled and parallelized and share the same grid and domain decomposition. The modelling system was implemented over the North-East Atlantic Ocean and the space was discretized using an unstructured grid with a resolution ranging from 30 km in Deep Ocean to 25 m in near shore zones. Such a fine resolution was required to properly represent the surf zone. The modelling system resulted in tidal and wave predictions with errors of the order of 2 and 15%, respectively. The storm surge associated with Xynthia was also well predicted along the Bay of Biscay, with root mean square errors of the order of 0.10 m. Numerical experiments were then performed to analyze the physical processes controlling the development of the storm surge and revealed firstly that the wind caused most of the water level anomaly through an Ekman setup process. The comparison between a wave-dependant and a quadratic parameterization to compute wind stress showed that the storm surge was strongly amplified by the presence of steep and young wind-waves, related to their rapid development in the restricted fetch of the Bay of Biscay. The gradient of wave radiation stress contributed to the whole storm surge by about 0.05 to 0.10 m at the available tide gages. Nevertheless, these gages were located in sheltered harbors and modeling results showed that wave-induced setup locally exceeded 0.5 m in areas more exposed to ocean waves. The unstructured grid is currently being extended inland to simulate

  12. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  13. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano

    2010-01-01

    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  14. Comparison of Hourly Solar Radiation from a Ground–Based Station, Remote Sensing and Weather Forecast Models at a Coastal Site of South Italy (Lamezia Terme)

    DEFF Research Database (Denmark)

    Feudo, Teresa Lo; Avolio, Elenio; Gullì, Daniel

    2015-01-01

    The solar radiation is a critical input parameter when working with solar energy and radiation dependent surface processes. In this study, we present preliminary results from an inter-comparison between hourly values from a pyranometer, MSG-SEVIRI sensor and two meso-scale models, WRF and RAMS......, in clear and cloudy sky conditions. Cloudy sky condition is the most important because the attenuation of solar radiation in the atmosphere is strongly dependent on the cloud variability. Bias and RMSE errors are evaluated at a coastal site in the Mediterranean area. These statistics show the tendency...... of both models to overestimate short-wave radiation....

  15. NETS - Danish participation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alsen, S. (Grontmij - Carl Bro, Glostrup (Denmark)); Theel, C. (Baltic Sea Solutions, Holeby (Denmark))

    2008-12-15

    Within the NICe-funded project 'Nordic Environmental Technology Solutions (NETS)' a new type of networking at the Nordic level was organized in order to jointly exploit the rapidly growing market potential in the environmental technology sector. The project aimed at increased and professionalized commercialization of Nordic Cleantech in energy and water business segments through 1) closer cooperation and joint marketing activities, 2) a website, 3) cleantech product information via brochures and publications 4) and participating in relevant trade fairs and other industry events. Facilitating business-to-business activities was another core task for the NETS project partners from Norway, Sweden, Finland and Denmark with the aim to encourage total solutions for combined Cleantech system offers. The project has achieved to establish a Cleantech register of 600 Nordic Cleantech companies, a network of 86 member enterprises, produced several publications and brochures for direct technology promotion and a website for direct access to company profiles and contact data. The project partners have attended 14 relevant international Cleantech trade fairs and conferences and facilitated business-to-business contacts added by capacity building offers through two company workshops. The future challenge for the project partners and Nordic Cleantech will be to coordinate the numerous efforts within the Nordic countries in order to reach concerted action and binding of member companies for reliable services, an improved visibility and knowledge exchange. With Cleantech's growing market influence and public awareness, the need to develop total solutions is increasing likewise. Marketing efforts should be encouraged cross-sectional and cross-border among the various levels of involved actors from both the public and the private sector. (au)

  16. Cloud types and the tropical earth radiation budget

    Science.gov (United States)

    Dhuria, Harbans L.; Kyle, H. Lee

    1990-01-01

    Nimbus-7 cloud and earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. It is found that the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium-altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. In the tropical oceans there are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  17. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Directory of Open Access Journals (Sweden)

    R. K. Chakrabarty

    2016-03-01

    Full Text Available The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC – a class of visible light-absorbing organic carbon (OC – with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg−1. Their mass absorption efficiencies were in the range of 0.2–0.8 m2 g−1 at 405 nm (violet and dropped sharply to 0.03–0.07 m2 g−1 at 532 nm (green, characterized by a mean Ångström exponent of  ≈  9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated “tar balls”. The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing of the atmosphere.

  18. The Role of Clear Sky Identification in the Study of Cloud Radiative Effects: Combine Analysis from ISCCP and the Scanner of Radiation Budget (ScaRaB)

    Science.gov (United States)

    Rossow, W. B.; Stubenrauch, C. J.; Briand, V.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Since the effect of clouds on the earth's radiation balance is often estimated as the difference of net radiative fluxes at the top of the atmosphere between all situations and monthly averaged clear sky situations of the same regions, a reliable identification of clear sky is important for the study of cloud radiative effects. The Scanner for Radiation Balance (ScaRaB) radiometer on board the Russian Meteor-3/7 satellite provided earth radiation budget observations from March 1994 to February 1995 with two ERBE-Re broad-band longwave and shortwave channels. Two narrow-band channels, in the infrared atmospheric window and in the visible band, have been added to the ScaRaB instrument to improve the cloud scene identification. The International Satellite Cloud Climatology Project (ISCCP) method for cloud detection and determination of cloud and surface properties uses the same narrow-band channels as ScaRaB, but is employed to a collection of measurements at a better spatial resolution of about 5 km. By applying the original ISCCP algorithms to the ScaRaB data, the clear sky frequency is about 5% lower than the one over quasi-simultaneous original ISCCP data, an indication that the ISCCP cloud detection is quite stable. However, one would expect an about 10 to 20% smaller clear sky occurrence over the larger ScaRaB pixels. Adapting the ISCCP algorithms to the reduced spatial resolution of 60 km and to the different time sampling of the ScaRaB data leads therefore to a reduction of a residual cloud contamination. A sensitivity study with time-space collocated ScaRaB and original ISCCP data at a spatial resolution of 1deg longitude x 1deg latitude shows that the effect of clear sky identification method plays a higher role on the clear sky frequency and therefore on the statistics than on the zonal mean values of the clear sky fluxes. Nevertheless, the zonal outgoing longwave fluxes corresponding to ERBE clear sky are in general about 2 to 10 W/sq m higher than those

  19. Thermal net flux measurements on the Pioneer Venus entry probes

    Science.gov (United States)

    Revercomb, H. E.; Sromovsky, L. A.; Suomi, V. E.; Boese, R. W.

    1985-01-01

    Corrected thermal net (upward minus downward flux) radiation data from four Pioneer Venus probes at latitudes of 4 deg and 60 deg N, and 27 deg and 31 deg S, are presented. Comparisons of these fluxes with radiative transfer calculations were interpreted in terms of cloud properties and the global distribution of water vapor in the lower atmosphere of Venus. The presence of an as yet undetected source of IR opacity is implied by the fluxes in the upper cloud range. It was also shown that beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and a decrease of the water vapor mixing ratios toward the equator.

  20. 2-D and 3-D Radiation Transfer Models of High-Mass Star Formation

    OpenAIRE

    Whitney, Barbara A.; Robitaille, Thomas P.; Indebetouw, Remy; Wood, Kenneth; Bjorkman, J. E.; Denzmore, Pia

    2005-01-01

    2-D and 3-D radiation transfer models of forming stars generally produce bluer 1-10 micron colors than 1-D models of the same evolutionary state and envelope mass. Therefore, 1-D models of the shortwave radiation will generally estimate a lower envelope mass and later evolutionary state than multidimensional models. 1-D models are probably reasonable for very young sources, or longwave analysis (wavelengths > 100 microns). In our 3-D models of high-mass stars in clumpy molecular clouds, we fi...

  1. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically....... Balbo and W. Reisig, 18 submitted papers, and seven project papers. The submitted papers and project presentations were selectedby the programme committee and a panel of referees from a large number of submissions....

  2. Are You Neutral About Net Neutrality

    Science.gov (United States)

    2007-06-20

    Information Resources Management College National Defense University Are You Neutral About Net Neutrality ? A presentation for Systems & Software...author uses Verizon FiOS for phone, TV, and internet service 3 Agenda Net Neutrality —Through 2 Lenses Who Are the Players & What Are They Saying...Medical Treatment Mini-Case Studies Updates Closing Thoughts 4 Working Definitions of Net Neutrality "Network Neutrality" is the concept that

  3. Texture Based Image Analysis With Neural Nets

    Science.gov (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.

    1990-03-01

    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  4. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    Directory of Open Access Journals (Sweden)

    Graves Patricia M

    2011-12-01

    Full Text Available Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use. Methods Generalized linear latent and mixed models (GLLAMM were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy; net factors (condition, age, net density; household factors (number of rooms [2006] or sleeping spaces [2007], IRS, women's knowledge and school attendance [2007 only], wealth, altitude; and cluster level factors (rural or urban were investigated in univariate and multi-variable models for each survey. Results In 2006, increased net use was associated with: age 25-49 years (adjusted (a OR = 1.4, 95% confidence interval (CI 1.2-1.7 compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5; fewer nets with holes (Ptrend = 0.002; and increasing net density (Ptrend [all nets in HH good] = 1.6; 95% CI 1.2-2.1; increasing net density (Ptrend [per additional space] = 0.6, 95% CI 0.5-0.7; more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7; and increasing household altitude (Ptrend Conclusion In both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density, and improving net condition while focusing on education and promotion of net use, especially in school-age children

  5. Pro Agile NET Development with Scrum

    CERN Document Server

    Blankenship, Jerrel; Millett, Scott

    2011-01-01

    Pro Agile .NET Development with SCRUM guides you through a real-world ASP.NET project and shows how agile methodology is put into practice. There is plenty of literature on the theory behind agile methodologies, but no book on the market takes the concepts of agile practices and applies these in a practical manner to an end-to-end ASP.NET project, especially the estimating, requirements and management aspects of a project. Pro Agile .NET Development with SCRUM takes you through the initial stages of a project - gathering requirements and setting up an environment - through to the development a

  6. Pro ASP.NET MVC 4

    CERN Document Server

    Freeman, Adam

    2012-01-01

    The ASP.NET MVC 4 Framework is the latest evolution of Microsoft's ASP.NET web platform. It provides a high-productivity programming model that promotes cleaner code architecture, test-driven development, and powerful extensibility, combined with all the benefits of ASP.NET. ASP.NET MVC 4 contains a number of significant advances over previous versions. New mobile and desktop templates (employing adaptive rendering) are included together with support for jQuery Mobile for the first time. New display modes allow your application to select views based on the browser that's making the request whi

  7. Professional Visual Basic 2010 and .NET 4

    CERN Document Server

    Sheldon, Bill; Sharkey, Kent

    2010-01-01

    Intermediate and advanced coverage of Visual Basic 2010 and .NET 4 for professional developers. If you've already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is your book. You'll find a quick review of introductory topics-always helpful-before the author team of experts moves you quickly into such topics as data access with ADO.NET, Language Integrated Query (LINQ), security, ASP.NET web programming with Visual Basic, Windows workflow, threading, and more. You'll explore all the new features of Visual Basic 2010 as well as all t

  8. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  9. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    When designing complex systems, mechanisms for structuring, composing, and reusing system components are crucial. Today, there are many approaches for equipping Petri nets with such mechanisms. In the context of defining a standard interchange format for Petri nets, modular PNML was defined....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high...

  10. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  11. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  12. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: Statistical assessment and correction

    Science.gov (United States)

    Feng, Lian; Hu, Chuanmin

    2017-06-01

    Satellite measurements of coastal or inland waters near land/water interfaces suffer from land adjacency effects (LAEs), particularly in the short-wave infrared (SWIR) wavelengths. Here a statistical method was developed to quantify the LAEs as the ratio of top-of-atmosphere (TOA) total radiance (Lt, W m-2 µm-1 sr-1) between near-shore pixels and LAE-free offshore pixels (>12 pixels away from land). The calculations were conducted using MODIS Aqua images between 2003 and 2012 over the Madagascar Island, with results showing the dependency of LAEs on different environmental and observational factors. The LAEs decrease dramatically with increasing distance from shoreline, and increase with decreasing aerosol optical thickness at 869 nm (τ869). The nearby land surface albedo also plays a role in modulating the LAEs, but the impact is only prominent under low-aerosol conditions. Based on these observations, a look-up-table (LUT) to formulate a correction scheme was established. Tests of the correction scheme using satellite observations over the Hawaii Islands and using in situ measurements in the Chesapeake Bay show significant improvements in Lt (LAEs much closer to 1 than uncorrected data) and retrieved surface chlorophyll-a concentration (Chl-a, mg m-3), respectively. Furthermore, the number of Chl-a retrievals within the range of 0-64 mg m-3 also increases by >60%. While the ultimate solution of correcting the LAEs for coastal/inland water applications still requires further work, these preliminary results suggest that the method proposed here deserves further tests for other estuaries and lakes.

  13. Radiation Therapy

    Science.gov (United States)

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  14. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  15. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  16. Price smarter on the Net.

    Science.gov (United States)

    Baker, W; Marn, M; Zawada, C

    2001-02-01

    Companies generally have set prices on the Internet in two ways. Many start-ups have offered untenably low prices in a rush to capture first-mover advantage. Many incumbents have simply charged the same prices on-line as they do off-line. Either way, companies are missing a big opportunity. The fundamental value of the Internet lies not in lowering prices or making them consistent but in optimizing them. After all, if it's easy for customers to compare prices on the Internet, it's also easy for companies to track customers' behavior and adjust prices accordingly. The Net lets companies optimize prices in three ways. First, it lets them set and announce prices with greater precision. Different prices can be tested easily, and customers' responses can be collected instantly. Companies can set the most profitable prices, and they can tap into previously hidden customer demand. Second, because it's so easy to change prices on the Internet, companies can adjust prices in response to even small fluctuations in market conditions, customer demand, or competitors' behavior. Third, companies can use the clickstream data and purchase histories that it collects through the Internet to segment customers quickly. Then it can offer segment-specific prices or promotions immediately. By taking full advantage of the unique possibilities afforded by the Internet to set prices with precision, adapt to changing circumstances quickly, and segment customers accurately, companies can get their pricing right. It's one of the ultimate drivers of e-business success.

  17. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  18. 78 FR 72393 - Net Investment Income Tax

    Science.gov (United States)

    2013-12-02

    ... Investment Income Tax; Final and Proposed Rules #0;#0;Federal Register / Vol. 78, No. 231 / Monday, December... Parts 1 and 602 RIN 1545-BK44 Net Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury... Investment Income Tax and the computation of Net Investment Income. The regulations affect individuals...

  19. 77 FR 72611 - Net Investment Income Tax

    Science.gov (United States)

    2012-12-05

    ... December 5, 2012 Part V Department of the Treasury Internal Revenue Service 26 CFR Part 1 Net Investment... Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of proposed rulemaking...) the individual's net investment income for such taxable year, or (B) the excess (if any) of (i) the...

  20. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  1. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.

    2010-01-01

    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  2. Using the MVC architecture on . NET platform

    OpenAIRE

    Ježek, David

    2011-01-01

    This thesis deals with usage of MVC (Model View Controller) technology in web development on ASP.NET platform from Microsoft. Mainly it deals with latest version of framework ASP.NET MVC 3. First part describes MVC architecture and the second describes usage of MVC in certain parts of web application an comparing with PHP.

  3. Analysis of Petri Nets and Transition Systems

    Directory of Open Access Journals (Sweden)

    Eike Best

    2015-08-01

    Full Text Available This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.

  4. 27 CFR 7.27 - Net contents.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 7.27 Section 7.27 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... the net contents are displayed by having the same blown, branded, or burned in the container in...

  5. Petri nets and other models of concurrency

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Sassone, Vladimiro

    1998-01-01

    This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency.......This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency....

  6. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    This report is identical to an earlier version of May 1978 except that Chapter 5 has been revised. A new paper: "A Petri Net Definition of a System Description Language", DAIMI, April 1979, 20 pages, extends the Petri net model to include a data state representing the program variables. Delta...

  7. Net neutrality and inflation of traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, Florian

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate the short-run effects of different net neutrality rules. Content differs in its

  8. Net Neutrality and Inflation of Traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, F.

    2015-01-01

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate different net neutrality rules. Content differs in its sensitivity to delay.

  9. The Net Neutrality Debate: The Basics

    Science.gov (United States)

    Greenfield, Rich

    2006-01-01

    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and…

  10. Teaching and Learning with the Net Generation

    Science.gov (United States)

    Barnes, Kassandra; Marateo, Raymond C.; Ferris, S. Pixy

    2007-01-01

    As the Net Generation places increasingly greater demands on educators, students and teachers must jointly consider innovative ways of teaching and learning. In this, educators are supported by the fact that the Net Generation wants to learn. However, these same educators should not fail to realize that this generation learns differently from…

  11. Verification of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær

    2011-01-01

    Timed-Arc Petri Nets (TAPN) are an extension of the classical P/T nets with continuous time. Tokens in TAPN carry an age and arcs between places and transitions are labelled with time intervals restricting the age of tokens available for transition firing. The TAPN model posses a number...

  12. A Brief Introduction to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1997-01-01

    Coloured Petri Nets (CP-nets or CPN) is a graphical oriented language for design, specification, simulation and verification of systems. It is in particular well- suited for systems in which communication, synchronisation and resource sharing are important. Typical examples of application areas a...

  13. Gill net and trammel net selectivity in the northern Aegean Sea, Turkey

    Directory of Open Access Journals (Sweden)

    F. Saadet Karakulak

    2008-09-01

    Full Text Available Fishing trials were carried out with gill nets and trammel nets in the northern Aegean Sea from March 2004 to February 2005. Four different mesh sizes for the gill nets and the inner panel of trammel nets (16, 18, 20 and 22 mm bar length were used. Selectivity parameters for the five most economically important species, bogue (Boops boops, annular sea bream (Diplodus annularis, striped red mullet (Mullus surmuletus, axillary sea bream (Pagellus acarne and blotched picarel (Spicara maena, caught by the two gears were estimated. The SELECT method was used to estimate the selectivity parameters of a variety of models. Catch composition and catch proportion of several species were different in gill and trammel nets. The length frequency distributions of the species caught by the two gears were significantly different. The bi-modal model selectivity curve gave the best fit for gill net and trammel net data, and there was little difference between the modal lengths of these nets. However, a clear difference was found in catching efficiency. The highest catch rates were obtained with the trammel net. Given that many discard species and small fish are caught by gill nets and trammel nets with a mesh size of 16 mm, it is clear that these nets are not appropriate for fisheries. Consequently, the best mesh size for multispecies fisheries is 18 mm. This mesh size will considerably reduce the numbers of small sized individuals and discard species in the catch.

  14. Discrete, continuous, and hybrid petri nets

    CERN Document Server

    David, René

    2004-01-01

    Petri nets do not designate a single modeling formalism. In fact, newcomers to the field confess sometimes to be a little puzzled by the diversity of formalisms that are recognized under this "umbrella". Disregarding some extensions to the theoretical modeling capabilities, and looking at the level of abstraction of the formalisms, Condition/Event, Elementary, Place/Transition, Predicate/Transition, Colored, Object Oriented... net systems are frequently encountered in the literature. On the other side, provided with appropriate interpretative extensions, Controled Net Systems, Marking Diagrams (the Petri net generalization of State Diagrams), or the many-many variants in which time can be explicitly incorporated -Time(d), Deterministic, (Generalized) Stochastic, Fuzzy...- are defined. This represents another way to define practical formalisms that can be obtained by the "cro- product" of the two mentioned dimensions. Thus Petri nets constitute a modeling paradigm, understandable in a broad sense as "the total...

  15. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  16. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier

    2007-10-01

    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from −0.79 to −0.53 W m−2 (33% and all-sky from −0.47 to −0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  17. Pro visual C++/CLI and the net 35 platform

    CERN Document Server

    Fraser, Stephen

    2008-01-01

    Pro Visual C++/CLI and the .NET 3.5 Platform is about writing .NET applications using C++/CLI. While readers are learning the ins and outs of .NET application development, they will also be learning the syntax of C++, both old and new to .NET. Readers will also gain a good understanding of the .NET architecture. This is truly a .NET book applying C++ as its development language not another C++ syntax book that happens to cover .NET.

  18. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Science.gov (United States)

    Comeau, Steeve; Edmunds, Peter J.; Lantz, Coulson A.; Carpenter, Robert C.

    2017-07-01

    The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet-PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet-PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  19. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  20. Parameterization of sea-salt optical properties and physics of the associated radiative forcing

    Directory of Open Access Journals (Sweden)

    J. Li

    2008-08-01

    Full Text Available The optical properties of sea-salt aerosol have been parameterized at shortwave and longwave wavelengths. The optical properties were parameterized in a simple functional form in terms of the ambient relative humidity based on Mie optical property calculations. The proposed parameterization is tested relative to Mie calculations and is found to be accurate to within a few percent. In the parameterization, the effects of the size distribution on the optical properties are accounted for in terms of effective radius of the sea-salt size distribution. This parameterization differs from previous works by being formulated directly with the wet sea-salt size distribution and, to our knowledge, this is the first published sea-salt parameterization to provide a parameterization for both shortwave and longwave wavelengths.

    We have used this parameterization in a set of idealized 1-D radiative transfer calculations to investigate the sensitivity of various attributes of sea-salt forcing, including the dependency on sea-salt column loading, effective variance, solar angle, and surface albedo. From these sensitivity tests, it is found that sea-salt forcings for both shortwave and longwave spectra are linearly related to the sea-salt loading for realistic values of loadings. The radiative forcing results illustrate that the shortwave forcing is an order of magnitude greater than the longwave forcing results and opposite in sign, for various loadings. Forcing sensitivity studies show that the influence of effective variance for sea-salt is minor; therefore, only one value of effective variance is used in the parameterization. The dependence of sea-salt forcing with solar zenith angle illustrates an interesting result that sea-salt can generate a positive top-of-the-atmosphere result (i.e. warming when the solar zenith angle is relatively small (i.e. <30°. Finally, it is found that the surface albedo significantly affects the shortwave radiative