WorldWideScience

Sample records for net rainfall rate

  1. Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India

    Science.gov (United States)

    Kundu, Sananda; Khare, Deepak; Mondal, Arun

    2017-11-01

    The monthly rainfall data from 1901 to 2011 and maximum and minimum temperature data from 1901 to 2005 are used along with the reference evapotranspiration (ET0) to analyze the climate trend of 45 stations of Madhya Pradesh. ET0 is calculated by the Hargreaves method from 1901 to 2005 and the computed data is then used for trend analysis. The temporal variation and the spatial distribution of trend are studied for seasonal and annual series with the Mann-Kendall (MK) test and Sen's estimator of slope. The percentage of change is used to find the rate of change in 111 years (rainfall) and 105 years (temperatures and ET0). Interrelationships among these variables are analyzed to see the dependency of one variable on the other. The results indicate a decreasing rainfall and increasing temperatures and ET0 trend. A similar pattern is noticeable in all seasons except for monsoon season in temperature and ET0 trend analysis. The highest increase of temperature is noticed during post-monsoon and winter. Rainfall shows a notable decrease in the monsoon season. The entire state of Madhya Pradesh is considered as a single unit, and the calculation of overall net change in the amount of the rainfall, temperatures (maximum and minimum) and ET0 is done to estimate the total loss or gain in monthly, seasonal and annual series. The results show net loss or deficit in the amount of rainfall and the net gain or excess in the temperature and ET0 amount.

  2. Artificial Neural Network for Monthly Rainfall Rate Prediction

    Science.gov (United States)

    Purnomo, H. D.; Hartomo, K. D.; Prasetyo, S. Y. J.

    2017-03-01

    Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.

  3. Validation and correction of rainfall data from the WegenerNet high density network in southeast Austria

    Science.gov (United States)

    O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.

    2018-01-01

    Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).

  4. Rainfall simulators - innovations seeking rainfall uniformity and automatic flow rate measurements

    Science.gov (United States)

    Bauer, Miroslav; Kavka, Petr; Strouhal, Luděk; Dostál, Tomáš; Krása, Josef

    2016-04-01

    single pressure operating mode, which is ensured by the pressure probe controlled electromagnetic valve. Previous experiments implied the need of automatic continuous measurements of selected variables. To this end the control unit was equipped with a datalogger. In a several seconds time step it collects the values of water pressure, nozzle-valves operation, control point rainfall intensity from a tipping bucket rain gauge, topsoil moisture from several Theta ML2x probes and most recently the plot outlet runoff rate. For a continuous runoff rate measurement a 0,4-foot HS-flume was constructed and equipped with S18U ultrasonic sensor. Assemble setting was optimised both in flow rate laboratory flume and in laboratory rainfall simulator. Namely the rating curves for particular flume bottom slopes were derived. Employment of the flume in the terrain is scheduled for the experimental season 2016, but laboratory results already show sufficient measurement accuracy and are promising in terms of experimental campaigns simplification. The abovementioned activities have been supported by the research grants SGS14/180/OHK1/3T/11, QJ1530181, QJ1520265 and QJ1330118.

  5. Calcite Farming at Hollow Ridge Cave: Calibrating Net Rainfall and Cave Microclimate to Dripwater and Calcite Chemical Variability

    Science.gov (United States)

    Tremaine, D. M.; Kilgore, B. P.; Froelich, P. N.

    2012-04-01

    Stable isotope (δ18O and δ13C) and trace element records in cave speleothems are often interpreted as climate changes in rainfall amount or source, cave air temperature, overlying vegetation and atmospheric pCO2. However, these records are difficult to verify without in situ calibration of changes in cave microclimate (e.g., net rainfall, interior ventilation changes) to contemporaneous variations in dripwater and speleothem chemistry. In this study at Hollow Ridge Cave (HRC) in Marianna, Florida (USA), cave dripwater, bedrock, and modern calcite (farmed in situ) were collected in conjunction with continuous cave air pCO2, temperature, barometric pressure, relative humidity, radon-222 activity, airflow velocity and direction, rainfall amount, and drip rate data [1]. We analyzed rain and dripwater δD and δ18O, dripwater Ca2+, pH, δ13C and TCO2, cave air pCO2 and δ13C, and farmed calcite δ18O and δ13C to examine the relationships among rainwater isotopic composition, cave air ventilation, cave air temperature, calcite growth rate and seasonal timing, and calcite isotopic composition. Farmed calcite δ13C decreases linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13C = -7‰ . A whole-cave "Hendy test" at distributed contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and out of flow paths. Farmed calcite δ18O exhibits a +0.82 ± 0.24‰ offset from values predicted by both theoretical calcite-water calculations and by laboratory-grown calcite [2]. Unlike calcite δ13C, oxygen isotopes show no ventilation effects and are a function only of temperature. Combining our data with other speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments: 1000 ln α = 16

  6. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria

    Science.gov (United States)

    O, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Juergen; Tan, Jackson; Petersen, Walter A.

    2017-12-01

    The Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) products provide quasi-global (60° N-60° S) precipitation estimates, beginning March 2014, from the combined use of passive microwave (PMW) and infrared (IR) satellites comprising the GPM constellation. The IMERG products are available in the form of near-real-time data, i.e., IMERG Early and Late, and in the form of post-real-time research data, i.e., IMERG Final, after monthly rain gauge analysis is received and taken into account. In this study, IMERG version 3 Early, Late, and Final (IMERG-E,IMERG-L, and IMERG-F) half-hourly rainfall estimates are compared with gauge-based gridded rainfall data from the WegenerNet Feldbach region (WEGN) high-density climate station network in southeastern Austria. The comparison is conducted over two IMERG 0.1° × 0.1° grid cells, entirely covered by 40 and 39 WEGN stations each, using data from the extended summer season (April-October) for the first two years of the GPM mission. The entire data are divided into two rainfall intensity ranges (low and high) and two seasons (warm and hot), and we evaluate the performance of IMERG, using both statistical and graphical methods. Results show that IMERG-F rainfall estimates are in the best overall agreement with the WEGN data, followed by IMERG-L and IMERG-E estimates, particularly for the hot season. We also illustrate, through rainfall event cases, how insufficient PMW sources and errors in motion vectors can lead to wide discrepancies in the IMERG estimates. Finally, by applying the method of Villarini and Krajewski (2007), we find that IMERG-F half-hourly rainfall estimates can be regarded as a 25 min gauge accumulation, with an offset of +40 min relative to its nominal time.

  7. Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.

    Science.gov (United States)

    Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.

    2010-01-01

    Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.

  8. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria

    Directory of Open Access Journals (Sweden)

    S. O

    2017-12-01

    Full Text Available The Global Precipitation Measurement (GPM Integrated Multi-satellite Retrievals for GPM (IMERG products provide quasi-global (60° N–60° S precipitation estimates, beginning March 2014, from the combined use of passive microwave (PMW and infrared (IR satellites comprising the GPM constellation. The IMERG products are available in the form of near-real-time data, i.e., IMERG Early and Late, and in the form of post-real-time research data, i.e., IMERG Final, after monthly rain gauge analysis is received and taken into account. In this study, IMERG version 3 Early, Late, and Final (IMERG-E,IMERG-L, and IMERG-F half-hourly rainfall estimates are compared with gauge-based gridded rainfall data from the WegenerNet Feldbach region (WEGN high-density climate station network in southeastern Austria. The comparison is conducted over two IMERG 0.1°  ×  0.1° grid cells, entirely covered by 40 and 39 WEGN stations each, using data from the extended summer season (April–October for the first two years of the GPM mission. The entire data are divided into two rainfall intensity ranges (low and high and two seasons (warm and hot, and we evaluate the performance of IMERG, using both statistical and graphical methods. Results show that IMERG-F rainfall estimates are in the best overall agreement with the WEGN data, followed by IMERG-L and IMERG-E estimates, particularly for the hot season. We also illustrate, through rainfall event cases, how insufficient PMW sources and errors in motion vectors can lead to wide discrepancies in the IMERG estimates. Finally, by applying the method of Villarini and Krajewski (2007, we find that IMERG-F half-hourly rainfall estimates can be regarded as a 25 min gauge accumulation, with an offset of +40 min relative to its nominal time.

  9. The influence of the net rainfall mixed Curve Number – Green Ampt procedure in flood hazard mapping: a case study in Central Italy

    Directory of Open Access Journals (Sweden)

    Andrea Petroselli

    2013-09-01

    Full Text Available A net rainfall estimation procedure, referred to as Curve-Number For Green-Ampt (CN4GA, combining the Soil Conservation Service - Curve Number (SCS-CN method and the Green and Ampt (GA infiltration equation was recently developed, aiming to distribute at subdaily time resolution the information provided by the SCS-CN method. The initial abstraction and the total volume of rainfall provided by the SCS-CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation, whereas the GA infiltration model distributes the total volume of the rainfall excess provided by the SCS-CN method. In this study we evaluate the proposed procedure with reference to a real case comparing the flood mapping obtained applying the event-based approach for two different net rainfall scenarios: the proposed CN4GA and the common SCS-CN. Results underline that the net rainfall estimation step can affect the final flood mapping result.

  10. Annual variation in the net longshore sediment transport rate

    CSIR Research Space (South Africa)

    Schoonees, JS

    2000-05-01

    Full Text Available from wave data spanning a number of years, or by measuring continuously the longshore transport over a number of years. In both cases, it must be known over how many consecutive years either the computations or the measurements should be done. Ž... the annual variation in the net longshore transport rates over a period of 7 years. In a study Ž . Žby Shi-Leng and Teh-Fu 1987 , a longshore sediment transport formula the Bijker, .1967 method was calibrated against short-term measurements at Nouakchott...

  11. The effect of net foreign assets on saving rate

    Directory of Open Access Journals (Sweden)

    Ben David Nissim

    2014-01-01

    Full Text Available Observing empirical data we find that many countries try to delay the decision of increasing saving rate in order to avoid a decrease of the living standards. However the delay leads a deterioration of countries financial stability. We present a simple theoretical model that connects between countries' saving rate and their net foreign assets. Using cross section data set of 135 countries in 2010 we estimated the econometric relation between saving rate in 2010 as dependent variable and two explanatory variables: the current account in 2010 and the aggregated current account during 1980-2010. Our findings show that industrial countries in a bad financial state tend to decrease their saving rate as external debt is larger causing to deterioration in external debt while countries with good financial state tend to increase their saving rate and the tendency increase as financial state becomes better. Only in countries with a very large external debt saving rate tends to grow. The results point that gross foreign debt will keep increasing and will worsen world financial state causing increased risk of getting into a world crisis.

  12. The functional correlation between rainfall rate and extinction coefficient for frequencies from 3 to 10 GHz

    Science.gov (United States)

    Jameson, A. R.

    1990-01-01

    The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.

  13. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China.

    Science.gov (United States)

    Li, Fang; Zhao, Wenzhi; Liu, Hu

    2013-01-01

    Rainfall events can be characterized as "pulses", which are discrete and variable episodes that can significantly influence the structure and function of desert ecosystems, including shifts in aboveground net primary productivity (ANPP). To determine the threshold and hierarchical response of rainfall event size on the Normalized Difference Vegetation Index (NDVI, a proxy for ANPP) and the difference across a desert area in northwestern China with two habitats - dune and desert - we selected 17 independent summer rainfall events from 2005 to 2012, and obtained a corresponding NDVI dataset extracted from MODIS images. Based on the threshold-delay model and statistical analysis, the results showed that the response of NDVI to rainfall pulses began at about a 5 mm event size. Furthermore, when the rainfall event size was more than 30 mm, NDVI rapidly increased 3- to 6-fold compared with the response to events of less than 30 mm, suggesting that 30 mm was the threshold for a large NDVI response. These results revealed the importance of the 5 mm and 30 mm rainfall events for plant survival and growth in desert regions. There was an 8- to 16-day lag time between the rainfall event and the NDVI response, and the response duration varied with rainfall event size, reaching a maximum of 32 days. Due to differences in soil physical and mineralogical properties, and to biodiversity structure and the root systems' abilities to exploit moisture, dune and desert areas differed in precipitation responses: dune habitats were characterized by a single, late summer productivity peak; in contrast, deserts showed a multi-peak pattern throughout the growing season.

  14. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants

    Science.gov (United States)

    Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.

    2016-10-01

    A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher ( P fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.

  15. Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands

    NARCIS (Netherlands)

    Hiemstra, P.H.; Pebesma, E.J.; Heuvelink, G.B.M.; Twenhöfel, C.J.W.

    2010-01-01

    The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations

  16. Local-level ground valuation of rainfall estimates by GPM IMERG Final run using the WegenerNet high-resolution precipitation data

    Science.gov (United States)

    Oh, Sungmin; Foelsche, Ulrich; Fuchsberger, Jürgen; Kirchengast, Gottfried

    2017-04-01

    We first performed a study on evaluation of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) Early, Late, and Final rainfall estimates. Afterwards we proceeded to use the WegenerNet gridded precipitation data for detailed analysis of the performance of IMERG Final run data. In this current work, IMERG Final run estimates during the period from April to October for 3 years (2014-2016) are assessed with focus put on various parameters affecting the satellite rainfall retrieval techniques, for example, IR/PMW sensor data involved and seasonal rainfall variations or spatial variability. The WegenerNet gridded data (on a 200 m x 200 m grid, updated every 5-min) are generated from 1km-scale gauge measurements of its 151 weather stations through an Inverse Distance Weighted interpolation method. Given that the network is located within an area of about 15 km × 20 km (centered at 46.93 ˚ N/15.90 ˚ E in south-eastern Austria), two 0.1˚ x 0.1˚ IMERG grid cells can be selected for a direct pixel-to-pixel validation of IMERG data. This presentation will summarize the first study evaluating the three different IMERG runs with updated IMERG data (v4) and then show the results from the current study focusing on the IMERG Final run data.

  17. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo

    2015-04-01

    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A

  18. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    Science.gov (United States)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).

  19. WegenerNet 1km-scale sub-daily rainfall data and their application: a hydrological modeling study on the sensitivity of small-catchment runoff to spatial rainfall variability

    Science.gov (United States)

    Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried

    2017-04-01

    WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2

  20. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils

    Science.gov (United States)

    Stewart, Brian W.; Capo, Rosemary C.; Chadwick, Oliver A.

    2001-04-01

    A climate transect across the Kohala Peninsula, Hawaii provides an ideal opportunity to study soil processes and evolution as a function of rainfall. The parent material is the ˜150 ka Hawi alkali basalt aa flow, and median annual precipitation (MAP) changes from ˜16 cm along the west coast to ˜450 cm in the rain forest near the crest of the peninsula. We measured labile (plant-available) base cation concentrations and 87Sr/ 86Sr ratios of labile strontium and silicate residue from soil profiles across the transect from 18 to 300 cm MAP. Depletion of labile cations and a shift in labile 87Sr/ 86Sr ratios toward rainwater values with increasing rainfall clearly show the transition from a mineral-supported to a rainwater-supported cation nutrient budget. In contrast, increases in soil silicate residue 87Sr/ 86Sr values with increasing MAP result primarily from input of exogenous eolian material (dust derived from Asian loess), with a greater dust fraction at the high MAP sites due to aerosol washout. Most of the soil silicate strontium in high-MAP sites is still derived from the original parent material, but the shallower portions of profiles can be dust-dominated. The variations in labile 87Sr/ 86Sr with rainfall allow us to calculate weathering rates as a function of MAP. The primary uncertainty is the degree to which Sr in rainwater actually interacts with the labile cation reservoir before being flushed from the system; mass balance calculations for the 150 ka evolution of the profile suggest that only on the order of 5 to 50% of rainwater strontium exchanges with the labile reservoir. Our models suggest that the present-day supply of strontium by weathering increases steadily with rainfall in the low-MAP (<140 cm) sites, then decreases dramatically as the soils become depleted in weatherable parent material. This implies that the initial weathering rate of the high-MAP sites was very high, and that there may be some change in soil weathering behavior in the

  1. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    Science.gov (United States)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  2. Rainfall rate retrieval in presence of path attenuation using C-band polarimetric weather radars

    Directory of Open Access Journals (Sweden)

    G. Vulpiani

    2006-01-01

    Full Text Available Weather radar systems are very suitable tools for the monitoring of extreme rainfall events providing measurements with high spatial and temporal resolution over a wide geographical area. Nevertheless, radar rainfall retrieval at C-band is prone to several error sources, such as rain path attenuation which affects the accuracy of inversion algorithms. In this paper, the so-called rain profiling techniques (namely the surface reference method FV and the polarimetric method ZPHI are applied to correct rain path attenuation and a new neural network algorithm is proposed to estimate the rain rate from the corrected measurements of reflectivity and differential reflectivity. A stochastic model, based on disdrometer measurements, is used to generate realistic range profiles of raindrop size distribution parameters while a T-matrix solution technique is adopted to compute the corresponding polarimetric variables. A sensitivity analysis is performed in order to evaluate the expected errors of these methods. It has been found that the ZPHI method is more reliable than FV, being less sensitive to calibration errors. Moreover, the proposed neural network algorithm has shown more accurate rain rate estimates than the corresponding parametric algorithm, especially in presence of calibration errors.

  3. Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data

    Science.gov (United States)

    Rao, M. S. V.; Abbott, W. V.

    1976-01-01

    The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions.

  4. Optimizing kick rate and amplitude for Paralympic swimmers via net force measures.

    Science.gov (United States)

    Fulton, Sacha K; Pyne, David; Burkett, Brendan

    2011-02-01

    Kicking is a key component of freestyle swimming yet the optimum combination of kick rate and kick amplitude remains unknown. For Paralympic swimmers, with upper and lower limb disabilities, the influence of the kick plays an important role in net force production. To determine optimum kick characteristics, 12 Paralympic swimmers aged 19.8 ± 2.9 years (mean ± s) were towed at their individual peak freestyle speed. The experimental conditions were (i) a prone streamline glide for passive trials and (ii) maximal freestyle kicking in a prone streamline for active trials at different speeds and kick amplitudes. Kick rate was quantified using inertial sensor technology. Towing speed was assessed using a novel and validated dynamometer, and net force was assessed using a Kistler force-platform system. When peak speed was increased by 5%, the active force increased 24.2 ± 5.3% (90% confidence limits), while kick rate remained at approximately 150 kicks per minute. Larger amplitude kicking increased the net active force by 25.1 ± 10.6%, although kick rate decreased substantially by 13.6 ± 5.1%. Based on the current kick rate and amplitude profile adopted by Paralympic swimmers, these characteristics are appropriate for optimizing net force.

  5. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing

    Czech Academy of Sciences Publication Activity Database

    Geleyn, J.- F.; Mašek, Jan; Brožková, Radmila; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N.

    2017-01-01

    Roč. 143, č. 704 (2017), s. 1313-1335 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) LO1415 Keywords : numerical weather prediction * climate models * clouds * parameterization * atmospheres * formulation * absorption * scattering * accurate * database * longwave radiative transfer * broadband approach * idealized optical paths * net exchanged rate decomposition * bracketing * selective intermittency Impact factor: 3.444, year: 2016

  6. Spatial variation in tuber depletion by swans explained by differences in net intake rates

    NARCIS (Netherlands)

    Nolet, BA; Langevoord, O; Bevan, RM; Engelaar, KR; Klaassen, M; Mulder, RJW

    We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sage pondweed (Potnmogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving up densities within the confines of one lake was

  7. Spatial variation in tuber depletion by swans explained by differences in net intake rates

    NARCIS (Netherlands)

    Nolet, B.A.; Langevoord, O.; Bevan, R.M.; Engelaar, K.R.; Klaassen, M.R.J.; Mulder, R.J.W.; Van Dijk, S.

    2001-01-01

    We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sage pondweed (Potnmogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving up densities within the confines of one lake was

  8. Net capital flows to and the real exchange rate of Western Balkan countries

    Directory of Open Access Journals (Sweden)

    Gabrisch Hubert

    2015-01-01

    Full Text Available This paper uses Granger causality tests to assess the linkages between changes in the real exchange rate and net capital inflows using the example of Western Balkan countries, which have suffered from low competitiveness and external imbalances for many years. The real exchange rate is a measure of a country’s price competitiveness, and the paper uses two concepts: relative unit labour cost and relative inflation differential. The sample consists of six Western Balkan countries for the period 1996-2012, relative to the European Union (EU. The main finding is that changes in the net capital flows precede changes in relative unit labour costs and not vice versa. Also, there is evidence that net capital flows affect the inflation differential of countries, although to a less discernible extent. This suggests that the increasing divergence in the unit labour cost between the EU and Western Balkan countries up to the global financial crisis was at least partly the result of net capital inflows. The paper adds to the ongoing debate on improving cost competitiveness through wage restrictions as the main vehicle to avert the accumulation of current account imbalances. It shows the importance of changes in the exchange rate regime, reform of the interaction between the financial and the real sector, and financial supervision and structural change.

  9. Ceilometer-based Rainfall Rate estimates in the framework of VORTEX-SE campaign: A discussion

    Science.gov (United States)

    Barragan, Ruben; Rocadenbosch, Francesc; Waldinger, Joseph; Frasier, Stephen; Turner, Dave; Dawson, Daniel; Tanamachi, Robin

    2017-04-01

    During Spring 2016 the first season of the Verification of the Origins of Rotation in Tornadoes EXperiment-Southeast (VORTEX-SE) was conducted in the Huntsville, AL environs. Foci of VORTEX-SE include the characterization of the tornadic environments specific to the Southeast US as well as societal response to forecasts and warnings. Among several experiments, a research team from Purdue University and from the University of Massachusetts Amherst deployed a mobile S-band Frequency-Modulated Continuous-Wave (FMCW) radar and a co-located Vaisala CL31 ceilometer for a period of eight weeks near Belle Mina, AL. Portable disdrometers (DSDs) were also deployed in the same area by Purdue University, occasionally co-located with the radar and lidar. The NOAA National Severe Storms Laboratory also deployed the Collaborative Lower Atmosphere Mobile Profiling System (CLAMPS) consisting of a Doppler lidar, a microwave radiometer, and an infrared spectrometer. The purpose of these profiling instruments was to characterize the atmospheric boundary layer evolution over the course of the experiment. In this paper we focus on the lidar-based retrieval of rainfall rate (RR) and its limitations using observations from intensive observation periods during the experiment: 31 March and 29 April 2016. Departing from Lewandowski et al., 2009, the RR was estimated by the Vaisala CL31 ceilometer applying the slope method (Kunz and Leeuw, 1993) to invert the extinction caused by the rain. Extinction retrievals are fitted against RR estimates from the disdrometer in order to derive a correlation model that allows us to estimate the RR from the ceilometer in similar situations without a disdrometer permanently deployed. The problem of extinction retrieval is also studied from the perspective of Klett-Fernald-Sasano's (KFS) lidar inversion algorithm (Klett, 1981; 1985), which requires the assumption of an aerosol extinction-to-backscatter ratio (the so-called lidar ratio) and calibration in a

  10. Light environment alters ozone uptake per net photosynthetic rate in black cherry trees.

    Science.gov (United States)

    Fredericksen, T S; Kolb, T E; Skelly, J M; Steiner, K C; Joyce, B J; Savage, J E

    1996-05-01

    Foliar ozone uptake rates of different-sized black cherry (Prunus serotina Ehrh.) trees were compared within a deciduous forest and adjacent openings in north-central Pennsylvania during one growing season. Study trees included open-grown seedlings and saplings, forest understory seedlings and saplings, and sunlit and shaded portions of mature canopy tree crowns. Instantaneous ozone uptake rates were highest in high-light environments primarily because of higher stomatal conductances. Low ozone uptake rates of seedlings and saplings in the forest understory could be attributed partially to lower average ambient ozone concentrations compared to the canopy and open environments. Among the tree size and light combinations tested, ozone uptake rates were highest in open-grown seedlings and lowest in forest-grown seedlings. Despite lower ozone uptake rates of foliage in shaded environments, ozone uptake per net photosynthesis of foliage in shaded environments was significantly higher than that of foliage in sunlit environments because of weaker coupling between net photosynthesis and stomatal conductance in shaded environments. The potential for greater ozone injury in shaded environments as a result of greater ozone uptake per net photosynthesis is consistent with previous reports of greater ozone injury in shaded foliage than in sunlit foliage.

  11. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress

    Directory of Open Access Journals (Sweden)

    Fu Yang

    2008-06-01

    Full Text Available The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00–10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00–13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.

  12. Testing the Effect of Cropping Practices on Soil Erosion Rates - Application of Field Rainfall Simulator

    Science.gov (United States)

    Dostál, Tomáš; Zumr, David; Krása, Josef; Kavka, Petr; Strouhal, Luděk

    2017-04-01

    C factor, the protection effect of the vegetation cover, is a key parameter which is introduced in the basic empirical soil erosion relationships (e.g. USLE). The C factor values for various crops in various grow stages are usually estimated based on the catalogue values. As these values often do not fit to the observed data from the plot experiments or do not represent actually grown crops, we decided to validate and extend the database. We present a methodology and primary results of tens of the field rainfall simulation experiments conducted on several agricultural crops with different BBCH. The rainfall simulations were done with the mobile field rainfall simulator of the Czech Technical University. The tested plots of the size 2 x 8,7 m were repeatedly exposed to the artificial rainfalls with intensity of 60 mm/h and duration of 30 to 60 minutes. The experiments were always performed twice on a bare soil and twice on the vegetated plots (to mimic dry and wet initial soil conditions). The tests were done on several slopes in the Czech Republic, the soils were mostly Cambisols with various organic matter content and stoniness. Based on the results we will be able to correct and validate the C factor values for the currently most widely grown crops in the conditions of the Central Europe. The presentation is funded by Ministry of Agriculture of the Czech Republic (research project QJ1530181) and an internal student CTU grant.

  13. Assessing effect of rainfall on rate of alien shrub expansion in a ...

    African Journals Online (AJOL)

    Understanding the environmental factors governing the spread of alien shrubs is crucial for conserving biodiversity. In the semi-arid savannas of Africa, alien shrub ... the spread of some invasive alien species. Keywords: aerial photography, invasion, Kyle Game Reserve, Lantana camara, patch dynamics, rainfall variability ...

  14. Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed

    Science.gov (United States)

    Liang, Xin-Qiang; Xu, Lei; Li, Hua; He, Miao-Miao; Qian, Yi-Chao; Liu, Jin; Nie, Ze-Yu; Ye, Yu-Shi; Chen, Yingxu

    Cropland derived nitrate leaching was a major reason for groundwater pollution. The objective of this study was to on-farm investigate the behavior of nitrate leaching affected by N fertilization rates, rainfall, and temperature in a rainfed winter wheat field in Taihu watershed. The experiment had five urea-N rates (0-360 kg N ha -1 in 90-kg increments), and nitrate-N in leachate was daily collected by wedge-shaped fiberglass wick lysimeters during four stages (seeding stage, SS; tillering stage, TS; booting stage, BS; harvesting stage, HS). Results showed that: (1) higher potential of leachate would be engendered when the rainfall intensity was over 5.9 mm d -1; (2) variations of nitrate concentrations in leachate were well responsed to three split fertilizations, which increased with the increase of urea-N applied rates. A similar variation pattern of nitrate concentrations was observed in -0.3 m and -0.6 m soil leachate. Besides, the nitrate concentrations in leachate could be raised with the sharply increase of air temperature, especially in the SS and TS stages; (3) the fluxes of nitrate leaching were significantly affected by N rates ( P HS > BS > SS. The N application rate of 180 kg N ha -1 optimized wheat production, but N application over that rate greatly increased nitrate leaching potential. Therefore, options other than lowering the N application rate need to be considered to reduce environmental impacts while maintain winter wheat production.

  15. Characteristics of worst hour rainfall rate for radio wave propagation modelling in Nigeria

    Science.gov (United States)

    Osita, Ibe; Nymphas, E. F.

    2017-10-01

    Radio waves especially at the millimeter-wave band are known to be attenuated by rain. Radio engineers and designers need to be able to predict the time of the day when radio signal will be attenuated so as to provide measures to mitigate this effect. This is achieved by characterizing the rainfall intensity for a particular region of interest into worst month and worst hour of the day. This paper characterized rainfall in Nigeria into worst year, worst month, and worst hour. It is shown that for the period of study, 2008 and 2009 are the worst years, while September is the most frequent worst month in most of the stations. The evening time (LT) is the worst hours of the day in virtually all the stations.

  16. [Seasonality of rotavirus infection in Venezuela: relationship between monthly rotavirus incidence and rainfall rates].

    Science.gov (United States)

    González Chávez, Rosabel

    2015-09-01

    In general, it has been reported that rotavirus infection was detected year round in tropical countries. However, studies in Venezuela and Brazil suggest a seasonal behavior of the infection. On the other hand, some studies link infection with climatic variables such as rainfall. This study analyzes the pattern of behavior of the rotavirus infection in Carabobo-Venezuela (2001-2005), associates the seasonality of the infection with rainfall, and according to the seasonal pattern, estimates the age of greatest risk for infection. The analysis of the rotavirus temporal series and accumulated precipitation was performed with the software SPSS. The infection showed two periods: high incidence (November-April) and low incidence (May-October). Accumulated precipitation presents an opposite behavior. The highest frequency of events (73.8% 573/779) for those born in the period with a low incidence of the virus was recorded at an earlier age (mean age 6.5 +/- 2.0 months) when compared with those born in the station of high incidence (63.5% 568/870, mean age 11.7 +/- 2.2 months). Seasonality of the infection and the inverse relationship between virus incidence and rainfall was demonstrated. In addition, it was found that the period of birth determines the age and risk of infection. This information generated during the preaccine period will be helpful to measure the impact of the vaccine against the rotavirus.

  17. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  18. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  19. Generation time, net reproductive rate, and growth in stage-age-structured populations

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2014-01-01

    Abstract Major insights into the relationship between life-history features and fitness have come from Lotka's proof that population growth rate is determined by the level (expected amount) of reproduction and the average timing of reproduction of an individual. But this classical result is limited...... to age-structured populations. Here we generalize this result to populations structured by stage and age by providing a new, unique measure of reproductive timing (Tc) that, along with net reproductive rate (R0), has a direct mathematical relationship to and approximates growth rate (r). We use simple...... features of the life history determine population growth rate r and reveal a complex interplay of trait dynamics, timing, and level of reproduction. Our results contribute to a new framework of population and evolutionary dynamics in stage-and-age-structured populations....

  20. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress

    OpenAIRE

    Fu Yang; Zheng-wei Liang; Zhi-chun Wang; Yuan Chen

    2008-01-01

    The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00–10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depr...

  1. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.

    Science.gov (United States)

    Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H

    2015-05-01

    The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it

  2. A New Approach for Mobile Advertising Click-Through Rate Estimation Based on Deep Belief Nets

    Directory of Open Access Journals (Sweden)

    Jie-Hao Chen

    2017-01-01

    Full Text Available In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR model by 5.57% and Support Vector Regression (SVR model by 5.80%.

  3. Biomass rather than growth rate determines variation in net primary production by giant kelp.

    Science.gov (United States)

    Reed, Daniel C; Rassweiler, Andrew; Arkema, Katie K

    2008-09-01

    Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera, at three kelp forests in southern California, U.S.A., over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry mass x m(-2) x yr(-1) at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year's NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites. Although growth rate was a poor predictor of variation in annual NPP, it was principally responsible for the high mean values observed for NPP by Macrocystis. These high mean values reflected rapid growth (average of approximately 2% per day) of a relatively small standing crop (maximum annual mean = 444 g dry mass/m2) that replaced itself approximately seven times per year. Disturbance-driven variability in FSC may be generally important in explaining variation in NPP, yet it is rarely examined because cycles of disturbance and recovery occur over timescales of decades or more in many systems. Considerable insight into how variation in FSC drives variation in NPP may

  4. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.

    Science.gov (United States)

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2015-04-01

    Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.

  5. Changing contribution rate of heavy rainfall to the rainy season precipitation in Northeast China and its possible causes

    Science.gov (United States)

    Fang, Yi-He; Chen, Hai-Shan; Teng, Fang-Da; Wang, Xiao-Juan; Wang, Ji; Zhao, Chun-Yu

    2017-11-01

    Based on the daily precipitation data from 208 meteorological stations in Northeast China, NCEP/NCAR reanalysis monthly mean wind, sea level pressure data and NOAA reconstructed monthly mean sea surface temperature (SST) data from 1961 to 2013, the contribution rate of heavy rainfall to the total rainfall (hereafter referred to as "heavy rainfall contribution rate" or HRCR) during the rainy season in Northeast China was investigated. The changing characteristics of HRCR in the context of global warming are analyzed. The relationship between the HRCR and the contemporaneous atmospheric general circulation and early SST anomaly was analyzed to understand the possible physical mechanism responsible for the changing HRCR before and after the warming. Results show that during the whole study period (1961-2013), no evident trend in the HRCR has been detected. However, during cold period (1961-1979), the HRCR showed a significantly declining trend, while during warm period (1981-2013), the HRCR does not exhibit any trend. During cold period, the anomalous North Pacific summer monsoon and March North Atlantic tripole SSTA are the main factors affecting the HRCR, while the West Pacific summer monsoon, the East Asian subtropical westerly jet and March North Pacific dipole SSTA are responsible for the HRCR in the warm period. In the cold period, due to the air-sea interaction, March Atlantic tripole SSTA can influence the North Pacific summer monsoon in the late July-August, in turn affecting the HRCR. In the warm period, March North Pacific dipole SSTA tends to cause anomalies in the West Pacific summer monsoon and the position of the East Asian subtropical westerly jet axis in the July-August through air-sea interaction, thereby affecting the HRCR. During 1961-1979, the weakening of the North Pacific summer monsoon might have been the primary cause of the significant decline in the trend of the HRCR in the cold period. In 1981-2013, the absence of significant trends of the

  6. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  7. Net herbage accumulation rate and crude protein content of Urochloa brizantha cultivars under shade intensities

    Directory of Open Access Journals (Sweden)

    Paulo Roberto de Lima Meirelles

    2013-12-01

    Full Text Available The use of silvopastoral systems is a sustainable alternative for animal production in various regions of the Brazil. However to obtain satisfactory results in these systems, the selection of forage species that grows well in the shade should be done. The tolerance of plants to light restriction and the correctly choice of species, considering good nutritional values for these conditions has great importance. The study of artificial shading for forage production helps the clarification of issues related to the behavior of plants under reduced light prior to use in integrations with forests. The aim of the study was to evaluate the net herbage accumulation rate of forage (HAR and crude protein (CP of Urochloa brizantha cultivars (Marandu and Piatã under natural light and shading of 30 and 60%. The experiment was conducted at FMVZ - UNESP, Botucatu. The experimental design was a randomized block in factorial arrangement 3 x 2 (three shading levels: 0, 30 and 60%, two cultivars: Marandu and Piatã with three replications and repeated measures (3 cuts. Sample collection occurred when the cultivars reached 35 cm in height. The treatments with shading showed lower cutting intervals as compared to those subjected to full sunlight, because they have reached in a shorter time to time as determined cut-off criterion (mean of 37, 45 and 61 days for reduction of 60%, reduction of 30% and full sun. Significant effects (P<0.05 interaction cultivar x shade x cut on the net herbage accumulation rate (HAR. Most HAR (P<0.05 was observed for cv. Marandu 60% reduction in lightness (127 kg/ha/day due to increased production of stem during the first growing cycle. The lower HAR also occurred to Marandu, but under natural light in the third cut (34 kg/ha/day due to adverse weather conditions during the growth interval. The shadow effect and the cutting (P<0.05 affected CP. The percentage of CP on cultivars showed the highest values (average value of 9.27% in 60

  8. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  9. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  10. Data filtering and expected muon and neutrino event rates in the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Shanidze, Rezo [ECAP, University of Erlangen-Nuremberg, Erwin-Rommel-Str.1, 91058 Erlangen (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2011-07-01

    KM3NeT is a future Mediterranean deep sea neutrino telescope with an instrumented volume of several cubic kilometres. The neutrino and muon events in KM3NeT will be reconstructed from the signals collected from the telescope's photo detectors. However, in the deep sea the dominant source of photon signals are the decays of K40 nuclei and bioluminescence. The selection of neutrino and muon events requires the implementation of fast and efficient data filtering algorithms for the reduction of accidental background event rates. Possible data filtering and triggering schemes for the KM3NeT neutrino telescope and expected muon and neutrino event rates are discussed.

  11. Low inflation, a high net savings surplus and institutional restrictions keep the Japanese long-term interest rate low

    NARCIS (Netherlands)

    Jansen, Pieter W.

    2006-01-01

    This paper explains that the interest rate on long-term Japanese government bonds is low in comparison with other industrialised countries for four main reasons: lower inflation, net savings surplus, institutional restrictions and home bias. Monetary policy and institutionalised purchases of

  12. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  13. TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product (TRMM Product 2A25) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Precipitation Radar (PR), the first of its kind in space, is an electronically scanning radar, operating at 13.8 GHz that measures the 3-D rainfall...

  14. TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product (TRMM Product 2A25) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Precipitation Radar (PR), the first of its kind in space, is an electronically scanning radar, operating at 13.8 GHz that measures the 3-D rainfall...

  15. Gill net selectivity and catch rates of pelagic fish in tropical coastal ...

    African Journals Online (AJOL)

    The fish species and size selectivity of gillnets design with monofilament nylon polyethylene netting materials were investigated in Lagos Lagoon, Nigeria between September and December 2005. The gillnets floats and sinkers were improvised from rubber slippers and lead metallic objects which were attached at intervals ...

  16. [Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng)].

    Science.gov (United States)

    Liang, Yao; Jiang, Xiao-Li; Yang, Fen-Tuan; Cao, Qing-Jun; Li, Gang

    2014-08-01

    The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P lead concentration was also observed (P lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.

  17. Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate

    Science.gov (United States)

    Cattan, P.; Ruy, S. M.; Cabidoche, Y.-M.; Findeling, A.; Desbois, P.; Charlier, J. B.

    2009-04-01

    SummaryRainfall redistribution by plant canopy, notably the water flow down the plant stem (stemflow), modifies the incident rainfall rate at the soil surface and may affect runoff generation. To test this hypothesis, we observed and measured runoff at the plant scale with banana cultivated on tropical Andosol. Observation of runoff by video and matrix potential monitoring showed that, during a runoff event, the matrix potential increased mainly downstream from the pseudostem in line with the slope, delimiting a saturated zone of runoff propagation that appeared on video monitoring. The results indicate that rainfall redistribution by plant canopy, i.e. stemflow and dripping areas, enhances runoff even on soil with a high infiltration rate (mean hydraulic conductivity at saturation Ks of 67 mm h -1). Data analysis of 40 runoff events showed that events were composed of at least two runoff phases characterized by an abrupt increase in runoff coefficient (RC) from 0.16 to 0.65 between the first and the second phase. The change in RC was related to rainfall rate. Also, between the first and the second runoff phase, the apparent infiltration rate at the plot scale decreased from 30 to 10 mm h -1. This was related to an increase in runoff contributing areas (RCA), from an estimated 18% to 93% of the plot surface. However, data analysis and model simulations showed that the increase in mean rainfall rate in RCA due to stemflow was not sufficient to account for large runoff volumes. Hence, one must also take into account the spatial variation of hydraulic conductivity at saturation with low values relative to RCA (estimation for the second runoff phase was 7.6 mm h -1). Moreover, simulation results implied Ks decreases with time. Finally, rainfall redistribution may have an impact at a larger scale. In banana plantations, the hydraulic connectivity of runoff areas can enhance the stemflow effect up to the plot scale. From this point of view, the two-compartment scheme we

  18. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    Science.gov (United States)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  19. Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield

    Directory of Open Access Journals (Sweden)

    M. Schwikowski

    2013-10-01

    Full Text Available Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000–2006 from a 50 m (33.2 4 m weq ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16'40"S, 73°21'14"W. Borehole temperatures indicate near temperate ice, but the average melt percent is only 16 ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4–7.1 water equivalent (m weq with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.

  20. Effect of stroke rate on the distribution of net mechanical power in rowing

    NARCIS (Netherlands)

    Hofmijster, M.J.; Landman, E.H.; Smith, R.M.; van Soest, A.J.

    2007-01-01

    The aim of this study was to assess the effect of manipulating stroke rate on the distribution of mechanical power in rowing. Two causes of inefficient mechanical energy expenditure were identified in rowing. The ratio between power not lost at the blades and generated mechanical power (P̄

  1. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  2. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN

    Science.gov (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-01-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  3. Rainfall erosivity index for the Ghana Atomic Energy Commission site

    National Research Council Canada - National Science Library

    Paul Essel; Eric T Glover; Serwaa Yeboah; Yaw Adjei-Kyereme; Israel Nutifafa Doyi Yawo; Mawutoli Nyarku; Godfred S Asumadu-Sakyi; Gustav Kudjoe Gbeddy; Yvette Agyiriba Agyiri; Evans Mawuli Ameho; Emmanuel Atule Aberikae

    2016-01-01

      Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the Rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate...

  4. Rainfall erosivity index for the Ghana Atomic Energy Commission site

    National Research Council Canada - National Science Library

    Essel, Paul; Glover, Eric T; Yeboah, Serwaa; Adjei-Kyereme, Yaw; Yawo, Israel Nutifafa Doyi; Nyarku, Mawutoli; Asumadu-Sakyi, Godfred S; Gbeddy, Gustav Kudjoe; Agyiri, Yvette Agyiriba; Ameho, Evans Mawuli; Aberikae, Emmanuel Atule

    2016-01-01

    Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate...

  5. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment.

    Science.gov (United States)

    Swaffer, Brooke A; Vial, Hayley M; King, Brendon J; Daly, Robert; Frizenschaf, Jacqueline; Monis, Paul T

    2014-12-15

    Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  7. Research of the relationship between delayed fluorescence and net photosynthesis rate in spinach under NaCl stress

    Science.gov (United States)

    Zhang, Lingrui; Xing, Da

    2006-09-01

    Under NaCl stress conditions, the relationship between delayed fluorescence (DF) and net photosynthesis rate (Pn) in detached leaves of spinach (Spinacia oleracea L.) was surveyed. Results showed that the changes in DF intensity of the spinach leaves directly exposed to different NaCl concentrations demonstrated considerably high consistency with that in Pn. Incubation of the leaves in 200mmol/L NaCl induced a gradual increase and subsequent decline of the DF intensity and Pu, whereas incubation of the leaves in 300mmol/L NaCl induced a continuous decline of the DF intensity and Pn, suggesting that DF bad the same response to duration of treatment of different NaC1 concentrations with Pn. Both DF and Pn showed maximal Ca 2+ antagonism effects on stress of high concentration NaC1 when the concentration of CaC1 II reached l5mmolfL. All the results demonstrated that DF has an excellent correlation with Pn and can be used as a sensitive test for the state of photosynthetic apparatus under salt stress physiology.

  8. Modeled dosage-response relationship on the net photosynthetic rate for the sensitivity to acid rain of 21 plant species.

    Science.gov (United States)

    Deng, Shihuai; Gou, Shuzhen; Sun, Baiye; Lv, Wenlin; Li, Yuanwei; Peng, Hong; Xiao, Hong; Yang, Gang; Wang, Yingjun

    2012-08-01

    This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.

  9. Mosquito abundance, bed net coverage and other factors associated with variations in sporozoite infectivity rates in four villages of rural Tanzania

    DEFF Research Database (Denmark)

    Kweka, Eliningaya J; Nkya, Watoky M M; Mahande, Aneth M

    2008-01-01

    . Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. METHODOLOGY: A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch......,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.......3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P

  10. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  11. Effects of a clearcut on the net rates of nitrification and N mineralization in a northern hardwood forest, Catskill Mountains, New York, USA

    Science.gov (United States)

    Burns, Douglas A.; Murdoch, Peter S.

    2005-01-01

    The Catskill Mountains of southeastern New York receive among the highest rates of atmospheric nitrogen (N) deposition in eastern North America, and ecosystems in the region may be sensitive to human disturbances that affect the N cycle. We studied the effects of a clearcut in a northern hardwood forest within a 24-ha Catskill watershed on the net rates of N mineralization and nitrification in soil plots during 6 years (1994-1999) that encompassed 3-year pre- and post-harvesting periods. Despite stream NO3- concentrations that increased by more than 1400 ??mol l-1 within 5 months after the clearcut, and three measures of NO3- availability in soil that increased 6- to 8-fold during the 1st year after harvest, the net rates of N mineralization and nitrification as measured by in situ incubation in the soil remained unchanged. The net N-mineralization rate in O-horizon soil was 1- 2 mg N kg-1 day-1 and the net nitrification rate was about 1 mg N kg-1 day-1, and rates in B-horizon soil were only one-fifth to one-tenth those of the O-horizon. These rates were obtained in single 625 m2 plots in the clearcut watershed and reference area, and were confirmed by rate measurements at 6 plots in 1999 that showed little difference in N-mineralization and nitrification rates between the treatment and reference areas. Soil temperature increased 1 ?? 0.8??C in a clearcut study plot relative to a reference plot during the post-harvest period, and soil moisture in the clearcut plot was indistinguishable from that in the reference plot. These results are contrary to the initial hypothesis that the clearcut would cause net rates of these N-cycling processes to increase sharply. The in situ incubation method used in this study isolated the samples from ambient roots and thereby prevented plant N uptake; therefore, the increases in stream NO3- concentrations and export following harvest largely reflect diminished uptake. Changes in temperature and moisture after the clearcut were

  12. Measuring the impact of motivation on achievement and course completion rates in MarineNet distance education

    OpenAIRE

    Lindshield, Timothy D.

    2016-01-01

    Approved for public release; distribution is unlimited The Marine Corps Distance Learning Network (MarineNet) is the primary source for distance education (DE) and online training for the Marine Corps. This research applies the learning theory of human motivation to archival MarineNet data to determine if motivation factors impact academic performance and course completion. The literature on motivation divides this variable into multiple types of intrinsic and extrinsic motivations. Each t...

  13. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  14. In situ filtering rate variability in egg and larval surveys off the Pacific coast of Japan: Do plankton nets clog or over-filter in the sea?

    Science.gov (United States)

    Takasuka, Akinori; Tadokoro, Kazuaki; Okazaki, Yuji; Ichikawa, Tadafumi; Sugisaki, Hiroya; Kuroda, Hiroshi; Oozeki, Yoshioki

    2017-02-01

    In situ filtering rate variability was examined for vertical tows of plankton nets in egg and larval surveys off the Pacific coast of Japan, based on a data set pooled over large spatial and temporal scales (76,444 sampling tows from 1978 to 2013). The filtering rate showed unimodal distributions and was highly variable for the four net types: Long NORPAC (LNP), NORPAC (NOR), Maru-toku B (MTB), and Maru-naka (MNK). Despite the high variability at the individual tow level, the median values of the filtering rate for the overall data approximated the theoretical value of 1.0, in particular, for LNP, although the median values differed among the net types. For LNP, the differences in the median values among the 26 years, the 12 months, and the 4 regions were small relative to the overall variability at the individual level. The present study quantified the extent of underestimation/overestimation when the theoretical value of 1.0 is used due to the lack of the actual filtering rate data. The filtering rate was almost on a balance of resistance effect of net and cod-end, clogging effect of collected organisms, and over-inflow effect of currents over large scales. The present analysis implies that the filtering rate is mainly influenced by small-scale transient variability of ocean conditions such as wind speed, current intensity, rolling, turbulence, and mixing rather than large-scale variability related to climate regime, seasonality, or water masses. The results will allow the utilization of historical data lacking flow-meter data for large-scale comparative analyses.

  15. Analyses of the temporal and spatial structures of heavy rainfall from a catalog of high-resolution radar rainfall fields

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Smith, James A.; Baeck, Mary Lynn

    2014-01-01

    that relate to size, structure and evolution of heavy rainfall. Extreme rainfall is also linked with severe weather (tornados, large hail and damaging wind). The diurnal cycle of rainfall for heavy rain days is characterized by an early peak in the largest rainfall rates, an afternoon-evening peak in rain...

  16. Rainfall erosivity in New Zealand

    Science.gov (United States)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian

    2014-05-01

    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  17. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based....... Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months...

  18. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  19. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  20. Reduction of Net Sulfide Production Rate by Nitrate in Wastewater Bioreactors. Kinetics and Changes in the Microbial Community

    DEFF Research Database (Denmark)

    Villahermosa, Desiree; Corzo, Alfonso; Gonzalez, J M

    2013-01-01

    Nitrate addition stimulated sulfide oxidation by increasing the activity of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), decreasing the concentration of dissolved H2S in the water phase and, consequently, its release to the atmosphere of a pilot-scale anaerobic bioreactor. The effect...... of four different concentrations of nitrate (0.12, 0.24, 0.50, and 1.00 mM) was investigated for a period of 3 days in relation to sulfide concentration in two bioreactors set up at Guadalete wastewater treatment plant (Jerez de la Frontera, Spain). Physicochemical variables were measured in water and air......, and the activity of bacteria implicated in the sulfur and nitrogen cycles was analyzed in the biofilms and in the water phase of the bioreactors. Biofilms were a net source of sulfide for the water and gas phases (7.22 ± 5.3 μmol s−1) in the absence of nitrate dosing. Addition of nitrate resulted in a quick...

  1. Pressures on safety net access: the level of managed care penetration and uninsurance rate in a community

    National Research Council Canada - National Science Library

    Cunningham, P J

    1999-01-01

    To examine the effects of managed care penetration and the uninsurance rate in an area on access to care of low-income uninsured persons and to compare differences in access between low-income insured...

  2. The HLA-net GENE[RATE] pipeline for effective HLA data analysis and its application to 145 population samples from Europe and neighbouring areas.

    Science.gov (United States)

    Nunes, J M; Buhler, S; Roessli, D; Sanchez-Mazas, A

    2014-05-01

    In this review, we present for the first time an integrated version of the Gene[rate] computer tools which have been developed during the last 5 years to analyse human leukocyte antigen (HLA) data in human populations, as well as the results of their application to a large dataset of 145 HLA-typed population samples from Europe and its two neighbouring areas, North Africa and West Asia, now forming part of the Gene[va] database. All these computer tools and genetic data are, from now, publicly available through a newly designed bioinformatics platform, HLA-net, here presented as a main achievement of the HLA-NET scientific programme. The Gene[rate] pipeline offers user-friendly computer tools to estimate allele and haplotype frequencies, to test Hardy-Weinberg equilibrium (HWE), selective neutrality and linkage disequilibrium, to recode HLA data, to convert file formats, to display population frequencies of chosen alleles and haplotypes in selected geographic regions, and to perform genetic comparisons among chosen sets of population samples, including new data provided by the user. Both numerical and graphical outputs are generated, the latter being highly explicit and of publication quality. All these analyses can be performed on the pipeline after scrupulous validation of the population sample's characterisation and HLA typing reporting according to HLA-NET recommendations. The Gene[va] database offers direct access to the HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and -DPB1 frequencies and summary statistics of 145 population samples having successfully passed these HLA-NET 'filters', and representing three European subregions (South-East, North-East and Central-West Europe) and two neighbouring areas (North Africa, as far as Sudan, and West Asia, as far as South India). The analysis of these data, summarized in this review, shows a substantial genetic variation at the regional level in this continental area. These results have main implications for population genetics

  3. Tingkat Insidensi Malaria di Wilayah Pemanasan Kelambu Berinsektisida Tahan Lama dan Wilayah Kontrol (MALARIA INCIDENCE RATE OF HEAT ASSISTED REGENERATION LONG LASTING INSECTICIDAL NETS AREA AND CONTROL

    Directory of Open Access Journals (Sweden)

    Etih Sudarnika

    2012-03-01

    Full Text Available Long lasting insecticidal nets (LLIN is one effective way to prevent malaria. Permethrin treatedLLIN is one type of LLIN which is recommended by WHO. Several studies have shown that these types ofLLIN requiring heat assisted regeneration after washing to enhance the biological activity of insecticidethat contained in the LLIN fibers. This study aimed to compare the incidence rates of malaria in childrenunder five years old who live in the intervention area (where the heat assisted regeneration on LLIN afterwashing was applied and control area (where the heat assisted regeneration on LLIN after washing wasnot applied. Data of malaria cases was collected from laboratory log book at all health centers in BangkaDistrict, in the period of June June 2007 until July 2008. Data were analyzed with Poisson regressionmodels. The results showed that the incidence rate of malaria in children under five years old was notsignificantly different between the treatment and control areas.

  4. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  5. A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve and chlorophyll fluorescence measurements.

    Science.gov (United States)

    Moualeu-Ngangue, Dany P; Chen, Tsu-Wei; Stützel, Hartmut

    2017-02-01

    Gas exchange (GE) and chlorophyll fluorescence (CF) measurements are widely used to noninvasively study photosynthetic parameters, for example the rates of maximum Rubisco carboxylation (Vcmax ), electron transport rate (J), daytime respiration (Rd ) and mesophyll conductance (gm ). Existing methods for fitting GE data (net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve) are based on two assumptions: gm is unvaried with CO2 concentration in the intercellular space (Ci ); and light absorption (α) and the proportion of quanta absorbed by photosystem II (β) are constant in the data set. These may result in significant bias in estimating photosynthetic parameters. To avoid the above-mentioned hypotheses, we present a new method for fitting A-Ci curves and CF data simultaneously. This method was applied to a data set obtained from cucumber (Cucumis sativus) leaves of various leaf ages and grown under eight different light conditions. The new method had significantly lower root mean square error and a lower rate of failures compared with previously published methods (6.72% versus 24.1%, respectively) and the effect of light conditions on Vcmax and J was better observed. Furthermore, the new method allows the estimation of a new parameter, the fraction of incoming irradiance harvested by photosystem II, and the dependence of gm on Ci . © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. The use of straw mulch as a strategy to prevent extreme soil erosion rates in citrus orchard. A Rainfall simulation approach

    Science.gov (United States)

    Cerdà, Artemi; Giménez-Morera, Antonio; Jordán, Antonio; Pereira, Paulo; Novara, Agata; García-Orenes, Fuensanta

    2014-05-01

    Not only the Sahel (Haregeweyn et al., 2013), the deforested land (Borelli et al., 2013) the chinese Plateau are affected by intense soil erosion rates (Zhao et al., 2013). Soil erosion affect agriculture land (Cerdà et al., 2009), and citrus orchards are being seeing as one of the crops with the highest erosion rates due to the managements that avoid the catch crops, weeds or litter. Example of the research carried out on citrus orchards is found in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) and in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012), and they confirm the non sustainable soil losses measured. The land management in citrus plantations results in soil degradation too (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012). The use of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel has been found successful. There is a need to find new plants or residues to protect the soils on citrus orchards. Agriculture produces a high amount of residues. The pruning can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Due to the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen) the straw is being a residue instead of a resource. The Valencia region is the largest producer of citrus in Europe, and the largest exporter in the world. This citrus production region is located in the eastern cost of Spain where we can find the rice production area of the l'Albufera Lagoon paddy fields, the third largest production region in Spain. This means, a rice production region surrounded by the huge citrus production region. There, the rice straw is not used

  7. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  8. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  9. Planting Patterns and Deficit Irrigation Strategies to Improve Wheat Production and Water Use Efficiency under Simulated Rainfall Conditions.

    Science.gov (United States)

    Ali, Shahzad; Xu, Yueyue; Ma, Xiangcheng; Ahmad, Irshad; Kamran, Muhammad; Dong, Zhaoyun; Cai, Tie; Jia, Qianmin; Ren, Xiaolong; Zhang, Peng; Jia, Zhikuan

    2017-01-01

    The ridge furrow (RF) rainwater harvesting system is an efficient way to enhance rainwater accessibility for crops and increase winter wheat productivity in semi-arid regions. However, the RF system has not been promoted widely in the semi-arid regions, which primarily exist in remote hilly areas. To exploit its efficiency on a large-scale, the RF system needs to be tested at different amounts of simulated precipitation combined with deficit irrigation. Therefore, in during the 2015-16 and 2016-17 winter wheat growing seasons, we examined the effects of two planting patterns: (1) the RF system and (2) traditional flat planting (TF) with three deficit irrigation levels (150, 75, 0 mm) under three simulated rainfall intensity (1: 275, 2: 200, 3: 125 mm), and determined soil water storage profile, evapotranspiration rate, grain filling rate, biomass, grain yield, and net economic return. Over the two study years, the RF treatment with 200 mm simulated rainfall and 150 mm deficit irrigation (RF2150) significantly (P profit of winter wheat responded positively to simulated rainfall and deficit irrigation under both planting patterns. The 200 mm simulated rainfall amount was more economical than other precipitation amounts, and led to slight increases in soil water storage, total dry matter per plant, and grain yield; there were no significant differences when the simulated rainfall was increased beyond 200 mm. The highest (12,593 Yuan ha(-1)) net income profit was attained using the RF system at 200 mm rainfall and 150 mm deficit irrigation, which also led to significantly higher grain yield, WUE, and RIWP than all other treatments. Thus, we recommend the RF2150 treatment for higher productivity, income profit, and improve WUE in the dry-land farming system of China.

  10. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  11. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  12. Tropical cyclone rainfall area controlled by relative sea surface temperature.

    Science.gov (United States)

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-03-12

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates.

  13. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    Science.gov (United States)

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  14. Rainfall Simulation: methods, research questions and challenges

    Science.gov (United States)

    Ries, J. B.; Iserloh, T.

    2012-04-01

    In erosion research, rainfall simulations are used for the improvement of process knowledge as well as in the field for the assessment of overland flow generation, infiltration, and erosion rates. In all these fields of research, rainfall experiments have become an indispensable part of the research methods. In this context, small portable rainfall simulators with small test-plot sizes of one square-meter or even less, and devices of low weight and water consumption are in demand. Accordingly, devices with manageable technical effort like nozzle-type simulators seem to prevail against larger simulators. The reasons are obvious: lower costs and less time consumption needed for mounting enable a higher repetition rate. Regarding the high number of research questions, of different fields of application, and not least also due to the great technical creativity of our research staff, a large number of different experimental setups is available. Each of the devices produces a different rainfall, leading to different kinetic energy amounts influencing the soil surface and accordingly, producing different erosion results. Hence, important questions contain the definition, the comparability, the measurement and the simulation of natural rainfall and the problem of comparability in general. Another important discussion topic will be the finding of an agreement on an appropriate calibration method for the simulated rainfalls, in order to enable a comparison of the results of different rainfall simulator set-ups. In most of the publications, only the following "nice" sentence can be read: "Our rainfall simulator generates a rainfall spectrum that is similar to natural rainfall!". The most substantial and critical properties of a simulated rainfall are the drop-size distribution, the fall velocities of the drops, and the spatial distribution of the rainfall on the plot-area. In a comparison of the most important methods, the Laser Distrometer turned out to be the most up

  15. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  16. Temperature and rainfall interact to control carbon cycling in tropical forests.

    Science.gov (United States)

    Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R

    2017-06-01

    Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.

  17. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  18. Direct chemical measurement of DNA synthesis and net rates of differentiation of rat lens epithelial cells in vivo: applied to the selenium cataract.

    Science.gov (United States)

    Cenedella, R J

    1987-05-01

    This report describes a direct chemical method for rapidly estimating DNA synthesis and net rates of epithelial cell differentiation in the ocular lens in vivo. DNA synthesis in the lens of control and selenium-treated rats (12- or 13 days of age) was estimated by chemically isolating and measuring trichloroacetic acid (TCA)-insoluble 3H from the lens following injection of [3H]thymidine. Labeled substrate for DNA synthesis peaked in the lens at 1 hr after injection, decreased markedly by the third hour and was essentially gone by hour 12. Synthesis of labeled DNA in the lens was largely complete by about 3 hr. The [3H]DNA content of the whole lens, measured as TCA-insoluble 3H, remained constant for at least 4 months. The distribution of labeled epithelial cells between the epithelial-cell layer and fiber-cell mass was followed for up to 1 month after injection by measuring the ratio of [3H]DNA in the capsule (epithelial-cell layer) to lens body. Between days 2-3 and day 14 after injection, the ratio of [3H]DNA in the epithelial-cell layer to lens fiber cells decreased linearly in a semilogarithmic plot of the ratio vs. time; i.e. the rate of change of the ratio followed first-order kinetics. Thus, the rate constant (k) for the rate of change in the ratio of [3H]DNA in the capsule layer to lens body can provide an estimate of the percentage of the labeled epithelial cells which leave the capsule per day through differentiation into fiber cells. An apparent rate constant of 0.27 day-1 was estimated from the mean of five experiments; i.e. 27% of labeled epithelial cells were differentiating into cortical fiber cells per day. Therefore, about 70% of the germinative epithelial cells would be replaced every 4 days in these rats. This value is in good agreement with results of studies using autoradiographic technics. The selenium cataract is reported to involve rapid damage to lens epithelial cells. Incorporation of [3H]thymidine into DNA was decreased by at least 60

  19. Parametric Net Influx Rate Images of68Ga-DOTATOC and68Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast.

    Science.gov (United States)

    Ilan, Ezgi; Sandström, Mattias; Velikyan, Irina; Sundin, Anders; Eriksson, Barbro; Lubberink, Mark

    2017-05-01

    68 Ga-DOTATOC and 68 Ga-DOTATATE are radiolabeled somatostatin analogs used for the diagnosis of somatostatin receptor-expressing neuroendocrine tumors (NETs), and SUV measurements are suggested for treatment monitoring. However, changes in net influx rate ( K i ) may better reflect treatment effects than those of the SUV, and accordingly there is a need to compute parametric images showing K i at the voxel level. The aim of this study was to evaluate parametric methods for computation of parametric K i images by comparison to volume of interest (VOI)-based methods and to assess image contrast in terms of tumor-to-liver ratio. Methods: Ten patients with metastatic NETs underwent a 45-min dynamic PET examination followed by whole-body PET/CT at 1 h after injection of 68 Ga-DOTATOC and 68 Ga-DOTATATE on consecutive days. Parametric K i images were computed using a basis function method (BFM) implementation of the 2-tissue-irreversible-compartment model and the Patlak method using a descending aorta image-derived input function, and mean tumor K i values were determined for 50% isocontour VOIs and compared with K i values based on nonlinear regression (NLR) of the whole-VOI time-activity curve. A subsample of healthy liver was delineated in the whole-body and K i images, and tumor-to-liver ratios were calculated to evaluate image contrast. Correlation ( R 2 ) and agreement between VOI-based and parametric K i values were assessed using regression and Bland-Altman analysis. Results: The R 2 between NLR-based and parametric image-based (BFM) tumor K i values was 0.98 (slope, 0.81) and 0.97 (slope, 0.88) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. For Patlak analysis, the R 2 between NLR-based and parametric-based (Patlak) tumor K i was 0.95 (slope, 0.71) and 0.92 (slope, 0.74) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. There was no bias between NLR and parametric-based K i values. Tumor-to-liver contrast was 1.6 and 2.0 times higher in the parametric

  20. Estimation of Satellite-Rainfall Error Correlation

    Science.gov (United States)

    ElSaadani, Mohamed; Krajewski, Witold; Seo, Bong Chul; Goska, Radoslaw

    2013-04-01

    With many satellite rainfall products being available for long periods, it is important to assess and validate the algorithms estimating the rainfall rates for these products. Many studies have been done on evaluating the uncertainty of satellite rainfall products over different parts of the world by comparing them to rain-gauge and/or radar rainfall products. In preparation for the field experiment Iowa Flood Studies, or IFloodS, one of the integrated validation activities of the Global Precipitation Measurement mission, we are evaluating three popular satellite-based products for the IFloodS domain of the upper Midwest in the US. One of the relevant questions is the determination of the covariance (correlation) of rainfall errors in space and time for the domain. Three satellite rainfall products have been used in this study, and a radar rainfall product has been used as a ground reference. The three rainfall products are TRMM's TMPA 3B42 V7, CPC's CMORPH and CHRS at UCI's PERSIANN. All the satellite rainfall products used in this study represent 3 hourly, quarter degree, rainfall accumulation. Our ground reference is NCEP Stage IV radar-rainfall, which is available in an hourly, four kilometers, resolution. We discuss the adequacy of the Stage IV product as a ground reference for evaluating the satellite products. We used our rain gauge network in Iowa to evaluate the performance of the Stage IV data on different spatial and temporal scales. While arguably this adequacy is only marginal, we used the radar products to study the spatial and temporal correlation of the satellite product errors. We studied the behavior of the errors, defined as the difference between the satellite and radar product (with matched space time resolution), during the period from the year 2004 through the year 2010. Our results show that the error behavior of the satellite rainfall products is quite similar. Errors are less correlated during warm seasons and the errors of CMORPH and

  1. Projected changes of rainfall event characteristics for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Svoboda Vojtěch

    2016-12-01

    Full Text Available Projected changes of warm season (May–September rainfall events in an ensemble of 30 regional climate model (RCM simulations are assessed for the Czech Republic. Individual rainfall events are identified using the concept of minimum inter-event time and only heavy events are considered. The changes of rainfall event characteristics are evaluated between the control (1981–2000 and two scenario (2020–2049 and 2070–2099 periods. Despite a consistent decrease in the number of heavy rainfall events, there is a large uncertainty in projected changes in seasonal precipitation total due to heavy events. Most considered characteristics (rainfall event depth, mean rainfall rate, maximum 60-min rainfall intensity and indicators of rainfall event erosivity are projected to increase and larger increases appear for more extreme values. Only rainfall event duration slightly decreases in the more distant scenario period according to the RCM simulations. As a consequence, the number of less extreme heavy rainfall events as well as the number of long events decreases in majority of the RCM simulations. Changes in most event characteristics (and especially in characteristics related to the rainfall intensity depend on changes in radiative forcing and temperature for the future periods. Only changes in the number of events and seasonal total due to heavy events depend significantly on altitude.

  2. Covariation of climate and long-term erosion rates acrossa steep rainfall gradient on the Hawaiian island of Kaua'i

    Science.gov (United States)

    Ken Ferrier,; J. Taylor Perron,; Sujoy Mukhopadhyay,; Matt Rosener,; Stock, Jonathan; Slosberg, Michelle; Kimberly L. Huppert,

    2013-01-01

    Erosion of volcanic ocean islands creates dramatic landscapes, modulates Earth’s carbon cycle, and delivers sediment to coasts and reefs. Because many volcanic islands have large climate gradients and minimal variations in lithology and tectonic history, they are excellent natural laboratories for studying climatic effects on the evolution of topography. Despite concerns that modern sediment fluxes to island coasts may exceed long-term fluxes, little is known about how erosion rates and processes vary across island interiors, how erosion rates are influenced by the strong climate gradients on many islands, and how modern island erosion rates compare to long-term rates. Here, we present new measurements of erosion rates over 5 yr to 5 m.y. timescales on the Hawaiian island of Kaua‘i, across which mean annual precipitation ranges from 0.5 to 9.5 m/yr. Eroded rock volumes from basins across Kaua‘i indicate that million-year-scale erosion rates are correlated with modern mean annual precipitation and range from 8 to 335 t km–2 yr–1. In Kaua‘i’s Hanalei River basin, 3He concentrations in detrital olivines imply millennial-scale erosion rates of >126 to >390 t km–2 yr–1 from olivine-bearing hillslopes, while fluvial suspended sediment fluxes measured from 2004 to 2009 plus estimates of chemical and bed-load fluxes imply basin-averaged erosion rates of 545 ± 128 t km–2 yr–1. Mapping of landslide scars in satellite imagery of the Hanalei basin from 2004 and 2010 implies landslide-driven erosion rates of 30–47 t km–2 yr–1. These measurements imply that modern erosion rates in the Hanalei basin are no more than 2.3 ± 0.6 times faster than millennial-scale erosion rates, and, to the extent that modern precipitation patterns resemble long-term patterns, they are consistent with a link between precipitation rates and long-term erosion rates.

  3. Rainfall pattern effects on crusting, infiltration and erodibility in some ...

    African Journals Online (AJOL)

    Rainfall characteristics affect crust formation, infiltration rate and erosion depending on intrinsic soil properties such as texture and mineralogy. The current study investigated the effects of rainfall pattern on crust strength, steady state infiltration rate (SSIR) and erosion in soils with various texture and minerals. Soil samples ...

  4. Indian summer monsoon rainfall: Dancing with the tunes of the sun

    Science.gov (United States)

    Hiremath, K. M.; Manjunath, Hegde; Soon, Willie

    2015-02-01

    There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.

  5. Spatial Variability of Rainfall

    DEFF Research Database (Denmark)

    Jensen, N.E.; Pedersen, Lisbeth

    2005-01-01

    As a part of a Local Area Weather Radar (LAWR) calibration exercise 15 km south of Århus, Denmark, the variability in accumulated rainfall within a single radar pixel (500 by 500 m) was measured using nine high-resolution rain gauges. The measured values indicate up to a 100% variation between ne...

  6. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  7. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    Science.gov (United States)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  8. Net Gain

    International Development Research Centre (IDRC) Digital Library (Canada)

    %) in malaria disease rates following introduction of ITNs. The results of standard clinical trials (randomized, controlled, and using sufficiently large samples) that measured impact on malaria disease in Africa are shown in Table 1. Other studies ...

  9. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  10. Influence of stocking rate, range condition and rainfall on seasonal beef production patterns in the semi-arid savanna of KwaZulu-Natal

    CSIR Research Space (South Africa)

    Hatch, GP

    1997-06-01

    Full Text Available of the Swartland form with Clovelly, Hutton, Mispah, Glenrosa and Bonheim forms, occurred at the sites (Soil Classification Working Group, 1991). Three treatments at each site were stocked at the start of each season (October) with 250 kg Brahman-cross cattle... rate. Derivation of the relation from the results of grazing trials. J. Agric. Sci. 83. 335-342. MCDONALD, I.A.W. 1982. The influence of short-term climatic fluctuations on the distribution of savanna organisms in southern Africa. M.Sc. thesis...

  11. Rainfall variability in the Himalayan orogen and its relevance to erosion processes

    Science.gov (United States)

    Deal, Eric; Favre, Anne-Catherine; Braun, Jean

    2017-05-01

    Rainfall is an important driver of erosion processes. The mean rainfall rate is often used to account for the erosive impact of a particular climate. However, for some erosion processes, erosion rate is a nonlinear function of rainfall, e.g., due to a threshold for erosion. When this is the case, it is important to take into account the full distribution of rainfall, instead of just the mean. In light of this, we have characterized the variability of daily rainfall over the Himalayan orogen using high spatial and temporal resolution rainfall data sets. We find significant variations in rainfall variability over the Himalayan orogen, with increasing rainfall variability to the west and north of the orogen. By taking into account variability of rainfall in addition to mean rainfall rate, we find a pattern of rainfall that, from a geomorphological perspective, is significantly different from mean rainfall rate alone. Using these findings, we argue that short-term rainfall variability may help explain observed short and long-term erosion rates in the Himalayan orogen.

  12. Seasonal forecasting of Bangladesh summer monsoon rainfall using ...

    Indian Academy of Sciences (India)

    casts (ECMWF). Statistical techniques for long range forecasting make use of the past data espe- cially relationship between the rainfall and other weather/climate related parameters. SST is a key indication because of its relatively gradual rate of. Keywords. Summer monsoon rainfall; predictor; forecast; RMSE. J. Earth Syst.

  13. Rainfall pattern effects on crusting, infiltration and erodibility in some ...

    African Journals Online (AJOL)

    2013-02-12

    Feb 12, 2013 ... Rainfall characteristics affect crust formation, infiltration rate and erosion depending on ..... (0.43 kg∙m-2) crusts than SL soils with kaolinite (1.77 kg∙m-2) or ..... especially for coarser-textured soils, regardless of the rainfall type.

  14. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    Science.gov (United States)

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  15. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  16. Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context

    Science.gov (United States)

    Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn

    2015-04-01

    gradients, and thus a faster relaxation back towards local thermodynamic equilibrium. Thermodynamic optimality principles allow for a priory optimization of the resistance field at a given gradient, not in the sense how they exactly look like but in the sense how they function with respect to export and dissipation of free energy associated with rainfall runoff processes. Based on this framework we explored the possibility of independent predictions of rainfall runoff, in the sense that the a-priory optimum model structures should match independent observations. We found that spatially organized patterns of soils and macropores observed in two distinctly different landscapes are in close accordance with thermodynamic optima expressed either by minimized relaxation times towards local thermodynamic equilibrium in cohesive soils or as steady state in the potential energy of soil water in non-cohesive soils. Predicted rainfall runoff based on the two optimized model structures was in both catchments in acceptable accordance with independent discharge observations. However, the nature of these optima suggests there might be two distinctly different thermodynamically optimal regimes of rainfall runoff behaviour. In the capillary- or c--regime, free energy dynamics of soil water is dominated by changes in its capillary binding energy, which is the case for cohesive soils. Soil wetting during rainfall in the c-regime implies pushing the system back towards LTE, especially after long dry spells. Dead ended macropores (roots, worm burrows which end in the soil matrix) act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE during rainfall runoff. In the c-regime several optimum macropore densities with respect to maximization of net reduction of free energy exist. This is because the governing equation is a second

  17. A Preliminary Study on Rainfall Interception Loss and Water Yield Analysis on Arabica Coffee Plants in Central Aceh Regency, Indonesia

    Directory of Open Access Journals (Sweden)

    Reza Benara

    2012-12-01

    Full Text Available Rainfall interception loss from plants or trees can reduce a net rainfall as source of water yield. The amount of rainfall interception loss depends on kinds of plants and hydro-meteorological characteristics. Therefore, it is important to study rainfall interception loss such as from Arabica Coffee plantation which is as main agricultural commodity for Central Aceh Regency. In this study, rainfall interception loss from Arabica Coffee plants was studied in Kebet Village of Central Aceh Regency, Indonesia from January 20 to March 9, 2011. Arabica coffee plants used in this study was 15 years old, height of 1.5 m and canopy of 4.567 m2. Rainfall interception loss was determined based on water balance approach of daily rainfall, throughfall, and stemflow data. Empirical regression equation between rainfall interception loss and rainfall were adopted as a model to estimate rainfall interception loss from Arabica Coffee plantation, which the coefficient of correlation, r is 0.98. In water yield analysis, this formula was applied and founded that Arabica Coffee plants intercept 76% of annual rainfall or it leaved over annual net rainfall 24% of annual rainfall. Using this net rainfall, water yield produced from Paya Bener River which is the catchment area covered by Arabica Coffee plantation was analyzed in a planning of water supply project for water needs domestic of 3 sub-districts in Central Aceh Regency. Based on increasing population until year of 2025, the results showed that the water yield will be not enough from year of 2015. However, if the catchment area is covered by forest, the water yield is still enough until year of 2025

  18. An interdecadal American rainfall mode

    Science.gov (United States)

    Jury, Mark R.

    2009-04-01

    Low-frequency climate variability across the American continents and surrounding oceans is analyzed by application of singular value decomposition (SVD) to gauge-based rainfall and environmental anomaly fields in the period 1901-2002. A 5-year filter is used to maintain a focus on interdecadal cycles. The rainfall regime of particular interest (mode 1) is when West Africa and the Caribbean share positive loading and North and South America share negative loading. Wavelet cospectral energy is found at ˜8, 24, and 50 years for Caribbean/West African zones and 16 and 32 years for North/South America. West Africa and South America exhibit antiphase multidecadal variability, while North America and the Caribbean rainfall exhibit quasi-decadal cycles. The rainfall associations are nonstationary. In the early 1900s, Caribbean and South American rainfall were antiphase. Since 1930 low-frequency oscillations of North American (West African) rainfall have been positively (negatively) associated with South America. Low-frequency oscillations of North American rainfall have been consistently antiphase with respect to Caribbean rainfall; however, West Africa rainfall fluctuations have been in phase with the Caribbean more in the period 1920-1950 than at other times. Hemispheric-scale environmental SVD patterns and scores were compared with the leading rainfall modes. The north-south gradient modes in temperature are influential in respect of mode 1 rainfall, while east-west gradients relate to mode 2 (northern Brazil) rainfall. The ability of the GFDL2.1 coupled (ocean-atmosphere) general circulation model to represent interdecadal rainfall modes in the 20th century was evaluated. While mode 2 is reproduced, mode 1 remains elusive.

  19. Continuous rainfall simulation: 2. A regionalized daily rainfall generation approach

    Science.gov (United States)

    Mehrotra, Rajeshwar; Westra, Seth; Sharma, Ashish; Srikanthan, Ratnasingham

    2012-01-01

    This paper is the second of two in the current issue that presents a framework for simulating continuous (uninterrupted) rainfall sequences at both gaged and ungaged locations. The ultimate objective of the papers is to present a methodology for stochastically generating continuous subdaily rainfall sequences at any location such that the statistics at a range of aggregation scales are preserved. In this paper we complete the regionalized algorithm by adopting a rationale for generating daily sequences at any location by sampling daily rainfall records from "nearby" gages with statistically similar rainfall sequences.The approach consists of two distinct steps: first the identification of a set of locations with daily rainfall sequences that are statistically similar to the location of interest, and second the development of an algorithm to sample daily rainfall from those locations. In the first step, the similarity between all bivariate combinations of 2708 daily rainfall records across Australia were considered, and a logistic regression model was formulated to predict the similarity between stations as a function of a number of physiographic covariates. Based on the model results, a number of nearby locations with adequate daily rainfall records are identified for any ungaged location of interest (the "target" location), and then used as the basis for stochastically generating the daily rainfall sequences. The continuous simulation algorithm was tested at five locations where long historical daily rainfall records are available for comparison, and found to perform well in representing the distributional and dependence attributes of the observed daily record. These daily sequences were then used to disaggregate to a subdaily time step using the rainfall state-based disaggregation approach described in the first paper, and found to provide a good representation of the continuous rainfall sequences at the location of interest.

  20. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    Science.gov (United States)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting

  1. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Science.gov (United States)

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  2. The role of non-rainfall water on physiological activation in desert biological soil crusts

    Science.gov (United States)

    Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai

    2018-01-01

    Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.

  3. Woody vegetation die off and regeneration in response to rainfall variability in the west African Sahel

    Science.gov (United States)

    Brandt, Martin; Tappan, G. Gray; Aziz Diouf, Abdoul; Beye, Gora; Mbow, Cheikh; Fensholt, Rasmus

    2017-01-01

    The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall) led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  4. Woody Vegetation Die off and Regeneration in Response to Rainfall Variability in the West African Sahel

    Directory of Open Access Journals (Sweden)

    Martin Brandt

    2017-01-01

    Full Text Available The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  5. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Kelleher, F. M. [Lincoln Univ., Soil Sience Dept., Lincoln, (New Zealand); McSeveny, T. M. [Manaaki Whenua-Landcare Research, Lincoln, (New Zealand); Byers, J. N. [Almuth Arneth Landcare Research, Lincoln (New Zealand)

    1998-12-01

    Tree carbon uptake (net primary productivity excluding fine root turnover, NPP`) in pine trees growing in a region of New Zealand subject to summer soil water deficit was investigated jointly with canopy assimilation (A{sub c}) and ecosystem-atmosphere carbon exchange rate (net ecosystem productivity, NEP). Canopy assimilation and NEP were used to drive a biochemically-based and environmentally constrained model validated by seasonal eddy covariance measurements. Over a three year period with variable rainfall annual NPP` and NEP showed significant variations. At the end of the growing season, carbon was mostly allocated to wood, with nearly half to stems and about a quarter to coarse roots. On a biweekly basis NPP` lagged behind A{sub c}, suggesting the occurrence of intermediate carbon storage. On an annual basis, however the NPP`/A{sub c} ratio indicated a conservative allocation of carbon to autotrophic respiration. The combination of data from measurements with canopy and ecosystem carbon fluxes yielded an estimate of heterotrophic respiration (NPP`-NEP) of approximately 30 per cent of NPP` and 50 per cent NEP. The annual values of NEP and NPP` can also be used to derive a `best guess` estimate of the annual below-ground carbon turnover rate, assuming that the annual changes in the soil carbon content is negligible. 46 refs., 7 figs.

  6. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and...

  7. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast...

  8. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Directory of Open Access Journals (Sweden)

    W. R. Ismail

    2015-03-01

    Full Text Available The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  9. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  10. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  11. Rainfall measurement based on in-situ storm drainage flow sensors

    DEFF Research Database (Denmark)

    Ahm, Malte; Rasmussen, Michael Robdrup

    2017-01-01

    these sensors, it may be possible to improve the ground rainfall estimate, and thereby improve the quantitative precipitation estimation from weather radars for urban drainage applications. To test the hypothesis, this paper presents a rainfall measurement method based on flow rate measurements from well......Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising...... the possibility of improving the ground rainfall estimate by the use of flow rate measurements....

  12. Net Gain: A New Method for Preventing Malaria Deaths | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A finely spun net could prevent as many as one-third of all child deaths in Africa, reports IDRC's new publication, Net Gain. Studies conducted in Gambia, Ghana, and Kenya show that the insecticide-treated mosquito net reduced the mortality rate of children under 5 years of age by up to 63 percent. Net Gain reviews and ...

  13. Rainfall-induced soil aggregate breakdown in field experiments at different rainfall intensities and initial soil moisture conditions

    Science.gov (United States)

    Shi, Pu; Thorlacius, Sigurdur; Keller, Thomas; Keller, Martin; Schulin, Rainer

    2017-04-01

    Soil aggregate breakdown under rainfall impact is an important process in interrill erosion, but is not represented explicitly in water erosion models. Aggregate breakdown not only reduces infiltration through surface sealing during rainfall, but also determines the size distribution of the disintegrated fragments and thus their availability for size-selective sediment transport and re-deposition. An adequate representation of the temporal evolution of fragment mass size distribution (FSD) during rainfall events and the dependence of this dynamics on factors such as rainfall intensity and soil moisture content may help improve mechanistic erosion models. Yet, little is known about the role of those factors in the dynamics of aggregate breakdown under field conditions. In this study, we conducted a series of artificial rainfall experiments on a field silt loam soil to investigate aggregate breakdown dynamics at different rainfall intensity (RI) and initial soil water content (IWC). We found that the evolution of FSD in the course of a rainfall event followed a consistent two-stage pattern in all treatments. The fragment mean weight diameter (MWD) drastically decreased in an approximately exponential way at the beginning of a rainfall event, followed by a further slow linear decrease in the second stage. We proposed an empirical model that describes this temporal pattern of MWD decrease during a rainfall event and accounts for the effects of RI and IWC on the rate parameters. The model was successfully tested using an independent dataset, showing its potential to be used in erosion models for the prediction of aggregate breakdown. The FSD at the end of the experimental rainfall events differed significantly among treatments, indicating that different aggregate breakdown mechanisms responded differently to the variation in initial soil moisture and rainfall intensity. These results provide evidence that aggregate breakdown dynamics needs to be considered in a case

  14. Rainfall erosivity index for the Ghana Atomic Energy Commission site.

    Science.gov (United States)

    Essel, Paul; Glover, Eric T; Yeboah, Serwaa; Adjei-Kyereme, Yaw; Yawo, Israel Nutifafa Doyi; Nyarku, Mawutoli; Asumadu-Sakyi, Godfred S; Gbeddy, Gustav Kudjoe; Agyiri, Yvette Agyiriba; Ameho, Evans Mawuli; Aberikae, Emmanuel Atule

    2016-01-01

    Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate. Monthly rainfall data, for the period 2003-2012 were used to compute annual rainfall erosivity indices for the site, using the Modified Fournier index. Values of the annual rainfall erosivity indices ranged from 73.5 mm for 2004 to 200.4 mm for the year 2003 with a mean annual erosivity index of 129.8 mm for the period. The Pearson's Coefficient of Correlation was used to establish the relationship between annual rainfall and annual rainfall erosivity. This showed a high degree of positive relationship (r = 0.7) for the study area. The computed mean annual erosivity index revealed that the site is in the high erosion risk zone. Therefore, it is necessary to develop soil protection and management strategies to protect the soil from erosion.

  15. FROM RAINFALL DATA

    Directory of Open Access Journals (Sweden)

    Sisuru Sendanayake

    2015-01-01

    Full Text Available There are many correlations developed to predict incident solar radiation at a givenlocation developed based on geographical and meteorological parameters. However, allcorrelations depend on accurate measurement and availability of weather data such assunshine duration, cloud cover, relative humidity, maximum and minimumtemperatures etc, which essentially is a costly exercise in terms of equipment andlabour. Sri Lanka being a tropical island of latitudinal change of only 30 along thelength of the country, the meteorological factors govern the amount of incidentradiation. Considering the cloud formation and wind patterns over Sri Lanka as well asthe seasonal rainfall patterns, it can be observed that the mean number of rainy dayscan be used to predict the monthly average daily global radiation which can be used forcalculations in solar related activities conveniently.

  16. Mobilizing local safety nets for enhanced adaptive capacity to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    22 avr. 2016 ... In Zimbabwe, the increased frequency of drought, flash floods, and unpredictable rainfall has added to recurrent food deficits for poor households who depend on rainfed farming on nutrient poor soils. This brief explores how the erosion of Zunde raMambo — a traditional community safety net mechanism ...

  17. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  18. Texture Based Image Analysis With Neural Nets

    Science.gov (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.

    1990-03-01

    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  19. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  20. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  1. Quantifying rainfall-runoff relationships on the Mieso Hypo Calcic ...

    African Journals Online (AJOL)

    The Morin and Cluff runoff model was calibrated and validated using measured rainfall-runoff data. Appropriate values for final infiltration rate (If), surface storage (SD) and the crusting parameter (ã) were found to be: 10 mm.hr-1; 2 mm for NT and 5 mm for CT; 0.4 mm-1; respectively. The runoff (R)/rainfall (P) ratio (R/P) gave ...

  2. Gill net and trammel net selectivity in the northern Aegean Sea, Turkey

    Directory of Open Access Journals (Sweden)

    F. Saadet Karakulak

    2008-09-01

    Full Text Available Fishing trials were carried out with gill nets and trammel nets in the northern Aegean Sea from March 2004 to February 2005. Four different mesh sizes for the gill nets and the inner panel of trammel nets (16, 18, 20 and 22 mm bar length were used. Selectivity parameters for the five most economically important species, bogue (Boops boops, annular sea bream (Diplodus annularis, striped red mullet (Mullus surmuletus, axillary sea bream (Pagellus acarne and blotched picarel (Spicara maena, caught by the two gears were estimated. The SELECT method was used to estimate the selectivity parameters of a variety of models. Catch composition and catch proportion of several species were different in gill and trammel nets. The length frequency distributions of the species caught by the two gears were significantly different. The bi-modal model selectivity curve gave the best fit for gill net and trammel net data, and there was little difference between the modal lengths of these nets. However, a clear difference was found in catching efficiency. The highest catch rates were obtained with the trammel net. Given that many discard species and small fish are caught by gill nets and trammel nets with a mesh size of 16 mm, it is clear that these nets are not appropriate for fisheries. Consequently, the best mesh size for multispecies fisheries is 18 mm. This mesh size will considerably reduce the numbers of small sized individuals and discard species in the catch.

  3. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  4. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  5. NEXRAD Rainfall Data: Eureka, California

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-Generation Radar (NEXRAD) Weather Surveillance Radar 1988 (WSR-88D) measurements were used to support AMSR-E rainfall validation efforts in Eureka, California,...

  6. Estimating the net effect of progesterone elevation on the day of hCG on live birth rates after IVF: a cohort analysis of 3296 IVF cycles.

    Science.gov (United States)

    Venetis, Christos A; Kolibianakis, Efstratios M; Bosdou, Julia K; Lainas, George T; Sfontouris, Ioannis A; Tarlatzis, Basil C; Lainas, Tryfon G

    2015-03-01

    What is the proper way of assessing the effect of progesterone elevation (PE) on the day of hCG on live birth in women undergoing fresh embryo transfer after in vitro fertilization (IVF) using GnRH analogues and gonadotrophins? This study indicates that a multivariable approach, where the effect of the most important confounders is controlled for, can lead to markedly different results regarding the association between PE on the day of hCG and live birth rates after IVF when compared with the bivariate analysis that has been typically used in the relevant literature up to date. PE on the day of hCG is associated with decreased pregnancy rates in fresh IVF cycles. Evidence for this comes from observational studies that mostly failed to control for potential confounders. This is a retrospective analysis of a cohort of fresh IVF/intracytoplasmic sperm injection cycles (n = 3296) performed in a single IVF centre during the period 2001-2013. Patients in whom ovarian stimulation was performed with gonadotrophins and GnRH analogues. Natural cycles and cycles where stimulation involved the administration of clomiphene were excluded. In order to reflect routine clinical practice, no other exclusion criteria were imposed on this dataset. The primary outcome measure for this study was live birth defined as the delivery of a live infant after 24 weeks of gestation. We compared the association between PE on the day of hCG (defined as P > 1.5 ng/ml) and live birth rates calculated by simple bivariate analyses with that derived from multivariable logistic regression. The multivariable analysis controlled for female age, number of oocytes retrieved, number of embryos transferred, developmental stage of embryos at transfer (cleavage versus blastocyst), whether at least one good-quality embryo was transferred, the woman's body mass index, the total dose of FSH administered during ovarian stimulation and the type of GnRH analogues used (agonists versus antagonists) during ovarian

  7. Estimation of Real-Time Flood Risk on Roads Based on Rainfall Calculated by the Revised Method of Missing Rainfall

    Directory of Open Access Journals (Sweden)

    Eunmi Kim

    2014-09-01

    Full Text Available Recently, flood damage by frequent localized downpours in cities is on the increase on account of abnormal climate phenomena and the growth of impermeable areas due to urbanization. This study suggests a method to estimate real-time flood risk on roads for drivers based on the accumulated rainfall. The amount of rainfall of a road link, which is an intensive type, is calculated by using the revised method of missing rainfall in meteorology, because the rainfall is not measured on roads directly. To process in real time with a computer, we use the inverse distance weighting (IDW method, which is a suitable method in the computing system and is commonly used in relation to precipitation due to its simplicity. With real-time accumulated rainfall, the flooding history, rainfall range causing flooding from previous rainfall information and frequency probability of precipitation are used to determine the flood risk on roads. The result of simulation using the suggested algorithms shows the high concordance rate between actual flooded areas in the past and flooded areas derived from the simulation for the research region in Busan, Korea.

  8. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  9. Satellite remote sensing of global rainfall using passive microwave radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  10. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  11. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  12. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  13. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  14. The rainfall regime in Lisbon in the last 150 years

    Science.gov (United States)

    Kutiel, H.; Trigo, R. M.

    2014-11-01

    The first decades of the rainfall series of Lisbon have been digitized recently allowing a long-term assessment of the rainfall regime for 150 years of uninterrupted, i.e., the first assessment for the longest continuous precipitation time series in western Iberia. This data has been monitored continuously at the D. Luís observatory having started to be published in 1864 in the Observatory's log books (Annals). We use an approach based on different characteristics of rain spells that has been proved to be satisfactory for the analysis of the different parameters related to the rainfall regime in that part of the world. Thus, a rain spell is defined as a series of consecutive days with a measured daily rainfall equal or higher than 1.0 mm. Each rain spell is preceded and followed by at least one dry day. For each rain spell, its duration, its yield (RSY), and its average intensity (RSI) was calculated. Additionally, the total number of rain spells in each year was also considered. Dryness was analyzed using the dry days since last rain approach. Besides the evaluation over the entire 150-year period available, we have also looked into three equally spaced sub-periods. Lisbon reveals large inter-annual and intra-annual variability and both have increased considerably in the last decades. The large intra-annual variability is demonstrated by both; a very large range of annual rainfall percentage accumulated at any given date and by a very large range of dates on which a certain rainfall percentage was accumulated. Again, both metrics increased in the last decades. Parallel to the increase in the uncertainty, a very significant net increase is noticed in the annual totals since the 1960s compared to the first half of the previous century. The increase is mainly due to more intense events which are reflected by higher RSY and RSI values in the last 50 years.

  15. Tropical Lake Levels and Their Relationship to Rainfall

    Science.gov (United States)

    Ricko, M.; Carton, J.; Birkett, C. M.

    2009-12-01

    The availability of satellite altimeters and improvements in satellite estimates of river and lake levels are offering an exciting monitoring alternative to currently limited prediction systems using current climate models. Aware of existing limitations in data retrievals, we have developed a simple linear model for estimating lake level as a function of freshwater flux into the catchment basin for 12 tropical lakes and reservoirs: 8 in Africa, 3 in Central and South America, and 1 in Southeast Asia. In our model three parameters, effective catchment basin, time delay, and drainage timescale are determined from linear regression based on the simultaneous availability of remotely sensed lake level and rainfall. We present results of estimates of net surface freshwater flux and lake levels during a 16-year period (1992-2007). Comparison between two different altimeter satellite-based lake level datasets shows very good agreement for most lakes. For net freshwater flux (i.e., rainfall minus evaporation), we use three different rainfall products: the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, the Global Precipitation Climatology Project (GPCP) rainfall, and the Tropical Rainfall Measurement Mission (TRMM) 3B42 precipitation index rainfall. ERA-Interim evaporation is combined with each of the three rainfall products to form three estimates of net surface freshwater flux. Results from models are denominated as Model-I, Model-G, Model-T, respectively. A comparison of rainfall products shows differences, and as a result the best model for a given lake varies. The median correlation between the observed LEGOS and Model-G lake levels is significantly higher than for Model-I, with the median RMS difference between observation and model slightly lower for Model-G than for Model-I. For many tropical lakes the best results are obtained using one of the observation-based products, GPCP or TRMM. All three model results show that all lakes

  16. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting...... irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes...... in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn...

  17. Canopy interception during rainfall, storm break time and after cessation of rainfall: experimental study using artificial Christmas trees

    Science.gov (United States)

    Murakami, Shigeki

    2017-04-01

    Evaporation of canopy interception can be divided into three phases: evaporation during rainfall IR, storm break time when it stops raining temporarily ISbt, and after cessation of rainfall IAft. In this study, IR, ISbt, and IAft were measured using model forests, i.e. plastic Christmas tree stands. The method and preliminary results are described in Murakami and Toba (2013). Christmas trees with original height of 65 cm (small tree) and 150 cm (large tree) were placed on three trays. Small trees were set on Tray #1. The same trees with height of 110 cm (extended using plastic rod) were placed on Tray #2, and large trees with height of 240 cm (raised using iron pipe) were set on Tray #3. The dimension of Tray #1 and #2 were a 180-cm square, and Tray #3 was a 360-cm square. Measurement was conducted under natural rainfall. Gross rainfall and net rainfall of each tray (discharge from each tray), in addition to single tree weight on Tray #1 and #3 were measured. Initial tree density of each tray was 41 trees per tray. Thinning was conducted in the middle of the experiment period and it was reduced to 25 trees per tray on Tray #2 and #3, but Tray #1 was unthinned. Total rainfall for pre-thinning period was 204.2 mm with 16 rain events and canopy interception CI was 10.8% (22.0 mm), 13.9% (28.3 mm) and 16.3% (33.4 mm) of rainfall for Tray #1, #2 and #3, respectively. Amount of rainfall for after thinning period was 291.5 mm with 24 rain events and canopy interception was 12.7% (40.0 mm), 21.7% (63.3 mm) and 13.6% (39.7 mm) of rainfall for Tray #1, #2 and #3, respectively. It is noteworthy that canopy interception increased on Tray #2 after thinning. IR, ISbt, and IAft were calculated for each tray using gross rainfall, net rainfall and the weight of single tree. Before thinning the value of IR/CI was 67.3% to74.9% and IAft occupied the remaining part of CI with ISbt/CI being nearly equal to zero. After thinning, IR/CI ranged from 65.3% to 93.8%. Both before and after

  18. Responses of LAI to rainfall explain contrasting sensitivities to carbon uptake between forest and non-forest ecosystems in Australia.

    Science.gov (United States)

    Li, Longhui; Wang, Ying-Ping; Beringer, Jason; Shi, Hao; Cleverly, James; Cheng, Lei; Eamus, Derek; Huete, Alfredo; Hutley, Lindsay; Lu, Xingjie; Piao, Shilong; Zhang, Lu; Zhang, Yongqiang; Yu, Qiang

    2017-09-15

    Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the increasing trend and interannual variation of land carbon uptake over the last three decades, yet the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems in Australia, we found the the correlation between gross primary production (GPP) and ecosystem respiration (Re) was significant for non-forest ecosystems, but was not for forests. In non-forest ecosystems, both GPP and Re increased with rainfall, and, consequently net ecosystem production (NEP) increased with rainfall. In forest ecosystems, GPP and Re were insensitive to rainfall. Furthermore sensitivity of GPP to rainfall was dominated by the rainfall-driven variation of LAI rather GPP per unit LAI in non-forest ecosystems, which was not correctly reproduced by current land models, indicating that the mechanisms underlying the response of LAI to rainfall should be targeted for future model development.

  19. How is initial soil erosion affected by rainfall intensity and kinetic energy?

    Science.gov (United States)

    Neumann, Martin; Iserloh, Thomas; Rodrigo Comino, Jesús; Kavka, Petr; Seeger, Manuel; Ries, Johannes B.

    2017-04-01

    Rainfall simulation with small scale simulators is a method used worldwide to assess the generation of overland flow and initial soil erosion. For a thorough interpretation of the obtained experimental data, it is necessary to know detailed information of the rainfall characteristics. This study presents the effect of different rainfall intensities and kinetic energies on initial soil erosion rates under controlled experimental conditions. For this research the small portable rainfall simulator of Trier University was used. The experimental plot is 0.28 m2 and the height of the nozzle is 2 m above ground. We applied a wide range of rainfall intensities (20, 40, 60 and 80 mm h-1) and kinetic energies (0.4 - 9 J m2 mm-1). For this purpose, a set of various nozzles were tested under laboratory conditions. First, the spatial distribution of the artificial rainfall on the plot surface was measured to ensure the reproducibility of the experiments with constant rainfall intensity. Second, the drop size distribution was tested to control and adjust its similarity to the one measured in natural events. With the selected nozzles and rainfall intensities, 54 rainfall simulations were performed on prepared surface at the experimental site of Trier University. With the measured values a 3D matrix of rainfall intensity, kinetic energy and soil loss were calculated. This method allows an accurate estimation of soil erodibility for a wide range of rainfall characteristics. The presentation was funded by Ministry of agriculture of the Czech Republic (research project QJ1520265).

  20. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  1. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  2. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  3. Rainfall-Runoff Parameters Uncertainity

    Science.gov (United States)

    Heidari, A.; Saghafian, B.; Maknoon, R.

    2003-04-01

    Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.

  4. Gas transfer between the atmosphere and irrigated sugarcane plantation sites under different rainfall in Hawai'i

    Science.gov (United States)

    Miyazawa, Y.; Giambelluca, T. W.; Crow, S. E.; Mudd, R. G.; Youkhana, A.; Nullet, M.; Nakahata, M.

    2015-12-01

    Sugarcane plantation land cover is increasing in area in Brazil, South Asia and the Pacific Islands because of the growing demand for sugar and biofuel production. While a large portion of sugarcane cultivated in Brazil is rain-fed and experiences drought influences on gas exchange, sugarcane in Hawai'i is thought to be buffered from drought effects because it is drip irrigated. Knowledge about carbon sequestration and evapotranspiration rates is fundamental both for the prediction of sugar and biofuel production and for water resource management for the large plantations. To understand gas transfer under spatially and temporally heterogeneous environments, we investigated the leaf- soil- and stand-scale gas transfer processes at two irrigated sugarcane plantation study sites in Hawai'i with contrasting rainfall. Gas and energy transfers were monitored using eddy covariance systems for a full- and later half- crop cycle. Leaf ecophysiological traits were measured for stands of different ages to evaluate the effects of stand age on gas transfer. Carbon sequestration rates (Fc) showed a strong relationship with solar radiation with small differences between sites. Latent heat flux expressed as the evapotranspiration rates (ET) also had a strong relationship with solar radiation, but showed seasonality due to variations in biological control (surface conductance) and atmospheric evaporative demand. The difference in ET and its responses to environments was less clear partly buffered by the differences in the stand age and seasons. The stable Fc-solar radiation relationship despite the variation in surface conductance was partly due to the saturation of net photosynthetic rates with intercellular CO2 concentration and the low sensitivity of net photosynthesis to variations in surface conductance in sugarcane with the C4 photosynthesis pathway. The response of gas transfer to periodic irrigation, rainfall and age-related changes in leaf ecophysiological traits will be

  5. Predicted disappearance of Cephalantheropsis obcordata in Luofu Mountain due to changes in rainfall patterns.

    Directory of Open Access Journals (Sweden)

    Xin-Ju Xiao

    Full Text Available BACKGROUND: In the past century, the global average temperature has increased by approximately 0.74°C and extreme weather events have become prevalent. Recent studies have shown that species have shifted from high-elevation areas to low ones because the rise in temperature has increased rainfall. These outcomes challenge the existing hypothesis about the responses of species to climate change. METHODOLOGY/PRINCIPAL FINDINGS: With the use of data on the biological characteristics and reproductive behavior of Cephalantheropsis obcordata in Luofu Mountain, Guangdong, China, trends in the population size of the species were predicted based on several factors. The response of C. obcordata to climate change was verified by integrating it with analytical findings on meteorological data and an artificially simulated environment of water change. The results showed that C. obcordata can grow only in waterlogged streams. The species can produce fruit with many seeds by insect pollination; however, very few seeds can burgeon to become seedlings, with most of those seedlings not maturing into the sexually reproductive phase, and grass plants will die after reproduction. The current population's age pyramid is kettle-shaped; it has a Deevey type I survival curve; and its net reproductive rate, intrinsic rate of increase, as well as finite rate of increase are all very low. The population used in the artificial simulation perished due to seasonal drought. CONCLUSIONS: The change in rainfall patterns caused by climate warming has altered the water environment of C. obcordata in Luofu Mountain, thereby restricting seed burgeoning as well as seedling growth and shortening the life span of the plant. The growth rate of the C. obcordata population is in descending order, and models of population trend predict that the population in Luofu Mountain will disappear in 23 years.

  6. Predicted disappearance of Cephalantheropsis obcordata in Luofu Mountain due to changes in rainfall patterns.

    Science.gov (United States)

    Xiao, Xin-Ju; Liu, Ke-Wei; Zheng, Yu-Yun; Zhang, Yu-Ting; Tsai, Wen-Chieh; Hsiao, Yu-Yun; Zhang, Guo-Qiang; Chen, Li-Jun; Liu, Zhong-Jian

    2012-01-01

    In the past century, the global average temperature has increased by approximately 0.74°C and extreme weather events have become prevalent. Recent studies have shown that species have shifted from high-elevation areas to low ones because the rise in temperature has increased rainfall. These outcomes challenge the existing hypothesis about the responses of species to climate change. With the use of data on the biological characteristics and reproductive behavior of Cephalantheropsis obcordata in Luofu Mountain, Guangdong, China, trends in the population size of the species were predicted based on several factors. The response of C. obcordata to climate change was verified by integrating it with analytical findings on meteorological data and an artificially simulated environment of water change. The results showed that C. obcordata can grow only in waterlogged streams. The species can produce fruit with many seeds by insect pollination; however, very few seeds can burgeon to become seedlings, with most of those seedlings not maturing into the sexually reproductive phase, and grass plants will die after reproduction. The current population's age pyramid is kettle-shaped; it has a Deevey type I survival curve; and its net reproductive rate, intrinsic rate of increase, as well as finite rate of increase are all very low. The population used in the artificial simulation perished due to seasonal drought. The change in rainfall patterns caused by climate warming has altered the water environment of C. obcordata in Luofu Mountain, thereby restricting seed burgeoning as well as seedling growth and shortening the life span of the plant. The growth rate of the C. obcordata population is in descending order, and models of population trend predict that the population in Luofu Mountain will disappear in 23 years.

  7. a multi-period markov model for monthly rainfall in lagos, nigeria

    African Journals Online (AJOL)

    PUBLICATIONS1

    Many models available for this were developed and tested in developed countries in ... Keywords: Markov, multi-period ,rainfall model ... linearly dependent on that at the immediately ... More recently Artificial neural Net- ...... neural network for flood forecasting, Neural ... logical uncertainty using quantile regression:.

  8. Rainfall simulation for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D.S.; Abner, C.H.; Mann, L.K.

    1977-08-01

    Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.

  9. Rainfall intensity-duration equations

    Science.gov (United States)

    Froehlich, David C.

    1988-01-01

    A method for rapidly developing a rainfall intensity-duration equation for durations less than one hour and recurrence intervals between 2 and 100 years for any location in the conterminous United States is presented. Optimal parameters of a general rainfall-intensity duration equation are determined using precipitation depths for durations of 5, 10, 15, 30 and 60 minutes obtained from commonly available isopluvial maps. A single set of parameters applies to the entire western U.S. For the central and eastern U.S, a graphical means of determining the parameters is provided.

  10. Heavy rainfall in Mediterranean cyclones: Contribution of deep convection and warm conveyor belt

    Science.gov (United States)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne; Rysman, Jean-Francois; Claud, Chantal

    2017-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations in order to quantify the relative contribution of DC and the WCB to cyclones rainfall, as well as to analyse these processes spatial and temporal variability respect to the cyclones centre and life cycle. Results show that the relationship between cyclone rainfall and intensity shows high variability and demonstrates that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and WCB play a secondary role (producing up to 40% of rainfall). Further analysis showed that DC and WCB are rather distinct processes, being rarely collocated. In fact, rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while WCB tends to produce rainfall towards the northeast. Finally, DC was found to be able to produce higher rain rates than WCBs. Our results demonstrate in a climatological framework the relationship between cyclones intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set perspectives for a deeper analysis of the favourable atmospheric conditions that provoke high impact weather. Our study has been performed in the context of the project: Cyclone processes leading to extreme rainfall in the Mediterranean region (ExMeCy; Marie Skłodowska-Curie actions, grant agreement-658997)

  11. Rainfall intensity - rainfall kinetic energy relationships: a critical literature appraisal

    NARCIS (Netherlands)

    van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J.

    2002-01-01

    Knowledge of the relationship between rainfall intensity and kinetic energy and its variations in time and space is important for erosion prediction. However, between studies considerable variations exist in the reported shape and coefficients of this relationship. Some differences can be explained

  12. China's grazed temperate grasslands are a net source of atmospheric methane

    Science.gov (United States)

    Wang, Zhi-Ping; Song, Yang; Gulledge, Jay; Yu, Qiang; Liu, Hong-Sheng; Han, Xing-Guo

    A budget for the methane (CH 4) cycle in the Xilin River basin of Inner Mongolia is presented. The annual CH 4 budget in this region depends primarily on the sum of atmospheric CH 4 uptake by upland soils, emission from small wetlands, and emission from grazing ruminants (sheep, goats, and cattle). Flux rates for these processes were averaged over multiple years with differing summer rainfall. Although uplands constitute the vast majority of land area, they consume much less CH 4 per unit area than is emitted by wetlands and ruminants. Atmospheric CH 4 uptake by upland soils was -3.3 and -4.8 kg CH 4 ha -1 y -1 in grazed and ungrazed areas, respectively. Average CH 4 emission was 791.0 kg CH 4 ha -1 y -1 from wetlands and 8.6 kg CH 4 ha -1 y -1 from ruminants. The basin area-weighted average of all three processes was 6.8 kg CH 4 ha -1 y -1, indicating that ruminant production has converted this basin to a net source of atmospheric CH 4. The total CH 4 emission from the Xilin River basin was 7.29 Gg CH 4 y -1. The current grazing intensity is about eightfold higher than that which would result in a net zero CH 4 flux. Since grazing intensity has increased throughout western China, it is likely that ruminant production has converted China's grazed temperate grasslands to a net source of atmospheric CH 4 overall.

  13. The effects of rainfall regimes and terracing on runoff and erosion in the Three Gorges area, China.

    Science.gov (United States)

    Xu, Qin-Xue; Wu, Pan; Dai, Jun-Feng; Wang, Tian-Wei; Li, Zhao-Xia; Cai, Chong-Fa; Shi, Zhi-Hua

    2018-01-20

    Changes in natural rainfall regimes have taken place and are expected to become more pronounced in future decades. These changes are also likely to be accompanied by changes in crop management practices. The main purpose of this study was to analyze runoff and soil loss in relation to rainfall regimes and terracing in the Three Gorges area, China. Based on 10 years of field observation and k-mean clusters, 101 rainfall events were grouped into three rainfall regimes. Rainfall regime I was the group of events with strong rainfall intensity, high frequency, and short duration. Rainfall regime III consisted of events with low intensity, long duration, and high rainfall amount. Rainfall regime II was the aggregation of events of high intensity and amount, and less frequent occurrence. The results showed that event runoff coefficients were not significantly different among rainfall regimes. However, the average soil erosion rates in rainfall regimes I and II were significantly higher than that in regime III. The average erosion rates under rainfall regimes I, II, and III were 21.6, 39.7, and 9.8 g m -2 , respectively. The effect of rainfall regime on soil erosion also was changed by terracing. On unterraced cropland, soil erosion rate in rainfall regime I is significantly higher than that in regime III. However, the situation did not exist in unterraced orchard. Terracing significantly reduced runoff and soil erosion, and compensated the effects of rainfall regime on soil erosion, which indicated that runoff and erosion in terraced system may be little influenced by climate change. Based on these results, it was suggested more attention should be paid to the timing of rainfall events in relation to crop development and the high erosion on unterraced citrus orchard to control soil erosion in this area.

  14. Atmosphere-Truth Z-R Rainfall Estimates: A Fresh Approach to an Old Problem

    Science.gov (United States)

    Henz, J. F.

    2010-12-01

    Common modeling practice for basin calibration uses rainfall fields developed by the statistical use of surface rain gauge observed data or the direct application of NEXRAD National Weather Service WSR-88D Doppler radar Storm Total Rainfall or 1-hr rainfall estimations. Each of these approaches has significant limitations. Rain gages often lack sufficient spatial coverage to measure true storm intensity or the distribution of rainfall in a basin. The NWS WSR-88D Doppler radar algorithms are constantly being improved but still fail to deliver consistent rainfall estimates. Significant problems are caused by an under-estimation of warm coalescence rains and an over-estimation of rainfall in both dry environments and storms with hail contamination. Finally, storm updraft areas are frequently counted as raining portions of the storm producing immediate errors. The statistical techniques often under-estimate rainfall when the heavy rain core of the storm misses the rain gauges or if high winds cause an under-catchment of rainfall. Gauge-adjusted rainfall estimates are also dependant on the core of the storm being observed by a gauge. Statistical approaches often under-estimate rainfall producing insufficient runoff to drive the observed flooding runoffs. The Atmosphere-Truth ZR (ATZR) technique uses an atmosphere-truthed algorithm to produce highly accurate estimates of surface rainfall from Doppler radar data. This approach relies on using a cloud physics approach to determine the atmosphere’s ability to produce 15-min to hourly rain rates. The atmsopheric rainfall is utilizes surface, boundary layer and cloud layer observations of temperature and moisture from conventional National Weather Service observations. The depth of the thunderstorm updraft region that exceeds 0C is used with the precipitable water index and updraft speeds to provide estimates of 15-min to hourly rainfall rates from radar reflectivity areas in the storm greather than 50 dBZ. Rainfall rates

  15. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  16. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  17. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  18. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  19. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  20. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  1. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  2. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  3. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  4. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  5. Rainfall time series synthesis from queue scheduling of rain event fractals over radio links

    Science.gov (United States)

    Alonge, Akintunde A.; Afullo, Thomas J.

    2015-12-01

    Rainfall attenuation over wireless networks stems from random fluctuations in the natural process of arriving rainfall rates over radio links. This arrival process results in discernible rainfall traffic pattern which manifests as naturally scheduled and queue-generated rain spikes. Hence, the phenomenon of rainfall process can be approached as a semi-Markovian queueing process, with event characteristics dependent on queue parameters. However, a constraint to this approach is the knowledge of the physical characteristics of queue-generated rain spikes. Therefore, this paper explores the probability theory and descriptive mathematics of rain spikes in rainfall processes. This investigation presents the synthesis of rainfall queue with rain spikes at subtropical and equatorial locations of Durban (29°52'S, 30°58'E) and Butare (2°36'S, 29°44'E), respectively. The resulting comparative analysis of rainfall distributions, using error analysis at both locations, reveals that queue-generated rainfall compares well with measured rainfall data set. This suggests that the time-varying process of rainfall, though stochastic, can be synthesized via queue scheduling with the application of relevant queue parameters at any location.

  6. Improving Agricultural Drought Monitoring in East Africa with Unbiased Rainfall Fields and Detailed Land Surface Physics

    Science.gov (United States)

    McNally, A.; Yatheendradas, S.; Peters-Lidard, C. D.; Michaelsen, J.

    2010-12-01

    Monitoring drought is particularly challenging within rainfed agricultural and pastoral systems, where it can serve the greatest need. Such locations often have sparse or non-existent ground based measurements of precipitation, evapotranspiration (ET), and soil moisture. For more effective drought monitoring with limited hydroclimate observations, we simulate land surface states using the Community Noah Land Surface Model forced with different merged rainfall products inside a Land Information System (LIS). Using model outputs we will answer the questions: How sensitive are soil moisture and ET fields to differences in rainfall forcing and model physics? What are acceptable drought-specific tradeoffs between near-real time availability and skill of rainfall data? Preliminary results with the African Rainfall Estimation Algorithm Version 2 (RFE2.0) outperformed global products, suggesting that sub-global rainfall estimates are the way forward for regional drought monitoring. Specifically, the Noah model forced with RFE2.0 better resolved the heterogeneous patterns in crop stress than the Famine Early Warning System Network (FEWS NET) operational Water Requirement Satisfaction Index (WRSI) model. To further investigate the improvement in drought monitoring while maintaining timeliness, we unbias (using Africa specific climatology) the precipitation products from CPC Merged Analysis of Precipitation (CMAP), Tropical Rainfall Measurement Mission (TRMM), and RFE2.0. The skill (relative accuracy) and reliability (average agreement) of the unbiased rainfall are calculated against an unbiased precipitation product augmented with station data from Ethiopia and Kenya. Soil moisture and ET fields from Noah are compared to the operational FEWS NET WRSI, soil water anomaly index, and the World Food Program’s Crop and Food Security Assessment Mission reports. We anticipate that the unbiased rainfall fields will improve the accuracy, spatio-temporal resolution, and

  7. Net accumulation of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Kiilsholm, Sissi; Christensen, Jens Hesselbjerg; Dethloff, Klaus

    2003-01-01

    improvement compared to the driving OAGCM. Estimates of the regional net balance are also better represented by the RCM. In the future climate the net balance for the Greenland Ice Sheet is reduced in all the simulation, but discrepancies between the amounts when based on ECHAM4/OPYC3 and HIRHAM are found....... In both scenarios, the estimated melt rates are larger in HIRHAM than in the driving model....

  8. Termites promote resistance of decomposition to spatiotemporal variability in rainfall.

    Science.gov (United States)

    Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P

    2017-02-01

    The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.

  9. Taxa alimentar no desempenho de juvenis de robalo-peva em tanque-rede=Feeding rate in the performance of juveniles of fat-snook Centropomus parallelus in net cage.

    Directory of Open Access Journals (Sweden)

    Vinicius Ronzani Cerqueira

    2011-10-01

    Full Text Available O conhecimento da taxa ótima de alimentação para uma determinada espécie não só é importante para promover o maior crescimento e a melhor eficiência na alimentação, mas também para prevenir a deterioração de qualidade de água como resultado do excesso de alimento. O presente estudo teve como objetivo avaliar o desempenho do robalo-peva, Centropomus parallelus cultivado em tanques-rede flutuantes sob o efeito de diferentes taxas alimentares (1; 1,5; 2 e 2,5% da biomassa ao dia e a taxa controle que foi até a saciedade, em condições de cultivo no ambiente natural. Durante 40 dias, cada tratamento foi avaliado em triplicatas e foram verificados os parâmetros biológicos (sobrevivência, taxa de crescimento específico, peso e comprimentos médios finais e nutricionais (taxa de conversão alimentar aparente. A análise de regressão polinomial da taxa de crescimento específico sugere que em temperaturas médias de 25°C a taxa alimentar que resulta em melhor crescimento para juvenis de robalo-peva é de 1,7% da biomassa viva por dia.Knowing the optimal feeding rate for a given species is important not only to promote higher growth and greater feeding efficiency, but also to prevent the deterioration of water quality resulting from excess food. This study aimed to evaluate the performance of the fat-snook Centropomus parallelus cultivated in net cages under the effect of different feeding rates (1, 1.5, 2 and 2.5% live biomass daily and control rate up to apparent satiation in natural environment conditions. For 40 days, each treatment was evaluated in triplicate, in which the biological parameters (survival, specific growth rate, final average weight and length and nutritional parameters (feed conversion ratio were assessed. A polynomial regression analysis of specific growth rate suggests that in average temperatures of 25°C, the feeding rate which results in best growth for juvenile fat-snook is 1.7% of live biomass per day.

  10. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    Science.gov (United States)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation

  11. THE ESSENTIALS OF RAINFALL DERIVATIVES AND INSURANCE

    OpenAIRE

    Turvey, Calum G.

    1999-01-01

    This paper investigates the use of rainfall insurance to manage agricultural production risks. A number of rainfall insurance products are presented along with a raitonal model which identifies the economics of rainfall. The use of rainfall insurance will increase in future years as capital markets, financial institutions, reinsurance companies, crop insurance companies, and hedge funds collectively organize to share and distribute weather risks. The focus of this paper is in fact directed to...

  12. Characterisation of Seasonal Rainfall for Cropping Schedules ...

    African Journals Online (AJOL)

    Thirty years of daily rainfall data (1976–2006 excluding 1991) from the Akatsi District in the Volta Region of Ghana were analysed to observe the variation of rainfall characteristics such as onset and cessation dates, seasonal rainfall amount and their temporal distribution with ENSO phase, namely El Nino, La Nina and ...

  13. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  14. Sediment output from a post-mining catchment - Centennial impacts using stochastically generated rainfall

    Science.gov (United States)

    Hancock, G. R.; Verdon-Kidd, D.; Lowry, J. B. C.

    2017-01-01

    Computer based landscape evolution models can provide insight into both erosion rates and processes (i.e. sheetwash, rill, gully erosion). One important data requirement of these models is long term, high quality, high-temporal resolution rainfall data (given that the physical nature of the erosion process is strongly related to rainfall). However, in many cases such data is limited - data is often short, incomplete or not of a sufficient temporal resolution. Therefore, the aim of this study was to test the sensitivity of modelled erosion rates to small changes in rainfall input. To achieve this we firstly assess the existing rainfall data from an established weather station and secondly, stochastically generate rainfall time series based on the longest and most reliable rainfall data. We then test the sensitivity of different rainfall sequences on sediment output using a well-tested landscape evolution and sediment transport model (CAESAR-Lisflood) over a simulated period of 100 y on a proposed rehabilitated mine landform. It was found that each rainfall scenario produces a unique pattern of erosion (i.e. the location and extent of the gullies is variable). Further, each rainfall scenario produces a unique pattern of sediment output that suggests non-linear processes. Importantly, this is the first time stochastically generated rainfall has been employed in landform evolution modeling and provides a statistical approach to quantify sediment transport and landform evolution. The method demonstrates a risk based approach and allows rainfall, runoff and sediment transport studies to be conducted in data poor environments. The findings clearly demonstrate that rainfall variability can greatly affect sediment transport and form of erosion as well as landscape evolution. This information is of particular importance for the design and testing of rehabilitated landscape systems such as post-mining landscapes.

  15. Sensitivity of power functions to aggregation: bias and uncertainty in radar rainfall retrieval

    NARCIS (Netherlands)

    Sassi, M.G.; Leijnse, H.; Uijlenhoet, R.

    2014-01-01

    Rainfall retrieval using weather radar relies on power functions between radar reflectivity Z and rain rate R. The nonlinear nature of these relations complicates the comparison of rainfall estimates employing reflectivities measured at different scales. Transforming Z into R using relations that

  16. Sensitivity of power functions to aggregation: Bias and uncertainty in radar rainfall retrieval

    NARCIS (Netherlands)

    Sassi, M.G.; Leijnse, H.; Uijlenhoet, R.

    2014-01-01

    Rainfall retrieval using weather radar relies on power functions between radar reflectivity Z and rain rate R. The nonlinear nature of these relations complicates the comparison of rainfall estimates employing reflectivities measured at different scales. Transforming Z into R using relations that

  17. Influence of rainfall on the dynamics of two prawn populations in the ...

    African Journals Online (AJOL)

    The influence of rainfall on the population dynamics of the prawns, Macrobrachium macrobrachion Herklots 1851 and Nematopalaemon hastatus Aurivillius 1898, in the Cross River Estuary, Nigeria, was investigated. Rainfall accounted for a significant portion of the variations in catch rate, spawning and recruitment indices ...

  18. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    Science.gov (United States)

    Polyakov, Viktor; Stone, Jeffry; Holifield Collins, Chandra; Nearing, Mark A.; Paige, Ginger; Buono, Jared; Gomez-Pond, Rae-Landa

    2018-01-01

    This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset" target="_blank">https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583" target="_blank">https://doi.org/10.15482/USDA.ADC/1358583).

  19. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    Directory of Open Access Journals (Sweden)

    V. Polyakov

    2018-01-01

    Full Text Available This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583.

  20. Rainfall-Triggered Landslides Bury Sri Lankan Villages

    Science.gov (United States)

    Kirschbaum, Dalia; Stanley, Thomas

    2016-01-01

    On the afternoon of May 17th, 2016, a major landslide event caused at least 92 deaths, with 109 still missing*. The site was rated highly susceptible to landslides in a new global landslide susceptibility map. GPM precipitation data suggest that both antecedent and current rainfall as well as complex topography played a role in the slope failures.

  1. EFFECT OF RAINFALL INTENSITY AND ENERGY ON GULLY ...

    African Journals Online (AJOL)

    Weekly computed values of rainfall intensities and kinetic energy were used to assess the weekly corresponding incremental rates of gully developments in the sites. Also the galling impact of soil erosion on the study locations which were observed to have biophysical and socio-economic ramifications were looked at.

  2. A rainfall simulator based on multifractal generator

    Science.gov (United States)

    Akrour, Nawal; mallet, Cecile; barthes, Laurent; chazottes, Aymeric

    2015-04-01

    The Precipitations are due to complex meteorological phenomenon's and unlike other geophysical constituents such as water vapour concentration they present a relaxation behaviour leading to an alternation of dry and wet periods. Thus, precipitations can be described as intermittent process. The spatial and temporal variability of this phenomenon is significant and covers large scales. This high variability can cause extreme events which are difficult to observe properly because of their suddenness and their localized character. For all these reasons, the precipitations are therefore difficult to model. This study aims to adapt a one-dimensional time series model previously developed by the authors [Akrour et al., 2013, 2014] to a two-dimensional rainfall generator. The original time series model can be divided into 3 major steps : rain support generation, intra event rain rates generation using multifractal and finally calibration process. We use the same kind of methodology in the present study. Based on dataset obtained from meteorological radar of Météo France with a spatial resolution of 1 km x 1 km we present the used approach : Firstly, the extraction of rain support (rain/no rain area) allowing the retrieval of the rain support structure function (variogram) and fractal properties. This leads us to use either the rain support modelisation proposed by ScleissXXX [ref] or directly real rain support extracted from radar rain maps. Then, the generation (over rain areas) of rain rates is made thanks to a 2D multifractal Fractionnally Integrated Flux (FIF) model [ref]. This second stage is followed by a calibration/forcing step (forcing average rain rate per events) added in order to provide rain rate coherent with observed rain-rate distribution. The forcing process is based on a relation identified from the average rain rate of observed events and their surfaces. The presentation will first explain the different steps presented above, then some results

  3. A revival of Indian summer monsoon rainfall since 2002

    Science.gov (United States)

    Jin, Qinjian; Wang, Chien

    2017-08-01

    A significant reduction in summer monsoon rainfall has been observed in northern central India during the second half of the twentieth century, threatening water security and causing widespread socio-economic impacts. Here, using various observational data sets, we show that monsoon rainfall has increased in India at 1.34 mm d-1 decade-1 since 2002. This apparent revival of summer monsoon precipitation is closely associated with a favourable land-ocean temperature gradient, driven by a strong warming signature over the Indian subcontinent and slower rates of warming over the Indian Ocean. The continental Indian warming is attributed to a reduction of low cloud due to decreased ocean evaporation in the Arabian Sea, and thus decreased moisture transport to India. Global climate models fail to capture the observed rainfall revival and corresponding trends of the land-ocean temperature gradient, with implications for future projections of the Indian monsoon.

  4. A test-tube model for rainfall

    Science.gov (United States)

    Wilkinson, Michael

    2014-05-01

    If the temperature of a cell containing two partially miscible liquids is changed very slowly, so that the miscibility is decreased, microscopic droplets nucleate, grow and migrate to the interface due to their buoyancy. The system may show an approximately periodic variation of the turbidity of the mixture, as the mean droplet size fluctuates. These precipitation events are analogous to rainfall. This paper considers a theoretical model for these experiments. After nucleation the initial growth is by Ostwald ripening, followed by a finite-time runaway growth of droplet sizes due to larger droplets sweeping up smaller ones. The model predicts that the period \\Delta t and the temperature sweep rate ξ are related by \\Delta t\\sim C \\xi^{-3/7} , and is in good agreement with experiments. The coefficient C has a power-law divergence approaching the critical point of the miscibility transition: C\\sim (T-T_{\\text{c}})^{-\\eta} , and the critical exponent η is determined. It is argued that while the mechanism does not provide a quantitative description of terrestrial rainfall, it may be a faithful model for precipitation on other planets.

  5. La plataforma .NET

    OpenAIRE

    Fornas Estrada, Miquel

    2008-01-01

    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  6. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  7. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System) for Sicily

    Science.gov (United States)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe

    2017-09-01

    The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce

  8. fertilizer and stocking rates

    African Journals Online (AJOL)

    and in this case the best economic response was achieved at a lower stocking rate than needed for ... The trial was conducted at two sites, the Bathurst Research Station (33°30'S; 26°50'E) (1986-1994) and ... Rainfall and evaporation at the Bathurst Research Station and rainfall at the Boslaagte homestead were measured ...

  9. Are anthropogenic aerosols affecting rainfall?

    Science.gov (United States)

    Junkermann, Wolfgang; Hacker, Jorg

    2013-04-01

    Modification of cloud microphysics by anthropogenic aerosols is well known since several decades. Whether the underlying processes leads to changes in precipitation is by far less confirmed. Several different factors affect the production of rain in a way that a causality between increasing aerosol load in the atmosphere and a change of annual rainfall is very difficult to confirm. What would be expected as an effect of additional cloud condensation nuclei is a shift in the spatial and temporal rainfall distribution towards a lower number of days with low rain intensity and more frequent or more vigorous single events. In fact such a shift has been observed in several locations worldwide and has been suggested to be caused by increasing aerosol load, however, without further specification of the nature and number of the aerosols involved. Measurements of aerosols which might be important for cloud properties are extremely sparse and no long term monitoring data sets are available up to now. The problem of missing long term aerosol data that could be compared to available long term meteorological data sets can possibly be resolved in certain areas where well characterized large anthropogenic aerosol sources were installed in otherwise pristine areas without significant changes in land use over several decades. We investigated aerosol sources and current aerosol number, size and spatial distributions with airborne measurements in the planetary boundary layer over two regions in Australia that are reported to suffer from extensive drought despite the fact that local to regional scale water vapor in the atmosphere is slowly and constantly increasing. Such an increase of the total water in the planetary boundary layer would imply also an increase in annual precipitation as observed in many other locations elsewhere. The observed decline of rainfall in these areas thus requires a local to regional scale physical process modifying cloud properties in a way that rain

  10. Modest net autotrophy in the oligotrophic ocean

    Science.gov (United States)

    Letscher, Robert T.; Moore, J. Keith

    2017-04-01

    The metabolic state of the oligotrophic subtropical ocean has long been debated. Net community production (NCP) represents the balance of autotrophic carbon fixation with heterotrophic respiration. Many in vitro NCP estimates based on oxygen incubation methods and the corresponding scaling relationships used to predict the ecosystem metabolic balance have suggested the ocean gyres to be net heterotrophic; however, all in situ NCP methods find net autotrophy. Reconciling net heterotrophy requires significant allochthonous inputs of organic carbon to the oligotrophic gyres to sustain a preponderance of respiration over in situ production. Here we use the first global ecosystem-ocean circulation model that contains representation of the three allochthonous carbon sources to the open ocean, to show that the five oligotrophic gyres exhibit modest net autotrophy throughout the seasonal cycle. Annually integrated rates of NCP vary in the range 1.5-2.2 mol O2 m-2 yr-1 across the five gyre systems; however, seasonal NCP rates are as low as 1 ± 0.5 mmol O2 m-2 d-1 for the North Atlantic. Volumetric NCP rates are heterotrophic below the 10% light level; however, they become net autotrophic when integrated over the euphotic zone. Observational uncertainties when measuring these modest autotrophic NCP rates as well as the metabolic diversity encountered across space and time complicate the scaling up of in vitro measurements to the ecosystem scale and may partially explain the previous reports of net heterotrophy. The oligotrophic ocean is autotrophic at present; however, it could shift toward seasonal heterotrophy in the future as rising temperatures stimulate respiration.

  11. Observed daily large-scale rainfall patterns during BOBMEX-1999

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    A daily rainfall dataset and the corresponding rainfall maps have been produced by objective analysis of rainfall data. The satellite estimate of rainfall and the raingauge values are merged to form the final analysis. Associated with epochs of monsoon these rainfall maps are able to show the rainfall activities over India and ...

  12. Simulation of rainfall interception using multilayer model in evergreen broadleaf forest, Cambodia

    Science.gov (United States)

    Nobuhiro, T.; Shimizu, A.; Tanaka, K.; Kabeya, N.; Tamai, K.; Chann, S.; Keth, N.

    2006-12-01

    The proportion of forest area is relatively high in Cambodia compared with neighboring countries. Therefore forest is one of the important factors on the water cycle in this country. The rainfall interception by a tree canopy and evaporation after the rainfall event are one of the important factors for considering such a water cycle. To clarify those processes, a rainfall interception measurement plot (25 x 25 m) was constructed in the evergreen broadleaf forest area in Kampong Thom province, central part of Cambodia. We measured rainfall, through fall and stem flow in the interception plot, and then we analyzed the relationship between those components. Moreover, the simulation of rainfall interception was carried out using multilayer model. Model parameters such as canopy structure and leaf characteristics were estimated using observed interception components and meteorological elements during large rainfall event. Annual rainfall interception was reproduced using multilayer model with obtained parameters and observed meteorological elements. The simulation results were in agreement with the observed value. The rainfall interception rate in the interception plot was considered to be about 15 % against annual rainfall.

  13. Trends and Bioclimatic Assessment of Extreme Indices: Emerging Insights for Rainfall Derivative Crop Microinsurance in Central-West Nigeria

    Science.gov (United States)

    Awolala, D. O.

    2015-12-01

    Scientific predictions have forecasted increasing economic losses by which farming households will be forced to consider new adaptation pathways to close the food gap and be income secure. Pro-poor adaptation planning decisions therefore must rely on location-specific details from systematic assessment of extreme climate indices to provide template for most suitable financial adaptation instruments. This paper examined critical loss point to water stress in maize production and risk-averse behaviour to extreme local climate in Central West Nigeria. Trends of extreme indices and bio-climatic assessment based on RClimDex for numerical weather predictions were carried out using a 3-decade time series daily observational climate data of the sub-humid region. The study reveals that the flowering and seed formation stage was identified as the most critical loss point when seed formation is a function of per unit soil water available for uptake. The sub-humid has a bi-modal rainfall pattern but faces longer dry spell with a fast disappearing mild climate measured by budyko evaporation of 80.1%. Radiation index of dryness of 1.394 confirms the region is rapidly becoming drier at an evaporation rate of 949 mm/year and rainfall deficit of 366 mm/year. Net primary production from rainfall is fast declining by 1634 g(DM)/m2/year. These conditions influenced by monthly rainfall uncertainties are associated with losses of standing crops because farmers are uncertain of rainfall probability distribution especially during most important vegetative stage. In a simulated warmer climate, an absolute dryness of months was observed compared with 4 dry months in a normal climate which explains triggers of food deficits and income losses. Positive coefficients of tropical nights (TR20), warm nights (TN90P) and warm days (TX90P), and the negative coefficient of cold days (TX10P) with time are significant at Pfinancial instruments capable of sharing covariate shocks with farmers within an

  14. Analysis of Spatial Characteristics of Rainfall for Optimal Observation Network in Korea

    Science.gov (United States)

    Park, Sojung; Lee, Ebony; Park, Seon Ki; Park, Yunho; Lee, Jeung Whan

    2017-04-01

    Accurate prediction of high impact weather phenomena can reduce damages to people as well as property. Among the meteorological disasters occurred in Korea, heavy rainfall causes the second largest damage, next to typhoons. Therefore, proper observation network of rainfall is important for better understanding of the rainfall characteristics and for more accurate rainfall forecast over Korea. Precipitating weather systems in Korea are highly influenced by East Asian Monsoon, hence they have not only high seasonal variation in rainfall, but also high spatial variation due to complex topographic characteristics. In this study, we identify the spatial characteristics of rainfall in Korea with the geostatistical analyses, including autocorrelogram, variogram, Moran's I, and general G. We develop a testbed system to design an appropriate observation network for rainfall, which can be applied to other high impact weather systems. Geostatistical analyses are conducted using data sets collected from Automatic Weather Stations (AWS; 600 rain gauge data), global/regional numerical weather prediction outputs (i.e., temperature, geopotential height and humidity), Himawari satellite measurements (i.e., water vapor) over Korea in a period of 2013 - 2015. A heavy rainfall is defined as a case with the rainfall rate larger than 80 mm/24 hr over at least one station. In order to consider different characteristics of heavy rainfall systems, we have classified them into several groups: isolated thunderstorms, convective bands, squall lines, cloud clusters, migratory cyclones, typhoons, Changma (monsoon) frontal systems, and showers. We also perform the spatial analyses of rainfall by dividing Korea into several areas based on topographic characteristics. Our results show different properties for different heavy rainfall systems in terms of correlation distances, separation distances, clustered vs. random patterns, and hot vs. cold spots; thus suggesting clues for optimal observation

  15. Bias adjustment and advection interpolation of long-term high resolution radar rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Rasmussen, Michael R.

    2014-01-01

    this is known to depend on the changing drop size distribution of the specific rain. This creates a transient bias between the radar rainfall and the ground observations due to seasonal changes of the drop size distribution as well as other atmospheric effects and effects related to the radar observational...... technology. In this study different bias adjustment techniques is investigated, developing a complete 10-year dataset (2002–2012) of high spatio-temporal resolution radar rainfall based on a radar observations from a single C-band radar from Denmark. Results show that hourly adjustment mean field bias......It is generally acknowledged that in order to apply radar rainfall data for hydrological proposes adjustment against ground observations are crucial. Traditionally, radar reflectivity is transformed into rainfall rates applying a fixed reflectivity – rainfall rate relationship even though...

  16. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  17. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  18. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  19. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  20. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  1. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  2. Calibration of three rainfall simulators with automatic measurement methods

    Science.gov (United States)

    Roldan, Margarita

    2010-05-01

    CALIBRATION OF THREE RAINFALL SIMULATORS WITH AUTOMATIC MEASUREMENT METHODS M. Roldán (1), I. Martín (2), F. Martín (2), S. de Alba(3), M. Alcázar(3), F.I. Cermeño(3) 1 Grupo de Investigación Ecología y Gestión Forestal Sostenible. ECOGESFOR-Universidad Politécnica de Madrid. E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. margarita.roldan@upm.es 2 E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. 3 Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040 Madrid The rainfall erosivity is the potential ability of rain to cause erosion. It is function of the physical characteristics of rainfall (Hudson, 1971). Most expressions describing erosivity are related to kinetic energy or momentum and so with drop mass or size and fall velocity. Therefore, research on factors determining erosivity leds to the necessity to study the relation between fall height and fall velocity for different drop sizes, generated in a rainfall simulator (Epema G.F.and Riezebos H.Th, 1983) Rainfall simulators are one of the most used tools for erosion studies and are used to determine fall velocity and drop size. Rainfall simulators allow repeated and multiple measurements The main reason for use of rainfall simulation as a research tool is to reproduce in a controlled way the behaviour expected in the natural environment. But in many occasions when simulated rain is used in order to compare it with natural rain, there is a lack of correspondence between natural and simulated rain and this can introduce some doubt about validity of data because the characteristics of natural rain are not adequately represented in rainfall simulation research (Dunkerley D., 2008). Many times the rainfall simulations have high rain rates and they do not resemble natural rain events and these measures are not comparables. And besides the intensity is related to the kinetic energy which

  3. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice

    Science.gov (United States)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-01-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea ice covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea ice as "melt ponds" and below sea ice as "interface waters") and mixed layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At nineteen stations, the salinity (~ 0.5 to 1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (8 to 10.7). All of observed melt ponds had very low (pH/Ωaragonite than the co-located mixed layer beneath. Sea-ice melt thus contributed to the suppression of mixed layer pCO2 enhancing the surface ocean's capacity to uptake CO2 from the atmosphere. Meltwater contributions to changes in mixed-layer DIC were also used to estimate net community production rates (mean of 46.9 ±29.8 g C m-2 for the early-season period) under sea-ice cover. Although sea-ice melt is a transient seasonal feature, above-ice melt pond coverage can be substantial (10 to > 50%) and under-ice interface melt water is ubiquitous during this spring/summer sea-ice retreat. Our observations contribute to growing evidence that sea-ice CO2-carbonate chemistry is highly variable and its contribution to the complex factors that influence the balance of CO2 sinks and sources (and thereby ocean acidification) is difficult to predict in an era of rapid warming and sea ice loss in the Arctic Ocean.

  4. Extraction method of extreme rainfall data

    Science.gov (United States)

    Zakaria, Roslinazairimah; Radi, Noor Fadhilah Ahmad; Zanariah Satari, Siti

    2017-09-01

    This study is aimed to describe step by step procedure in extracting extreme rainfall data series. Basically, the extraction of extreme rainfall data can be achieved using two methods, block maxima (BM) and peak over threshold (POT) methods. The BM method considers extracting the extreme rainfall data recorded each year during a specific duration, meanwhile the POT method is extracting all extreme rainfall data above a predefined threshold. Using the BM method, the regional pooling of 1-, 3-, 5- and 10-day are used and the maximum rainfall data are chosen among the pooled day within each year. For POT method, two methods are presented. Method 1 of POT method determines a threshold based on 95% percentile while Method 2 determines the threshold graphically using mean residual life plot and threshold stability plot. Based on the selection of the threshold value, a simulation study is conducted to identify the range of appropriate quantile estimate for a proper selection of the threshold value. For illustration of the methodology, daily rainfall data from the rainfall station at Klinik Chalok Barat, Terengganu is chosen. Both methods used are able to identify the extreme rainfall series. This study is important as it helps in identifying the good set of extreme rainfall series for further use such as in extreme rainfall modelling.

  5. The influences on radar-based rainfall estimation due to complex terrain

    Science.gov (United States)

    Craciun, Cristian; Stefan, Sabina

    2017-04-01

    One of the concerns regarding radar-based quantitative precipitation estimation (QPE) is the level of reliability of radar data, on which the forecaster should trust when he must issue warnings regarding weather phenomena that might put human lives and good in danger. The aim of the current study is to evaluate, by objective means, the difference between radar estimated and gauge measured precipitation over an area with complex terrain. Radar data supplied for the study comes from an S-band, single polarization, Doppler weather system, Weather Surveillance Radar 98 Doppler (WSR-98D), that is located in center part of Romania. Gage measurements are supplied by a net of 27 weather stations, located within the coverage area of the radar. The approach consists in a few steps. In the first one the field of reflectivity data is converted into rain rate, using the radar's native Z-R relationship, and the rain rate field is then transformed into rain accumulation over certain time intervals. In the next step were investigated the differences between radar and gauge rainfall accumulations by using four objective functions: mean bias between radar estimations and ground measurements, root mean square factor, and Spearman and Pearson correlations. The results shows that the differences and the correlations between radar-based accumulations and rain gauge amounts have rather local significance than general relevance over the studied area.

  6. Rainfall estimation from TOGA radar observations during LBA field campaign

    Science.gov (United States)

    Anagnostou, Emmanouil N.; Morales, Carlos A.

    2002-10-01

    The TRMM Large Scale Biosphere-Atmosphere (LBA) experiment, conducted between January and February of 1999 in Southwest Amazon, deployed among other instruments NASA's C-band Doppler radar (TOGA) and four dense rain gauge networks. This paper presents a procedure devised to derive surface rainfall rate estimates from combination of TOGA observations and the in situ rain gauge rainfall measurements. The spatial and temporal scales considered are 2 × 2 km2 grids of instantaneous to hourly rain accumulations. The procedure includes evaluation of TOGA calibration through comparisons with TRMM Precipitation Radar (PR) data and implementation of an optimal quantitative precipitation estimation (QPE) algorithm. Comparisons with PR indicated a 4-dB calibration offset occurring in the later two thirds of the observation period. The implemented QPE algorithm applies a parameter that differentiates the Z-R conversion in convective and stratiform regimes and a stochastic filtering approach for estimation of mean-field bias on the basis of radar-rain gauge comparisons at the hourly timescale. The calibration of the algorithm parameter values is formulated as a global optimization problem, which is solved by minimizing the radar-rain gauge rainfall accumulation root-mean-square (rms) difference at the hourly timescale. A random resampling calibration/validation exercise is performed to evaluate the algorithm performance and its sensitivity to parameter values. Validation against gauges shows that the algorithm produces unbiased estimates with ˜57% relative RMS difference at the hourly scale. Comparison with S-POL rain estimates showed good correlation (0.9) but some overestimation (9%). Rainfall products are used to derive rainfall statistics for two distinct meteorological low-level wind regimes (easterly and westerly) that occurred during LBA. Finally, instantaneous rain estimates are compared against TRMM PR rainfall profiles for six coincident storm cases showing high

  7. Coping with rainfall variability in northern Tanzania

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This chapter explores a potential relationship between rainfall data and household self-reported harvest shocks and local (spatial) variability of harvest shocks and coping strategies based on a survey of 2700 rural households in the Kagera region of northern Tanzania. In addition, correlations...... conditions that rural households face when experiencing climate-related shocks. Finally, shocks reported by households appear to correspond well with observed variability in rainfall patterns....... of rainfall amounts across the districts in the region are estimated in order to assess the variations in rainfall patterns across the districts. The results show that rainfall patterns in the region are very location-specific, there are few correlations between rainfall events, and that the distribution...

  8. Coping with Rainfall Variability in Northern Tanzania

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This paper explores a potential relationship between rainfall data and household self-reported harvest shocks and local (spatial) variability of harvest shocks and coping strategies based on a survey of 2700 rural households in the Kagera region of northern Tanzania. In addition, correlations...... conditions that rural households face when experiencing climate-related shocks. Finally, shocks reported by households appear to correspond well with observed variability in rainfall patterns....... of rainfall amounts across the districts in the region are estimated in order to assess the variations in rainfall patterns across the districts. The results show that rainfall patterns in the region are very location-specific, there are few correlations between rainfall events, and that the distribution...

  9. Food Safety Nets:

    OpenAIRE

    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane

    2013-01-01

    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  10. Net technical assessment

    OpenAIRE

    Wegmann, David G.

    1989-01-01

    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  11. Prediction of Rainfall Using Logistic Regression

    OpenAIRE

    A. H. M. Rahmatullah Imon; Manos C. Roy; S. K. Bhattacharjee

    2012-01-01

    The use of logistic regression modeling has exploded during the past decade for prediction and forecasting. From its original acceptance in epidemiologic research, the method is now commonly employed in almost all branches of knowledge. Rainfall is one of the most important phenomena of climate system. It is well known that the variability and intensity of rainfall act on natural, agricultural, human and even total biological system. So it is essential to be able to predict rainfall by findi...

  12. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German

    1998-01-01

    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  13. Effects of Rainfall Intensity and Slope Gradient on Runoff and Soil Moisture Content on Different Growing Stages of Spring Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mu

    2015-06-01

    Full Text Available The rainfall-runoff process (RRP is an important part of hydrologic process. There is an effective measure to study RRP through artificial rainfall simulation. This paper describes a study on three growing stages (jointing stage, tasseling stage, and mature stage of spring maize in which simulated rainfall events were used to study the effects of various factors (rainfall intensity and slope gradient on the RRP. The RRP was tested with three different rainfall intensities (0.67, 1.00, and 1.67 mm/min and subjected to three different slopes (5°, 15°, and 20° so as to study RRP characteristics in semiarid regions. Regression analysis was used to study the results of this test. The following key results were obtained: (1 With the increase in rainfall intensity and slope, the increasing relationship with rainfall duration, overland flow, and cumulative runoff, respectively, complied with logarithmic and quadratic functions before reaching stable runoff in each growing stage of spring maize; (2 The runoff coefficient increased with the increase in rainfall intensity and slope in each growing stages of spring maize. The relationship between runoff coefficient, slope, rainfall intensity, rainfall duration, antecedent soil moisture, and vegetation coverage was multivariate and nonlinear; (3 The runoff lag time decreased with the increase in rainfall intensity and slope within the same growing stage. In addition, the relationship between runoff lag time, slope, rainfall intensity, antecedent soil moisture, and vegetation coverage could also be expressed by a multivariate nonlinear equation; (4 The descent rate of soil infiltration rate curve increased with the increased rainfall intensity and slope in the same growing stage. Furthermore, by comparing the Kostiakov, Horton, and Philip models, it was found that the Horton infiltration model was the best for estimating soil infiltration rate and cumulative infiltration under the condition of test.

  14. Washoff of Residual Photosystem II Herbicides from Sugar Cane Trash under a Rainfall Simulator.

    Science.gov (United States)

    Dang, Aaditi; Silburn, Mark; Craig, Ian; Shaw, Melanie; Foley, Jenny

    2016-05-25

    Herbicides are often applied to crop residues, but their fate has not been well studied. We measured herbicide washoff from sugar cane trash during simulated rainfall, at 1, 8, and 40 days after spraying (DAS), to provide insight into herbicide fate and for use in modeling. Herbicides included are commonly used in the sugar industry, either in Australia or in Brazil. Concentrations of all herbicides and applied Br tracer in washoff declined exponentially over time. The rate of washoff during rainfall declined with increasing DAS. Cumulative washoff as a function of rainfall was similar for most herbicides, although the most soluble herbicides did have more rapid washoff. Some but not all herbicides became more resistant to washoff with increasing DAS. Of the total mass washed off, 80% washed off in the first 30 mm (∼40 min) of rainfall for most herbicides. Little herbicide remained on the trash after rainfall, implying nearly complete washoff.

  15. Rain Check Application: Mobile tool to monitor rainfall in remote parts of Haiti

    Science.gov (United States)

    Huang, X.; Baird, J.; Chiu, M. T.; Morelli, R.; de Lanerolle, T. R.; Gourley, J. R.

    2011-12-01

    Rainfall observations performed uniformly and continuously over a period of time are valuable inputs in developing climate models and predicting events such as floods and droughts. Rain-Check is a mobile application developed in Google App Inventor Platform, for android based smart phones, to allow field researchers to monitor various rain gauges distributed though out remote regions of Haiti and send daily readings via SMS messages for further analysis and long term trending. Rainfall rate and quantity interact with many other factors to influence erosion, vegetative cover, groundwater recharge, stream water chemistry and runoff into streams impacting agriculture and livestock. Rainfall observation from various sites is especially significant in Haiti with over 80% of the country is mountainous terrain. Data sets from global models and limited number of ground stations do not capture the fine-scale rainfall patterns necessary to describe local climate. Placement and reading of rain gauges are critical to accurate measurement of rainfall.

  16. Reconciling catch differences from multiple fishery independent gill net surveys

    Science.gov (United States)

    Kraus, Richard T.; Vandergoot, Christopher; Kocovsky, Patrick M.; Rogers, Mark W.; Cook, H. Andrew; Brenden, Travis O.

    2017-01-01

    Fishery independent gill net surveys provide valuable demographic information for population assessment and resource management, but relative to net construction, the effects of ancillary species, and environmental variables on focal species catch rates are poorly understood. In response, we conducted comparative deployments with three unique, inter-agency, survey gill nets used to assess walleye Sander vitreus in Lake Erie. We used an information-theoretic approach with Akaike’s second-order information criterion (AICc) to evaluate linear mixed models of walleye catch as a function of net type (multifilament and two types of monofilament netting), mesh size (categorical), Secchi depth, temperature, water depth, catch of ancillary species, and interactions among selected variables. The model with the greatest weight of evidence showed that walleye catches were positively associated with potential prey and intra-guild predators and negatively associated with water depth and temperature. In addition, the multifilament net had higher average walleye catches than either of the two monofilament nets. Results from this study both help inform decisions about proposed gear changes to stock assessment surveys in Lake Erie, and advance our understanding of how multispecies associations explain variation in gill net catches. Of broader interest to fishery-independent gill net studies, effects of abiotic variables and ancillary species on focal specie’s catch rates were small in comparison with net characteristics of mesh size or twine type.

  17. Rainfall Variability of South East Queensland

    Science.gov (United States)

    Wilson, Louise; Manton, Michael; Siems, Steven

    2010-05-01

    The seasonal weather of southeastern Queensland (SEQ) is commonly described by a wet and a dry season. Rainfall in this area has been declining for the past fifty years and climate projections indicate decreasing trends in annual rainfall and increases in temperature. These factors combined with population growth suggest a need for Queensland to re-evaluate its water management. In order to understand the rainfall variability of SEQ, it is useful to consider the impact of the different weather patterns or synoptic regimes on the regional rainfall. Previous studies have examined the synoptic patterns associated with extreme wind and rainfall events in SEQ and the correlation between rainfall in northern Queensland and atmospheric variables, but a comprehensive climatology for the SEQ region is missing. Analysis of routine soundings is found to reveal relationships between surface precipitation and atmospheric structure. Cluster analysis was performed on daily radiosonde data for Brisbane Airport spanning the period 01/01/1990-11/11/2009. The clustering was initially performed on seven atmospheric variables: total-totals, 850mb winds, wind shear between 850mb and 500mb, moisture flux and total water calculated from the sounding data. A sensitivity study reveals that the moisture flux parameters followed by total water and total-totals are the key variables in determining the regimes. The clusters were combined with daily rainfall records spanning the period 01/01/1995 - 01/06/2008 to determine the contribution of each regime to monthly rainfall. The seven-cluster case describes three separate southeasterly regimes, three westerly regimes and an easterly regime. The contribution of each regime to annual rainfall was also determined. The regimes for SEQ can be divided into ‘wet' and ‘dry' cases. It is apparent that the rainfall is largely limited to the coastal strip, with maxima near regions with steep terrain. The main rainfall period is from November through to

  18. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.

    2002-01-01

    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  19. Teaching Tennis for Net Success.

    Science.gov (United States)

    Young, Bryce

    1989-01-01

    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  20. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten

    2012-01-01

    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  1. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  2. The all-year rainfall region of South Africa: Satellite rainfall-estimate perspective

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2012-09-01

    Full Text Available Climate predictability and variability studies over South Africa typically focus on the summer rainfall region and to a lesser extent on the winter rainfall region. The all-year rainfall region of South Africa, a narrow strip located along the Cape...

  3. Centennial time scale impacts using stochastically generated rainfall - assessing sediment output from a post-mining catchment

    Science.gov (United States)

    Hancock, G. R.; Verdon-Kidd, D.; Lowry, J.

    2016-12-01

    Rainfall intensity and temporal distribution have a major influence on soil erosion, sediment delivery and landscape evolution. Long-term reliable rainfall data is needed is to understand soil erosion rates and landscape evolution. For many parts of the world rainfall data may not exist locally or may be of insufficient quality (e.g. incomplete or only cover a short time period) and therefore has to be inferred from nearby sites. Further, there is also the question of whether the current climate (and rainfall pattern) is representative of longer term trends, particular into the future under a warming climate scenario. Using reliable rainfall data computer based landscape evolution models can provide insight into both erosion rates and process (i.e. sheetwash, rill, gully erosion). Of particular interest here are mining landscapes. Mining disturbs large areas to access minerals and upon completion of the resource extraction the disturbed area is re-engineered. The landscape once created will remain part of the surrounding landscape system for the foreseeable future. Therefore, understanding the hydrological and erosional behavior of such landscapes is vital so that any issues design can be corrected. It is also vital that these landscapes be evaluated not just for current climate but for how different rainfall patterns may affect erosion and landscape evolution. Here we assess a proposed post-mining landform using existing rainfall data from established weather stations and secondly create stochastically generated rainfall time series based on this rainfall data. The rainfall data is then used in a landscape evolution and sediment transport model. It was found that each rainfall data set produces differences in the position of rills and gullies. Each rainfall scenario also produces a unique pattern of sediment output that suggests non-linear processes. Therefore each rainfall data set produces unique patterns of erosion, deposition and catchment sediment output

  4. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  5. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne

    2006-01-01

    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  6. ANALYSIS OF RAINFALL TREND IN ETHIOPIA INTRODUCTION

    African Journals Online (AJOL)

    and uninterrupted rainfall data series are required to interpret such changes. These data series could be subjected to statistical techniques to identify significant trends and their slope. Therefore, Rainfall being an important climatic element, the study of its variation, particularly, trends (gradual change) of total annual and ...

  7. Rainfall and Development of Zika Virus

    African Journals Online (AJOL)

    2017-11-01

    Nov 1, 2017 ... 683. LETTER TO THE EDITOR. Rainfall and Development of Zika Virus. Beuy Joob1*, Viroj Wiwanitkit1. OPEN ACCESS. Citation: Beuy Joob, Viroj Wiwanitkit. Rainfall and Development of Zika. Virus. Ethiop. J. Health. Sci.2017;27(6):683. doi:http://dx.doi.org/10.4314/ejhs.v27i6. 14. Received: May 4, 2017.

  8. Maximum daily rainfall in South Korea

    Indian Academy of Sciences (India)

    Annual maxima of daily rainfall for the years 1961–2001 are modeled for five locations in South Korea (chosen to give a good geographical representation of the country). The generalized extreme value distribution is fitted to data from each location to describe the extremes of rainfall and to predict its future behavior.

  9. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    Science.gov (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426

  10. Rainfall thresholds and flood warning: an operative case study

    Directory of Open Access Journals (Sweden)

    V. Montesarchio

    2009-02-01

    Full Text Available An operative methodology for rainfall thresholds definition is illustrated, in order to provide at critical river section optimal flood warnings. Threshold overcoming could produce a critical situation in river sites exposed to alluvial risk and trigger the prevention and emergency system alert. The procedure for the definition of critical rainfall threshold values is based both on the quantitative precipitation observed and the hydrological response of the basin. Thresholds values specify the precipitation amount for a given duration that generates a critical discharge in a given cross section and are estimated by hydrological modelling for several scenarios (e.g.: modifying the soil moisture conditions. Some preliminary results, in terms of reliability analysis (presence of false alarms and missed alarms, evaluated using indicators like hit rate and false alarm rate for the case study of Mignone River are presented.

  11. Uncertainties in TRMM-Era multisatellite-based tropical rainfall estimates over the Maritime Continent

    Science.gov (United States)

    Rauniyar, S. P.; Protat, A.; Kanamori, H.

    2017-05-01

    This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.

  12. The effects of more extreme rainfall patterns on nitrogen leaching from a field crop system in the upper Midwest, USA

    Science.gov (United States)

    Hess, L.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2016-12-01

    As global surface temperatures rise, the proportion of total rainfall that falls in heavy storm events is increasing in many areas, in particular the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for ecosystem nutrient losses, especially from agricultural ecosystems. We conducted a multi-year rainfall manipulation experiment to examine how more extreme rainfall patterns affect nitrogen (N) leaching from row-crop ecosystems in the upper Midwest, and to what extent tillage may moderate these effects. 5x5m rainout shelters were installed in April 2015 to impose control and extreme rainfall patterns in replicated plots under conventional tillage and no-till management at the Kellogg Biological Station LTER site. Plots exposed to the control rainfall treatment received ambient rainfall, and those exposed to the extreme rainfall treatment received the same total amount of water but applied once every 2 weeks, to simulate larger, less frequent storms. N leaching was calculated as the product of measured soil water N concentrations and modeled soil water drainage at 1.2m depth using HYDRUS-1D. Based on data to date, more N has been leached from both tilled and no-till soils exposed to the extreme rainfall treatment compared to the control rainfall treatment. Results thus far suggest that greater soil water drainage is a primary driver of this increase, and changes in within-system nitrogen cycling - such as net N mineralization and crop N uptake - may also play a role. The experiment is ongoing, and our results so far suggest that intensifying precipitation patterns may exacerbate N leaching from agricultural soils, with potentially negative consequences for receiving ground- and surface waters, as well as for farmers.

  13. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  14. Modelling persistence in annual Australia point rainfall

    Directory of Open Access Journals (Sweden)

    J. P. Whiting

    2003-01-01

    Full Text Available Annual rainfall time series for Sydney from 1859 to 1999 is analysed. Clear evidence of nonstationarity is presented, but substantial evidence for persistence or hidden states is more elusive. A test of the hypothesis that a hidden state Markov model reduces to a mixture distribution is presented. There is strong evidence of a correlation between the annual rainfall and climate indices. Strong evidence of persistence of one of these indices, the Pacific Decadal Oscillation (PDO, is presented together with a demonstration that this is better modelled by fractional differencing than by a hidden state Markov model. It is shown that conditioning the logarithm of rainfall on PDO, the Southern Oscillation index (SOI, and their interaction provides realistic simulation of rainfall that matches observed statistics. Similar simulation models are presented for Brisbane, Melbourne and Perth. Keywords: Hydrological persistence,hidden state Markov models, fractional differencing, PDO, SOI, Australian rainfall

  15. Study on Climate Change Effect on Net Irrigation Requirement and Yield for Rice Crop (Case Study: Tajan Plain

    Directory of Open Access Journals (Sweden)

    M. Sheidaeian

    2015-06-01

    Full Text Available In this study, impact of climate change on net irrigation requirement (In and yield of Rice Crop using HadCM3 climate projection model, one of the AOGCM models, in Tajan Plain area is evaluated. Changes in temperature and precipitation were simulated run under the IPCC scenario A2 for 2011-2040, 2041-2070 and 2071-2100 periods. This work was done by using statistical and proportional downscaling techniques. For estimating Net Irrigation Requirement, Potential evapotranspiration (ETo and effective rainfall (Pe were calculated using Penman Monteith equation and USDA method With Cropwat Model, respectively. Impact of water deficit on crop yield was estimated using the linear crop-water production function developed by FAO. The results of downscaling by using SDSM model and proportional method indicate that the decrease in rainfall and increase in the temperature are in future periods. CROPWAT model results indicate that the effect of climate change with increased Potential evapotranspiration and decreased effective Rainfall and increased water consumption of the plant, can be increased, the net irrigation requirement of rice plants in the basin duration years future to come by the year 2100. As a result of climate change and rising temperatures and reduced rainfall, the yield reduction percent to low levels to rise in the coming years. So it can be conclude that the effect of climate change closer to the year 2100 when effective rainfall is less could provide water consumption and net irrigation requirement of rice in the area.

  16. Optimal adaptation to extreme rainfalls in current and future climate

    DEFF Research Database (Denmark)

    Rosbjerg, Dan

    2017-01-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and th...... is determined by considering the net present value of the incurred costs during a sufficiently long time span. Immediate as well as delayed adaptation is considered........ The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate...

  17. Weekend Effect" in Summertime U.S. Rainfall: Evidence for Midweek Intensification of Storms by Pollution

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Hahnenberger, Maura

    2006-01-01

    Persistent and strong dependence of rain rate on the day of the week has been found in Tropical Rainfall Measuring Mission (TRMM) satellite estimates of summer afternoon rainfall over the southeast U.S. and the nearby Atlantic from 1998 to 2005. Midweek (Tue-Thu) rain rates and rain area appear to increase over land, and this increase is accompanied by a corresponding diminution of rainfall over nearby waters. Reanalysis data from atmospheric models, suggest that there is a corresponding weekly variation in atmospheric winds consistent with the changes in rainfall. These variations are almost certainly caused by weekly variations in human activity. The most likely cause of the observed changes in rainfall is the well documented weekly variation in atmospheric pollution. Particulate pollution is highest in the middle of the week. Considerable observational and modeling evidence has accumulated concerning the effects of aerosols on precipitation. Most of this evidence relates to the suppression of precipitation by aerosols, but it has been argued that storms in highly unstable moist environments can be invigorated by aerosols, and some modeling studies seem to confirm this. The strong weekly cycle in rainfall observed over the southeast U.S. along with what appears to be dynamical suppression of rainfall over the nearby Atlantic, and the lack of an observable cycle over the southwest U.S., are consistent with this theory.

  18. Utilization of insecticide treated nets in Arbaminch Town and the ...

    African Journals Online (AJOL)

    Bernt Lindtjorn

    using structured, pretested, interviewer-administered questionnaire. Data entry and analysis was performed using SPSS. 11.0 for windows. Univariate, bivariate and multivariate analyses were carried out. Results: The coverage for any net and ITN was 75.1% and 58.8% respectively; the utilization rate for any net and ITN.

  19. Which resilience of the continental rainfall-runoff chain?

    Science.gov (United States)

    Fraedrich, Klaus

    2015-04-01

    Processes along the continental rainfall-runoff chain are extremely variable over a wide range of time and space scales. A key societal question is the multiscale resilience of this chain. We argue that the adequate framework to tackle this question can be obtained by combining observations (ranging from minutes to decades) and minimalist concepts: (i) Rainfall exhibits 1/f-spectra if presented as binary events (tropics) and extrema world wide increase with duration according to Jennings' scaling law as simulated by a censored first-order autoregressive process representing vertical moisture fluxes. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function (Gumbel) not unlike physical systems at criticality, while short and long return times of extremes are Weibull-distributed. (iii) Soil moisture, interpreted by a biased coinflip Ansatz for rainfall events, provides an equation of state to the surface energy and water flux balances comprising Budyko's framework for quasi-stationary watershed analysis. (iv) Vegetation-greenness (NDVI), included as an active tracer extends Budyko's eco-hydrologic state space analysis, supplements the common geographical presentations, and it may be linked to a minimalist biodiversity concept. (v) Finally, attributions of change to external (or climate) and internal (or anthropogenic) causes are determined by eco-hydrologic state space trajectories using surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation). Risk-estimates (by GCM-emulators) and possible policy advice mechanisms enter the outlook.

  20. Application of optical disdrometer to characterize simulated rainfall and measure drop size distribution

    Science.gov (United States)

    Meshesha, Derege; Tsunekawa, Atsushi; Ayehu, Nigussie

    2017-04-01

    Soil erosion by water is becoming a major threat in tropical and semiarid regions, which is causing a serious of land degradation and socio-economic problems. Knowledge of rainfall characteristics, drop size distributions and relationship between rainfall elements is essential for development of erosion-mitigation strategies. Thus, this research was carried out to further investigate the nature of raindrop size distribution, median volume drop diameter (D50) and radar reflectivity (dBz) of the different intensities using simulated rainfall and optical distrometer. Besides, operational principle and capabilities of the optical distrometer (Laser Precipitation Monitor (LPM)) to characterize rainfall of different intensities and conduct measurement was evaluated. The rain was simulated from 12 meter height and the sensor constantly and automatically recorded the diameter and terminal velocity of each raindrop and gave the output in every 1 minute interval. The median volume drop diameter (D50) of the simulated rain was found to be higher than the natural rain for almost all rainfall intensities, which might be attributed to variation in rainfall types and prevalence of turbulence in natural rain that makes larger drop sizes unstable. The result of radar reflectivity (Z) and intensity (R) relationship revealed that, similar to natural rainfall, power law function is the most suitable equation for all rainfall rates (Z=aRb). For the whole rainfall intensity datasets (1.5 to 202 mm h-1) a varies from 0.94 to 2.46 while b ranges from 162 to 706. The optical device used in the study was found to be efficient and suitable to the purpose of rainfall characterization at 1 min resolution.

  1. Response of tree cover to interannual rainfall variability: the balance of direct and indirect effects

    Science.gov (United States)

    Yu, K.; D'Odorico, P.; Saha, M.; Ratajczak, Z.

    2015-12-01

    Climate change studies predict an increase both in seasonal and interannual rainfall variability. The impact of such variability on vegetation composition and ecosystem processes is not well understood. Using satellite data or model simulations, previous studies have reported mixed responses of tree cover to interannual rainfall variability in the tropic (i.e., neutral, positive, or negative). The underlying mechanisms behind such patterns, however, are still unclear. This study uses satellite data and develops a new mechanistic model to investigate the response of tree cover to increasing interannual rainfall variability along Kalahari Transect in Southern Africa. This model accounts for the competition between trees and grasses in access to soil water, fire-induced disturbance, and a demographic bottleneck in tree recruitment. Both satellite data and model results show an increase in tree cover with increasing interannual rainfall fluctuations in dry environments (i.e., mean annual rainfall, MAPMAP>700 mm). In dry environments, an increase in interannual rainfall variability disfavors grasses with shallow roots, thereby reducing fire-induced mortality in tree seedlings and opening windows of opportunity for tree recruitment (i.e., indirect effects). In wet environments, an increase in interannual rainfall variability leads to more instances of mass flow below the rooting zone of tree seedlings and thus reduces tree recruitment rate (i.e., direct effects). This study highlights the importance of accounting for the direct effects of rainfall variability on trees and the indirect effects mediated by tree-grass interactions to better understand how tree cover respond to increase in rainfall variability along rainfall gradients.

  2. A comparison of rainfall measurements from multiple instruments

    Directory of Open Access Journals (Sweden)

    X. C. Liu

    2013-07-01

    Full Text Available Simultaneous observations of rainfall collected by a tipping bucket rain gauge (TBRG, a weighing rain gauge (WRG, an optical rain gauge (ORG, a present weather detector (PWD, a Joss–Waldvogel disdrometer (JWD, and a 2-D video disdrometer (2DVD during January to October 2012 were analyzed to evaluate how accurately they measure rainfall and drop size distributions (DSDs. For the long-term observations, there were different discrepancies in rain amounts from six instruments on the order of 0% to 27.7%. The TBRG, WRG, and ORG have a good agreement, while the PWD and 2DVD record higher and the JWD lower rain rates when R > 20 mm h−1, the ORG agrees well with JWD and 2DVD, while the TBRG records higher and the WRG lower rain rates when R > 20 mm h−1. Compared with the TBRG and WRG, optical and impact instruments can measure the rain rate accurately in the light rain. The overall DSDs of JWD and 2DVD agree well with each other, except for the small raindrops (D D D R > 15 mm h−1. The small raindrops tend to be omitted in the more large-size raindrops due to the shadow effect of light. Therefore, the measurement accuracy of small raindrops in the heavy rainfall from 2DVD should be handled carefully.

  3. Rainfall Effects on the Kuroshio Current East of Taiwan

    Science.gov (United States)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  4. The physics of rainclouds, what is behind rainfall trends?

    Science.gov (United States)

    Junkermann, Wolfgang; Hacker, Jorg

    2017-04-01

    In several locations in the world rainfall was significantly declining during the last four decades since about 1970, despite during the same timespan the water vapor availability in the planetary boundary layer (PBL) was increasing by about five percent. Increasing water vapor levels in the PBL are a result of climate change and well in agreement with the observed one degree increase of air temperature over the oceans. Increasing water vapor availability due to an increase in evaporation should lead to a higher turnover rate within the hydrological cycle, which should result either in more frequent or in more intense rainfall. Several regional observations especially along the Australian coastline show a contrary picture. Often rainfall is less frequent and the annual rainfall is declining. Also the number of rainy days goes down. This behavior could be caused by a number of different processes affecting both, the amount of liquid water in the atmosphere and the microphysical properties of clouds. Within the discussions are: -A change in the large scale advection patterns due to global warming, shifting the trajectories of low pressure systems, a slow process that takes several decades. -A change in land use by deforestation leading to lower roughness, higher albedo and lower convective energy. Such a land use change might happen within about one decade (e.g. Western Australia). -A change in aerosol abundance. Addition of anthropogenic cloud condensation nuclei lead instantly to smaller cloud droplets and subsequently to a regional to continental scale redistribution of rainfall within the time scales of cloud lifetime (hours to days). Airborne experiments show that indeed the number of aerosols in several of the respective areas investigated up to now was increasing roughly in time with the observed rainfall changes. However, only in few of the areas the availability of historical aerosol data is sufficient for a more detailed investigation. We show results from

  5. Sustainability, productivity, and profitability of agroecosystems under variable rainfall

    Science.gov (United States)

    Vico, G.; Porporato, A. M.

    2010-12-01

    Agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements. Hence, it is becoming imperative to sustainably manage the available water resources, while simultaneously meeting yield and profitability targets. Simple, widely applicable models of irrigation provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability and are necessary for short- and long-term water resource management. We consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework that includes rainfed agriculture and stress-avoidance irrigation as extreme cases. Mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount are employed to compute water requirements, yields, and net economic gain as a function of climate, crop, and soil parameters. These results provide the necessary starting point to quantify the risks that a certain target yield or profit is not met for given irrigation strategies, with clear implications on food security

  6. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  7. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  8. Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan

    Science.gov (United States)

    Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng

    2017-04-01

    Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.

  9. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  10. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...

  11. An all-timescales rainfall probability distribution

    Science.gov (United States)

    Papalexiou, S. M.; Koutsoyiannis, D.

    2009-04-01

    The selection of a probability distribution for rainfall intensity at many different timescales simultaneously is of primary interest and importance as typically the hydraulic design strongly depends on the rainfall model choice. It is well known that the rainfall distribution may have a long tail, is highly skewed at fine timescales and tends to normality as the timescale increases. This behaviour, explained by the maximum entropy principle (and for large timescales also by the central limit theorem), indicates that the construction of a "universal" probability distribution, capable to adequately describe the rainfall in all timescales, is a difficult task. A search in hydrological literature confirms this argument, as many different distributions have been proposed as appropriate models for different timescales or even for the same timescale, such as Normal, Skew-Normal, two- and three-parameter Log-Normal, Log-Normal mixtures, Generalized Logistic, Pearson Type III, Log-Pearson Type III, Wakeby, Generalized Pareto, Weibull, three- and four-parameter Kappa distribution, and many more. Here we study a single flexible four-parameter distribution for rainfall intensity (the JH distribution) and derive its basic statistics. This distribution incorporates as special cases many other well known distributions, and is capable of describing rainfall in a great range of timescales. Furthermore, we demonstrate the excellent fitting performance of the distribution in various rainfall samples from different areas and for timescales varying from sub-hourly to annual.

  12. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  13. Rainfall feedback via persistent effects on bioaerosols

    Science.gov (United States)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2014-10-01

    Consistent temporal differences between ice nucleus concentrations after and before a heavy fall of rain have been found in four areas of Australia. Closely similar differences were found between rainfall quantity or frequency at 106 sites in south-eastern and 61 sites in south-western Australia that had >92 years of daily rainfall records. The differences suggest an impulsive increase in ice nuclei or in rain on the day following heavy rain that decreased exponentially with time and was often still detectable after 20 days. The similarity of ice nucleus concentrations, bacterial populations, bioaerosols and rainfall responses to heavy rain strongly corroborate the involvement of biological ice nuclei in a rainfall feedback process. Cumulative differences of after-before rainfall amount or frequency for each rainfall event were next combined to form a historical record of the feedback process for each site. Comparison of cumulative totals pre-1960 and post-1960 showed differences bearing apparent relations to upwind coal-fired power stations, growth of metropolitan areas and increased areas of cultivation of wheat. These observations suggested that fungal spores or other bioaerosols as well as ice-nucleating bacteria were involved in the feedback. The overall conclusion is that interactions between micro-organisms, bioaerosols and rainfall have impacts over longer time spans and are stronger than have been previously described.

  14. On extreme rainfall intensity increases with air temperature

    Science.gov (United States)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  15. Rainfall Variability, Drought Characterization, and Efficacy of Rainfall Data Reconstruction: Case of Eastern Kenya

    Directory of Open Access Journals (Sweden)

    M. Oscar Kisaka

    2015-01-01

    Full Text Available This study examined the extent of seasonal rainfall variability, drought occurrence, and the efficacy of interpolation techniques in eastern Kenya. Analyses of rainfall variability utilized rainfall anomaly index, coefficients of variance, and probability analyses. Spline, Kriging, and inverse distance weighting interpolation techniques were assessed using daily rainfall data and digital elevation model using ArcGIS. Validation of these interpolation methods was evaluated by comparing the modelled/generated rainfall values and the observed daily rainfall data using root mean square errors and mean absolute errors statistics. Results showed 90% chance of below cropping threshold rainfall (500 mm exceeding 258.1 mm during short rains in Embu for one year return period. Rainfall variability was found to be high in seasonal amounts (CV = 0.56, 0.47, and 0.59 and in number of rainy days (CV = 0.88, 0.49, and 0.53 in Machang’a, Kiritiri, and Kindaruma, respectively. Monthly rainfall variability was found to be equally high during April and November (CV = 0.48, 0.49, and 0.76 with high probabilities (0.67 of droughts exceeding 15 days in Machang’a and Kindaruma. Dry-spell probabilities within growing months were high, (91%, 93%, 81%, and 60% in Kiambere, Kindaruma, Machang’a, and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.

  16. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall

    OpenAIRE

    Feng, Zhe; Leung, L. Ruby; Hagos, Samson; Houze, Robert A.; Burleyson, Casey D.; Balaguru, Karthik

    2016-01-01

    The changes in extreme rainfall associated with a warming climate have drawn significant attention in recent years. Mounting evidence shows that sub-daily convective rainfall extremes are increasing faster than the rate of change in the atmospheric precipitable water capacity with a warming climate. However, the response of extreme precipitation depends on the type of storm supported by the meteorological environment. Here using long-term satellite, surface radar and rain-gauge network data a...

  17. Regime Analysis of Critical Raindrop Diameters for Rainfall Attenuation in Southern Africa

    OpenAIRE

    Adetan, O; Obiyemi, OO

    2016-01-01

    The influence of critical raindrop diameters on the specific rainfall attenuation in Durban (29o52'S, 30o58'E), South Africa using various rainfall regimes is analyzed in this paper. Different rain rate values representing drizzle, widespread, shower and thunderstorm are selected for the purpose of analysis over the measured raindrop size distribution. The three-parameter lognormal and gamma DSD models with shape parameter of 2 are used to estimate the parameters required to investigate the d...

  18. Exploratory analysis of rainfall events in Coimbra, Portugal: variability of raindrop characteristics

    Science.gov (United States)

    Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.

    2012-04-01

    Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.

  19. Application of vector autoregressive model for rainfall and groundwater level analysis

    Science.gov (United States)

    Keng, Chai Yoke; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    Groundwater is a crucial water supply for industrial, agricultural and residential use, hence it is important to understand groundwater system. Groundwater is a dynamic natural resource and can be recharged. The amount of recharge depends on the rate and duration of rainfall, as rainfall comprises an important component of the water cycle and is the prime source of groundwater recharge. This study applies Vector Autoregressive (VAR) model in the analysis of rainfall and groundwater level. The study area that is focused in the study is along the East-West Highway, Gerik-Jeli, Malaysia. The VAR model with optimum lag length 8, VAR(8) is selected to model the rainfall and groundwater level in the study area. Result of Granger causality test shows significant influence of rainfall to groundwater level. Impulse Response Function reveals that changes in rainfall significantly affect changes in groundwater level after some time lags. Moreover, Variance Decomposition reported that rainfall contributed to the forecast of the groundwater level. The VAR(8) model is validated by comparing the actual value with the in-sample forecasted value and the result is satisfied with all forecasted groundwater level values lies inside the confidence interval which indicate that the model is reliable. Furthermore, the closeness of both actual and forecasted groundwater level time series plots implies the high degree of accurateness of the estimated model.

  20. Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.

    Science.gov (United States)

    Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.

    2015-12-01

    Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects

  1. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall severity

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios; Zoccatelli, Davide; Creutin, Jean-Dominique; Borga, Marco

    2016-04-01

    Forecasting the occurrence of landslides and debris flows (collectively termed 'debris flows' hereinafter) is fundamental for issuing hazard warnings, and focuses largely on rainfall as a triggering agent. Debris flow forecasting relies very often on the identification of combinations of depth and duration of rainfall - rainfall thresholds - that trigger widespread debris flows. Rainfall estimation errors related to the sparse nature of raingauge data are enhanced in case of convective rainfall events characterized by limited spatial extent. Such errors have been shown to cause underestimation of the rainfall thresholds and, thus, less efficient forecasts of debris flows occurrence. This work examines the spatial organization of debris flows-triggering rainfall around the debris flow initiation points using high-resolution, carefully corrected radar data for a set of short duration (Alps. The set includes eleven debris-flow triggering rainfall events that occurred in the study area between 2005 and 2014. The selected events are among the most severe in the region during this period and triggered a total of 99 debris flows that caused significant damage to people and infrastructures. We show that the spatial rainfall organisation depends on the severity (measured via the estimated return time-RT) of the debris flow-triggering rainfall. For more frequent events (RTdebris flow location coincides with a local minimum, whereas for less frequent events (RT>20 yrs) the triggering rainfall presents a local peak corresponding to the debris flow initiation point. Dependence of these features on rainfall duration is quite limited. The characteristics of the spatial rainfall organisation are exploited to understand the performances and results of three different rainfall interpolation techniques: nearest neighbour (NN), inverse distance weighting (IDW) and ordinary kriging (OK). We show that the features of the spatial organization of the debris flow triggering rainfall

  2. Analysis of Rainfall Characteristicsfor Flood Estimation in Way Awi Watershed

    Directory of Open Access Journals (Sweden)

    Kusumastuti D.I.

    2016-03-01

    Full Text Available This study investigates rainfall intensity distribution in Way Awi watershed located in Bandar Lampung, and how their impacts on flood peak and flood hydrographs. Hourly rainfall data is examined to obtain design rainfall intensity and rainfall intensity distribution at rainfall duration from three to eight hours. Rainfall-runoff model, i.e. Rational method is used to calculate flood peak while unit hydrograph method is used to develop flood hydrograph. This study shows that in Way Awi watershed 88.3% to 96.4% of 24-hour rain occurs in three to eight hour durations. In addition, rainfall with three hour duration generates the highest flood peak, followed by four hour duration rainfall. When rainfall duration and design rainfall intensity are the same but rainfall intensity distribution is different, generated flood hydrograph may have different flood peak magnitude and timing. Result of this study is useful for flood analysis and mitigation in Way Awi watershed.

  3. Genetic and epigenetic drivers of neuroendocrine tumours (NET).

    Science.gov (United States)

    Di Domenico, Annunziata; Wiedmer, Tabea; Marinoni, Ilaria; Perren, Aurel

    2017-09-01

    Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development. © 2017 Society for Endocrinology.

  4. RAINFALL EROSIVITY IN SOUTHEASTERN NIGERIA *Ezemonye ...

    African Journals Online (AJOL)

    Osondu

    2011-10-13

    Oct 13, 2011 ... Ethiopian Journal of Environmental Studies and Management EJESM Vol. 5 No. 2 2012 ..... a rainfall erosivity model for the Mediterranean region, Journal of Hydrology ... Journal of Applied. Social Sciences, vol 1 no 1 pp 5-14.

  5. Fishing with bed nets on Lake Tanganyika: a randomized survey.

    Science.gov (United States)

    McLean, Kate A; Byanaku, Aisha; Kubikonse, Augustine; Tshowe, Vincent; Katensi, Said; Lehman, Amy G

    2014-10-07

    Malaria is among the most common causes of death along Lake Tanganyika, a problem which many aid organizations have attempted to combat through the distribution of free mosquito bed nets to high-risk communities. The Lake Tanganyika Floating Health Clinic (LTFHC), a health-based non-governmental organization (NGO), has observed residents of the Lake Tanganyika basin using bed nets to fish small fry near the shoreline, despite a series of laws that prohibit bed net use and other fine-gauge nets for fishing, implemented to protect the near-shore fish ecology. The LTFHC sought to quantify the sources of bed nets and whether they were being used for fishing. The LTFHC conducted a survey of seven lakeside villages in Lagosa Ward, Tanzania. The government has divided each village into two to six pre-existing geographic sub-villages depending on population size. Seven households per sub-village were chosen at random for survey administration. The survey consisted of 23 questions regarding mosquito bed net practices, including the use of bed nets for fishing, as well as questions pertaining to any perceived changes to the fish supply. A total of 196 surveys were administered over a four-week period with a 100% response rate. Over 87% of households surveyed have used a mosquito bed net for fishing at some point. The majority of respondents reported receiving their bed net for free (96.4%), observing "many" residents of their village using bed nets for fishing (97.4%), and noticing a subjective decrease in the fish supply over time (64.9%). The findings of this study raise concerns that the use of free malaria bed nets for fishing is widespread along Lake Tanganyika, and that this dynamic will have an adverse effect on fish ecology. Further studies are indicated to fully define the scope of bed net misuse and the effects of alternative vector control strategies in water-based communities.

  6. Asian Primate Species Richness Correlates with Rainfall

    OpenAIRE

    Wang, Yi-Chen; Srivathsan, Amrita; Feng, Chen-Chieh; Salim, Agus; Shekelle, Myron

    2013-01-01

    Previous studies of meta-analyses found significantly positive correlations between primate species richness and rainfall for Africa, Madagascar and the Neotropics, with the exception of Asia, leaving the open question whether that anomaly is the result of sampling bias, biogeography, or some other factor. This study re-examines the question using modelled data, with primate species richness data from the Southeast Asian Mammals Databank and rainfall data from the Climatic Research Unit. Data...

  7. Prediction of Rainfall Using Logistic Regression

    Directory of Open Access Journals (Sweden)

    A.H.M. Rahmatullah Imon

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} The use of logistic regression modeling has exploded during the past decade for prediction and forecasting. From its original acceptance in epidemiologic research, the method is now commonly employed in almost all branches of knowledge. Rainfall is one of the most important phenomena of climate system. It is well known that the variability and intensity of rainfall act on natural, agricultural, human and even total biological system. So it is essential to be able to predict rainfall by finding out the appropriate predictors. In this paper an attempt has been made to use logistic regression for predicting rainfall. It is evident that the climatic data are often subjected to gross recording errors though this problem often goes unnoticed to the analysts. In this paper we have used very recent screening methods to check and correct the climatic data that we use in our study. We have used fourteen years’ daily rainfall data to formulate our model. Then we use two years’ observed daily rainfall data treating them as future data for the cross validation of our model. Our findings clearly show that if we are able to choose appropriate predictors for rainfall, logistic regression model can predict the rainfall very efficiently.

  8. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    OpenAIRE

    V. Polyakov; J. Stone; C. Holifield Collins; M. A. Nearing; G. Paige; J. Buono; R.-L. Gomez-Pond

    2018-01-01

    This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with ...

  9. Asian primate species richness correlates with rainfall.

    Science.gov (United States)

    Wang, Yi-Chen; Srivathsan, Amrita; Feng, Chen-Chieh; Salim, Agus; Shekelle, Myron

    2013-01-01

    Previous studies of meta-analyses found significantly positive correlations between primate species richness and rainfall for Africa, Madagascar and the Neotropics, with the exception of Asia, leaving the open question whether that anomaly is the result of sampling bias, biogeography, or some other factor. This study re-examines the question using modelled data, with primate species richness data from the Southeast Asian Mammals Databank and rainfall data from the Climatic Research Unit. Data processing with Geographical Information Systems resulted in 390 sample points. Reduced major axis and ordinary least squares regressions were employed to examine the relationship for six regions, including the whole study area of Southeast Asia, and the subareas of Huxley West, Huxley East, Mainland Southeast Asia, Borneo, and Sumatra. The results showed a significant positive relationship between primate species richness and mean annual rainfall for Southeast Asia (r = 0.26, Pcorrelation (r = 0.58; Pspecies richness is positively associated with mean annual rainfall in Southeast Asia. Our findings contrast to prior studies of meta-analyses that showed no relationship between rainfall and primate species richness in Asia, and thereby bring Asia into agreement with results showing significant positive correlations between rainfall and primate species richness everywhere else in the world. The inference is that previous anomalous results for Asia were result of sampling bias in the meta-analysis.

  10. Weather radar rainfall data in urban hydrology

    Science.gov (United States)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, Marie-Claire; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-03-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value to the aforementioned emerging fields in current and future applications, but also to the analysis of integrated water systems.

  11. Identification of MJO Signal on Various Elevation Station Rainfall in Southern Papua, Indonesia

    Science.gov (United States)

    Sakya, A. E.; Permana, D.; Makmur, E. E. S.; Handayani, A. S.; Hanggoro, W.; Setyadi, G.

    2016-12-01

    The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The characteristic of the MJO during its propagation through the Maritime Continent has always been a challenge to comprehend despite decades of research attempts in that region. Unique topography over the Maritime Continent is believed to act as one of the vanguard of precipitation triggered by the MJO. Such condition leads to a maximize amplitude of the diurnal cycle of precipitation over land on phase 2 and 5, even before the arrival of the MJO. Papua in Indonesia is one of the wettest regions on Earth and is at the heart of the MJO envelope. Aiming to investigate the effect of topography and coastline distance on MJO in southern Papua, 14 years of rainfall data from 12 stations in PTFI AWS network at various elevations (9 meters to 4400 meters above sea level) have been utilized. The results show a strong MJO modulation in rainfall variability with variance of 30 - 100 days in the region. These results suggest a strong impact of MJO on rainfall at various elevations in southern Papua which confirm the previous studies. The peak rainfall rates were observed at phase 3 at lower elevation and coastline stations and phase 4 at middle and high elevation stations. The study also investigated the relationship between MJO phases and diurnal precipitation cycle at all stations. At low elevation and coastline stations, diurnal rainfall variation is more variable with high rainfall observed at afternoon to midnight and after midnight. This is due to the local effect of land-sea breeze system. While in middle and high elevation stations, rainfall peak was observed at afternoon to midnight. The results show the impact of MJO in diurnal rainfall variation at all stations.

  12. Effects of rainfall intensity and intermittency on woody vegetation cover and deep soil moisture in dryland ecosystems

    Science.gov (United States)

    Zhang, Ding-Hai; Li, Xin-Rong; Zhang, Feng; Zhang, Zhi-Shan; Chen, Yong-Le

    2016-12-01

    Identifying the relationship between the stochastic daily rainfall regime and the dynamics of plants and soil moisture is fundamental for the sustainable management of dryland ecosystems in a context of global climate change. An eco-hydrological model that couples the dynamics of woody vegetation cover and deep soil moisture (typically with a depth interval of 30-150 cm) was used to investigate the effect of stochastic intensity and the intermittency of precipitation on soil moisture in this deep interval, which affects woody vegetation cover. Our results suggest that the precipitation intensity and intermittency play an important role in the dynamics of wood vegetation cover and deep soil moisture. In arid and semiarid regions, as the annual precipitation increased, the rate of woody vegetation cover increased as a power-law function, and the deep soil moisture increased exponentially. For a given annual rainfall, there were positive correlations between the rainfall intensity (or rainfall intermittency) and both the woody vegetation cover and deep soil moisture. The positive correlations between wood vegetation cover and both rainfall intensity and intermittency may decrease with increases in the precipitation intensity or precipitation intermittency. The positive correlations between deep soil moisture and both rainfall intensity and rainfall intermittency increase as the precipitation intensity or precipitation intermittency increases. Moreover, these positive correlations may increase with increases in the mean annual rainfall. Our results emphasize the importance of daily precipitation variations in controlling the responses of woody vegetation cover and deep soil moisture to climate variations in arid and semiarid regions. Our model can aid the understanding of rainfall processes and indicates that increases in rainfall intensity or rainfall intermittency may lead to an increase in woody vegetation cover and deep soil moisture given an invariable annual

  13. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    , geomorphologic and climatic division of the basin. Difference between regional curves is comparable with amplitude of rainfall variance within the regions. In general, rainfall increases with altitude and decreases from west to east (south-east). It should be emphasized that (i) Lake Kinneret Basin (2,490 sq. km) was earlier divided into seven "orographic regions" and (ii) the Lake Kinneret Basin and the Yarmouk River Basin are presented by the system of regional curves X = f (Z) as one whole rainfall field in the Upper Jordan River Basin, where the mean annual rain (X) increases with altitude (Z) and decreases from west to east and from north to south. In the Yarmouk Basin there is much less rainfall (344 mm) than in the Lake Kinneret Basin (749 mm), wherein mean annual rain (2,352 MCM versus 1,865 MCM) is shared between Syria, Jordan and Israel as 80%, 15% and 5%, respectively. The provided rainfall data allow more precise estimations of surface water balances and of recharge to the regional aquifers in the Upper Jordan River Basin. The derived rates serve as fundamental input data for numerical modeling of groundwater flow. This method can be applied to other areas at different temporal and spatial scales. The general applicability makes it a very useful tool in several hydrological problems connected with assessment, management and policy-making of water resources, as well as their changes due to climate and anthropogenic factors. Reference: I. Shentsis (1990). Mathematical models for long-term prediction of mountainous river runoff: methods, information and results, Hydrological Sciences Journal, 35:5, 487-500, DOI: 10.1080/02626669009492453

  14. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  15. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD

    2003-01-01

    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  16. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  17. Is the covariate based non-stationary rainfall IDF curve capable of encompassing future rainfall changes?

    Science.gov (United States)

    Agilan, V.; Umamahesh, N. V.

    2016-10-01

    Storm water management and other engineering design applications are primarily based on rainfall Intensity-Duration-Frequency (IDF) curves and the existing IDF curves are based on the concept of stationary Extreme Value Theory (EVT). However, during the last few decades, global climate change is intensifying the extreme precipitation events and creating a non-stationary component in the extreme rainfall time series. Subsequently, in recent years, advancements in the EVT helped the researchers to propose a method for developing non-stationary rainfall IDF curve by modelling trend present in the observed extreme rainfall series using covariate. But, is it capable of encompassing future rainfall changes? Towards answering this question, the Hyderabad city, India non-stationary rainfall IDF curves are compared with the IDF curves of two future time periods (2015-2056 and 2057-2098). Using 24 Global Climate Models' (GCMs') simulations and 'K' Nearest Neighbor (KNN) weather generator based downscaling method, the IDF curves are developed for two future time periods and they are compared with covariate based non-stationary rainfall IDF curves of the Hyderabad city. The results of this study indicate that the return of period of an extreme rainfall of the Hyderabad city is reducing. In addition, it is noted that the non-stationary IDF curve developed by modelling trend in the observed extreme rainfall with covariate is an appropriate choice for designing the Hyderabad city infrastructure under climate change.

  18. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev

    2013-09-01

    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  19. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    Energy Technology Data Exchange (ETDEWEB)

    O`Neil, G.D.; Simmonds, G.R. [Nova Gas Transmission Ltd., Calgary, Alberta (Canada); Grivas, D.A.; Schultz, B.C. [Arista International Inc., Niskayuna, NY (United States)

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components: a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.

  20. Heavy daily-rainfall characteristics over the Gauteng Province ...

    African Journals Online (AJOL)

    The central and north-western parts of the Province experience the most events where the rainfall at a single station surpasses 75 and 115 mm. With regard to seasonal rainfall, the 1995/96 summer rainfall season had the highest seasonal rainfall during this 32-yr period followed by the 1999/2000 season. The 1995/96 ...

  1. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge

  2. Rainfall Characteristics at Makurdi, North–Central Nigeria II | Agada ...

    African Journals Online (AJOL)

    Pluviograhic rainfall data were collected for the period 1985 to 1987. The mean Annual rainfall was 1140mm.The highest rainfall amount per storm event was 71.7mm while the highest six- minute rainfall intensity was 240mmh-1. The mean monthly Kinetic energy (E) using the Wischmeier and Smith (1978) equation ranged ...

  3. On Rainfall Modification by Major Urban Areas. Part 1; Observations from Space-borne Rain Radar Aboard TRMM

    Science.gov (United States)

    Shepherd, J. Marshell; Starr, David OC. (Technical Monitor)

    2001-01-01

    A novel approach is introduced to correlating urbanization and rainfall modification. This study represents one of the first published attempts (possibly the first) to identify and quantify rainfall modification by urban areas using satellite-based rainfall measurements. Previous investigations successfully used rain gauge networks and around-based radar to investigate this phenomenon but still encountered difficulties due to limited, specialized measurements and separation of topographic and other influences. Three years of mean monthly rainfall rates derived from the first space-based rainfall radar, Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of data at half-degree latitude resolution enables identification of rainfall patterns around major metropolitan areas of Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Preliminary results reveal an average increase of 5.6% in monthly rainfall rates (relative to a mean upwind CONTROL area) over the metropolis but an average increase of approx. 28%, in monthly rainfall rates within 30-60 kilometers downwind of the metropolis. Some portions of the downwind area exhibit increases as high as 51%. It was also found that maximum rainfall rates found in the downwind impact area exceeded the mean value in the upwind CONTROL area by 48%-116% and were generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are quite consistent studies of St. Louis (e.g' METROMEX) and Chicago almost two decades ago and more recent studies in the Atlanta and Mexico City areas.

  4. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall.

    Science.gov (United States)

    Karuri, Stella Wanjugu; Snow, Robert W

    2016-01-01

    Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH). In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months' rainfall. Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control.

  5. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    Science.gov (United States)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  6. Diagnostic statistics of daily rainfall variability in an evolving climate

    Science.gov (United States)

    Panagoulia, D.; Bárdossy, A.; Lourmas, G.

    2006-06-01

    To investigate the character of daily rainfall variability under present and future climate described via global warming a suite of diagnostic statistics was used. The rainfall was modeled as a stochastic process coupled with atmospheric circulation. In this study we used an automated objective classification of daily patterns based on optimized fuzzy rules. This kind of classification method provided circulation patterns suitable for downscaling of General Circulation Model (GCM)-generated precipitation. The precipitation diagnostics included first and second order moments, wet and dry-day renewal process probabilities and spell lengths as well as low-frequency variability via the standard deviation of monthly totals. These descriptors were applied to nine elevation zones and entire area of the Mesochora mountainous catchment in Central Greece for observed, 1×CO2 and 2×CO2 downscaled precipitation. The statistics' comparison revealed significant differences in the most of the daily diagnostics (e.g. mean wet-day amount, 95th percentile of wet-day amount, dry to wet probability), spell statistics (e.g. mean wet/dry spell length), and low-frequency diagnostic (standard deviation of monthly precipitation total) between warm (2×CO2) and observed scenario in a progressive rate from lower to upper zone. The differences were very greater for the catchment area. In the light of these results, an increase in rainfall occurrence with diminished rainfall amount and a sequence of less consecutive dry days could describe the behaviour of a possible future climate on the examined catchment.

  7. Diagnostic statistics of daily rainfall variability in an evolving climate

    Directory of Open Access Journals (Sweden)

    D. Panagoulia

    2006-01-01

    Full Text Available To investigate the character of daily rainfall variability under present and future climate described via global warming a suite of diagnostic statistics was used. The rainfall was modeled as a stochastic process coupled with atmospheric circulation. In this study we used an automated objective classification of daily patterns based on optimized fuzzy rules. This kind of classification method provided circulation patterns suitable for downscaling of General Circulation Model (GCM-generated precipitation. The precipitation diagnostics included first and second order moments, wet and dry-day renewal process probabilities and spell lengths as well as low-frequency variability via the standard deviation of monthly totals. These descriptors were applied to nine elevation zones and entire area of the Mesochora mountainous catchment in Central Greece for observed, 1×CO2 and 2×CO2 downscaled precipitation. The statistics' comparison revealed significant differences in the most of the daily diagnostics (e.g. mean wet-day amount, 95th percentile of wet-day amount, dry to wet probability, spell statistics (e.g. mean wet/dry spell length, and low-frequency diagnostic (standard deviation of monthly precipitation total between warm (2×CO2 and observed scenario in a progressive rate from lower to upper zone. The differences were very greater for the catchment area. In the light of these results, an increase in rainfall occurrence with diminished rainfall amount and a sequence of less consecutive dry days could describe the behaviour of a possible future climate on the examined catchment.

  8. Changes in rainfall seasonality in the tropics

    Science.gov (United States)

    Feng, X.; Porporato, A. M.; Rodriguez-Iturbe, I.

    2012-12-01

    Climate change has altered not only the overall magnitude of rainfall but also their seasonal distribution and interannual variability across the world. Such changes in the rainfall regimes will be most keenly felt in arid and semiarid regions, where the availability and timing of water are key factors controlling biogeochemical cycles, primary productivity, and phenology, in addition to regulating regional agricultural production and economic output. Nevertheless, due to the inherent complexity of the signals, a comprehensive framework to understand seasonal rainfall profiles across multiple timescales and geographical regions is still lacking. Here, we formulate a global measure of seasonality and investigate changes in the seasonal rainfall regime across the tropics in the past century. The seasonality index, which captures the effects of both the magnitude and concentration of the rainy season, is highest in the northeast region of Brazil, western and central Africa, northern Australia, and parts of the Caribbean and Southeast Asia (the seasonally dry tropics). Further decomposing rainfall seasonality into its magnitude, duration, and timing components using spectral techniques and information theory, we find marked increase in the interannual variability of seasonality over most of the dry tropics, implying increasing uncertainty in the intensity, duration, and arrival of seasonal rainfall over the past century. We also show that such increase in variability has occurred in conjunction with shifts in the seasonal timing and changes in its overall magnitude. Thus, it is importance to place the analysis of rainfall regimes in these regions into a seasonal context that is most relevant to local ecological and social processes. These changes, if sustained into the next century, will portend significant shifts in the timing of plant activities and ecosystem composition and distribution, with consequences for water and carbon cycling and water resource management in

  9. Why the predictions for monsoon rainfall fail?

    Science.gov (United States)

    Lee, J.

    2016-12-01

    To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.

  10. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  11. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  12. Rainfall and Detention Basin Flows

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storm event data and flow rates in/out pre-post device installation. This dataset is associated with the following publication: Hawley, R., J. Goodrich, N. Korth, C....

  13. Global rainfall erosivity assessment based on high-temporal resolution rainfall records.

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano

    2017-06-23

    The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha-1 h-1 yr-1, with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.

  14. Trends in rainfall and rainfall-related extremes in the east coast of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 8. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. Olaniya Olusegun Mayowa Sahar Hadi Pour Shamsuddin Shahid Morteza Mohsenipour Sobri Bin Harun Arien Heryansyah Tarmizi Ismail. Volume 124 Issue 8 ...

  15. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  16. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  17. Comparison of rainfall sampling schemes using a calibrated stochastic rainfall generator

    Energy Technology Data Exchange (ETDEWEB)

    Welles, E.

    1994-12-31

    Accurate rainfall measurements are critical to river flow predictions. Areal and gauge rainfall measurements create different descriptions of the same storms. The purpose of this study is to characterize those differences. A stochastic rainfall generator was calibrated using an automatic search algorithm. Statistics describing several rainfall characteristics of interest were used in the error function. The calibrated model was then used to generate storms which were exhaustively sampled, sparsely sampled and sampled areally with 4 x 4 km grids. The sparsely sampled rainfall was also kriged to 4 x 4 km blocks. The differences between the four schemes were characterized by comparing statistics computed from each of the sampling methods. The possibility of predicting areal statistics from gauge statistics was explored. It was found that areally measured storms appeared to move more slowly, appeared larger, appeared less intense and have shallower intensity gradients.

  18. Rainfall variability and seasonality in northern Bangladesh

    Science.gov (United States)

    Bari, Sheikh Hefzul; Hussain, Md. Manjurul; Husna, Noor-E.-Ashmaul

    2017-08-01

    This paper aimed at the analysis of rainfall seasonality and variability for the northern part of South-Asian country, Bangladesh. The coefficient of variability was used to determine the variability of rainfall. While rainfall seasonality index ( SI ) and mean individual seasonality index ( \\overline{SI_i} ) were used to identify seasonal contrast. We also applied Mann-Kendall trend test and sequential Mann-Kendall test to determine the trend in seasonality. The lowest variability was found for monsoon among the four seasons whereas winter has the highest variability. Observed variability has a decreasing tendency from the northwest region towards the northeast region. The mean individual seasonality index (0.815378 to 0.977228) indicates that rainfall in Bangladesh is "markedly seasonal with a long dry season." It was found that the length of the dry period is lower at the northeastern part of northern Bangladesh. Trend analysis results show no significant change in the seasonality of rainfall in this region. Regression analysis of \\overline{SI_i} and SI, and longitude and mean individual seasonality index show a significant linear correlation for this area.

  19. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response

    Directory of Open Access Journals (Sweden)

    D. Zoccatelli

    2011-12-01

    Full Text Available This paper describes a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall" quantifying the dependence existing between spatial rainfall organisation, basin morphology and runoff response. These statistics describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of catchment-scale storm velocity. The concept of the catchment-scale storm velocity takes into account the role of relative catchment orientation and morphology with respect to storm motion and kinematics. The paper illustrates the derivation of the statistics from an analytical framework recently proposed in literature and explains the conceptual meaning of the statistics by applying them to five extreme flash floods occurred in various European regions in the period 2002–2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km2. The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide useful information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling.

  20. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits

    1987-01-01

    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  1. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  2. PolicyNet Publication System

    Data.gov (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  3. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  4. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A

    2006-01-01

    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  5. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn

    2001-01-01

    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  6. The Economics of Net Neutrality

    OpenAIRE

    Hahn, Robert W.; Wallsten, Scott

    2006-01-01

    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  7. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  8. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly...... events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year....... to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive...

  9. Properties of Extreme Poin Rainfall II

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Harremoës, Poul; Rosbjerg, Dan

    1995-01-01

    As an alternative to the traditional non-parametric method the partial duration series approach with exponentially distributed exceedances is used to model extreme values of depth and maximum 10 min intensity per rainfall event, measured at gauges placed at different locations in Denmark. A stati......As an alternative to the traditional non-parametric method the partial duration series approach with exponentially distributed exceedances is used to model extreme values of depth and maximum 10 min intensity per rainfall event, measured at gauges placed at different locations in Denmark...... into account a possible intersite dependence structure, is developed. Adding one total design standard deviation to the regionally averaged T-year events yields increased design values between 5 and 17%. This result brings up a number of questions with respect to application of historical rainfall data...

  10. Rainfall estimation from microwave links in São Paulo, Brazil.

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2017-04-01

    Rainfall estimation from microwave link networks has been successfully demonstrated in countries such as the Netherlands, Israel and Germany. The path-averaged rainfall intensity can be computed from the signal attenuation between cell phone towers. Although this technique is still in development, it offers great opportunities to retrieve rainfall rates at high spatiotemporal resolutions very close to the ground surface. High spatiotemporal resolutions and closer-to-ground measurements are highly appreciated, especially in urban catchments where high-impact events such as flash-floods develop in short time scales. We evaluate here this rainfall measurement technique for a tropical climate, something that has hardly been done previously. This is highly relevant since many countries with few surface rainfall observations are located in the tropics. The test-bed is the Brazilian city of São Paulo. The performance of 16 microwave links was evaluated, from a network of 200 links, for the last 3 months of 2014. The open software package RAINLINK was employed to obtain link rainfall estimates. The evaluation was done through a dense automatic gauge network. Results are promising and encouraging, especially for short links for which a high correlation (> 0.9) and a low bias (< 5%) were obtained.

  11. Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa

    Science.gov (United States)

    Ratna, Satyaban B.; Ratnam, J. V.; Behera, S. K.; Rautenbach, C. J. deW.; Ndarana, T.; Takahashi, K.; Yamagata, T.

    2014-06-01

    Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically downscaled by the weather research and forecasting (WRF) model at 9 km resolution for South Africa. Lateral boundary conditions for WRF were provided from the European Centre for medium-range weather (ECMWF) reanalysis (ERA) interim data. The model biases for the rainfall were evaluated over the South Africa as a whole and its nine provinces separately by employing three different convective parameterization schemes, namely the (1) Kain-Fritsch (KF), (2) Betts-Miller-Janjic (BMJ) and (3) Grell-Devenyi ensemble (GDE) schemes. All three schemes have generated positive rainfall biases over South Africa, with the KF scheme producing the largest biases and mean absolute errors. Only the BMJ scheme could reproduce the intensity of rainfall anomalies, and also exhibited the highest correlation with observed interannual summer rainfall variability. In the KF scheme, a significantly high amount of moisture was transported from the tropics into South Africa. The vertical thermodynamic profiles show that the KF scheme has caused low level moisture convergence, due to the highly unstable atmosphere, and hence contributed to the widespread positive biases of rainfall. The negative bias in moisture, along with a stable atmosphere and negative biases of vertical velocity simulated by the GDE scheme resulted in negative rainfall biases, especially over the Limpopo Province. In terms of rain rate, the KF scheme generated the lowest number of low rain rates and the maximum number of moderate to high rain rates associated with more convective unstable environment. KF and GDE schemes overestimated the convective rain and underestimated the stratiform rain. However, the simulated convective and stratiform rain with BMJ scheme is in more agreement with the observations. This study also documents the performance of regional model in downscaling the large scale climate mode such as El Niño Southern Oscillation

  12. Conditions for the Occurrence of Slaking and Other Disaggregation Processes under Rainfall

    Directory of Open Access Journals (Sweden)

    Frédéric Darboux

    2016-07-01

    Full Text Available Under rainfall conditions, aggregates may suffer breakdown by different mechanisms. Slaking is a very efficient breakdown mechanism. However, its occurrence under rainfall conditions has not been demonstrated. Therefore, the aim of this study was to evaluate the occurrence of slaking under rain. Two soils with silt loam (SL and clay loam (CL textures were analyzed. Two classes of aggregates were utilized: 1–3 mm and 3–5 mm. The aggregates were submitted to stability tests and to high intensity (90 mm·h−1 and low intensity (28 mm·h−1 rainfalls, and different kinetic energy impacts (large and small raindrops using a rainfall simulator. The fragment size distributions were determined both after the stability tests and rainfall simulations, with the calculation of the mean weighted diameter (MWD. After the stability tests the SL presented smaller MWDs for all stability tests when compared to the CL. In both soils the lowest MWD was obtained using the fast wetting test, showing they were sensitive to slaking. For both soils and the two aggregate classes evaluated, the MWDs were recorded from the early beginning of the rainfall event under the four rainfall conditions. The occurrence of slaking in the evaluated soils was not verified under the simulated rainfall conditions studied. The early disaggregation was strongly related to the cumulative kinetic energy, advocating for the occurrence of mechanical breakdown. Because slaking requires a very high wetting rate on initially dry aggregates, it seems unlikely to occur under field conditions, except perhaps for furrow irrigation.

  13. ANALYSIS OF RAINFALL PATTERN AND FLOOD INCIDENCES IN WARRI METROPOLIS, NIGERIA

    Directory of Open Access Journals (Sweden)

    R. Olanrewaju

    2017-01-01

    Full Text Available Climate change has led to changes in the known patterns of rainfall and other climatic variables as well as increase in the frequency and magnitude of natural disasters including floods in different parts of the world; and flood is indeed a global environmental issue that had destroyed lives and property amidst other untold hardships. The study examined rainfall characteristics in Warri metropolis for the past 30 years (1986-2015 vis-à-vis the flood situation in the metropolis; as well as the factors responsible and adaptation strategies to flood in the area. Dividing the study area into four zones after Sada (1977, the researchers collected rainfall data from the archives of Nigerian Meteorological Agency; 268 copies of questionnaire and oral interview were used. The result of the correlation analysis performed showed a negative relationship of -0.156 between rainfall and time (years, this implies that rainfall is decreasing over time. The trend line regression equation Y=243.75-0.4572X, confirms that rainfall in Warri Metropolis is decreasing at the rate of -0.45 per year. However, the p-value 0.412 is greater than 0.05, hence, the trend is not statistically significant at 95% level of confidence. It was discovered that rainfall, absence of drainage and poor urban planning practices (as factor 1 contributed 51.09% while overflowing of rivers, blocked/ poor drainage and untarred roads (as factor 2 contributed 44.10% variance to flood occurrence in the metropolis. Recommendations given included continual monitoring and study of rainfall characteristics and other climatic data and dissemination of such information for planning purposes; construction of integrated drainage system and river rechannelisation, legislation against dumping of refuse on roads and drainages; proper urban planning including implementation of the metropolitan urban drainage master plan. 

  14. Areal rainfall estimation using moving cars - computer experiments including hydrological modeling

    Science.gov (United States)

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus

    2016-09-01

    The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e., RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance but also for use in hydrological modeling. Considering measurement errors derived from laboratory experiments, the result shows that the RCs provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Moreover, by testing larger uncertainties for RCs, they observed to be useful up to a certain level for areal rainfall estimation and discharge simulation.

  15. Simulation of Rainfall Variability Over West Africa

    Science.gov (United States)

    Bader, J.; Latif, M.

    The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.

  16. Asian primate species richness correlates with rainfall.

    Directory of Open Access Journals (Sweden)

    Yi-Chen Wang

    Full Text Available Previous studies of meta-analyses found significantly positive correlations between primate species richness and rainfall for Africa, Madagascar and the Neotropics, with the exception of Asia, leaving the open question whether that anomaly is the result of sampling bias, biogeography, or some other factor. This study re-examines the question using modelled data, with primate species richness data from the Southeast Asian Mammals Databank and rainfall data from the Climatic Research Unit. Data processing with Geographical Information Systems resulted in 390 sample points. Reduced major axis and ordinary least squares regressions were employed to examine the relationship for six regions, including the whole study area of Southeast Asia, and the subareas of Huxley West, Huxley East, Mainland Southeast Asia, Borneo, and Sumatra. The results showed a significant positive relationship between primate species richness and mean annual rainfall for Southeast Asia (r = 0.26, P<0.001. Comparing the results for the large islands and Mainland Southeast Asia showed that Sumatra had the highest correlation (r = 0.58; P<0.05. After controlling for the major biogeographic effect associated with Huxley's Line, our results showed that primate species richness is positively associated with mean annual rainfall in Southeast Asia. Our findings contrast to prior studies of meta-analyses that showed no relationship between rainfall and primate species richness in Asia, and thereby bring Asia into agreement with results showing significant positive correlations between rainfall and primate species richness everywhere else in the world. The inference is that previous anomalous results for Asia were result of sampling bias in the meta-analysis.

  17. RAINFALL FLUCTUATIONS AND ECONOMIC GROWTH: EVIDENCE FROM SENEGAL

    Directory of Open Access Journals (Sweden)

    François Joseph CABRAL

    2017-11-01

    Full Text Available In this paper, we simulate and evaluate the impact of extreme rainfall events on various sectors in the economy; factors of production remuneration and economic growth in Senegal. A dynamic general equilibrium model is developed which includes an index linking rainfall fluctuations to total productivity factor (TPF and factor market. Based on rainfall trends during the past three decades, we run simulations to assess the effects of rainfall values on GDP growth. The results show that extreme events in rainfall pattern deeply affect GDP growth in Senegal; sharp drops in rainfall lead to declining GDP and periods of abundant rainfalls are marked by better performance in term of GDP. However, rainfall drops lead to losses in GDP growth in comparison to gains in GDP growth due to rainfall surplus.

  18. Censored rainfall modelling for estimation of fine-scale extremes

    Directory of Open Access Journals (Sweden)

    D. Cross

    2018-01-01

    Full Text Available Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett–Lewis rectangular pulse (BLRP model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett–Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  19. Analysis of rainfall in the Brazilian semiarid

    Science.gov (United States)

    Teixeira, Nivaldo; Vide, Javier; Nery, Jonas

    2014-05-01

    The Brazilian semiarid sub region is located in the Northeast and a small part of the territory of the Southeast region of Brazil. The study area lies between latitudes 3º to 18º S and between longitudes 35° to 46° W. According to the Köppen classification, semi-arid climate BSh and BSk is dominated, and the mean annual temperatures is between 26 and 28 ºC. In total nine units are incorporated in the federation, eight Northeast and a small portion of the southeast region. The land area is 982,563.3 km² with 22,598,318 inhabitants residents, nearly 12% of the national population, divided into 1,133 municipalities. The sub region has population density of 23.06 inhabitants per km2. Northeast Brazil is characterized by precipitation variability and irregularity in its spatiotemporal distribution, which make it to be under a severe water shortage. This study is aimed to analyze the rainfall variability through anomalies for El Niño and La Niña years (severe, moderate and weak), calculation the values of the Concentration Index, and numbers of irregular rainy days. The first part is concerning in analyzing the consistency and standardization of rainfall, using R-Package CLIMATOL. The work was achieved using daily rainfall data, during the period 1970-2012, based on the 104 series long enough rainfall observatories in the Brazilian semiarid region. Study of daily rainfall events, may contribute in improving land use and regional economic development, based on the water, the source of life of living beings. Results show rainfall anomalies, especially in the strong El Niño years, such as 1983 and 1992, a large variability appears in precipitation semiarid region, especially in the northern part. This study also shows a sever precipitation variability between years. The semiarid area has years of drought and years with rainfall above the climatological average normal. The stronger are the events, the more erratic rainfall, ie intense El Niño events cause intense

  20. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    Science.gov (United States)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the

  1. Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles.

    Science.gov (United States)

    Taylor, Susan; Lever, James H; Fadden, Jennifer; Perron, Nancy; Packer, Bonnie

    2009-05-01

    Live-fire military training can deposit millimeter-sized particles of high explosives (HE) on surface soils when rounds do not explode as intended. Rainfall-driven dissolution of the particles then begins a process whereby aqueous HE solutions can enter the soil and groundwater as contaminants. We dripped water onto individual particles of TNT, Tritonal, Comp B and Octol to simulate how surface-deposited HE particles might dissolve under the action of rainfall and to use the data to verify a model that predicts HE dissolution as a function of particle size, particle composition and rainfall rate. Particle masses ranged from 1.1 to 17 mg and drip rates corresponded to nominal rainfall rates of 6 and 12 mmh(-1). For the TNT and Tritonal particles, TNT solubility governed dissolution time scales, whereas the lower-solubility of RDX controlled the dissolution time of both RDX and TNT in Comp B. The large, low-solubility crystals of HMX slowed but did not control the dissolution of TNT in Octol. Predictions from a drop-impingement dissolution model agree well with dissolved-mass timeseries for TNT, Tritonal and Comp B, providing some confidence that the model will also work well when applied to the rainfall-driven, outdoor dissolution of these HE particles.

  2. Determining erosion relevant soil characteristics with a small-scale rainfall simulator

    Science.gov (United States)

    Schindewolf, M.; Schmidt, J.

    2009-04-01

    The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on

  3. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  4. 29 CFR 4204.13 - Net income and net tangible assets tests.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  5. Mass distribution of free insecticide-treated nets do not interfere with continuous net distribution in Tanzania.

    Science.gov (United States)

    Eze, Ikenna C; Kramer, Karen; Msengwa, Amina; Mandike, Renata; Lengeler, Christian

    2014-05-27

    To protect the most vulnerable groups from malaria (pregnant women and infants) the Tanzanian Government introduced a subsidy (voucher) scheme in 2004, on the basis of a public-private partnership. These vouchers are provided to pregnant women at their first antenatal care visit and mothers of infants at first vaccination. The vouchers are redeemed at registered retailers for a long-lasting insecticidal net against the payment of a modest top-up price. The present work analysed a large body of data from the Tanzanian National Voucher Scheme, focusing on interactions with concurrent mass distribution campaigns of free nets. In an ecologic study involving all regions of Tanzania, voucher redemption data for the period 2007-2011, as well as data on potential determinants of voucher redemption were analysed. The four outcome variables were: pregnant woman and infant voucher redemption rates, use of treated bed nets by all household members and by under- five children. Each of the outcomes was regressed with selected determinants, using a generalized estimating equation model and accounting for regional data clustering. There was a consistent improvement in voucher redemption rates over the selected time period, with rates >80% in 2011. The major determinants of redemption rates were the top-up price paid by the voucher beneficiary, the retailer- clinic ratio, and socio-economic status. Improved redemption rates after 2009 were most likely due to reduced top-up prices (following a change in policy). Redemption rates were not affected by two major free net distribution campaigns. During this period, there was a consistent improvement in net use across all the regions, with rates of up to 75% in 2011. The key components of the National Treated Nets Programme (NATNETS) seem to work harmoniously, leading to a high level of net use in the entire population. This calls for the continuation of this effort in Tanzania and for emulation by other countries with endemic malaria.

  6. Influence of rainfall spatial variability on rainfall-runoff modelling: Benefit of a simulation approach?

    Science.gov (United States)

    Emmanuel, I.; Andrieu, H.; Leblois, E.; Janey, N.; Payrastre, O.

    2015-12-01

    No consensus has yet been reached regarding the influence of rainfall spatial variability on runoff modelling at catchment outlets. To eliminate modelling and measurement errors, in addition to controlling rainfall variability and both the characteristics and hydrological behaviour of catchments, we propose to proceed by simulation. We have developed a simulation chain that combines a stream network model, a rainfall simulator and a distributed hydrological model (with four production functions and a distributed transfer function). Our objective here is to use this simulation chain as a simplified test bed in order to better understand the impact of the spatial variability of rainfall forcing. We applied the chain to contrasted situations involving catchments ranging from a few tens to several hundreds of square km2, thus corresponding to urban and peri-urban catchments for which surface runoff constitutes the dominant process. The results obtained confirm that the proposed simulation approach is helpful to better understand the influence of rainfall spatial variability on the catchment response. We have shown that significant dispersion exists not only between the various simulation scenarios (defined by a rainfall configuration and a catchment configuration), but also within each simulation scenario. These results show that the organisation of rainfall during the study event over the study catchment plays an important role, leading us to examine rainfall variability indexes capable of summarising the influence of rainfall spatial organisation on the catchment response. Thanks to the simulation chain, we have tested the variability indexes of Zoccatelli et al. (2010) and improved them by proposing two other indexes.

  7. Regional frequency analysis of short duration rainfall extremes using gridded daily rainfall data as co-variate

    DEFF Research Database (Denmark)

    Madsen, H.; Gregersen, Ida Bülow; Rosbjerg, Dan

    2017-01-01

    with daily measurements. The Poisson rate is positively correlated to the mean annual precipitation for all durations considered (1 min to 48 hours). The mean intensity can be assumed constant over Denmark for durations up to 1 hour. For durations larger than 1 hour the mean intensity is significantly...... increases and decreases are seen. A subsample analysis is conducted to evaluate the impacts of non-stationarities in the rainfall data. The regional model includes the nonstationarities as an additional source of uncertainty together with sampling uncertainty and uncertainty caused by spatial variability....

  8. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Korup Andersen, Aske; Larsen, Anders Badsberg

    2017-01-01

    for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads......Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme...... events. Due to climate change, however, these series are most likely not representative of future rainfall. There is therefore a demand for climate-projected long rainfall series, which can represent a specific region and rainfall pattern as well as fulfil requirements of long rainfall series which...

  9. High-resolution studies of rainfall on Norfolk Island. Part II: Interpolation of rainfall data

    Science.gov (United States)

    Dirks, K. N.; Hay, J. E.; Stow, C. D.; Harris, D.

    1998-07-01

    Four spatial interpolation methods are compared using rainfall data from a network of thirteen rain gauges on Norfolk Island (area 35 km 2). The purpose is to obtain spatially continuous rainfall estimates across the island, from point measurements and for different integration times, by the most effective means. The more computationally demanding method of kriging provided no significant improvement over any of the much simpler inverse-distance, Thiessen, or areal-mean methods. In order to assimilate some of the characteristics of spatially varying rainfall, and based on the comparisons performed, the inverse-distance method is recommended for interpolations using spatially dense networks.

  10. Areal rainfall estimation using moving cars as rain gauges – a modelling study

    Directory of Open Access Journals (Sweden)

    U. Haberlandt

    2010-07-01

    Full Text Available Optimal spatial assessment of short-time step precipitation for hydrological modelling is still an important research question considering the poor observation networks for high time resolution data. The main objective of this paper is to present a new approach for rainfall observation. The idea is to consider motorcars as moving rain gauges with windscreen wipers as sensors to detect precipitation. This idea is easily technically feasible if the cars are provided with GPS and a small memory chip for recording the coordinates, car speed and wiper frequency. This study explores theoretically the benefits of such an approach. For that a valid relationship between wiper speed and rainfall rate considering uncertainty was assumed here. A simple traffic model is applied to generate motorcars on roads in a river basin. Radar data are used as reference rainfall fields. Rainfall from these fields is sampled with a conventional rain gauge network and with several dynamic networks consisting of moving motorcars, using different assumptions such as accuracy levels for measurements and sensor equipment rates for the car networks. Those observed point rainfall data from the different networks are then used to calculate areal rainfall for different scales. Ordinary kriging and indicator kriging are applied for interpolation of the point data with the latter considering uncertain rainfall observation by cars e.g. according to a discrete number of windscreen wiper operation classes. The results are compared with the values from the radar observations. The study is carried out for the 3300 km2 Bode river basin located in the Harz Mountains in Northern Germany. The results show, that the idea is theoretically feasible and motivate practical experiments. Only a small portion of the cars needed to be equipped with sensors for sufficient areal rainfall estimation. Regarding the required sensitivity of the potential rain sensors in cars it could be shown

  11. Conversion of a moderately rewetted fen to a shallow lake - implications for net CO2 exchange

    Science.gov (United States)

    Koebsch, Franziska; Glatzel, Stephan; Hofmann, Joachim; Forbrich, Inke; Jurasinski, Gerald

    2013-04-01

    Extensive rewetting projects to re-establish the natural carbon (C) sequestration function of degraded peatlands are currently taking place in Europe and North-America. Year-round flooding provides a robust measure to prevent periods of drought that are associated with ongoing peat mineralization and to initiate the accumulation of new organic matter. Here, we present measurements of net carbon dioxide (CO2) exchange during the gradual conversion of a moderately rewetted fen to a shallow lake. When we started our measurements in 2009, mean growing season water level (MWGL) was 0 cm. In 2010 the site was flooded throughout the year with MWGL of 36 cm. Extraordinary strong rainfalls in July 2011 resulted in a further increase of MWGL to 56 cm. Measurements of net ecosystem exchange (NEE) were conducted during growing seasons (May-October) using the Eddy Covariance method. Information about vegetation vitality was deduced from the enhanced vegetation index (EVI) based on MODIS data. Ecosystem respiration (Reco) and gross ecosystem production (GEP) were high during vegetation period 2009 (1273.4 and -1572.1 g CO2-C m-2), but decreased by 61 and 46% respectively when the fen was flooded throughout 2010. Under water-logged conditions, heterotrophic respiration declines and gas exchange is limited. Moreover, flooding is a severe stress factor for plants and decreases autotrophic respiration and photosynthesis. However, in comparison to 2010, rates of Reco and GEP doubled during the beginning of growing season 2011, indicating plastic response strategies of wetland plants to flooding. Presumably, plants were not able to cope with the further increase of water levels to up to 120 cm in June/July 2011, resulting in another drop of GEP and Reco. The effects of plant vitality on GEP were confirmed by the remote sensed vegetation index. Throughout all three growing seasons, the fen was a distinct net CO2 sink (2009: -333.3±12.3, 2010: -294.1±8.4, -352.4±5.1 g CO2-C m-2

  12. Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques

    Science.gov (United States)

    Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.

    2012-04-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static

  13. Rainfall measurement using cell phone links

    NARCIS (Netherlands)

    Schip, van het T.I.; Overeem, A.; Leijnse, H.; Uijlenhoet, R.; Meirink, J.F.; Delden, van A.J.

    2017-01-01

    Commercial cellular telecommunication networks can be used for rainfall estimation by measuring the attenuation of electromagnetic signals transmitted between antennas from microwave links. However, as the received link signal may also decrease during dry periods, a method to separate wet and dry

  14. Maximum daily rainfall in South Korea

    Indian Academy of Sciences (India)

    sponding datasets are described in section 2. The data used are the annual maximum daily rainfall from 1961 to 2001. The models and the fitting procedures are described in section 3. We use the method of maximum likelihood for estimation and the profile likelihood method for the corresponding confidence intervals.

  15. Multifractals and the temporal structure of rainfall

    NARCIS (Netherlands)

    Lima, de M.I.P.

    1998-01-01

    Rainfall is a highly non-linear hydrological process that exhibits wide variability over a broad range of time and space scales. The strongly irregular fluctuations of rain are difficult to capture instrumentally and to handle mathematically. The purpose of this work is to contribute to a

  16. Sunspot numbers: Implications on Eastern African rainfall

    Directory of Open Access Journals (Sweden)

    Francis Gachari

    2014-02-01

    Full Text Available Following NASA's prediction of sunspot numbers for the current sunspot cycle, Cycle 24, we now include sunspot numbers as an explanatory variable in a statistical model. This model is based on fitting monthly rainfall values with factors and covariates obtained from solarlunar geometry values and sunspot numbers. The model demonstrates high predictive skill in estimating monthly values by achieving a correlation coefficient of 0.9 between model estimates and the measurements. Estimates for monthly total rainfall for the period from 1901 to 2020 for Kenya indicate that the model can be used not only to estimate historical values of rainfall, but also to predict monthly total rainfall. We have found that the 11-year solar sunspot cycle has an influence on the frequency and timing of extreme hydrology events in Kenya, with these events occurring every 5-2 years after the turning points of sunspot cycles. While solar declination is the major driver of monthly variability, sunspots and the lunar declinations play a role in the annual variability and may have influenced the occurrence of the Sahelian drought of the mid-1980s that affected the Sahel region including the Greater Horn of Africa. Judging from the reflection symmetry, the trend of the current maximum and the turning point of the sunspot minimum at the end of the Modern Maximum, with a 95% level of confidence, drought conditions similar to those of the early 1920s may reoccur in the year 2020:2.

  17. Modelling relationship between rainfall variability and millet ...

    African Journals Online (AJOL)

    The analytical tools used in developing and testing the model performance include ogive of cumulative pentad rainfall, product-moment correlation coefficient (r), stepwise multiple regression analysis and coefficient of determination (R2). The study produced four yield forecast models; three for millet at Kano, Katsina and ...

  18. Spatial variability and rainfall characteristics of Kerala

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Krishnamurthi T N 1985 Summer monsoon experiment – a review; Mon. Weather Rev. 113 1590–1626. Lin Y L, Chao Sen, Wang Ting An, Kaplan L M and. Weglarz R P 2001 Some common ingredients for heavy orograhic rainfall; Weather and forecasting 16 633–. 660. Pico R 1974 The Geography of Puerto Rico (Chicago:.

  19. Relationship between summer monsoon rainfall and cyclogenesis ...

    Indian Academy of Sciences (India)

    Keywords. Cyclones; Bay of Bengal; summer monsoon; rainfall; genesis potential parameter; post-monsoon. .... in 10. −5 S. −1, S = vertical wind shear between 200 and 850 hPa (m s. −1); M = [RH−40]. 30. = middle tro- posphere relative humidity, where RH is the aver- ..... cyclone genesis parameter for the tropical Atlantic;.

  20. Rainfall erosivity in Brazil: A Review

    Science.gov (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  1. Comparison of radar data versus rainfall data

    Science.gov (United States)

    Espinosa, B.; Hromadka, T.V.; Perez, R.

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for “ground-truthing” of radar data, and•possible errors due to topographic interference. PMID:26649276

  2. Improving the understanding of rainfall distribution and ...

    African Journals Online (AJOL)

    The combination of both longitude and altitude showed a larger coefficient of determination, of 0.73, 0.74 and 0.51, for the annual, wet season and dry season, respectively. Long-term mean annual rainfall patterns showed an overall strong directional distribution from west to east with a distinct pattern observed during the ...

  3. Weather radar rainfall data in urban hydrology

    NARCIS (Netherlands)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, J.A.E.; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology

  4. Improving the understanding of rainfall distribution and ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Rainfall interpolation using data from a limited number of rain-gauges is one method that hydrologists use to derive the spatial distribution of precipitation in mountainous areas. (Groisman et al., 2005, Masson and Frei, 2014, Vogel et al.,. 2012, Duethmann et al., 2013, Jacquin and Soto-Sandoval,. 2013).

  5. Water Conservation Education with a Rainfall Simulator.

    Science.gov (United States)

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  6. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    Science.gov (United States)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show

  7. Preliminary study on mechanics-based rainfall kinetic energy

    Directory of Open Access Journals (Sweden)

    Yuan Jiuqin Ms.

    2014-09-01

    Full Text Available A raindrop impact power observation system was employed to observe the real-time raindrop impact power during a rainfall event and to analyze the corresponding rainfall characteristics. The experiments were conducted at different simulated rainfall intensities. As rainfall intensity increased, the observed impact power increased linearly indicating the power observation system would be satisfactory for characterizing rainfall erosivity. Momentum is the product of mass and velocity (Momentum=MV, which is related to the observed impact power value. Since there is no significant difference between momentum and impact power, observed impact power can represent momentum for different rainfall intensities. The relationship between momentum and the observed impact power provides a convenient way to calculate rainfall kinetic energy. The value of rainfall kinetic energy based on the observed impact power was higher than the classic rainfall kinetic energy. The rainfall impact power based kinetic energy and the classic rainfall kinetic energy showed linear correlation, which indicates that the raindrop impact power observation system can characterize rainfall kinetic energy. The article establishes a preliminary way to calculate rainfall kinetic energy by using the real-time observed momentum, providing a foundation for replacing the traditional methods for estimating kinetic energy of rainstorms.

  8. Effect of monthly areal rainfall uncertainty on streamflow simulation

    Science.gov (United States)

    Ndiritu, J. G.; Mkhize, N.

    2017-08-01

    Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic

  9. Deforestation alters rainfall: a myth or reality

    Science.gov (United States)

    Hanif, M. F.; Mustafa, M. R.; Hashim, A. M.; Yusof, K. W.

    2016-06-01

    To cope with the issue of food safety and human shelter, natural landscape has gone through a number of alterations. In the coming future, the expansion of urban land and agricultural farms will likely disrupt the natural environment. Researchers have claimed that land use change may become the most serious issue of the current century. Thus, it is necessary to understand the consequences of land use change on the climatic variables, e.g., rainfall. This study investigated the impact of deforestation on local rainfall. An integrated methodology was adopted to achieve the objectives. Above ground biomass was considered as the indicator of forest areas. Time series data of a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor were obtained for the year of 2000, 2005, and 2010. Rainfall data were collected from the Department of Irrigation and Drainage, Malaysia. The MODIS time series data were classified and four major classes were developed based on the Normalised Difference Vegetation Index (NDVI) ranges. The results of the classification showed that water, and urban and agricultural lands have increased in their area by 2, 3, and 6%, respectively. On the other hand, the area of forest has decreased 10% collectively from 2000 to 2010. The results of NDVI and rainfall data were analysed by using a linear regression analysis. The results showed a significant relationship at a 90% confidence interval between rainfall and deforestation (t = 1.92, p = 0.06). The results of this study may provide information about the consequences of land use on the climate on the local scale.

  10. Mechanisms of improved rainfall simulation over the Maritime Continent due to increased horizontal resolution in an AGCM

    Science.gov (United States)

    Rashid, Harun A.; Hirst, Anthony C.

    2017-09-01

    The General Circulation Models experience a significant challenge in realistically simulating rainfall over the tropical Maritime Continent (hereafter, MC). Here, we investigate the mechanisms of an improvement in monthly rainfall simulation over the MC region in the UK Met Office Unified Model (version Global Atmosphere 6.0), which occurs when the horizontal resolution is increased from N96 (grid spacing 135 km) to N216 ( 60 km). The increased resolution enhances the area-averaged rainfall rate over the MC, thereby reducing the dry rainfall bias seen in the model at the N96 resolution. We find that the enhanced area-averaged rainfall is mostly due to an increase in the medium rainfall rates that occurs over the MC islands in the N216 experiment. The rainfall change is predominantly associated with changes in the atmospheric convective circulation and the related horizontal moisture flux convergence. The vertical profiles of convective circulation show a strong sensitivity to the increased horizontal resolution over the MC islands, but not over the surrounding oceans. It is shown that a significant underestimation of the deep convection (as opposed to the shallow convection) in the N96 experiment is primarily responsible for the stronger dry bias in this experiment. We present evidence that the dry bias, and the associated weaker deep convection, are in part caused by the strongly smoothed orography used in the N96 experiment, which provides a weaker orographic lifting of the moist surface air (in a conditionally unstable atmosphere) than that in the N216 experiment.

  11. On Rainfall Modification by Major Urban Areas. Part 1; Observations from Space-borne Rain Radar on TRMM

    Science.gov (United States)

    Shepherd, J. Marshall; Pierce, Harold; Starr, David OC. (Technical Monitor)

    2001-01-01

    This study represents one of the first published attempts to identify rainfall modification by urban areas using satellite-based rainfall measurements. Data from the first space-based rain-radar, the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of the data enables identification of rainfall patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage chances are relative to an upwind CONTROL area. It was also found that maximum rainfall rates in the downwind impact area can exceed the mean value in the upwind CONTROL area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are consistent with METROMEX studies of St. Louis almost two decades ago and more recent studies near Atlanta. Future work will investi(yate hypothesized factors causing rainfall modification by urban areas. Additional work is also needed to provide more robust validation of space-based rain estimates near major urban areas. Such research has implications for urban planning, water resource management, and understanding human impact on the environment.

  12. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein

    2015-12-01

    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  13. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae)

    Science.gov (United States)

    Homalodisca vitripennis, one of the main vectors of Xylella fastidiosa, is associated with citrus plantings in California, USA. Infested citrus orchards act as a source of vectors to adjacent vineyards where X. fastidiosa causes Pierce’s disease (PD). An analysis of the pattern and rate of movement ...

  14. General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity

    Directory of Open Access Journals (Sweden)

    Han Soo Lee

    2015-04-01

    Full Text Available The relationships between observed rainfall, El Niño/Southern Oscillation (ENSO and sea surface temperature (SST variations in the Pacific and Indian Oceans were analyzed using a 1° latitude–longitude grid over Indonesia. The Global Summary of the Day rainfall records provide 26 years of rainfall data (January 1985 to August 2010 for 23 stations throughout the Indonesian islands. The ENSO and SST variations were calculated using the Multivariate ENSO Index (MEI, the Pacific Decadal Oscillation (PDO, NINO1 + 2, NINO3, NINO3.4, NINO4, the Dipole Mode Index (DMI for the Indian Ocean Dipole (IOD, and Indian Ocean Basin-wide (IOBW index. The results show that the rainfall in the southern Sumatra and southern Java Islands, which face the Indian Ocean, was positively correlated with the negative IOD, whereas the rainfall in northwestern Sumatra was positively correlated with the positive IOD. In eastern Indonesia, the rainfall was positively correlated with La Niña. The PDO index was also strongly correlated with the rainfall in this region. In central Indonesia, seasonal variations due to monsoons are predominant, and the rainfall exhibited strong negative and positive correlations with the MEI and NINO.WEST, respectively, indicating that high rainfall occurred during strong La Niña episodes. The highly negative and positive correlations with the MEI and NINO.WEST, respectively, in central Indonesia led us to analyze the impacts of Indonesian seas on the rainfall in the region. Using four synoptic-scale scenarios, we investigated the relative residence time of Indonesian seawater along the pathways associated with the Pacific-Indian hydraulic head difference. The results show that when both the western Pacific and eastern Indian Oceans are warm (positive NINO.WEST and negative DMI, the rainfall intensity over central Indonesia is strongest. This increase is explained by the relationship between the residence time of Indonesian seawater and the

  15. Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature

    Science.gov (United States)

    Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R

    2012-01-01

    Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202

  16. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    Science.gov (United States)

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh-1, and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh-1), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh-1) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Changes in the extreme daily rainfall in South Korea

    National Research Council Canada - National Science Library

    Park, Jeong‐Soo; Kang, Hyun‐Suk; Lee, Young Saeng; Kim, Maeng‐Ki

    2011-01-01

    ...) distribution in modelling extreme rainfall. We modelled the annual maxima of daily (AMP1) and 2‐day (AMP2) rainfall data observed during the summer rainy season, dating up to 2007 in 28 stations in South Korea...

  18. The Climatology of Extreme Rainfall in the Eastern US (Invited)

    Science.gov (United States)

    Smith, J. A.; Baeck, M. L.; Yeung, J. K.; Villarini, G.; Krajewski, W. F.

    2009-12-01

    Recent studies have shown that flood peak distributions in the eastern US can be represented through mixtures of flood generating mechanisms, including landfalling tropical cyclones, extratropical cyclones and organized convective systems. The eastern US is a complex setting for examining rainfall climatology, with land-ocean boundaries, mountainous terrain and the urban megalopolis all playing important roles in controlling rainfall distribution. In this study we examine the dynamics of extreme rainfall in the eastern US through a combination of observational analyses and numerical modeling studies. Observational analyses utilize long records of high-resolution rainfall fields from the Hydro-NEXRAD system. We also utilize observational resources from the Princeton environmental sensor network, including a network of rain gages and disdrometer, to examine rainfall microstructure. Numerical model studies are based on the Weather Research and Forecasting (WRF) model. In addition to rainfall microstructure, analyses focus on spatial heterogeneities of rainfall associated with land surface processes and the diurnal cycle of warm season rainfall.

  19. Dual-polarization radar rainfall estimation in Korea according to raindrop shapes obtained by using a 2-D video disdrometer

    Science.gov (United States)

    Kim, Hae-Lim; Suk, Mi-Kyung; Park, Hye-Sook; Lee, Gyu-Won; Ko, Jeong-Seok

    2016-08-01

    Polarimetric measurements are sensitive to the sizes, concentrations, orientations, and shapes of raindrops. Thus, rainfall rates calculated from polarimetric radar are influenced by the raindrop shapes and canting. The mean raindrop shape can be obtained from long-term raindrop size distribution (DSD) observations, and the shapes of raindrops can play an important role in polarimetric rainfall algorithms based on differential reflectivity (ZDR) and specific differential phase (KDP). However, the mean raindrop shape is associated with the variation of the DSD, which can change depending on precipitation types and climatic regimes. Furthermore, these relationships have not been studied extensively on the Korean Peninsula. In this study, we present a method to find optimal polarimetric rainfall algorithms for the Korean Peninsula by using data provided by both a two-dimensional video disdrometer (2DVD) and the Bislsan S-band dual-polarization radar. First, a new axis-ratio relation was developed to improve radar rainfall estimations. Second, polarimetric rainfall algorithms were derived by using different axis-ratio relations. The rain gauge data were used to represent the ground truth situation, and the estimated radar-point hourly mean rain rates obtained from the different polarimetric rainfall algorithms were compared with the hourly rain rates measured by a rain gauge. The daily calibration biases of horizontal reflectivity (ZH) and differential reflectivity (ZDR) were calculated by comparing ZH and ZDR radar measurements with the same parameters simulated by the 2DVD. Overall, the derived new axis ratio was similar to the existing axis ratio except for both small particles (≤ 2 mm) and large particles (≥ 5.5 mm). The shapes of raindrops obtained by the new axis-ratio relation carried out with the 2DVD were more oblate than the shapes obtained by the existing relations. The combined polarimetric rainfall relations using ZDR and KDP were more efficient than

  20. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius

    2014-01-01

    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  1. Net4Care PHMR Library

    DEFF Research Database (Denmark)

    2014-01-01

    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  2. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur

    2011-01-01

    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  3. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.

    1991-01-01

    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  4. Optimal adaptation to extreme rainfalls under climate change

    Science.gov (United States)

    Rosbjerg, Dan

    2017-04-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time span. Immediate as well as delayed adaptation is considered.

  5. Optimal adaptation to extreme rainfalls in current and future climate

    Science.gov (United States)

    Rosbjerg, Dan

    2017-01-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases, the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time-span. Immediate as well as delayed adaptation is considered.

  6. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    Science.gov (United States)

    Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2017-04-01

    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.

  7. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data

    Directory of Open Access Journals (Sweden)

    T. P. Burt

    2014-09-01

    Full Text Available Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana, where a complete daily series is available from 1950, a longer-term perspective on changes over half a century is provided. The focus here is particularly on rainfall in March and April, given the sensitivity of agricultural decisions to early southwest monsoon rainfall at the beginning of the Yala cultivation season but other seasons are also considered, in particular the northeast monsoon. Rainfall across Sri Lanka over three decades is investigated in relation to the main atmospheric drivers known to affect climate in the region: sea surface temperatures in the Pacific and Indian Oceans, of which the former are shown to be more important. The strong influence of El Niño and La Niña phases on various aspects of the daily rainfall distribution in Sri Lanka is confirmed: positive correlations with Pacific sea-surface temperatures during the north east monsoon and negative correlations at other times. It is emphasized in the discussion that Sri Lanka must be placed in its regional context and it is important to draw on regional-scale research across the Indian subcontinent and the Bay of Bengal.

  8. Validation of Satellite Rainfall Products over the Upper Blue Nile Basin: Comparison with Dense Rain Gauge Networks at Low- and High-Elevation Sites

    Science.gov (United States)

    Gebremichael, M.; Tesfaye, G.; Bitew, M. M.; Hirpa, F. A.

    2013-12-01

    The demand for accurate satellite rainfall products is increasing particularly in Africa where ground-based data are mostly unreliable and unavailable. In this study, the accuracy of three widely-used, near-global, high-resolution satellite rainfall products (CMORPH, TMPA-RT v7, TMPA-RP v7) is assessed using relatively dense networks of rain gauges deployed at two experimental sites that represent extreme topographic features of the Blue Nile River Basin: (1) low-elevation grid located in the lowland plain of the basin, and (2) high-elevation grid located in the highland mountainous region of the basin. Results show that the accuracy of satellite rainfall estimates depends on rainfall rate, underlying topography, and retrieval algorithm. The satellite estimates produce a positive bias for light rainfall and negative bias for moderate and heavy rainfall, and are less capable of detecting rainfall at the high-elevation site. CMORPH and TMPA-RT overestimate mean rainfall at the low-elevation site but underestimate it at the high-elevation site. TMPA-RT and TMPA-RP underestimate frequency but overestimate intensity of rainfall in both regions. Of all the products, CMORPH shows superior performance in estimating the temporal fluctuation of rainfall, detecting rain, and capturing the diurnal cycle of rainfall. However, CMORPH is the most biased estimate. TMPA-RT and TMPA-RP provide lower bias, but this comes as the result of two substantially large errors that tend to cancel each other while computing the bias: substantial underestimation of rainfall occurrence and substantial overestimation of rain intensity. Although the TMPA-RP estimates are primarily developed to remove the bias and improve the overall accuracy of the TMPA-RT estimates, the TMPA-RP estimates show by far inferior performance than the TMPA-RT estimates by all accounts including bias. Of all three satellite rainfall products considered, TMPA-RP shows the worst and unacceptable performance by all

  9. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  10. Generalized Net Model of Brevibacterium flavul 22LD Fermentation Process

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2005-04-01

    Full Text Available In order to render the specific peculiarities of the fermentation processes, as well as to avoid the complexity of mathematical description with systems of differential equations, the elaboration of some new methods and approaches for their modelling and control is predetermined. As a new, alternative approach for modelling of fermentation processes, an application of generalized nets is presented in this paper. The theory of generalized nets is applied to the fermentation process of Brevibacterium flavul 22LD for L-lysine production. A generalized net model of considered process is developed. For comparison and completeness, model with differential equations is also provided. The generalized nets model developed for the fed-batch cultivation of Brevibacterium flavul 22LD allows changing the concentration of the feeding solution and the aeration rate. In this way some inhibition effects are prevented and a possibility for optimal carrying out of the considered fermentation process is provided.

  11. Accumulation rate in a tropical Andean glacier as a proxy for northern Amazon precipitation

    Science.gov (United States)

    da Rocha Ribeiro, Rafael; Simões, Jefferson Cardia; Ramirez, Edson; Taupin, Jean-Denis; Assayag, Elias; Dani, Norberto

    2017-04-01

    Andean tropical glaciers have shown a clear shrinkage throughout the last few decades. However, it is unclear how this general retreat is associated with variations in rainfall patterns in the Amazon basin. To investigate this question, we compared the annual net accumulation variations in the Bolivian Cordillera Real (Andes), which is derived from an ice core from the Nevado Illimani (16° 37' S, 67° 46' W), covering the period 1960-1999 using the Amazonian Rainfall Index, Northern Atlantic Index (TNA), Multivariate ENSO Index (MEI), and Pacific Decadal Oscillation (PDO). The accumulation rate at the Nevado Illimani ice core decreased by almost 25% after 1980, from 1.02 w.eq. a-1 (water equivalent per year) in the 1961-1981 period to 0.76 w.eq. a-1 in the 1981-1999 period. The Northern Amazonian Rainfall (NAR) index best reflects changes in accumulation rates in the Bolivian ice core. Our proposal is based on two observations: (1) This area shows reduced rainfall associated with a more frequent and intense El Niño (during the positive phase of the MEI). The opposite (more rain) is true during La Niña phases. (2) Comparisons of the ice core record and NAR, PDO, and MEI indexes showed similar trends for the early 1980s, represented by a decrease in the accumulation rates and its standard deviations, probably indicating the same causality. The general changes observed by early 1980s coincided with the beginning of a PDO warm phase. This was followed by an increase in the Amazonian and tropical Andean precipitation from 1999, coinciding with a new PDO phase. However, this increase did not result in an expansion of the Zongo Glacier area.

  12. Estimating Rainfall in Rodrigues by Geostatistics: (b) Application ...

    African Journals Online (AJOL)

    The previous paper described the kriging method and its possible applications. This paper checks whether kriging may be used to estimate rainfall. Four test stations were selected in Rodrigues. Rainfall data from surrounding stations were used to estimate rainfall at these stations, after first establishing a suitable ...

  13. Rainfall Variability and Agricultural Vulnerability in the Amhara ...

    African Journals Online (AJOL)

    Ethiopian agriculture is mostly rain fed, whereas inter-annual and seasonal rainfall variability is high and droughts are frequent in many parts of the country. Rainfall variability has historically been a major cause of food insecurity and famines in the country. Surprisingly, however, the relationships between rainfall variability ...

  14. Rainfall variability and rubber production in Nigeria | Mesike ...

    African Journals Online (AJOL)

    The role of rainfall in plant could not be overemphasized because rainfall determines the amount of moisture present in the soil which is ultimately made available to plants. The aim of this paper was to determine the variability of rainfall and its effect on rubber production in Nigeria. Towards achieving this aim, time series ...

  15. The changing rainfall pattern and its implication for flood frequency ...

    African Journals Online (AJOL)

    The study deals with analysis of recent changes in the characteristics of extreme rainfall and their implication for flood frequency in Makurdi. Data on extreme daily rainfall, evapotranspiration and flood occurrences were collected for analysis. The annual rainfall was analysed for trends using spearman rank correlation ...

  16. Some characteristics of very heavy rainfall over Orissa during ...

    Indian Academy of Sciences (India)

    Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥ 125mm) over Orissa during ...

  17. Parameterization of rainfall microstructure for radar meteorology and hydrology

    NARCIS (Netherlands)

    Uijlenhoet, R.

    1999-01-01

    A comprehensive general framework for the description and analysis of the microstructure of rainfall is presented. The microstructure of rainfall is parameterized in terms of the raindrop size distribution, which determines both the macroscopic physical properties of rainfall relevant for

  18. Rainfall reliability, drought and flood vulnerability in Botswana ∑

    African Journals Online (AJOL)

    DRINIE

    2003-10-04

    Oct 4, 2003 ... Rainfall data from 14 stations (cities, towns and major villages) spanning 26 years (1970 to 1995) were used to calculate reliability and vulnerability of rainfall in Botswana. Time series data for 72 years were generated from the long-term rainfall gauging stations and the number of wet and dry years ...

  19. Effect of rainfall on cropping pattern in mid Himalayan region

    African Journals Online (AJOL)

    hp

    The analysis of effect of rainfall during the last 20 years is needed to evaluate cropping pattern in the rain-fed region. In this study, trends in annual, seasonal and monthly rainfall of district of Himachal. Pradesh in India over the past 20 years were examined. The annual rainfall varies from 863.3 to 1470.0 mm. During the ...

  20. Development Of Rainfall Erosivity Map For Nigeria | Ogedengbe ...

    African Journals Online (AJOL)

    Rainfall data spanning about a period o 36 years, were used to compute rainfall erosivity indices for some selected stations in Nigeria. About 38 locations were selected, cutting across all the five agro-ecological zones of Nigeria. The Fournier index, which is defined as quotient of the squared sum of rainfall of wettest month ...

  1. Ostrich recruitment dynamics in relation to rainfall in the Mara ...

    African Journals Online (AJOL)

    Animal population dynamics can be driven by rainfall variability through its influence on habitat suitability, availability and nutritional sufficiency of forage. To understand how rainfall influences ostriches, we related changes in ostrich recruitment in the Mara–Serengeti ecosystem to rainfall. Over a 15-year period, monthly ...

  2. Prediction of rainfall in the southern highlands of Tanzania ...

    African Journals Online (AJOL)

    QBOu50 is also a weak predictor for OND rainfall. It is therefore recommended that IOD, QBou30, OLR, QBOu50 and ENSO should be considered in rainfall forecasting in the Southern Highlands of Tanzania. Key words: Collinearity, Multicollinearity, PCR model, Rainfall Variability, Southern Highlands of Tanzania ...

  3. Investigation of the influence of Atlantic ocean on rainfall variability ...

    African Journals Online (AJOL)

    The SVD analysis on the anomalous JJAS rainfall and anomalous Sea Surface Temperature (SST) in the Atlantic Ocean reveals two dominant coupled modes. The first couple mode that dominates the covariability between the anomalous rainfall and the SST reveals positive covariability between anomalous rainfall in ...

  4. Rainfall reliability, drought and flood vulnerability in Botswana ...

    African Journals Online (AJOL)

    Rainfall data from 14 stations (cities, towns and major villages) spanning 26 years (1970 to 1995) were used to calculate reliability and vulnerability of rainfall in Botswana. Time series data for 72 years were generated from the long-term rainfall gauging stations and the number of wet and dry years determined. Apart from ...

  5. Rainfall characteristics and thresholds for periglacial debris flows in ...

    Indian Academy of Sciences (India)

    Mingfeng Deng

    2018-02-14

    Feb 14, 2018 ... daily rainfall days among the different meteoro- logical stations corresponded well. In particular, rainfall days were more abundant in the down- stream area. The maximum daily rainfall (MDR) from 1961 to. 2015 at the Bomi meteorological station fluctuated wildly. Most of the MDR data were near the mean.

  6. prediction of rainfall in the southern highlands of tanzania

    African Journals Online (AJOL)

    User

    therefore recommended that IOD, QBou30, OLR, QBOu50 and ENSO should be considered in rainfall forecasting in the Southern Highlands of Tanzania. Key words: Collinearity, Multicollinearity, PCR model, Rainfall Variability, Southern Highlands of Tanzania. INTRODUCTION. Rainfall is an important parameter for crop.

  7. Evaluation of an artificial neural network rainfall disaggregation model.

    Science.gov (United States)

    Burian, S J; Durran, S R

    2002-01-01

    Previous research produced an artificial neural network (ANN) temporal rainfall disaggregation model. After proper training the model can disaggregate hourly rainfall records into sub-hourly time increments. In this paper we present results from continued evaluations of the performance of the ANN model specifically examining how the errors in the disaggregated rainfall hyetograph translate to errors in the prediction of the runoff hydrograph. Using a rainfall-runoff model of a hypothetical watershed we compare the runoff hydrographs produced by the ANN-predicted 15-minute increment rainfall pattern to runoff hydrographs produced by (1) the observed 15-minute increment rainfall pattern, (2) the observed hourly-increment rainfall pattern, and (3) the 15-minute increment rainfall pattern produced by a disaggregation model based on geometric similarity. For 98 test storms the peak discharges produced by the ANN model rainfall pattern had a median under-prediction of 16.6%. This relative error was less than the median under-prediction in peak discharge when using the observed 15-minute rainfall patterns aggregated to hourly increments (40.8%), and when using rainfall patterns produced by the geometric similarity rainfall disaggregation model (21.9%).

  8. Evaluation of critical storm duration rainfall estimates used in flood ...

    African Journals Online (AJOL)

    2010-12-08

    Dec 8, 2010 ... tion, Weddepohl (1988), highlighted that the malfunctioning of rainfall gauges, the spatial density and distribution of rainfall gauges, sporadic rainfall events as opposed to the continuous digitised data in use, length of available records and the pres- ence of outliers are all problems inherently contributing to.

  9. A comparison of spatial rainfall estimation techniques: a case study ...

    African Journals Online (AJOL)

    Many hydrological models for watershed management and planning require rainfall as an input in a continuous format. This study analyzed four different rainfall interpolation techniques in Nyando river basin, Kenya. Interpolation was done for a period of 30 days using 19 rainfall stations. Two geostatistical interpolation ...

  10. Rainfall interception of three trees in Oakland, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory McPherson

    2011-01-01

    A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8...

  11. Rainfall Intensity-Duration-Frequency relationship for Northern ...

    African Journals Online (AJOL)

    The annual maximum rainfall magnitudes of varying duration were abstracted from rainfall charts and fitted to theoretical frequency distributions and then extrapolation of values for larger return periods were made. The analysis of rainfall intensities was expressed using the IDF equation of the generalized mathematical form ...

  12. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha-1h-1) compared to winter (87MJmmha-1h-1). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in

  13. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    Science.gov (United States)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up

  14. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  15. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)

    lremy

    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  16. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs

    2012-01-01

    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  17. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.

    2014-01-01

    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  18. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  19. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the Diabetes Research in Children Network (DirecNet) experience

    Energy Technology Data Exchange (ETDEWEB)

    Barnea-Goraly, Naama; Marzelli, Matt J.; Mazaika, Paul K. [Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, CA (United States); Weinzimer, Stuart A. [Yale University, Pediatric Endocrinology, New Haven, CT (United States); Ruedy, Katrina J.; Beck, Roy W.; Kollman, Craig; Cheng, Peiyao [Jaeb Center for Health Research, Tampa, FL (United States); Mauras, Nelly; Fox, Larry [Nemours Children' s Clinic, Pediatric Endocrinology, Jacksonville, FL (United States); Aye, Tandy [Stanford University, Department of Pediatrics, Stanford, CA (United States); White, Neil H. [Washington University in St. Louis, Department of Pediatrics, St. Louis, MO (United States); Tsalikian, Eva [University of Iowa, Pediatric Endocrinology, Iowa City, IA (United States); Reiss, Allan L. [Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, CA (United States); Stanford University, Department of Pediatrics, Stanford, CA (United States); Stanford University, Department of Radiology, Diabetes Research in Children Network (DirecNet), Stanford, CA (United States); Collaboration: on behalf of the Diabetes Research in Children Network (DirecNet)

    2014-02-15

    The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. 222 children (4-9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. 205 children (92.3%), mean age 7 ± 1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. (orig.)

  20. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Korup Andersen, Aske; Larsen, Anders Badsberg

    2017-01-01

    Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme...... to a large number of projected series. In order to evaluate and select the rainfall series with matching statistical properties as the key target projections, an extensive evaluation procedure is developed....

  1. The water budget of heterogeneous areas : impact of soil and rainfall variability

    NARCIS (Netherlands)

    Kim, C.P.

    1995-01-01

    In this thesis the heterogeneity of the soil water budget components is investigated. Heterogeneity of soil hydraulic properties and rainfall rate are taken into account by using stochastic methods. The importance of lateral groundwater flow in causing heterogeneity of the water budget

  2. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    NARCIS (Netherlands)

    Sinai, G.; Dirksen, C.

    2006-01-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes

  3. Altering rainfall patterns through aerosol dispersion

    Science.gov (United States)

    Emetere, M. E.; Bakeko, M.; Onyechekwa, L.; Ayara, W.

    2017-05-01

    The possibility of recirculation mechanism on rainfall patterns is salient for sustenance of the human race through agricultural produce. The peculiarity of the lower atmosphere of south west region of Nigeria was explored using theoretical and experimental approach. In the theoretical approach, the reconstruction of 1D model as an extraction from the 3D aerosol dispersion model was used to examine the physics of the recirculation theory. The experimental approach which consists of obtaining dataset from ground instruments was used to provide on-site guide for developing the new recirculation theories. The data set was obtained from the Davis weather station, Nigeria Meteorological agency and Multi-angle Imaging Spectro-radiometer (MISR). We looked at the main drivers of recirculation and propounded that recirculation is a complex process which triggers a reordering of the mixing layer- a key factor for initiating the type of rainfall in this region.

  4. Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm

    Science.gov (United States)

    Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.

    2011-12-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA

  5. Development of an early warning system for extreme rainfall, surface inundation, and malaria in East Africa

    Science.gov (United States)

    Hirt, C.; Jensen, K.; McDonald, K. C.; Ceccato, P.

    2013-12-01

    Malaria is a major health issue in Eastern Africa. In this study, we focus on rainfall and surface inundation, which are both major environmental factors in the transmission and contraction of the disease. We use the two alternative forced choice (2AFC) score and other comparative methods to analyze the efficacy of using a six-day lead precipitation forecast to predict extreme precipitation and inundation events by comparing these forecasts to historical, satellite-based precipitation and inundation observations. We also investigate the dynamics between observed surface inundation, rainfall, and malaria incidence rates in four districts of Eritrea.

  6. Spatial variability of extreme rainfall at radar subpixel scale

    Science.gov (United States)

    Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2018-01-01

    Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.

  7. Probabilistic rainfall warning system with an interactive user interface

    Science.gov (United States)

    Koistinen, Jarmo; Hohti, Harri; Kauhanen, Janne; Kilpinen, Juha; Kurki, Vesa; Lauri, Tuomo; Nurmi, Pertti; Rossi, Pekka; Jokelainen, Miikka; Heinonen, Mari; Fred, Tommi; Moisseev, Dmitri; Mäkelä, Antti

    2013-04-01

    A real time 24/7 automatic alert system is in operational use at the Finnish Meteorological Institute (FMI). It consists of gridded forecasts of the exceedance probabilities of rainfall class thresholds in the continuous lead time range of 1 hour to 5 days. Nowcasting up to six hours applies ensemble member extrapolations of weather radar measurements. With 2.8 GHz processors using 8 threads it takes about 20 seconds to generate 51 radar based ensemble members in a grid of 760 x 1226 points. Nowcasting exploits also lightning density and satellite based pseudo rainfall estimates. The latter ones utilize convective rain rate (CRR) estimate from Meteosat Second Generation. The extrapolation technique applies atmospheric motion vectors (AMV) originally developed for upper wind estimation with satellite images. Exceedance probabilities of four rainfall accumulation categories are computed for the future 1 h and 6 h periods and they are updated every 15 minutes. For longer forecasts exceedance probabilities are calculated for future 6 and 24 h periods during the next 4 days. From approximately 1 hour to 2 days Poor man's Ensemble Prediction System (PEPS) is used applying e.g. the high resolution short range Numerical Weather Prediction models HIRLAM and AROME. The longest forecasts apply EPS data from the European Centre for Medium Range Weather Forecasts (ECMWF). The blending of the ensemble sets from the various forecast sources is performed applying mixing of accumulations with equal exceedance probabilities. The blending system contains a real time adaptive estimator of the predictability of radar based extrapolations. The uncompressed output data are written to file for each member, having total size of 10 GB. Ensemble data from other sources (satellite, lightning, NWP) are converted to the same geometry as the radar data and blended as was explained above. A verification system utilizing telemetering rain gauges has been established. Alert dissemination e.g. for

  8. Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata

    Directory of Open Access Journals (Sweden)

    Ferrara A

    2008-12-01

    Full Text Available Spatial interpolated climatic data on grids are important as input in forest modeling because climate spatial variability has a direct effect on productivity and forest growth. Maps of climatic variables can be obtained by different interpolation methods depending on data quality (number of station, spatial distribution, missed data etc. and topographic and climatic features of study area. In this paper four methods are compared to interpolate monthly rainfall at regional scale: 1 inverse distance weighting (IDW; 2 regularized spline with tension (RST; 3 ordinary kriging (OK; 4 universal kriging (UK. Besides, an approach to generate monthly surfaces of temperatures over regions of complex terrain and with limited number of stations is presented. Daily data were gathered from 1976 to 2006 period and then gaps in the time series were filled in order to obtain monthly mean temperatures and cumulative precipitation. Basic statistics of monthly dataset and analysis of relationship of temperature and precipitation to elevation were performed. A linear relationship was found between temperature and altitude, while no relationship was found between rainfall and elevation. Precipitations were then interpolated without taking into account elevation. Based on root mean squared error for each month the best method was ranked. Results showed that universal kriging (UK is the best method in spatial interpolation of rainfall in study area. Then cross validation was used to compare prediction performance of tree different variogram model (circular, spherical, exponential using UK algorithm in order to produce final maps of monthly precipitations. Before interpolating temperatures were referred to see level using the calculated lapse rate and a digital elevation model (DEM. The result of interpolation with RST was then set to originally elevation with an inverse procedure. To evaluate the quality of interpolated surfaces a comparison between interpolated and

  9. Impacts of Rainfall Variability and Expected Rainfall Changes on Cost-Effective Adaptation of Water Systems to Climate Change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.; Weikard, H.P.; Hendrix, E.M.T.

    2015-01-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change

  10. Analytical solutions to sampling effects in drop size distribution measurements during stationary rainfall: Estimation of bulk rainfall variables

    NARCIS (Netherlands)

    Uijlenhoet, R.; Porrà, J.M.; Sempere Torres, D.; Creutin, J.D.

    2006-01-01

    A stochastic model of the microstructure of rainfall is used to derive explicit expressions for the magnitude of the sampling fluctuations in rainfall properties estimated from raindrop size measurements in stationary rainfall. The model is a marked point process, in which the points represent the

  11. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    Science.gov (United States)

    Thorndahl, Søren; Korup Andersen, Aske; Badsberg Larsen, Anders

    2017-09-01

    Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme events. Due to climate change, however, these series are most likely not representative of future rainfall. There is therefore a demand for climate-projected long rainfall series, which can represent a specific region and rainfall pattern as well as fulfil requirements of long rainfall series which includes climate changes projected to a specific future period. This paper presents a framework for resampling of historical point rainfall series in order to generate synthetic rainfall series, which has the same statistical properties as an original series. Using a number of key target predictions for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads to a large number of projected series. In order to evaluate and select the rainfall series with matching statistical properties as the key target projections, an extensive evaluation procedure is developed.

  12. Rainfall Predictions From Global Salinity Anomalies

    Science.gov (United States)

    Schmitt, R. W.; Li, L.; Liu, T.

    2016-12-01

    We have discovered that sea surface salinity (SSS) is a better seasonal predictor of terrestrial rainfall than sea surface temperature (SST) or the usual pressure modes of atmospheric variability. In many regions, a 3-6 month lead of SSS over rainfall on land can be seen. While some lead is guaranteed due to the simple conservation of water and salt, the robust seasonal lead for SSS in some places is truly remarkable, often besting traditional SST and pressure predictors by a very significant margin. One mechanism for the lead has been identified in the recycling of water on land through soil moisture in regional ocean to land moisture transfers. However, a global search has yielded surprising long-range SSS-rainfall teleconnections. It is suggested that these teleconnections indicate a marked sensitivity of the atmosphere to where rain falls on the ocean. That is, the latent heat of evaporation is by far the largest energy transfer from ocean to atmosphere and where the atmosphere cashes in this energy in the form of precipitation is well recorded in SSS. SSS also responds to wind driven advection and mixing. Thus, SSS appears to be a robust indicator of atmospheric energetics and moisture transport and the timing and location of rainfall events is suggested to influence the subsequent evolution of the atmospheric circulation. In a sense, if the fall of a rain drop is at least equivalent to the flap of a butterfly's wings, the influence of a billion butterfly rainstorm allows for systematic predictions beyond the chaotic nature of the turbulent atmosphere. SSS is found to be particularly effective in predicting extreme precipitation or droughts, which makes its continued monitoring very important for building societal resilience against natural disasters.

  13. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  14. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    Science.gov (United States)

    Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.

    2017-05-01

    Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate.

  15. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  16. The Tropical Rainfall Measuring Mission (TRMM)

    Science.gov (United States)

    Simpson, Joanne; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steven J.; Christian, Hugh; hide

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  17. Rainfall-enhanced blooming in typhoon wakes

    Science.gov (United States)

    Lin, Y.; Oey, L. Y.

    2016-12-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  18. Waterscape determinants of net mercury methylation in a tropical wetland.

    Science.gov (United States)

    Lázaro, Wilkinson L; Díez, Sergi; da Silva, Carolina J; Ignácio, Áurea R A; Guimarães, Jean R D

    2016-10-01

    The periphyton associated with freshwater macrophyte roots is the main site of Hg methylation in different wetland environments in the world. The aim of this study was to test the use of connectivity metrics of water bodies, in the context of patches, in a tropical waterscape wetland (Guapore River, Amazonia, Brazil) as a predictor of potential net methylmercury (MeHg) production by periphyton communities. We sampled 15 lakes with different patterns of lateral connectivity with the main river channel, performing net mercury methylation potential tests in incubations with local water and Eichhornia crassipes root-periphyton samples, using (203)HgCl2 as a tracer. Physico-chemical variables, landscape data (morphological characteristics, land use, and lateral connection type of water bodies) using GIS resources and field data were analyzed with Generalized Additive Models (GAM). The net Me(203)Hg production (as % of total added (203)Hg) was expressive (6.2-25.6%) showing that periphyton is an important matrix in MeHg production. The model that best explained the variation in the net Me(203)Hg production (76%) was built by the variables: connection type, total phosphorus and dissolved organic carbon (DOC) in water (AICc=48.324, p=0.001). Connection type factor was the best factor to model fit (r(2)=0.32; p=0.008) and temporarily connected lakes had higher rates of net mercury methylation. Both DOC and total phosphorus showed positive significant covariation with the net methylation rates (r(2)=0.26; p=0.008 and r(2)=0.21; p=0.012 respectively). Our study suggests a strong relationship between rates of net MeHg production in this tropical area and the type of water body and its hydrological connectivity within the waterscape. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Army Net Zero Prove Out. Army Net Zero Training Report

    Science.gov (United States)

    2014-11-20

    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  20. Army Net Zero Prove Out. Net Zero Waste Best Practices

    Science.gov (United States)

    2014-11-20

    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , the...technology and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  1. Relationship between Indian and East Asian summer rainfall variations

    Science.gov (United States)

    Wu, Renguang

    2017-01-01

    The Indian and East Asian summer monsoons are two components of the whole Asian summer monsoon system. Previous studies have indicated in-phase and out-of-phase variations between Indian and East Asian summer rainfall. The present study reviews the current understanding of the connection between Indian and East Asian summer rainfall. The review covers the relationship of northern China, southern Japan, and South Korean summer rainfall with Indian summer rainfall; the atmospheric circulation anomalies connecting Indian and East Asian summer rainfall variations; the long-term change in the connection between Indian and northern China rainfall and the plausible reasons for the change; and the influence of ENSO on the relationship between Indian and East Asian summer rainfall and its change. While much progress has been made about the relationship between Indian and East Asian summer rainfall variations, there are several remaining issues that need investigation. These include the processes involved in the connection between Indian and East Asian summer rainfall, the non-stationarity of the connection and the plausible reasons, the influences of ENSO on the relationship, the performance of climate models in simulating the relationship between Indian and East Asian summer rainfall, and the relationship between Indian and East Asian rainfall intraseasonal fluctuations.

  2. Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data

    Directory of Open Access Journals (Sweden)

    Hongfen Teng

    2017-11-01

    Full Text Available Soil erosion is a global issue that threatens food security and causes environmental degradation. Management of water erosion requires accurate estimates of the spatial and temporal variations in the erosive power of rainfall (erosivity. Rainfall erosivity can be estimated from rain gauge stations and satellites. However, the time series rainfall data that has a high temporal resolution are often unavailable in many areas of the world. Satellite remote sensing allows provision of the continuous gridded estimates of rainfall, yet it is generally characterized by significant bias. Here we present a methodology that merges daily rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM 3B42 data using collocated cokriging (ColCOK to quantify the spatial distribution of rainfall and thereby to estimate rainfall erosivity across China. This study also used block kriging (BK and TRMM to estimate rainfall and rainfall erosivity. The methodologies are evaluated based on the individual rain gauge stations. The results from the present study generally indicate that the ColCOK technique, in combination with TRMM and gauge data, provides merged rainfall fields with good agreement with rain gauges and with the best accuracy with rainfall erosivity estimates, when compared with BK gauges and TRMM alone.

  3. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability.

    Directory of Open Access Journals (Sweden)

    Aurora eGaxiola

    2015-03-01

    Full Text Available Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer-months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15 to 240 mm. Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for decidous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.

  4. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  5. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library

    DONG, SHUCHUANG; HU, FUXIANG; KUMAZAWA, TAISEI; SIODE, DAISUKE; TOKAI, TADASHI

    2016-01-01

      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  6. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    order to guarantee quality of the assessment, especially in design of complex UDS, where features as the main slope, hydraulic capacity, permeability, etc. can play an important role. In addition, a novel approach has been applied to map the response time (Tc) of the flood prone areas of the system under study. Together with the flood area and volume RP estimates this provides valuable knowledge suggesting to consider the different subareas of the UDS for design purposes and to establish a robust database that allows urban areas to be resilient against the severe impact of rainfall. Acknowledgement to ERA-NET Cofund Water Works 2014 (project MUFFIN) for the partial funding of this research; to the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI) for providing the rainfall dataset; to the Danish Geodata Agency for providing the DTM data and to DHI for providing license to MIKE software packages. The applied model has been made available for this study by Aarhus Water Utility Services. References DHI, 2014. MIKE by DHI software package 2014. Hørsholm, DK. DS/EN 752, 2008. Drain and sewer systems outside buildings.

  7. Evaluating rainfall errors in global climate models through cloud regimes

    Science.gov (United States)

    Tan, Jackson; Oreopoulos, Lazaros; Jakob, Christian; Jin, Daeho

    2017-07-01

    Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model's accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.

  8. Comparison of different synthetic 5-min rainfall time series on the results of rainfall runoff simulations in urban drainage modelling

    Science.gov (United States)

    Krämer, Stefan; Rohde, Sophia; Schröder, Kai; Belli, Aslan; Maßmann, Stefanie; Schönfeld, Martin; Henkel, Erik; Fuchs, Lothar

    2015-04-01

    The design of urban drainage systems with numerical simulation models requires long, continuous rainfall time series with high temporal resolution. However, suitable observed time series are rare. As a result, usual design concepts often use uncertain or unsuitable rainfall data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic rainfall data as input for urban drainage modelling are advanced, tested, and compared. Synthetic rainfall time series of three different precipitation model approaches, - one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model-, are provided for three catchments with different sewer system characteristics in different climate regions in Germany: - Hamburg (northern Germany): maritime climate, mean annual rainfall: 770 mm; combined sewer system length: 1.729 km (City center of Hamburg), storm water sewer system length (Hamburg Harburg): 168 km - Brunswick (Lower Saxony, northern Germany): transitional climate from maritime to continental, mean annual rainfall: 618 mm; sewer system length: 278 km, connected impervious area: 379 ha, height difference: 27 m - Friburg in Brisgau (southern Germany): Central European transitional climate, mean annual rainfall: 908 mm; sewer system length: 794 km, connected impervious area: 1 546 ha, height difference 284 m Hydrodynamic models are set up for each catchment to simulate rainfall runoff processes in the sewer systems. Long term event time series are extracted from the - three different synthetic rainfall time series (comprising up to 600 years continuous rainfall) provided for each catchment and - observed gauge rainfall (reference rainfall) according national hydraulic design

  9. Uncertainty of Areal Rainfall Estimation Using Point Measurements

    Science.gov (United States)

    McCarthy, D.; Dotto, C. B. S.; Sun, S.; Bertrand-Krajewski, J. L.; Deletic, A.

    2014-12-01

    The spatial variability of precipitation has a great influence on the quantity and quality of runoff water generated from hydrological processes. In practice, point rainfall measurements (e.g., rain gauges) are often used to represent areal rainfall in catchments. The spatial rainfall variability is difficult to be precisely captured even with many rain gauges. Thus the rainfall uncertainty due to spatial variability should be taken into account in order to provide reliable rainfall-driven process modelling results. This study investigates the uncertainty of areal rainfall estimation due to rainfall spatial variability if point measurements are applied. The areal rainfall is usually estimated as a weighted sum of data from available point measurements. The expected error of areal rainfall estimates is 0 if the estimation is an unbiased one. The variance of the error between the real and estimated areal rainfall is evaluated to indicate the uncertainty of areal rainfall estimates. This error variance can be expressed as a function of variograms, which was originally applied in geostatistics to characterize a spatial variable. The variogram can be evaluated using measurements from a dense rain gauge network. The areal rainfall errors are evaluated in two areas with distinct climate regimes and rainfall patterns: Greater Lyon area in France and Melbourne area in Australia. The variograms of the two areas are derived based on 6-minute rainfall time series data from 2010 to 2013 and are then used to estimate uncertainties of areal rainfall represented by different numbers of point measurements in synthetic catchments of various sizes. The error variance of areal rainfall using one point measurement in the centre of a 1-km2 catchment is 0.22 (mm/h)2 in Lyon. When the point measurement is placed at one corner of the same-size catchment, the error variance becomes 0.82 (mm/h)2 also in Lyon. Results for Melbourne were similar but presented larger uncertainty. Results

  10. Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia

    Science.gov (United States)

    Deo, Anil; Walsh, Kevin J. E.

    2016-11-01

    In this study the rainfall drop size distribution (DSD) during the passage of seven tropical cyclones (TCs) over Darwin is compared and contrasted with that associated with non-tropical cyclone (non-TC) events, using the impact disdrometer data at the Darwin Atmospheric Radiation and Measurement (ARM) site. The disparity of the DSD with respect to rainfall types (between TC and non-TC conditions) and distance from TC centre is also examined. It is shown that TC DSDs are statistically different from the non-TC DSDs, the former encompassing a larger concentration of small to moderate drop sizes. The TC mass-weighted mean diameter (Dm) is lower than the non-TC values at all rain rates and also for the different precipitation types (convective, transition and stratiform). The TC DSD varies with distance from the TC centre, as rainfall near the TC centre (< 60 km) comprises of relatively smaller drops which are strongly evident at small to moderate rain rates (< 30 mm h- 1). Such variations in the DSD have implications for the parameters used in the algorithm that converts radar reflectivity to rainfall rate in TCs, as well as for the analytical expressions used in describing the observed DSD employed in cloud modelling parameterizations.

  11. Potential of satellite rainfall products to predict Niger River flood events in Niamey

    Science.gov (United States)

    Casse, C.; Gosset, M.; Peugeot, C.; Pedinotti, V.; Boone, A.; Tanimoun, B. A.; Decharme, B.

    2015-09-01

    A dramatic increase in the frequency and intensity of flood events in the city of Niamey, Niger, has been observed in the last decade. The Niger River exhibits a double outflow peak in Niamey. The first peak, is due to the rainfall occurring within about 500 km of Niamey. It has reached high values in recent years and caused four drastic flood events since 2000. This paper analyses the potential of satellite rainfall products combined with hydrological modelling to monitor these floods. The study focuses on the 125,000 km2 area in the vicinity of Niamey, where local runoff supplies the first flood. Six rainfall products are tested : a gauge only product - the Climate Prediction Centre (CPC); two gauge adjusted satellite products - the Tropical Rainfall Measurement Mission (TRMM) Multi-Platform Analysis (TMPA 3B42v7) and the CPC regional product African Rainfall Estimate (RFE version 2); and three satellite only products, 3B42RT, the CPC Morphing method (CMORPH) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN). The products are first inter-compared over the region of interest. Differences in terms of rainfall amount, number of rainy days, spacial extension of the rainfall events and frequency distribution of the rain rates are highlighted. The satellite only products provide more rain than the gauge adjusted ones. The hydrological model ISBA-TRIP is forced with the six products and the simulated discharge is analysed and compared with the discharge observed in Niamey over the period 2000 to 2013. The simulations based on the satellite only rainfall produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some skills in detecting the relatively heavy rainfall that preceded the flood and in

  12. Isolated unit tests in .Net

    OpenAIRE

    Haukilehto, Tero

    2013-01-01

    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  13. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System for Sicily

    Directory of Open Access Journals (Sweden)

    G. Brigandì

    2017-09-01

    Full Text Available The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System, specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF. The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall–streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall–runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall–runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015 have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002–2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall

  14. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  15. Aktivasi Keterlibatan Publik dalam Program Berita ‘NET 10’

    Directory of Open Access Journals (Sweden)

    Dinar Safa Anggraeni

    2017-06-01

    Full Text Available This research entitled Activation of The Public Engagement in `NET 10` News Program. An intrinsic case study by Robert E. Stake on Activating The Public Engagement in `NET 10` Citizen Journalism NET TV’s News Program. This research aimed to understand NET TV’s public management strategy in 'NET 10' news program. In addition, this research also aimed to determine how the editorial staff considere the standard of news value and news judgment on citizen journalist news, and the function of public sphere in the mass media of citizen journalism. The method used qualitative research with intrinsic case study approach by Robert E. Stake to NET TV’s editorial. The results showed the editorial’s strategy of public management by following action: (1 provided easily of joining  'NET CJ', (2 created  campaigns to increase the number of CJ, (3 nature CJ by keeping good and giving relationship evaluations, (4 provides rewards for the creator of CJ news aired in 'NET 10', and (5 educates CJ in making a citizen journalism news. NET TV used curation techniques in the process of citizen journalism news gatekeeper to keep the news value and news judment standard of citizen journalism news. Unfortunately, ‘NET 10’’s citizen journalism news rate of the proportion of news comprehensive continues to fall down because the editorial put loyalty forward. 'NET CJ' act as a opinions catalyst of the citizens to the government.

  16. Rainfall thresholds for possible landslide occurrence in Italy

    Science.gov (United States)

    Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto

    2017-08-01

    The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we

  17. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni

    2008-01-01

    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  18. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W

    2003-01-01

    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  19. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  20. Hydrological assessment of TRMM rainfall data over Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    Huang-he Gu

    2010-12-01

    Full Text Available High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.

  1. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    Science.gov (United States)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  2. Extreme rainfall events in the Sinai Peninsula

    Science.gov (United States)

    Baldi, Marina; Amin, Doaa; Zayed, Islam Sabry Al; Dalu, Giovanni A.

    2017-04-01

    In the present paper Authors discuss results from the first phase of a project carried out in the framework of the Agreement on Scientific Cooperation between the Academy of Scientific Research and Technology of Egypt (ASRT) and the National Research Council of Italy (CNR). As in ancient times, today heavy rainfall, often resulting in flash floods, affects Egypt, not only in the coastal areas along the Mediterranean Sea and the Red Sea, but also in arid and semi-arid areas such as Upper Egypt (Luxor, Aswan, and Assiut) and in the Sinai Peninsula, and their distribution has been modified due to the current climate variability. These episodes, although rare, can be catastrophic in regions characterized by a very low annual total amount of precipitation, with large impacts on lives, infrastructures, properties and last but not least, to the great cultural heritage of the Country. Flash flood episodes in the Sinai Peninsula result from heavy, sudden, and short duration rainfall, influenced also by the peculiar orography and soil conditions of the Region, and represent a risk for the population, infrastructures, properties, and sectors like industry and agriculture. On the other hand, flash floods in Sinai and southern/southeastern Egypt represent a potential source for non-conventional fresh water resources. In particular flash flood water, which usually drains into the Gulf of Suez and the Gulf of Aqaba, can fulfill a non-negligible amount of water demand, and/or recharge shallow groundwater aquifers, and the harvested rainfall can represent a source of water for rain-fed agriculture in the region. A general overview of the Sinai current climate is presented, including a climatology of extreme rainfalls events in the last decades. In addition, few selected heavy rainfall episodes which occurred in the Sinai in recent years have been analyzed and their characteristics and links to larger scale circulation will be discussed. Results of the study provide a better

  3. Sources of Uncertainty in Rainfall Maps from Cellular Communication Networks

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Accurate measurements of rainfall are important in many hydrological applications, for instance, flash-flood early-warning systems, hydraulic structures design, agriculture, weather forecasting, and climate modelling. Rainfall intensities can be retrieved from (commercial) microwave link networks. Whenever possible, link networks measure and store the decrease in power of the electromagnetic signal at regular intervals. The decrease in power is largely due to the attenuation by raindrops along the link paths. Such an alternative technique fulfills the continuous strive for measurements of rainfall in time and space at higher resolutions, especially in places where traditional rain gauge networks are scarce or poorly maintained. Rainfall maps from microwave link networks have recently been introduced at country-wide scales. Despite their potential in rainfall estimation at high spatiotemporal resolutions, the uncertainties present in rainfall maps from link networks are not yet fully comprehended. The aim of this work is to identify and quantify the sources of uncertainty present in interpolated rainfall maps from link rainfall depths. In order to disentangle these sources of uncertainty, we classified them into two categories: (1) those associated with the individual microwave link measurements, i.e., the physics involved in the measurements such as wet antenna attenuation, sampling interval of measurements, wet/dry period classification, drop size distribution (DSD), and multi-path propagation; (2) those associated with mapping, i.e., the combined effect of the interpolation methodology, the spatial density of the network, and the availability of link measurements. We computed ~ 3500 rainfall maps from real and simulated link rainfall depths for 12 days for the land surface of The Netherlands. These rainfall maps were compared against quality-controlled gauge-adjusted radar rainfall fields (assumed to be the ground truth). Thus, we were able to not only identify

  4. Towards new information resources for public health--from WordNet to MedicalWordNet.

    Science.gov (United States)

    Fellbaum, Christiane; Hahn, Udo; Smith, Barry

    2006-06-01

    In the last two decades, WordNet has evolved as the most comprehensive computational lexicon of general English. In this article, we discuss its potential for supporting the creation of an entirely new kind of information resource for public health, viz. MedicalWordNet. This resource is not to be conceived merely as a lexical extension of the original WordNet to medical terminology; indeed, there is already a considerable degree of overlap between WordNet and the vocabulary of medicine. Instead, we propose a new type of repository, consisting of three large collections of (1) medically relevant word forms, structured along the lines of the existing Princeton WordNet; (2) medically validated propositions, referred to here as medical facts, which will constitute what we shall call MedicalFactNet; and (3) propositions reflecting laypersons' medical beliefs, which will constitute what we shall call the MedicalBeliefNet. We introduce a methodology for setting up the MedicalWordNet. We then turn to the discussion of research challenges that have to be met to build this new type of information resource. We build a database of sentences relevant to the medical domain. The sentences are generated from WordNet via its relations as well as from medical statements broken down into elementary propositions. Two subcorpora of sentences are distinguished, MedicalBeliefNet and MedicalFactNet. The former is rated for assent by laypersons; the latter for correctness by medical experts. The sentence corpora will be valuable for a variety of applications in information retrieval as well as in research in linguistics and psychology with respect to the study of expert and non-expert beliefs and their linguistic expressions. Our work has to meet several considerable challenges. These include accounting for the distinction between medical experts and laypersons, the social issues of expert-layperson communication in different media, the linguistic aspects of encoding medical knowledge, and

  5. PsychoNet: a psycholinguistc commonsense ontology

    OpenAIRE

    Mohtasseb, Haytham; Ahmed, Amr

    2010-01-01

    Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization...

  6. Online radicalization: the net or the netizen?

    Directory of Open Access Journals (Sweden)

    Femi Richard Omotoyinbo

    2014-10-01

    of two categories that include the broad category and the jargon category. The Netizen in the former category was later on conceived as the principal cause of online radicalization.Research limitations/implications - The study averred that all attempts/measures to bring about a reversal in the status quo of online radicalization [De-Radicalization measures] should be directly applied to the principal cause, which is the Netizen. Although the content of the de-radicalization measures were not fully provided by this study due to the reason that the contents can best be supplied by almost everyone that has a vivid understanding of online radicalization. The study continues to affirm that the application of the measures of de-radicalization on the Netizen will bring a corresponding ameliorative effect on the Net against its perpetuation of online radicalization.Practical implications - It is important for domain name providers, governments, internet service providers, mass media, NGOs, parents, politicians, religious organisations, schools, teachers, and web hosting companies to collaborate to create practicable contents for a Gradual Online De-Radicalization (G.O.D which will suppress the perturbing rate of Online Radicalization to the minimal. No unit or sector can singly tackle online radicalization effectively. Therefore, measures of De-Radicalization should be governed by international treaties and laws, and there should be credible agents to legislate and execute the laws respectively.Originality and value - This study broadens the possibilities of reducing online radicalization to the barest minimum globally with some novel strategies categorized broadly as Gradual Online De-Radicalization (G.O.D. The analytic methods applied were plausible skills from the realm of Philosophy and Science respectively. Thus, the findings and suggestions of this study are considered reasonable and universally pragmatic.Research type - general review and viewpoint.

  7. Properties of Extreme Point Rainfall I

    DEFF Research Database (Denmark)

    Harremoës, Poul; Mikkelsen, Peter Steen

    1995-01-01

    Extreme rainfall has been recorded by the larger municipalities in Denmark since 1933. National intensity-duration-frequency curves were produced on this basis for engineering application in the whole of Denmark. In 1979, on the initiative of The Danish Water Pollution Control Committee under...... The Society of Danish Engineers, the old municipal rain gauges for measuring extreme rain were exchanged with a modern system of gauges tabbed electronically from a central computer at The Danish Meteorological Institute. The data have revealed a geographical variability that calls for revision...

  8. Long term oscillations in Danish rainfall extremes

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan

    The frequent flooding of European cities within the last decade has motivated a vast number of studies, among others addressing the non-stationary behaviour of hydrological extremes driven by anthropogenic climate change. However, when considering future extremes it also becomes relevant to search...... for and understand natural variations on which the anthropogenic changes are imposed. This study identifies multi-decadal variations in six 137-years-long diurnal rainfall series from Denmark and southern Sweden, focusing on extremes with a reoccurrence level relevant for Danish drainage design. By means of a Peak...

  9. 78 FR 72451 - Net Investment Income Tax

    Science.gov (United States)

    2013-12-02

    ... Revenue Service 26 CFR Part 1 RIN 1545-BL74 Net Investment Income Tax AGENCY: Internal Revenue Service...). These regulations provide guidance on the computation of net investment income. The regulations affect... lesser of: (A) The individual's net investment income for such taxable year, or (B) the excess (if any...

  10. 47 CFR 69.302 - Net investment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account...

  11. 47 CFR 65.450 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  12. 47 CFR 65.500 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  13. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David

    2014-01-01

    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  14. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro

    1995-01-01

    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...

  15. 27 CFR 4.37 - Net contents.

    Science.gov (United States)

    2010-04-01

    ... the volume of wine within the container, except that the following tolerances shall be allowed: (1... THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is...

  16. The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-Chuan

    2017-04-01

    It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5

  17. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    Directory of Open Access Journals (Sweden)

    Natalie Melissa McLean

    2015-01-01

    Full Text Available End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS regional climate model (RCM under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD and extreme rainfall (R95P than consecutive dry days (CDD, wet days (R10, and maximum 5-day precipitation (RX5. Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana. Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean.

  19. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application.

    Science.gov (United States)

    Yao, Yibin; Shan, Lulu; Zhao, Qingzhi

    2017-09-29

    Global Navigation Satellite System (GNSS) can effectively retrieve precipitable water vapor (PWV) with high precision and high-temporal resolution. GNSS-derived PWV can be used to reflect water vapor variation in the process of strong convection weather. By studying the relationship between time-varying PWV and rainfall, it can be found that PWV contents increase sharply before raining. Therefore, a short-term rainfall forecasting method is proposed based on GNSS-derived PWV. Then the method is validated using hourly GNSS-PWV data from Zhejiang Continuously Operating Reference Station (CORS) network of the period 1 September 2014 to 31 August 2015 and its corresponding hourly rainfall information. The results show that the forecasted correct rate can reach about 80%, while the false alarm rate is about 66%. Compared with results of the previous studies, the correct rate is improved by about 7%, and the false alarm rate is comparable. The method is also applied to other three actual rainfall events of different regions, different durations, and different types. The results show that the method has good applicability and high accuracy, which can be used for rainfall forecasting, and in the future study, it can be assimilated with traditional weather forecasting techniques to improve the forecasted accuracy.

  20. Past, present and future variations of extreme rainfall in Denmark

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow

    of non-stationary extreme rainfall behaviour, in Denmark as well as worldwide. To provide recommendations on future design intensities it is necessary to explore and understand patterns of temporal variation in urban design rainfall and identify potential drivers behind past, present and future changes....... In addition, there is a need for an extreme value model that can include both regional and temporal explanatory variables, evaluate their significance and on this basis estimate the design rainfall. Both topics are addressed in this thesis. The analysed data material includes 137 years of observed daily...... of sub-daily extreme rainfall have increased over the last 34 years. Analysis of the long daily rainfall series show that the number of extreme rainfall events, smoothed by a 10-year moving average, fluctuates between periods of relative high and periods of relatively low number of extremes. The increase...

  1. Main diurnal cycle pattern of rainfall in East Java

    Science.gov (United States)

    Rais, Achmad Fahruddin; Yunita, Rezky

    2017-08-01

    The diurnal cycle pattern of rainfall was indicated as an intense feature in East Java. The research of diurnal cycle generally was only based on satellite estimation which had limitations in accuracy and temporal resolution. The hourly rainfall data of Climate Prediction Center Morphing Technique (CMORPH) and gauge were blended using the best correction method between transformation distribution (DT) and quantile mapping (QM) to increase the accuracy. We used spatiotemporal composite to analyse the concentration patterns of maximum rainfall and principal component analysis (PCA) to identify the spatial and temporal dominant patterns of diurnal rainfall. QM was corrected CMORPH data since it was best method. The eastern region of East Java had a rainfall peak at 14 local time (LT) and the western region had a rainfall peak at 16 LT.

  2. Spatial-temporal rainfall fields: modelling and statistical aspects

    Directory of Open Access Journals (Sweden)

    H. S. Wheater

    2000-01-01

    Full Text Available The HYREX experiment has provided a data set unique in the UK, with a dense network of raingauges available for studying the rainfall at a fine local scale and a network of radar stations allowing detailed examination of the spatial and temporal structure of rainfall at larger scales. In this paper, the properties and characteristics of the rainfall process, as measured by the HYREX recording network of rainguages and radars, are studied from a statistical perspective. The results of these analyses are used to develop various models of the rainfall process, for use in hydrological applications. Some typical results of these various modelling exercises are presented. Keywords: Rainfall statistics, rainfall models, hydrological design

  3. Satellite and gauge rainfall merging using geographically weighted regression

    Directory of Open Access Journals (Sweden)

    Q. Hu

    2015-05-01

    Full Text Available A residual-based rainfall merging scheme using geographically weighted regression (GWR has been proposed. This method is capable of simultaneously blending various satellite rainfall data with gauge measurements and could describe the non-stationary influences of geographical and terrain factors on rainfall spatial distribution. Using this new method, an experimental study on merging daily rainfall from the Climate Prediction Center Morphing dataset (CMOROH and gauge measurements was conducted for the Ganjiang River basin, in Southeast China. We investigated the capability of the merging scheme for daily rainfall estimation under different gauge density. Results showed that under the condition of sparse gauge density the merging rainfall scheme is remarkably superior to the interpolation using just gauge data.

  4. NET 40 Generics Beginner's Guide

    CERN Document Server

    Mukherjee, Sudipta

    2012-01-01

    This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy.

  5. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding

    2015-01-01

    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...... marker is proven to erroneously yield a positive NRI. Some insight into this phenomenon is provided. Since large values for the NRI statistic may simply be due to use of poorly fitting risk models, we suggest caution in using the NRI as the basis for marker evaluation. Other measures of prediction...

  6. Possibilistic Fuzzy Net Present Value Model and Application

    Directory of Open Access Journals (Sweden)

    S. S. Appadoo

    2014-01-01

    Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.

  7. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  8. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  9. Effects of rainfall acidification on plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D. S.; Cowling, E. B.

    1978-01-01

    Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The chemical nature of the aqueous microenvironment at the infection court is a potentially significant factor in the successful dissemination, establishment, and survival of plant pathogenic microorganisms. Acidic rainfall has a potential for influencing not only the pathogen, but also the host organism, and the host-pathogen complex. Although host-pathogen interactions add a degree of complexity to the study of abiotic environmental stress of plants, it is our hope, through the use of a combination of general concepts, theoretical postulations, and experimental data, to describe the potential role that rainfall acidity may play in the often subtle balance between populations of plants and populations of plant pathogens. The direct effects of acidic precipitation on vegetation are becoming increasingly better understood. The indirect consequences of both acute and chronic exposure of vegetation to acidic precipitation are very complex, however. Their effect is variable in time, and involves a variety of potential interactions which are only partially understood.

  10. Response mechanism of post-earthquake slopes under heavy rainfall

    Science.gov (United States)

    Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang

    2017-07-01

    This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.

  11. Short communication First rainfall data from the KZN Drakensberg ...

    African Journals Online (AJOL)

    Rainfall measured on the KwaZulu-Natal Drakensberg escarpment, the first from above 2 800m a.s.l., are presented from two locations. Total rainfall at the top of Sani Pass (2 850 m a.s.l.) in the southern Drakensberg was 742 mm in 2002, while the January months of 2002 and 2003 averaged 109 mm. Rainfall on Sentinel ...

  12. Interception of rainfall in a hedgerow apple orchard

    Science.gov (United States)

    De Miranda, R. A. Calheiros; Butler, D. R.

    1986-10-01

    Measurements of incident rainfall for an orchard, and throughfall and stemflow under the crowns of apple trees are presented for a 3-month period. The variability of throughfall under a single tree and between trees is assessed and equations to estimate interception loss, throughfall and stemflow from incident rainfall are given. During the period of assessment, the overall interception loss in the rows was about 15% of the incident rainfall.

  13. Spatial-temporal rainfall fields: modelling and statistical aspects

    OpenAIRE

    H. S. Wheater; Isham, V. S.; Cox, D. R.; Chandler, R. E.; A. Kakou; Northrop, P. J.; L. Oh; Onof, C.; Rodriguez-Iturbe, I.

    2000-01-01

    The HYREX experiment has provided a data set unique in the UK, with a dense network of raingauges available for studying the rainfall at a fine local scale and a network of radar stations allowing detailed examination of the spatial and temporal structure of rainfall at larger scales. In this paper, the properties and characteristics of the rainfall process, as measured by the HYREX recording network of rainguages and radars, are studied from a statistical perspective. The results of these an...

  14. Spatial-temporal rainfall fields: modelling and statistical aspects

    OpenAIRE

    H. S. Wheater; Isham, V. S.; Cox, D. R.; Chandler, R. E.; A. Kakou; Northrop, P. J.; L. Oh; Onof, C.; Rodriguez-Iturbe, I.

    2000-01-01

    International audience; The HYREX experiment has provided a data set unique in the UK, with a dense network of raingauges available for studying the rainfall at a fine local scale and a network of radar stations allowing detailed examination of the spatial and temporal structure of rainfall at larger scales. In this paper, the properties and characteristics of the rainfall process, as measured by the HYREX recording network of rainguages and radars, are studied from a statistical perspective....

  15. Influence of throat configuration and fish density on escapement of channel catfish from hoop nets

    Science.gov (United States)

    Porath, Mark T.; Pape, Larry D.; Richters, Lindsey K.

    2011-01-01

    In recent years, several state agencies have adopted the use of baited, tandemset hoop nets to assess lentic channel catfish Ictalurus punctatus populations. Some level of escapement from the net is expected because an opening exists in each throat of the net, although factors influencing rates of escapement from hoop nets have not been quantified. We conducted experiments to quantify rates of escapement and to determine the influence of throat configuration and fish density within the net on escapement rates. An initial experiment to determine the rate of escapement from each net compartment utilized individually tagged channel catfish placed within the entrance (between the two throats) and cod (within the second throat) compartments of a single hoop net for overnight sets. From this experiment, the mean rate (±SE) of channel catfish escaping was 4.2% (±1.5) from the cod (cod throat was additionally restricted from the traditionally manufactured product), and 74% (±4.2) from the entrance compartments. In a subsequent experiment, channel catfish were placed only in the cod compartment with different throat configurations (restricted or unrestricted) and at two densities (low [6 fish per net] and high [60 fish per net]) for overnight sets to determine the influence of fish density and throat configuration on escapement rates. Escapement rates between throat configurations were doubled at low fish density (13.3 ± 5.4% restricted versus 26.7 ± 5.6% unrestricted) and tripled at high fish density (14.3 ± 4.9% restricted versus 51.9 ± 5.0% unrestricted). These results suggest that retention efficiency is high from cod compartments with restricted throat entrances. However, managers and researchers need to be aware that modification to the cod throats (restrictions) is needed for hoop nets ordered from manufacturers. Managers need to be consistent in their use and reporting of cod end throat configurations when using this gear.

  16. Rainfall in and near Du Page County, Illinois, February 1986-September 1991

    Science.gov (United States)

    Duncker, J.J.; Vail, T.J.; Earle, J.D.

    1993-01-01

    Rainfall for 14 rainfall-gaging stations located in and near Du Page County, Illinois, are presented. The rainfall data were collected from February 1986 through September 1991 as part of an on-going cooperative rainfall-runoff investigation. Station descriptions identify the location of and equpiment installed at each rainfall-gaging station. Total daily rainfall is tabulated for each rainfall-gaging staion for each water year. Periods of missing record and snow-affected precipitation totals are identified.

  17. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  18. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  19. Pattern-oriented memory interpolation of sparse historical rainfall records

    Science.gov (United States)

    Matos, J. P.; Cohen Liechti, T.; Portela, M. M.; Schleiss, A. J.

    2014-03-01

    The pattern-oriented memory (POM) is a novel historical rainfall interpolation method that explicitly takes into account the time dimension in order to interpolate areal rainfall maps. The method is based on the idea that rainfall patterns exist and can be identified over a certain area by means of non-linear regressions. Having been previously benchmarked with a vast array of interpolation methods using proxy satellite data under different time and space availabilities, in the scope of the present contribution POM is applied to rain gauge data in order to produce areal rainfall maps. Tested over the Zambezi River Basin for the period from 1979 to 1997 (accurate satellite rainfall estimates based on spaceborne instruments are not available for dates prior to 1998), the novel pattern-oriented memory historical interpolation method has revealed itself as a better alternative than Kriging or Inverse Distance Weighing in the light of a Monte Carlo cross-validation procedure. Superior in most metrics to the other tested interpolation methods, in terms of the Pearson correlation coefficient and bias the accuracy of POM's historical interpolation results are even comparable with that of recent satellite rainfall products. The new method holds the possibility of calculating detailed and performing daily areal rainfall estimates, even in the case of sparse rain gauging grids. Besides their performance, the similarity to satellite rainfall estimates inherent to POM interpolations can contribute to substantially extend the length of the rainfall series used in hydrological models and water availability studies in remote areas.

  20. Extreme Rainfall Indices for Tropical Monsoon Countries in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Kusumastuti, C.

    2014-01-01

    Full Text Available Southeast Asian countries have the possibility to have rainfall and number of extreme rainfall event change due to future climate variation. This paper proposed three extreme rainfall indices as a modification of climate extremes indices from CLIMDEX Project by researchers at the Climate Change Research Centre (CCRC, the University of New South Wales (UNSW. The proposed indices aim to be used as a parameter for observing extreme rainfall events in tropical monsoon countries. Eleven extreme precipitation indices from CLIMDEX Project and the three proposed extreme precipitation for tropical monsoon countries are systematically analyzed based on data of daily rainfall from meteorological stations in Bangkok and Jakarta. Mann-Kendall test was used to observe the trend of extreme rainfall. In general, the analysis of a total of 14 extreme indices show both Bangkok and Jakarta received more rainfall during rainy season and less rainfall during dry season. Specifically, a significant increasing trend of extreme rainfall indices (R60 and R80 was revealed using the proposed indices.