WorldWideScience

Sample records for net photosynthesis stomatal

  1. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  2. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  3. Internal and external control of net photosynthesis and stomatal conductance of mature eastern white pine (Pinus strobus)

    Science.gov (United States)

    Chris A. Maier; R.O. Teskey

    1992-01-01

    Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...

  4. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.

    Science.gov (United States)

    Urban, Josef; Ingwers, Miles W; McGuire, Mary Anne; Teskey, Robert O

    2017-03-01

    The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A.

    Science.gov (United States)

    Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-11-01

    Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (Pn) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the Pn by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the Pn by promoting stomatal factors while high-dose BPA decreased the Pn by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    Science.gov (United States)

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  8. Apparent photosynthesis and leaf stomatal diffusion in EDU treated ozone-sensitive bean plants

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.H.; Lee, E.H.; Heggestad, H.H.

    1978-01-01

    A new chemical, N-(2-(2-oxo-1-imidazolindinyl)ethyl)-N'-phenylurea (EDU), prevents O/sub 3/ injury to Bush Blue Lake 290 (BBL 290) leaves. Studies utilizing the chemical to understand the physiological and biochemical mechanisms of plant tolerance to O/sub 3/ required investigations into whether or not EDU altered stomatal diffusion rates and net photosynthesis Q/sub CO/sub 2//. This study indicates there were no significant differences in leaf conductance or Q/sub CO/sub 2// in soil-grown plants treated with EDU soil applications up to 50 mg/(15-cm dia.) pot. 11 references, 1 figure.

  9. A photosynthesis-based two-leaf canopy stomatal ...

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  10. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass

    OpenAIRE

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had posit...

  11. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.

    Science.gov (United States)

    Katul, Gabriel; Manzoni, Stefano; Palmroth, Sari; Oren, Ram

    2010-03-01

    Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance. An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2. Key Results and Conclusion In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss lambda (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.

  12. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  13. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.

    Science.gov (United States)

    Ainsworth, Elizabeth A; Rogers, Alistair

    2007-03-01

    This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2].

  14. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.

    Science.gov (United States)

    Lombardozzi, Danica; Sparks, Jed P; Bonan, Gordon; Levis, Samuel

    2012-07-01

    Industrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates. The goals of this work were to develop a modeling framework to modify Ball-Berry stomatal conductance predictions independently of photosynthesis and to test the framework using experimental data. After exposure to elevated O(3) in open-top chambers, photosynthesis and stomatal conductance in tulip poplar changed at different rates through time. We were able to accurately model observed photosynthetic and stomatal conductance responses to chronic O(3) exposure in a Ball-Berry framework by adjusting stomatal conductance in addition to photosynthesis. This led to a significant improvement in the modeled ability to predict both photosynthesis and stomatal conductance responses to O(3).

  15. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2- and ABA-induced stomatal closing

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andish; Israelsson-Nordstrom, Maria; Engineer, Cawas B.; Bargmann, Bastiaan O.R.; Stephan, Aaron B.; Schroeder, Julian I.

    2015-01-01

    SUMMARY Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard-cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard-cell specific enhancer trap-line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately ~ 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable to wild-type plants. Time-resolved intact leaf gas exchange analyses showed a reduction in stomatal conductance and carbon assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard-cell CO2 and ABA signal transduction are not directly modulated by guard-cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a “deflated” thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard-cell turgor production. PMID:26096271

  16. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance

    Directory of Open Access Journals (Sweden)

    Mohammad S. Haque

    2017-09-01

    Full Text Available The response of tomato plants (Solanum lycopersicum L. cv. Aromata to continuous light (CL in relation to photosynthesis, abscisic acid (ABA and reactive oxygen species (ROS was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control, two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT. A diurnal pattern of stomatal conductance (gs and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax, the maximum rate of electron transport (Jmax and mesophyll diffusion conductance to CO2 (gm in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms.

  18. Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought.

    Science.gov (United States)

    Héroult, Arnaud; Lin, Yan-Shih; Bourne, Aimee; Medlyn, Belinda E; Ellsworth, David S

    2013-02-01

    Models of stomatal conductance (g(s)) are based on coupling between g(s) and CO(2) assimilation (A(net)), and it is often assumed that the slope of this relationship ('g(1) ') is constant across species. However, if different plant species have adapted to different access costs of water, then there will be differences in g(1) among species. We hypothesized that g(1) should vary among species adapted to different climates, and tested the theory and its linkage to plant hydraulics using four Eucalyptus species from different climatic origins in a common garden. Optimal stomatal theory predicts that species from sub-humid zones have a lower marginal water cost of C gain, hence lower g(1) than humid-zone species. In agreement with the theory that g(1) is related to tissue carbon costs for water supply, we found a relationship between wood density and g(1) across Eucalyptus species of contrasting climatic origins. There were significant reductions in the parameter g(1) during drought in humid but not sub-humid species, with the latter group maintaining g(1) in drought. There are strong differences in stomatal behaviour among related tree species in agreement with optimal stomatal theory, and these differences are consistent with the economics involved in water uptake and transport for carbon gain. © 2012 Blackwell Publishing Ltd.

  19. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.

    Science.gov (United States)

    Pallas, J E; Michel, B E; Harris, D G

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4 degrees above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.Apparent photosynthesis

  20. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    Science.gov (United States)

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  1. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves.

    Science.gov (United States)

    Harley, P.; Guenther, A.; Zimmerman, P.

    1996-01-01

    In June 1993, net photosynthetic rates, stomatal conductance and isoprene emission rates of sweetgum leaves (Liquidambar styraciflua L.) were measured at the top of the forest canopy (sun leaves) and within the canopy at a height of 8-10 m above ground level (shade leaves). Large differences in net photosynthetic rates and stomatal conductance were found between sun and shade leaves. Mean rates of isoprene emission, expressed on a leaf area basis, were significantly lower in shade leaves than in sun leaves (4.1 versus 17.1 nmol m(-2) s(-1)); however, because specific leaf area of sun leaves was lower than that of shade leaves (0.0121 versus 0.0334 m(2) g(-1)), the difference between sun and shade leaves was less, though still significant, when isoprene emissions were expressed on a dry mass basis (45.5 versus 29.0 micro g C g(-1) h(-1)). Saturation of both net photosynthesis and isoprene emission occurred at lower PPFDs in shade leaves than in sun leaves. The effect of leaf temperature on isoprene emissions also differed between sun and shade leaves. Sun leaves lost a significantly greater percentage of fixed carbon as isoprene than shade leaves. The leaf-level physiological measurements were used to derive parameters for a canopy-level isoprene flux model. The importance of incorporating differences between sun- and shade-leaf properties into existing models is discussed.

  2. Modelling diurnal courses of photosynthesis and transpiration of leaves on the basis of stomatal and non-stomatal responses

    NARCIS (Netherlands)

    Yu, Q.; Goudriaan, J.; Wang, T.D.

    2001-01-01

    A mathematical model for photoinhibition of leaf photosynthesis was developed by formalising the assumptions that (1) the rate of photoinhibition is proportional to irradiance; and (2) the rate of recovery, derived from the formulae for a pseudo first-order process, is proportional to the extent of

  3. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change.

    Science.gov (United States)

    Singh, E; Tiwari, S; Agrawal, M

    2009-11-01

    Global climatic change scenarios predict a significant increase in future tropospheric ozone (O(3)) concentrations. The present investigation was done to assess the effects of elevated O(3) (70 and 100 ppb) on electron transport, carbon fixation, stomatal conductance and pigment concentrations in two tropical soybean (Glycine max L.) varieties, PK 472 and Bragg. Plants were exposed to O(3) for 4 h.day(-1) from 10:00 to 14:00 from germination to maturity. Photosynthesis of both varieties were adversely affected, but the reduction was higher in PK 472 than Bragg. A comparison of chlorophyll a fluorescence kinetics with carbon fixation suggested greater sensitivity of dark reactions than light reactions of photosynthesis to O(3) stress. The O(3)-induced uncoupling between photosynthesis and stomatal conductance in PK 472 suggests the reduction in photosynthesis may be attributed to a factor other than reduced stomatal conductance. An increase in internal CO(2) concentration in both O(3)-treated soybean varieties compared suggests that the reduction in photosynthesis was due to damage to the photosynthetic apparatus, leading to accumulation of internal CO(2) and stomatal closure. The adverse impact of O(3) stress increased at higher O(3) concentrations in both soybean varieties leading to large reductions in photosynthesis. This study suggests that O(3)-induced reductions in photosynthesis in tropical and temperate varieties are similar.

  4. Leaf area and net photosynthesis during development of Prunus serotina seedlings.

    Science.gov (United States)

    Horsley, S B; Gottschalk, K W

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prunus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >/= 75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage on leaf area and net photosynthesis were evaluated for leaves of differing age (horizontal series), leaves on plants of constant age (vertical series), and leaves of constant age (oblique series). Regression techniques were used to estimate leaf area from leaf blade dimensions. The best equations for predicting leaf area had R(2) values of 0.991-0.992 and used linear or logarithmic functions of both leaf length and width. Suitable, but less precise, equations with R(2) values of 0.946-0.962 were developed from either leaf length or leaf width. Leaf area development in black cherry seedlings was similar to that in other indeterminate species. Leaves of young plants reached full expansion at a lower leaf plastochron age than leaves of older plants. Maximum net photosynthesis per unit leaf area occurred 2-3 plastochrons before full leaf expansion. There was strong ontogenetic drift in net photosynthesis with leaf age; net photosynthesis decreased as plant age increased in leaves of the same plastochron age. Plots of the oblique series were particularly useful in providing information about interaction effects.

  5. Flag Leaf Photosynthesis and Stomatal Function of Grain Sorghum as Influenced by Changing Photosynthetic Photon Flux Densities

    Directory of Open Access Journals (Sweden)

    H. Arnold Bruns

    2016-01-01

    Full Text Available Photosynthesis (A and stomatal function research in grain sorghum (Sorghum bicolor (L. Moench is limited compared to other crops. Flag leaves from three plants of two hybrids, grown with added N-fertilizer of 0.0, 112, and 224 kg ha−1 near Elizabeth, MS, were measured for A and stomatal functions at growth stages GS6 and GS7. A Li-Cor LI-6400XT set at 355 µmol [CO2], a flow rate of 500 µmol s−1, and a 6400-02 LED light source were used to collect data. Light levels were initially set at 2200 µmol m−2 s−1 indicated photosynthetic photon flux density (PPFD, A was allowed to stabilize, data was recorded, indicated PPFD level was reduced by 200 µmol m−2 s−1, and the process was repeated to a level of 200 µmol m−2 s−1. At GS6 all data were unaffected by N-fertility, hybrids, or years. Data on Ci at GS6 indicated A declines faster with decreasing PPFD than gs. Intrinsic water use efficiency (IWUE data supports prior research showing stomata function more to regulate water loss and only marginally limit A. Nitrogen fertility was null on A and stomatal functions and minimal on yield; thus no attempt was made to correlate yield with these data.

  6. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    Science.gov (United States)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the

  7. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    Science.gov (United States)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased

  8. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...

  9. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2002-01-01

    concentration. The experiment was conducted during 70 days during the autumn. Our system could not detect any ozone effects on dark respiration, but eventually effects on dark respiration could be masked in signal noise. An inhibition of daily net photosynthesis in ozone treated shoots was apparent......, and it is was found that a mean increase in ozone concentration of 10 nl l(-1) reduced net photosynthesis with 7.4 %. This effect should be related to a pre-exposure during the season of AOT40 12.5 mul l(-1) h....

  10. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata.

    Science.gov (United States)

    Ripley, Brad S; Gilbert, Matthew E; Ibrahim, Douglas G; Osborne, Colin P

    2007-01-01

    The C4 photosynthetic pathway uses water more efficiently than the C3 type, yet biogeographical analyses show a decline in C4 species relative to C3 species with decreasing rainfall. To investigate this paradox, the hypothesis that the C4 advantage over C3 photosynthesis is diminished by drought was tested, and the underlying stomatal and metabolic mechanisms of this response determined. The effects of drought and high evaporative demand on leaf gas exchange and photosynthetic electron sinks in C3 and C4 subspecies of the grass Alloteropsis semialata were examined. Plant responses to climatic variation and soil drought were investigated using a common garden experiment with well-watered and natural rainfall treatments, and underlying mechanisms analysed using controlled drying pot experiments. Photosynthetic rates were significantly higher in the C4 than the C3 subspecies in the garden experiment under well-watered conditions, but this advantage was completely lost during a rainless period when unwatered plants experienced severe drought. Controlled drying experiments showed that this loss was caused by a greater increase in metabolic, rather than stomatal, limitations in C4 than in the C3 leaves. Decreases in CO2 assimilation resulted in lower electron transport rates and decreased photochemical efficiency under drought conditions, rather than increased electron transport to alternative sinks. These findings suggest that the high metabolic sensitivity of photosynthesis to severe drought seen previously in several C4 grass species may be an inherent characteristic of the C4 pathway. The mechanism may explain the paradox of why C4 species decline in arid environments despite high water-use efficiency.

  11. Dorsoventral variations in dark chilling effects on photosynthesis and stomatal function in Paspalum dilatatum leaves.

    Science.gov (United States)

    Soares-Cordeiro, Ana Sofia; Driscoll, Simon P; Arrabaça, Maria Celeste; Foyer, Christine H

    2011-01-01

    The effects of dark chilling on the leaf-side-specific regulation of photosynthesis were characterized in the C(4) grass Paspalum dilatatum. CO(2)- and light-response curves for photosynthesis and associated parameters were measured on whole leaves and on each leaf side independently under adaxial and abaxial illumination before and after plants were exposed to dark chilling for one or two consecutive nights. The stomata closed on the adaxial sides of the leaves under abaxial illumination and no CO(2) uptake could be detected on this surface. However, high rates of whole leaf photosynthesis were still observed because CO(2) assimilation rates were increased on the abaxial sides of the leaves under abaxial illumination. Under adaxial illumination both leaf surfaces contributed to the inhibition of whole leaf photosynthesis observed after one night of chilling. After two nights of chilling photosynthesis remained inhibited on the abaxial side of the leaf but the adaxial side had recovered, an effect related to increased maximal ribulose-1,5-bisphosphate carboxylation rates (V(cmax)) and enhanced maximal electron transport rates (J(max)). Under abaxial illumination, whole leaf photosynthesis was decreased only after the second night of chilling. The chilling-dependent inhibition of photosynthesis was located largely on the abaxial side of the leaf and was related to decreased V(cmax) and J(max), but not to the maximal phosphoenolpyruvate carboxylase carboxylation rate (V(pmax)). Each side of the leaf therefore exhibits a unique sensitivity to stress and recovery. Side-specific responses to stress are related to differences in the control of enzyme and photosynthetic electron transport activities.

  12. Dorsoventral variations in dark chilling effects on photosynthesis and stomatal function in Paspalum dilatatum leaves

    Science.gov (United States)

    Soares-Cordeiro, Ana Sofia; Driscoll, Simon P.; Arrabaça, Maria Celeste; Foyer, Christine H.

    2011-01-01

    The effects of dark chilling on the leaf-side-specific regulation of photosynthesis were characterized in the C4 grass Paspalum dilatatum. CO2- and light-response curves for photosynthesis and associated parameters were measured on whole leaves and on each leaf side independently under adaxial and abaxial illumination before and after plants were exposed to dark chilling for one or two consecutive nights. The stomata closed on the adaxial sides of the leaves under abaxial illumination and no CO2 uptake could be detected on this surface. However, high rates of whole leaf photosynthesis were still observed because CO2 assimilation rates were increased on the abaxial sides of the leaves under abaxial illumination. Under adaxial illumination both leaf surfaces contributed to the inhibition of whole leaf photosynthesis observed after one night of chilling. After two nights of chilling photosynthesis remained inhibited on the abaxial side of the leaf but the adaxial side had recovered, an effect related to increased maximal ribulose-1,5-bisphosphate carboxylation rates (Vcmax) and enhanced maximal electron transport rates (Jmax). Under abaxial illumination, whole leaf photosynthesis was decreased only after the second night of chilling. The chilling-dependent inhibition of photosynthesis was located largely on the abaxial side of the leaf and was related to decreased Vcmax and Jmax, but not to the maximal phosphoenolpyruvate carboxylase carboxylation rate (Vpmax). Each side of the leaf therefore exhibits a unique sensitivity to stress and recovery. Side-specific responses to stress are related to differences in the control of enzyme and photosynthetic electron transport activities. PMID:21030386

  13. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.

    Science.gov (United States)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-02-01

    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  14. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.

    Science.gov (United States)

    Zhang, Shi-Bao; Guan, Zhi-Jie; Chang, Wei; Hu, Hong; Yin, Qing; Cao, Kun-Fang

    2011-06-01

    Paphiopedilum and Cypripedium are close relatives in the subfamily Cypripedioideae. Cypripedium leaves contain guard cell chloroplasts, whereas Paphiopedilum do not. It is unclear whether the lack of guard cell chloroplasts affects photosynthetic induction, which is important for understory plants to utilize sunflecks. To understand the role of guard cell chloroplasts in photosynthetic induction of Paphiopedilum and Cypripedium, the stomatal anatomy and photosynthetic induction of Paphiopedilum armeniacum and Cypripedium flavum were investigated at different ratios of red to blue light. The highest stomatal opening and photosynthesis of intact leaves in P. armeniacum were induced by irradiance enriched with blue light. Its stomatal opening could be induced by red light 250 µmol m⁻² s⁻¹, but the magnitude of stomatal opening was lower than those at the other light qualities. However, the stomatal opening and photosynthesis of C. flavum were highly induced by mixed blue and red light rather than pure blue or red light. The two orchid species did not differ in stomatal density, but P. armeniacum had smaller stomatal size than C. flavum. The stomata of P. armeniacum were slightly sunken into the leaf epidermis, while C. flavum protruded above the leaf surface. The slower photosynthetic induction and lower photosynthetic rate of P. armeniacum than C. flavum were linked to the lack of guard cell chloroplasts and specific stomatal structure, which reflected an adaptation of Paphiopedilum to periodic water deficiency in limestone habitats. These results provide evidence for the morphological and physiological evolution of stomata relation for water conservation under natural selection. Copyright © Physiologia Plantarum 2011.

  15. Can net photosynthesis and water relations provide a clue on the ...

    African Journals Online (AJOL)

    Net photosynthesis, sap flow density (SFD) and water use efficiency (WUE) were measured in a Quercus suber forest in north Tunisia in an attempt to explain the forest decline. In general, sap flow was positively related to light intensity and water loss, indicating that high light intensities can increase the SFD up to the ...

  16. Photosynthesis by Guard Cell Chloroplasts of Vicia faba L. : Effects of Factors Associated with Stomatal Movement

    OpenAIRE

    Weihua, WU; Sarah M., ASSMANN; The Biological Laboratories, Harvard University:(Current)Biology Department, Pennsylvania State University

    1993-01-01

    The properties of photosynthetic O_2 evolution by mesophyll cell chloroplasts (MCC) and guard cell chloroplasts (GCC) isolated from protoplasts of Vicia faba L. have been studied and effects on O_2 evolution of factors known to regulate stomatal movements have been compared. The O_2 evolution of GCC was CO_2-dependent. The saturating light intensity for O_2 evolution was between 150 and 200 μmol m^ s^ for MCC and was between 400 and 1,000μmol m^ s^ for GCC. Light quality (red vs. blue) had no...

  17. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.

    Science.gov (United States)

    Medeiros, David B; Martins, Samuel C V; Cavalcanti, João Henrique F; Daloso, Danilo M; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M; Fernie, Alisdair R; Araújo, Wagner L

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Net photosynthesis and respiration of sago pondweed (Potamogeton pectinatus) exposed to herbicides

    Science.gov (United States)

    Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Hughes, Jane S.; Biddinger, Gregory R.; Mones, Eugene

    1995-01-01

    We determined net photosynthesis and respiration rates for sago pondweed (potamogeton pectinatus) exposed to various concentrations of 11 herbicides widely used in Maryland during the past decade. Net photosynthesis and respiration were determined by measuring changes in the. oxygen content of solutions containing dilutions of technical grade herbicides. At 20-22? C and 58 umol/m2/sec of photosynthetically active radiation (PAR), oxygen production of undosed plants averaged 0.72-2.03 mg/g fresh wt/h. Respiration rates of undosed plants averaged 0.46-0.60 mg O2/g fresh wt/h. Nominal herbicide concentrations (ng/L) that reduced net photosynthesis by 5O percent (IC5O) were: metribuzin, 8; atrazine, 29; cyanazine, 32; linuron, 70; simazine, 164; and paraquat, 240. IC5O values for 2,4-D, acifluorfen, glyphosate and metolachlor exceeded the maximum test concentration of 10,000 ng/L. The IC5O value for alachlor was estimated to be between 1,000 and 10,000 ng/L. None of the herbicides tested had a significant effect on dark respiration.

  19. Polychromatic supplemental lighting from underneath canopy is more effective to enhance tomato plant development by improving leaf photosynthesis and stomatal regulation

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-12-01

    Full Text Available Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation and plant growth and development of young tomato plants were examined to estimate the effects of supplemental lighting with various composite spectra and different light orientations. Light-emitting diodes (LEDs of polychromatic light quality, red + blue (R/B, white + red + blue (W/R/B, white + red + far-red (W/R/FR, and white + blue (W/B were assembled from the underneath canopy or from the inner canopy as supplemental lighting resources. The results showed that the use of supplemental lighting significantly increased the photosynthetic efficiency, and reduced stomatal closure while promoting plant growth. Among all supplemental lighting treatments, the W/R/B and W/B from the underneath canopy had best performance. The different photosynthetic performances among the supplemental lighting treatments are resulted from variations in CO2 utilization. The enhanced blue light fraction in the W/R/B and W/B could better stimulate stomatal opening and promote photosynthetic electron transport activity, thus better improving photosynthetic rate. Compared with the inner canopy treatment, the supplemental lighting from the underneath canopy could better enhance the carbon dioxide assimilation efficiency and excessive energy dissipation, leading to an improved photosynthetic performance. Stomatal morphology was highly correlated to leaf photosynthesis and plant development, and should thus be an important determinant for the photosynthesis and the growth of greenhouse tomatoes.

  20. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  1. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    Science.gov (United States)

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  2. Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, James A.; Calvin, M.

    1955-02-01

    The overall process of photosynthesis involves a number of interconnected processes. These processes, which are cyclic with respect to both energy and material, are related at some points to well-known respiratory processes. The carbon-reduction cycle in photosynthesis is now known in detail. All enzymes involved in this cycle have been isolated and the sources of energy required for its operation have been identified in terms of reducing agents and 'high-energy' phosphate. These sources of energy a r e derived ultimately from absorbed light energy which brings about the photolysis of water. Possible mechanisms for this photolysis and for the transfer of energy from the photolysis products to the carbon-reduction cycle are discussed here. Experimental data, in the form of quantum efficiency measurements, are presented and partially confirm the theories proposed for the mechanisms of energy transfer. A diagram of the complete process of photosynthesis containing the several cycles and their relations is presented.

  3. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.

    Science.gov (United States)

    Boesgaard, Kristine S; Albert, Kristian R; Ro-Poulsen, Helge; Michelsen, Anders; Mikkelsen, Teis N; Schmidt, Niels M

    2012-08-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic. Copyright © Physiologia Plantarum 2011.

  4. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  5. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination...... was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...

  6. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orentation and growth with CO2 enrichment in the C4 species Paspalum dilatatum

    NARCIS (Netherlands)

    Soares, A.S.; Discoll, S.P.; Olmos, E.; Harbinson, J.; Arrabaca, M.C.

    2008-01-01

    Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 µl l¿1 CO2. Plant biomass was

  7. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata.

    Science.gov (United States)

    Tetteh, Rashied; Yamaguchi, Masahiro; Wada, Yoshiharu; Funada, Ryo; Izuta, Takeshi

    2015-01-01

    To assess the effects of O(3)on growth, net photosynthesis and yield of two African varieties of cowpea(Vigna unguiculata L.), Blackeye and Asontem were exposed as potted plants to air that was either filtered to remove O(3) (FA), non-filtered air (NF), non-filtered with added O3 of approximately 50 nL L(-1) (ppb) from 11:00 to 16:00 (NF + O(3)) for 88 days in open-top chambers. The mean O(3) concentration (11:00-16:00) during the exposure period had a range from 16 ppb in the FA treatment to 118 ppb in the NF + O(3) treatment. Net photosynthetic rate and leaf area per plant were significantly reduced by exposure to O(3), reducing the growth of both varieties. Exposure to O(3) significantly reduced the 100-seed weight and number of seeds per pod. As a result, cowpea yield was significantly reduced by long-term exposure to O(3), with no difference in sensitivity between the varieties.

  8. Photosynthesis.

    Science.gov (United States)

    Johnson, Matthew P

    2016-10-31

    Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light reactions occur in the chloroplast thylakoid membrane and involve the splitting of water into oxygen, protons and electrons. The protons and electrons are then transferred through the thylakoid membrane to create the energy storage molecules adenosine triphosphate (ATP) and nicotinomide-adenine dinucleotide phosphate (NADPH). The ATP and NADPH are then utilized by the enzymes of the Calvin-Benson cycle (the dark reactions), which converts CO2 into carbohydrate in the chloroplast stroma. The basic principles of solar energy capture, energy, electron and proton transfer and the biochemical basis of carbon fixation are explained and their significance is discussed. © 2016 The Author(s).

  9. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure.

    Science.gov (United States)

    Leal-Alvarado, Daniel A; Espadas-Gil, Francisco; Sáenz-Carbonell, Luis; Talavera-May, Carlos; Santamaría, Jorge M

    2016-02-01

    Salvinia minima Baker accumulates a fair amount of lead in its tissues; however, no studies have investigated the effect of lead on the physiological processes that affect photosynthesis in this species. The objective of the present study was to assess whether the high amounts of lead accumulated by S. minima can affect its photosynthetic apparatus. The physiological changes in the roots and leaves in response to lead accumulation were analyzed. An exposure to 40 μM Pb(NO3)2 for 24 h (first stage) was sufficient to reduce the photosynthetic rate (Pn) by 44%. This reduction in Pn was apparently the result of processes at various levels, including damage to the cell membranes (mainly in roots). Interestingly, although the plants were transferred to fresh medium without lead for an additional 24 h (second stage), Pn not only remained low, but was reduced even further, which was apparently related to stomatal closure, and may have led to reduced CO2 availability. Therefore, it can be concluded that lead exposure first decreases the photosynthetic rate by damaging the root membrane and then induces stomatal closure, resulting in decreased CO2 availability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    Science.gov (United States)

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  11. DETERMINATION OF SENSITIVE SITES IN PHOTOSYNTHESIS DURING LONGTERM PLANT DEHYDRATION

    Directory of Open Access Journals (Sweden)

    M BRESTIČ

    2002-05-01

    Full Text Available The aim of this work was to measure the net CO2 assimilation, O2 evolution, Rubisco activity, 13C content, actual photochemical PSII efficiency, stomatal conductance, water and osmotic potentials as well as relative water content during increasing plant dehydration. The measurements allowed to determine vulnerability of individual segments of complex process of photosynthesis and characterise the stomatal and non-stomatal responses to dehydration and resistance of mechanisms of photosynthesis to gradual water stress. The sensitiveness of stomata, osmoprotection and isotopic 13C discrimination seem to be the most interesting parameters which act dynamically in plant acclimation to drought. They may be successfully used in screening new genotypes with efficient water and carbon use and in quantification of threshold of deleterious environmental effect to photosynthesis.

  12. Net photosynthesis, dark respiration, specific leaf weight, and growth of young apple trees as influenced by light regime

    Energy Technology Data Exchange (ETDEWEB)

    Barden, J.A.

    1974-11-01

    Eight different light treatments did not affect shoot length, leaf number, or total leaf area of young Red Yorking apple (Malus pumila Mill.) trees grown in a greenhouse. Dry weights of leaves and stems were suppressed by 80% shade. Net photosynthesis Pn, dark respiration (Rd), and specific leaf weight (SLW) were higher in sun than in shade leaves and adaptations in all 3 parameters occurred as a result of changing light conditions, even after leaf expansion had ceased. 5 figures, 1 table.

  13. Effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and Tl

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.W.; Bazzaz, F.A.; Rolfe, G.L.

    1975-08-01

    Corn and sunflower plants were grown in hydroponic culture and treated with various levels of Pb, Cd, Ni, and Tl salts. Net photosynthesis, transpiration and toxic metal ion concentration of leaf material and total plant biomass was measured. Tl was found to be the most toxic to new photosynthesis and growth of both species followed in order by Cd, Ni, and Pb. (auth)

  14. Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica Photosynthesis, stomatal conductance and transpiration in peach palm under water stress

    Directory of Open Access Journals (Sweden)

    Maria Aparecida José de Oliveira

    2002-03-01

    . Data were collected daily in a laboratory, under a photosynthetic photon flux (PPF of 1200 mum-2 s-1, and studied by variance and regression analysis. Significant decreases of leaf water potential values and gas exchange rates were verified when water was withhold for more than six days. The smallest values were found at the tenth day without water replacement, with a reduction of 92% of the net photosynthetic rate, 87% of the stomatal conductance and 70% of the transpiration. By that time, the smallest measured leaf water potential was --1.9 MPa. Recovering from water stress was accomplished two days after rewatering, except for stomatal conductance. The partial closing of the stomata (decrease in stomatal conductance and the reduction of photosynthesis, suggest the existence of an acclimation mechanism of the peach palm, diminishing water loss under moderate stress.

  15. Steady-state chlorophyll fluorescence (Fs) as an indicator of leaf %photosynthesis and stomatal conductance under drought conditions

    Science.gov (United States)

    Flexas, J.

    The steady-state chlorophyll fluorescence (Fs) presented different diurnal variation patterns in irrigated and water-stressed plants, the latter showing a midday depression, which was more pronounced as more severe was the stress. Here we address the possible causes of such variations and discuss the applicability of Fs for stress assessment. In water stress experiments with several C3 plants, the ratio of Fs normalised to dark-adapted intrinsic fluorescence (Fo) was negatively and exponentially correlated with non-photochemical quenching (NPQ). The relationship was abolished by treatment with DTT, an inhibitor of xanthophyll de-epoxidation. These and other evidences suggest that increased non-radiative dissipation under drought was responsible for Fs variations. Interestingly, the ratio Fs/Fo fixed at a given high light intensity directly correlated with CO2 assimilation in air, with electron transport rate and with stomatal conductance. Therefore, the ratio Fs/Fo, which can be measured with a remote sensing system, provides a good method for the early detection of water stress.

  16. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    2015-01-01

    (1 week at 36/30∘C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stresswas positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN...... variation for tolerance to severe heat stress (3 days at 40∘C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits undermoderate heat stress......-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified...

  17. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman-Monteith approach combined with a photosynthesis-dependent stomatal model.

    Science.gov (United States)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman-Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O3 uptake, even when the Penman-Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O3 uptake through stomata, as AOT40 peaked in April, but with O3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O3 uptake in springtime, even when the highest O3 concentrations were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Apple tree growth, net photosynthesis, dark respiration, and specific leaf weight as affected by continuous and intermittent shade

    Energy Technology Data Exchange (ETDEWEB)

    Barden, J.A.

    1977-07-01

    The effects of 80% shade from saran cloth and slats were very similar on young Delicious apple (Malus domestica Borkh.) trees. Shoot-length increase was suppressed about 10% by shade but leaf area was unaffected. Dry weight increase for shaded trees was about 50% of that for trees in full sun. Sun leaves required about 43.1 klx for light saturation and shade leaves needed only about 19.4 klx. Net photosynthesis (Pn) of shade leaves was about 70% of that of sun leaves at light saturation. Dark respiration (Rd) rates were also higher in sun- than shade-leaves. Specific leaf weight (SLW) of leaves near full expansion at the start of the experiment increased 15% under shade whereas sun-leaf SLW increased 40% during the experiment. For leaves unfolding under the differential light treatments, SLW of shade leaves averaged only 55% of sun leaves. 4 figures, 3 tables.

  19. Absence of OsβCA1 causes a CO2 deficit and affects leaf photosynthesis and the stomatal response to CO2 in rice.

    Science.gov (United States)

    Chen, Taiyu; Wu, Huan; Wu, Jiemin; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2017-04-01

    Plants always adjust the opening of stomatal pores to adapt to the environment, for example CO2 concentration ([CO2 ]), humidity and temperature. Low [CO2 ] will trigger the opening of stomatal pores to absorb extra CO2 . However, little is known about how CO2 supply affects the carbon fixation and opening of stomatal pores in rice. Here, a chloroplast-located gene coding for β-carbonic anhydrase (βCA) was found to be involved in carbon assimilation and the CO2 -mediated stomatal pore response in rice. OsβCA1 was constitutively expressed in all tissues and its transcripts were induced by high [CO2 ] in leaves. Both T-DNA mutant and RNA interference lines showed phenotypes of lower biomass and CA activities. Knockout of OsβCA1 obviously decreased photosynthetic capacity, as demonstrated by the increased CO2 compensation point and decreased light saturation point in the mutant, while knockout increased the opening ratio of stomatal pores and the rate of water loss. Moreover, the mutant showed a delayed response to low [CO2 ], and stomatal pores could not be closed to the same degree as those of wild type even though the stomatal pores could rapidly respond to high [CO2 ]. Genome-wide gene expression analysis via RNA sequencing demonstrated that the transcript abundance of genes related to Rubisco, photosystem compounds and the opening of stomatal pores was globally upregulated in the mutant. Taken together, the inadequate CO2 supply caused by the absence of OsβCA1 reduces photosynthetic efficiency, triggers the opening of stomatal pores and finally decreases their sensitivity to CO2 fluctuation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes

    NARCIS (Netherlands)

    Luyssaert, S.; Janssens, I.A.; Sulkava, M.; Papale, D.; Dolman, A.J.; Reichstein, M.; Hollmén, J.; Martin, J.G.; Suni, T.; Vesala, T.; Loustau, D.; Law, B.E.; Moors, E.J.

    2007-01-01

    The growth rate of atmospheric CO2 exhibits large temporal variation that is largely determined by year-to-year fluctuations in land¿atmosphere CO2 fluxes. This land¿atmosphere CO2-flux is driven by large-scale biomass burning and variation in net ecosystem exchange (NEE). Between- and within years,

  1. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpaxP. deltoides).

    Science.gov (United States)

    Miyazawa, Shin-Ichi; Livingston, Nigel J; Turpin, David H

    2006-01-01

    In general, stomatal density (SD) decreases when plants are grown at high CO2 concentrations. Recent studies suggest that signals produced from mature leaves regulate the SD of expanding leaves. To determine the underlying driver of these signals in poplar (Populus trichocarpaxP. deltoides) saplings, a cuvette system was used whereby the environment around mature (lower) leaves could be controlled independently of that around developing (upper) leaves. A series of experiments were performed in which the CO2 concentration, vapour pressure deficit (D), and irradiance (Q) around the lower leaves were varied while the (ambient) conditions around the upper leaves were unchanged. The overall objective was to break the nexus between leaf stomatal conductance and transpiration and photosynthesis rates of lower leaves and determine which, if any, of these parameters regulate stomatal development in the upper expanding leaves. SD, stomatal index (SI), and epidermal cell density (ED) were measured on the adaxial and abaxial surfaces of fully expanded upper leaves. SD and SI decreased with increasing lower leaf CO2 concentration (150-780 ppm) at both ambient (1.3-1.6 kPa) and low (0.7-1.0 kPa) D. SD and SI at low D were generally higher than at ambient D. By contrast, ED was relatively insensitive to both vapour pressure and CO2 concentration. When lower leaves were shaded, upper leaf SD, SI, and ED decreased but did not change with varying CO2 concentration. These results suggest that epidermal cell development and stomatal development are regulated by different physiological mechanisms. SI of the upper leaves was positively and highly correlated (r2>0.84) with the stomatal conductance of the lower leaves independent of their net photosynthesis and transpiration rates, suggesting that the stomatal conductance of mature leaves has a regulatory effect on the stomatal development of expanding leaves.

  2. Research of the relationship between delayed fluorescence and net photosynthesis rate in spinach under NaCl stress

    Science.gov (United States)

    Zhang, Lingrui; Xing, Da

    2006-09-01

    Under NaCl stress conditions, the relationship between delayed fluorescence (DF) and net photosynthesis rate (Pn) in detached leaves of spinach (Spinacia oleracea L.) was surveyed. Results showed that the changes in DF intensity of the spinach leaves directly exposed to different NaCl concentrations demonstrated considerably high consistency with that in Pn. Incubation of the leaves in 200mmol/L NaCl induced a gradual increase and subsequent decline of the DF intensity and Pu, whereas incubation of the leaves in 300mmol/L NaCl induced a continuous decline of the DF intensity and Pn, suggesting that DF bad the same response to duration of treatment of different NaC1 concentrations with Pn. Both DF and Pn showed maximal Ca 2+ antagonism effects on stress of high concentration NaC1 when the concentration of CaC1 II reached l5mmolfL. All the results demonstrated that DF has an excellent correlation with Pn and can be used as a sensitive test for the state of photosynthetic apparatus under salt stress physiology.

  3. Effect of water stress on photosynthesis and related parameters in Pinus halepensis

    Energy Technology Data Exchange (ETDEWEB)

    Melzack, R.N.; Bravdo, B.; Riov, J.

    1985-01-01

    Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6-7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of -0.8 MPa, whereas mesophyll resistance started to increase at about -1.4 MPa. Decreasing xylem water potentials increased the CO/sub 2/ compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.

  4. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    Science.gov (United States)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and

  5. Gaseous NO2 effects on epidermis and stomata related physiochemical characteristics of hybrid poplar leaves: chemical elements composition, stomatal functions, photosynthesis and respiration

    Science.gov (United States)

    Mechanisms controlling effects of gaseous nitrogen dioxide on epidermis and stomata dynamics, and photosynthesis and respirations processes are still not fully understood. In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (4 microliters per lite...

  6. Effects of Fe-chlorosis on the stomatal behaviour and water relations of field-grown peach leaves

    OpenAIRE

    Eichert, Thomas; Peguero-Pina, Jose J.; Gil-Pelegrin, Eustaquio; Fernández, Victoria

    2009-01-01

    We investigated the effects of Fe nutrition on the stomatal behaviour and water relations of peach leaves (Prunus persica (L.) Batsch, cv. Miraflores), under field conditions. Transpiration rates, net photosynthesis and water use efficiency were significantly lower in chlorotic leaves than in healthy green leaves. In the course of the day, the water potentials in healthy leaves strongly declined to –2.0 MPa, whereas in chlorotic leaves the minimum water potential was only -1.0 MPa. The hydrau...

  7. Canopy Stomatal Conductance Unlocks Partitioning of Ecosystem-Atmosphere Carbon and Water Exchanges

    Science.gov (United States)

    Wehr, R. A.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-12-01

    Stomata are a key nexus in biosphere-atmosphere interactions: the gateway for both carbon gain and water loss by plant canopies. Accurate quantification of canopy stomatal conductance enables partitioning of both evapotranspiration (ET) and net ecosystem-atmosphere CO2 exchange (NEE)—the latter via CO2 isotope flux measurements. To those ends, we determined the behavior of canopy stomatal conductance in a temperate deciduous forest based on heat and water vapor flux measurements, and validated that determination based on uptake of carbonyl sulfide, which also passes through the stomata. We found that the canopy stomatal conductance followed a simple empirical function of leaf area index, light intensity, diffuse light fraction, and leaf-air water vapor gradient. The dependence on light intensity was highly linear, in contrast to the leaf scale, and in contrast to the behavior of canopy photosynthesis. Using canopy stomatal conductance, we partitioned ET and found that evaporation in this ecosystem peaks at the time of the year when soils are driest and atmospheric vapor pressure deficit is low—because soil temperature is an important driver. As stomatal conductance impacts not only the rate of photosynthesis but also the fractionation of carbon isotopes by photosynthesis, we were also able to combine canopy stomatal conductance with CO2 isotope flux measurements in order to partition NEE. We found that: (1) canopy respiration is much less during the day than at night, likely due to the inhibition of leaf respiration by light (that is, the Kok effect), and (2) canopy photosynthetic light-use efficiency does not decline through the summer, in contrast to standard estimates. These results clarify how leaf-level physiological dynamics impact ecosystem-atmosphere gas exchange, and demonstrate the utility of combining multiple tracers to constrain the processes underlying that exchange.

  8. Photosynthesis of spring wheat (Triticum aestivum) in rainfed ...

    African Journals Online (AJOL)

    . ... observed environments. These physiological results of wheat genotypes can be used to find adaptive and potential genotypes for changing environment. Keywords: Wheat, photosynthesis, stomatal conductance, transpiration, environment.

  9. Gas exchange in paphiopedilum: lack of chloroplasts in guard cells correlates with low stomatal conductance.

    Science.gov (United States)

    Williams, W E; Grivet, C; Zeiger, E

    1983-07-01

    Net photosynthesis and stomatal conductance were measured in attached leaves of Paphiopedilum insigne. At 20 degrees C and a vapor-pressure deficit of 0.5 kilopascal, both net photosynthesis and stomatal conductance were light-saturated below 0.2 millimole per square meter per second, a response typical of shade plants. The absolute values of photosynthetic rate and conductance however were remarkably low, presumably reflecting an adaptation to the low-light, limited-nutrient habitat characteristic of these orchids. The leaves also showed a vapor-pressure deficit response, with net photosynthesis and conductance varying over a 2-fold range between 0.3 and 1.6 kilopascals.These results confirm that Paphiopedilum stomata are functional. The correlation between achlorophyllous guard cells and low conductance rates, however, singles them out as an exceptional biological system, exhibiting basic differences from typical stomata in higher plants. Available evidence showing that guard-cell chloroplasts are needed to sustain high conductance rates at moderate to high irradiances indicates that the genetic changes leading to the loss of chloroplast differentiation in Paphiopedilum guard cells were not deleterious because of the low conductance rates characteristic of this genus.

  10. N sources affect growth, nutrient content, and net photosynthesis in maté (Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Sérgio Gaiad

    2006-09-01

    Full Text Available The influence of different N sources on the growth of maté (Ilex paragurariensis St.Hil. seedlings grown in greenhouse was studied. All seedlings received a base fertilization of 10 mg N.kg-1 soil as NH4NO3, 60 mg P2O5.and 40 mg K2O.kg-1 soil as KH2PO4 15 days before treatments application. Treatments were as follow: Control, with no extra N added; Urea = 100 mg N.kg-1 soil as Urea; NO3- = 100 mg N.kg-1 soil as Ca(NO32; and NH4+ = 100 mg N.kg-1 soil as (NH42SO4. It was concluded that: 1 increasing N content in leaves alone was not able to promote gain in biomass production of maté seedlings; 2 seedlings receiving N-NH4 showed a higher accumulation of P and Mg on shoot biomass; and 3 an increase in leaf area, leaf number and net photosynthesis observed at the N-NH4 treatment was coincident with an increasing absorption of P and Mg.A influência de diferentes fontes de N sobre o crescimento de mudas de erva-mate (Ilex paraguariensis St.Hil. foi estudada, em casa de vegetação. Todas as mudas receberam uma fertilização base de 10 mg N.kg-1 de solo na forma de NH4NO3, 60 mg P2O5.kg-1 e 40 mg K2O.kg-1 de solo na forma de KH2PO4 quinze dias antes da aplicação dos tratamentos. Os tratamentos foram os seguintes: Controle, sem adição extra de N; Uréia = 100 mg N.kg-1 de solo como Uréia; NO3- = 100 mg N.kg-1 de solo como Ca(NO32; e NH4+ = 100 mg N.kg-1 de solo como (NH42SO4. Concluiu-se que: 1 o aumento do conteúdo de N nas folhas, por si, não é capaz de promover ganhos na produção de biomassa em mudas de erva-mate; 2 mudas que receberam N-NH4 apresentaram maior acumulo de P e Mg na biomassa aérea; e 3 o aumento na absorção de P e Mg coincidiu com um aumento na área foliar, no número de folhas e na fotossíntese liquida na fonte N-NH4.

  11. Stomatal conductance increases with rising temperature.

    Science.gov (United States)

    Urban, Josef; Ingwers, Miles; McGuire, Mary Anne; Teskey, Robert O

    2017-08-03

    Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is rising due to climate change. In this study, we describe how stomata open when the temperature increases. Stomatal conductance increased by ca 40% in a broadleaf and a coniferous species, poplar (Populus deltoides x nigra) and loblolly pine (Pinus taeda) when temperature was increased by 10 °C, from 30 °C to 40 °C at a constant vapor pressure deficit of 1 kPa. The mechanism of regulating stomatal conductance by temperature was, at least partly, independent of other known mechanisms linked to water status and carbon metabolism. Stomatal conductance increased with rising temperature despite the decrease in leaf water potential, increase in transpiration, increase in intercellular CO2 concentration and was decoupled from photosynthesis. Increase in xylem and mesophyll hydraulic conductance coming from lower water viscosity may to some degree explain temperature dependent opening of stomata. The direct stomatal response to temperature allows plants to benefit from increased evaporative cooling during the heat waves and from lower stomatal limitations to photosynthesis but they may be jeopardized by faster depletion of soil water.

  12. Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts

    KAUST Repository

    Radecker, Nils

    2017-08-15

    The endosymbiosis between cnidarians and dinoflagellates of the genus Symbiodinium is key to the high productivity of tropical coral reefs. In this endosymbiosis, Symbiodinium translocate most of their photosynthates to their animal host in exchange for inorganic nutrients. Among these, carbon dioxide (CO ) derived fromhost respiration helps to meet the carbon requirements to sustain photosynthesis of the dinoflagellates. Nonetheless, recent studies suggest that productivity in symbiotic cnidarians such as corals is CO -limited. Here we show that glucose enrichment stimulates respiration and gross photosynthesis rates by 80 and 140%, respectively, in the symbiotic upside-down jellyfish Cassiopeia sp. from the Central Red Sea. Our findings show that glucose was rapidly consumed and respired within the Cassiopeia sp. holobiont. The resulting increase of CO availability in hospite in turn likely stimulated photosynthesis in Symbiodinium. Hence, the increase of photosynthesis under these conditions suggests that CO limitation of Symbiodinium is a common feature of stable cnidarian holobionts and that the stimulation of holobiont metabolism may attenuate this CO limitation.

  13. Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts

    Directory of Open Access Journals (Sweden)

    Nils Rädecker

    2017-08-01

    Full Text Available The endosymbiosis between cnidarians and dinoflagellates of the genus Symbiodinium is key to the high productivity of tropical coral reefs. In this endosymbiosis, Symbiodinium translocate most of their photosynthates to their animal host in exchange for inorganic nutrients. Among these, carbon dioxide (CO2 derived from host respiration helps to meet the carbon requirements to sustain photosynthesis of the dinoflagellates. Nonetheless, recent studies suggest that productivity in symbiotic cnidarians such as corals is CO2-limited. Here we show that glucose enrichment stimulates respiration and gross photosynthesis rates by 80 and 140%, respectively, in the symbiotic upside-down jellyfish Cassiopeia sp. from the Central Red Sea. Our findings show that glucose was rapidly consumed and respired within the Cassiopeia sp. holobiont. The resulting increase of CO2 availability in hospite in turn likely stimulated photosynthesis in Symbiodinium. Hence, the increase of photosynthesis under these conditions suggests that CO2 limitation of Symbiodinium is a common feature of stable cnidarian holobionts and that the stimulation of holobiont metabolism may attenuate this CO2 limitation.

  14. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.

    Science.gov (United States)

    Herrick, Jeffrey D; Thomas, Richard B

    2003-02-01

    We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.

  15. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa; Efecto de la radiacion gamma sobre la fotosintesis neta y la respiracion de Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Fernandez, J.

    1983-07-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs.

  16. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon; Modello matematico-statistico per l`analisi della produttivita` primaria dell`alga Ulva nella laguna di Venezia

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, G.; Rizzo, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente; Bella, A.; Picci, M. [Rome Univ. La Sapienza (Italy). Dip. di Statistica e Probabilita` Applicata; Giordano, P. [Rome Univ. La Sapienza (Italy). Dip. di Biologia Vegetale

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality.

  17. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum.

    Science.gov (United States)

    Li, Tao; Liu, Li-Na; Jiang, Chuang-Dao; Liu, Yu-Jun; Shi, Lei

    2014-08-01

    In the field, close planting inevitably causes mutual shading and depression of leaf photosynthesis. To clarify the regulative mechanisms of photosynthesis under these conditions, the effects of planting density on leaf structure, gas exchange and proteomics were carefully studied in field-grown sorghum. In the absence of mineral deficiency, (1) close planting induced a significant decrease in light intensity within populations, which further resulted in much lower stomatal density and other anatomical characteristics associated with shaded leaves; (2) sorghum grown at high planting density had a lower net photosynthetic rate and stomatal conductance than those grown at low planting density; (3) approximately 62 protein spots changed their expression levels under the high planting density conditions, and 22 proteins associated with photosynthesis were identified by mass spectrometry. Further analysis revealed the depression of photosynthesis caused by mutual shading involves the regulation of leaf structure, absorption and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. Additionally, heat shock protein and oxygen-evolving enhancer protein play important roles in photoprotection in field-grown sorghum. A model for the regulation of photosynthesis under mutual shading was suggested based on our results. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuan, E-mail: xuan66chen@yahoo.co.j [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Aoki, Masatoshi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan); Takami, Akinori [National Institute for Environmental Studies, Onogawa 16-2, Tsukuba-shi, Ibaraki 305-8506 (Japan); Chai Fahe [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Hatakeyama, Shiro [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan)

    2010-05-15

    To investigate the effects of ambient-level gas-phase peroxides concurrent with O{sub 3} on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O{sub 3}, 100 ppb O{sub 3}, and 2-3 ppb peroxides + 50 ppb O{sub 3} in outdoor chambers. Compared with exposure to 100 ppb O{sub 3}, exposure to 2-3 ppb peroxides + 50 ppb O{sub 3} induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O{sub 3} exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O{sub 3} can cause more severe damage to plants than 100 ppb O{sub 3}, and that not only O{sub 3}, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas. - Ambient-level gas-phase peroxides coexisted with 50 ppb O{sub 3} may contribute to the herbaceous plants damage and forest decline observed in Japan.

  19. Modelling stomatal conductance in Acacia caven: A two way approach to understand vapor fluxes

    Science.gov (United States)

    Raab, N.; Meza, F. J.

    2012-12-01

    Evapotranspiration fluxes from semi arid ecosystems show a strong interannual variability and dependence on water availability. Usually this variable is regarded as very small but at local scale could substantially affect water balance at basin level. Climate Change scenarios for these regions are a source of concern as they project an increase in temperature, leading to a greater atmospheric water demand. In addition, precipitation is expected to decrease, increasing pressure for this kind of ecosystems. At a plant level, a rise on the actual atmospheric CO2 concentration is expected to improve photosynthetic performance and water use efficiency. However, as stomatal conductance is the main pathway for water vapor flux, from the leaf to the atmosphere, and CO2 entrance to the substomatal cavity, a larger control of the stomatal opening, due to a severe water control lost from the plant, could lead to shortages in net assimilation, jeopardizing the behavior of Semi Arid ecosystems as natural carbon sinks. Stoma is also one of the main lock of the soil-plant-water continuum, thus finally controlling the rate of soil water depletion. Its modeling presents a key role in determining future groundwater availability and net ecosystem exchange. There are several approaches for stomatal conductance modeling, from mechanistic models, based on the physiological functioning of the stomata, to empirical models where the stomatal behavior is correlated with environmental conditions. We modeled stomatal conductance for a Chilean typical Mediterranean Savannanh, dominated by Acacia caven, comparing two different empirical approaches. We used a Shuttleworth and Wallace model for sparse canopies combined with an inversion of the Penman-Monteith equation. This model allowed us to link stomatal conductance to evapotranspiration. The second approach was based on a multiplicative model for stomatal conductance based on environmental limitation, following Jarvis's model

  20. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    Science.gov (United States)

    Wehr, Richard; Commane, Róisín; Munger, J. William; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Saleska, Scott R.; Wofsy, Steven C.

    2017-01-01

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface-atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem-atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further

  1. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Directory of Open Access Journals (Sweden)

    Madeline R Carins Murphy

    Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas

  2. Thinning effect on photosynthesis depends on needle ages in a Chinese fir (Cunninghamia lanceolata) plantation.

    Science.gov (United States)

    Li, Ren-Shan; Yang, Qing-Peng; Zhang, Wei-Dong; Zheng, Wen-Hui; Chi, Yong-Gang; Xu, Ming; Fang, Yun-Ting; Gessler, Arthur; Li, Mai-He; Wang, Si-Long

    2017-02-15

    Canopies in evergreen coniferous plantations often consist of various-aged needles. However, the effect of needle age on the photosynthetic responses to thinning remains ambiguous. Photosynthetic responses of different-aged needles to thinning were investigated in a Chinese fir (Cunninghamia lanceolata) plantation. A dual isotope approach [simultaneous measurements of stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes] was employed to distinguish between biochemical and stomatal limitations to photosynthesis. Our results showed that increases in net photosynthesis rates upon thinning only occurred in the current-year and one-year-old needles, and not in the two- to four-year-old needles. The increased δ(13)C and declined δ(18)O in current year needles of trees from thinned stands indicated that both the photosynthetic capacity and stomatal conductance resulted in increasing photosynthesis. In one-year-old needles of trees from thinned stands, an increased needle δ(13)C and a constant needle δ(18)O were observed, indicating the photosynthetic capacity rather than stomatal conductance contributed to the increasing photosynthesis. The higher water-soluble nitrogen content in current-year and one-year-old needles in thinned trees also supported that the photosynthetic capacity plays an important role in the enhancement of photosynthesis. In contrast, the δ(13)C, δ(18)O and water-soluble nitrogen in the two- to four-year-old needles were not significantly different between the control and thinned trees. Thus, the thinning effect on photosynthesis depends on needle age in a Chinese fir plantation. Our results highlight that the different responses of different-aged needles to thinning have to be taken into account for understanding and modelling ecosystem responses to management, especially under the expected environmental changes in future. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparison of different stomatal conductance algorithms for ozone flux modelling

    NARCIS (Netherlands)

    Büker, P.; Emberson, L.D.; Ashmore, M.R.; Gerosa, G.; Jacobs, C.M.J.; Massman, W.J.; Müller, J.; Nikolov, N.; Novak, K.; Oksanen, E.; Torre, de la D.; Tuovinen, J.P.

    2007-01-01

    A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol.

  4. Comparison of different stomatal conductance algorithms for ozone flux modelling

    Science.gov (United States)

    P. Buker; L.D. Emberson; M. R. Ashmore; H. M. Cambridge; C. M. Jacobs; W. J. Massman; J. Muller; N. Nikolov; K. Novak; E. Oksanen; M. Schaub; D. de la Torre

    2007-01-01

    A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221-224.] algorithm for calculating...

  5. Acidic mist reduces foliar membrane-associated calcium and impairs stomatal responsiveness in red spruce

    Energy Technology Data Exchange (ETDEWEB)

    Borer, C. H.; DeHayes, D. H. [University of Vermont, Rubinstein School of Environment and Natural Resources, Burlington, VT (United States); Schaberg, P. G. [USDA Forest Service, Northeastern Research Station, South Burlington, VT (United States)

    2005-06-01

    The possibility of impairment of stomatal responsiveness due to acidic mist-induced depletion of foliar membrane calcium (mCa) was investigated by exposing red spruce seedlings to either pH 3.0 or pH 5.0 mist treatments for one growing season. Foliar nutrition was assessed following each treatment, and declines in stomatal conductance and net photosynthesis were measured on current year shoots following stem excision. Seedlings subjected to pH 3.0 acidic mist treatment had reduced mCa, and exhibited impaired stomatal function, including a smaller maximum aperture, slower closure, increased lag time between stomatal closure and photosynthetic decline following experimental water stress, relative to seedling treated with pH 5.0 acidic mist. The evidence supports the hypothesis that anthropogenetically caused depletion of mCa may disrupt physiological processes that depend on foliar Ca, in the process reducing the plants ability to respond adaptively to environmental stresses. 69 refs., 1 tab., 1 fig.

  6. [Effects of Ozone on Photosynthesis of Several Plants].

    Science.gov (United States)

    Li, Miao-miao

    2015-05-01

    In order to investigate the effect of ozone on photosynthesis of Machilus pauhoi, Lindera setchuenensis, Phoebe bournei, Phoebe chekiangensis and Machilus thunbergii, the study was carried out in 12 open-top chambers( OTCs) with different levels of ozone in Qianyanzhou experimental station, and net photosynthesis rate (Pn) and stomatal conductance (Cond) were detected. The results indicated that ozone treatments changed the variation trend of photosynthesis of all tested plants, but ozone exposure did not always play an inhibitory role on them. In fact, photosynthesis changed with ozone concentration, experimental period, season and specific species. Exposed to ozone could even promote Pn to a peak in a short term, and the indicator of plants treated with ozone was higher than that of the control at this point. Low and medium concentrations of ozone treatment enhanced Pn of Phoebe bournei and Machilus thunbergii. The peak of treatment group also came earlier because of ozone. Furthermore, the positive correlation between Pn and Cond did not existed under the condition of ozone. Machilus thunbergii had the strongest resistance to ozone, followed by Phoebe bournei, by comparison, Phoebe chekiangensis, Machilus pauhoi and Lindera setchuenensis were more sensitive.

  7. Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration.

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D; Borum, Jens; Zavala-Perez, Andrea; Kendrick, Gary A

    2016-06-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes. Temperature effects on net photosynthesis (PN ) and dark respiration (RD ) of leaves were evaluated. Daytime low tide was characterized by high pO2 (54 kPa), pH (8.8) and temperature (38°C) in shallow pools. As PN was maximum at 33°C (9.1 and 7.2 μmol O2  m(-2) s(-1) in T. hemprichii and E. acoroides, respectively), the high temperatures and reduced CO2 would have diminished PN , whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2  m(-2)  s(-1) , respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2 relieved the anoxia. Shoots exposed to 40°C for 4 h showed recovery of PN and RD , whereas 45°C resulted in leaf damage. These seagrasses are 'living near the edge', tolerant of current diel O2 and temperature extremes, but if temperatures rise both species may be threatened in this habitat. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species

    Energy Technology Data Exchange (ETDEWEB)

    Op de Beeck, M., E-mail: maarten.opdebeeck@ua.ac.b [Research Group of Plant and Vegetation Ecology, University of Antwerp, Campus Drie Eiken, Department of Biology, Universiteitsplein 1, 2160 Wilrijk (Belgium); De Bock, M., E-mail: maarten.debock@ua.ac.b [Research Group of Molecular Plant Physiology and Biotechnology, University of Antwerp, Campus Groenenborger, Department of Biology, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Vandermeiren, K., E-mail: kavan@var.fgov.b [Veterinary and Agrochemical Research Centre (VAR), Leuvensesteenweg 17, 3080 Tervuren (Belgium); Temmerman, L. de, E-mail: ludet@var.fgov.b [Veterinary and Agrochemical Research Centre (VAR), Leuvensesteenweg 17, 3080 Tervuren (Belgium); Ceulemans, R., E-mail: reinhart.ceulemans@ua.ac.b [Research Group of Plant and Vegetation Ecology, University of Antwerp, Campus Drie Eiken, Department of Biology, Universiteitsplein 1, 2160 Wilrijk (Belgium)

    2010-10-15

    In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g{sub st}) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g{sub st} variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g{sub st} variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O{sub 3} flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.

  9. Light environment alters ozone uptake per net photosynthetic rate in black cherry trees.

    Science.gov (United States)

    Fredericksen, T S; Kolb, T E; Skelly, J M; Steiner, K C; Joyce, B J; Savage, J E

    1996-05-01

    Foliar ozone uptake rates of different-sized black cherry (Prunus serotina Ehrh.) trees were compared within a deciduous forest and adjacent openings in north-central Pennsylvania during one growing season. Study trees included open-grown seedlings and saplings, forest understory seedlings and saplings, and sunlit and shaded portions of mature canopy tree crowns. Instantaneous ozone uptake rates were highest in high-light environments primarily because of higher stomatal conductances. Low ozone uptake rates of seedlings and saplings in the forest understory could be attributed partially to lower average ambient ozone concentrations compared to the canopy and open environments. Among the tree size and light combinations tested, ozone uptake rates were highest in open-grown seedlings and lowest in forest-grown seedlings. Despite lower ozone uptake rates of foliage in shaded environments, ozone uptake per net photosynthesis of foliage in shaded environments was significantly higher than that of foliage in sunlit environments because of weaker coupling between net photosynthesis and stomatal conductance in shaded environments. The potential for greater ozone injury in shaded environments as a result of greater ozone uptake per net photosynthesis is consistent with previous reports of greater ozone injury in shaded foliage than in sunlit foliage.

  10. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2011-01-01

    [CO2; free air CO2 enrichment (FACE)], drought (D; water-excluding curtains), and night-time warming (T; infrared-reflective curtains) in a temperate heath. A/Ci curves were measured, allowing analysis of light-saturated net photosynthesis (Pn), light- and CO2-saturated net photosynthesis (Pmax......), stomatal conductance (gs), the maximal rate of Rubisco carboxylation (Vcmax), and the maximal rate of ribulose bisphosphate (RuBP) regeneration (Jmax) along with leaf δ13C, and carbon and nitrogen concentration on a monthly basis in the grass Deschampsia flexuosa. Seasonal drought reduced Pn via gs......, but severe (experimental) drought decreased Pn via a reduction in photosynthetic capacity (Pmax, Jmax, and Vcmax). The effects were completely reversed by rewetting and stimulated Pn via photosynthetic capacity stimulation. Warming increased early and late season Pn via higher Pmax and Jmax. Elevated CO2 did...

  11. Environmental and physiological control of dynamic photosynthesis

    OpenAIRE

    Kaiser, M.E.

    2016-01-01

    Irradiance is the main driver of photosynthesis. In natural conditions, irradiance incident on a leaf often fluctuates, due to the movement of leaves, clouds and the sun. These fluctuations force photosynthesis to respond dynamically, however with delays that are subject to rate constants of underlying processes, such as regulation of electron transport, activation states of enzymes in the Calvin cycle, and stomatal conductance (gs). For example, in leaves adapted to low irradiance that are s...

  12. Responses of growth, photosynthesis and VOC emissions of Pinus tabulaeformis Carr. Exposure to elevated CO2 and/or elevated O3 in an urban area.

    Science.gov (United States)

    Xu, Sheng; Chen, Wei; Huang, Yanqing; He, Xingyuan

    2012-03-01

    Responses of growth, photosynthesis and emission of volatile organic compounds of Pinus tabulaeformis exposed to elevated CO(2) (700 ppm) and O(3) (80 ppb) were studied in open top chambers. Elevated CO(2) increased growth, but it did not significantly (p > 0.05) affect net photosynthetic rate, stomatal conductance, chlorophyll content, the maximum quantum yield of photosystem II, or the effective quantum yield of photosystem II electron transport after 90 d of gas exposure. Elevated O(3) decreased growth (by 42.2% in needle weight and 25.8% in plant height), net photosynthetic rate and stomatal conductance after 90 d of exposure, but its negative effects were alleviated by elevated CO(2). Elevated O(3) significantly (p < 0.05) increased the emission rate of volatile organic compounds, which may be a helpful response to protect photosynthetic apparatus against O(3) damage.

  13. The role of ethylene perception in the control of photosynthesis

    OpenAIRE

    Tholen, Danny; Pons, Thijs L.; Voesenek, Laurentius ACJ; Poorter, Hendrik

    2008-01-01

    The process of photosynthesis is under the control by several internal factors. Apart from the effect of abscisic acid on stomatal conductance, little is known about the interaction between hormonal signals and photosynthesis in fully-developed, nonsenescing leaves. Recently, we found that the ethylene transduction pathway is involved in the regulation of photosynthesis. Using an ethylene-insensitive tobacco genotype we showed that the absence of a functional ethylene receptor leads to a redu...

  14. Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi-arid shrub.

    Science.gov (United States)

    León-Sánchez, Lupe; Nicolás, Emilio; Nortes, Pedro A; Maestre, Fernando T; Querejeta, José I

    2016-05-01

    Whereas warming enhances plant nutrient status and photosynthesis in most terrestrial ecosystems, dryland vegetation is vulnerable to the likely increases in evapotranspiration and reductions in soil moisture caused by elevated temperatures. Any warming-induced declines in plant primary production and cover in drylands would increase erosion, land degradation, and desertification. We conducted a four-year manipulative experiment in a semi-arid Mediterranean ecosystem to evaluate the impacts of a ~2°C warming on the photosynthesis, transpiration, leaf nutrient status, chlorophyll content, isotopic composition, biomass growth, and postsummer survival of the native shrub Helianthemum squamatum. We predicted that warmed plants would show reduced photosynthetic activity and growth, primarily due to the greater stomatal limitation imposed by faster and more severe soil drying under warming. On average, warming reduced net photosynthetic rates by 36% across the study period. Despite this strong response, warming did not affect stomatal conductance and transpiration. The reduction of peak photosynthetic rates with warming was more pronounced in a drought year than in years with near-average rainfall (75% and 25-40% reductions relative to controls, respectively), with no indications of photosynthetic acclimation to warming through time. Warmed plants had lower leaf N and P contents, δ (13)C, and sparser and smaller leaves than control plants. Warming reduced shoot dry mass production by 31%. However, warmed plants were able to cope with large reductions in net photosynthesis, leaf area, and shoot biomass production without changes in postsummer survival rates. Our findings highlight the key role of nonstomatal factors (biochemical and/or nutritional) in reducing net carbon assimilation rates and growth under warming, which has important implications for projections of plant carbon balance under the warmer and drier climatic scenario predicted for drylands worldwide

  15. Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1 and sdd1-1 mutants.

    Science.gov (United States)

    Vráblová, M; Vrábl, D; Hronková, M; Kubásek, J; Šantrůček, J

    2017-09-01

    Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood. We used wild types Col-0 and C24 and stomatal mutants sdd1-1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed. Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1-1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis. Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Effects of diffuse light on radiation use efficiency depend on the response of stomatal conductance to dynamic light intensity

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2016-02-01

    Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  17. Effects of carbonyl sulfide (COS) and carbonic anhydrase on stomatal conductance

    Science.gov (United States)

    Yakir, D.; Stimler, K.; Berry, J. A.

    2011-12-01

    The potential use of COS as tracer of the gross, one-way, CO2 flux into plants is based on its co-diffusion with CO2 into leaves without outflux stimulated research on COS-CO2 interactions during leaf gas exchange. We carried out gas exchange measurements of COS and CO2 in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations, using mid IR laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (As) and CO2 (Ac; As/Ac*[CO2]/[COS]) was observed, with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes (except under low light conditions when CO2, but not COS, metabolism is light limited). A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. However, its effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) seems to stimulate stomatal conductance. We examined the stimulation of conductance by COS in a range of species and show that there is a large variation with some species showing almost no response while others are highly responsive (up to doubling stomatal conductance). Using C3 and C4 plants with antisense lines abolishing carbonic anhydrase activity, we show that the activity of this enzyme is essential for both the uptake of COS and the enhancement of stomatal conductance by COS. Since carbonic anhydrase catalyzes the conversion of COS to CO2 and H2S it seems likely that the stomata are responding to H2S produced in the mesophyll. In all natural species examined the uptake of COS and CO2 were highly correlated, and there was no relationship between the sensitivity of stomata and the rate of COS uptake

  18. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Optimal stomatal behaviour around the world

    Science.gov (United States)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-05-01

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  20. Radiação, fotossíntese, rendimento e qualidade de frutos em macieiras 'Royal Gala' cobertas com telas antigranizo Radiation, photosynthesis, yield, and fruit quality of 'Royal Gala' apples under hail protection nets

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2007-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a intensidade e a qualidade da radiação solar disponibilizada às plantas e os seus impactos sobre a fotossíntese, rendimento e qualidade dos frutos, em macieiras 'Royal Gala', cobertas ou não com telas antigranizo nas cores branca e preta. A tela preta provocou redução maior na densidade de fluxo de fótons fotossinteticamente ativos acima do dossel das plantas (24,8%, em comparação à tela branca (21,2%. O interior do dossel das plantas sob tela preta recebeu menores valores de radiação ultravioleta, azul, verde, vermelho e vermelho distante, bem como da relação vermelho:vermelho distante, em relação às plantas descobertas. Estas alterações na quantidade e qualidade da luz sob tela preta aumentaram o teor de clorofila total e a área específica nas folhas, e reduziram a taxa fotossintética potencial, o peso de frutos por cm² de seção transversal de tronco e a coloração vermelha dos frutos. As telas antigranizo branca e preta reduziram a incidência de queimadura de sol, porém não tiveram efeito sobre a severidade de "russeting" e sobre o número de sementes por fruto.The objective of this work was to assess the amount and quality of the light supplied to plants, and the resulting impacts on photosynthesis, yield, and fruit quality of 'Royal Gala' apple trees uncovered or covered with white and black hail protection nets. The black net caused a higher reduction (24.8% of photosynthetic photon flux density, accumulated over the plant canopy during the day, than the white net (21.2%. The canopy internal portion of plants covered by black net received lower levels of ultraviolet, blue, green, red, and far red radiation, and light with a lower red:far red ratio, in comparison to uncovered plants; these ligth changes increased chlorophyll content and specific area of the leaves, and reduced the potential photosynthesis, the weight of fruits per cm² of trunk cross section area, and the

  1. [Effects of excess Mn on photosynthesis characteristics in cucumber under different light intensity].

    Science.gov (United States)

    Shi, Qinghua; Zhu, Zhujun; Ying, Quansheng; Qian, Qiongqiu

    2005-06-01

    By a solution culture experiment, this paper studied the effects of excess Mn on the growth, chlorophyll content, chlorophyll fluorescence parameters and photosynthesis of cucumber under different light intensity. The results indicated that excess Mn inhibited plant growth, which was more obvious under high light intensity than under low light intensity. The primary maximum photochemical efficiency of PSII (v/Fm), quantum efficiency of non-cyclic electron transport of PSII (phiPSII), and photochemical quenching (qP) were significantly decreased in excess Mn treatment under high light intensity, while no significant effects on Fv/Fm and qP were observed under low light intensity. Excess Mn, particularly under high light intensity, decreased net photosynthetic rate (Pn) and stomatal conductance (Gs). Excess Mn increased intracellular CO2 (Ci) under high light intensity and decreased Ci under low light intensity, while stomatal limitation value (Ls) was just reverse to Ci. It could be concluded that the decrease of Pn in excess Mn treatment was not resulted from stomatal limitation under high light intensity, but was true under low light intensity.

  2. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting...... irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes...... in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn...

  3. The potential effects of concurrent increases in temperature, CO sub 2 and O sub 3 on net photosynthesis, as mediated by rubisCO

    Energy Technology Data Exchange (ETDEWEB)

    Long, S. (Brookhaven National Lab., Upton, NY (United States) Essex Univ., Colchester (United Kingdom). Dept. of Biology)

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO{sub 2} concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0{sub 2} on carbon gain, but also the basic interactions of temperature, C0{sub 2} and 0{sub 3}. Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO{sub 2} concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis.

  4. The potential effects of concurrent increases in temperature, CO{sub 2} and O{sub 3} on net photosynthesis, as mediated by rubisCO

    Energy Technology Data Exchange (ETDEWEB)

    Long, S. [Brookhaven National Lab., Upton, NY (United States)]|[Essex Univ., Colchester (United Kingdom). Dept. of Biology

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO{sub 2} concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0{sub 2} on carbon gain, but also the basic interactions of temperature, C0{sub 2} and 0{sub 3}. Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO{sub 2} concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis.

  5. ACUTE STOMATITIS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    L.N. Drobot’ko

    2010-01-01

    Full Text Available The problem of diseases of mucous membrane of oral cavity is one of the main ones in dentistry. Special attention in this problem should be given to the acute herpetic stomatitis. 80% of all cases of mucous membrane of oral cavity in children are herpetic stomatitis. Local immunity in children with acute stomatitis is closely related to the character of course of pathology. An administration of immunomodulatory treatment is pathogenetically grounded. Bacterial lysates mixture causes etiotropical and pathogenetical effect and increases the activity of immune system resulting in relapses prophylaxis.Key words: children, acute herpetic stomatitis, bacterial lysates mixture.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(2:146-149

  6. Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood

    National Research Council Canada - National Science Library

    TOZZI, EMILY S; EASLON, HSIEN MING; RICHARDS, JAMES H

    2013-01-01

    .... However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 ° C versus at 41 ° C for well‐watered plants...

  7. An overview of models of stomatal conductance at the leaf level.

    Science.gov (United States)

    Damour, Gaëlle; Simonneau, Thierry; Cochard, Hervé; Urban, Laurent

    2010-09-01

    Stomata play a key role in plant adaptation to changing environmental conditions as they control both water losses and CO(2) uptake. Particularly, in the context of global change, simulations of the consequences of drought on crop plants are needed to design more efficient and water-saving cropping systems. However, most of the models of stomatal conductance (g(s)) developed at the leaf level link g(s) to environmental factors or net photosynthesis (A(net)), but do not include satisfactorily the effects of drought, impairing our capacity to simulate plant functioning in conditions of limited water supply. The objective of this review was to draw an up-to-date picture of the g(s) models, from the empirical to the process-based ones, along with their mechanistic or deterministic bases. It focuses on models capable to account for multiple environmental influences with emphasis on drought conditions. We examine how models that have been proposed for well-watered conditions can be combined with those specifically designed to deal with drought conditions. Ideas for future improvements of g(s) models are discussed: the issue of co-regulation of g(s) and A(net); the roles of CO(2), absissic acid and H(2)O(2); and finally, how to better address the new challenges arising from the issue of global change.

  8. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  9. Improving photosynthesis.

    Science.gov (United States)

    Evans, John R

    2013-08-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO₂, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO₂ around Rubisco or by modifying the kinetic properties of Rubisco. The C₄ photosynthetic pathway is a CO₂-concentrating mechanism that generally enables C₄ plants to achieve greater efficiency in their use of light, nitrogen, and water than C₃ plants. To capitalize on these advantages, attempts have been made to engineer the C₄ pathway into C₃ rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO₂ leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging.

  10. Improving Photosynthesis

    Science.gov (United States)

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  11. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species.

    Science.gov (United States)

    Hu, Longxing; Wang, Zhaolong; Huang, Bingru

    2010-05-01

    Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re-watering in a C(3) perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, 'Midnight' (tolerant) and 'Brilliant' (sensitive), were subjected to drought stress for 15 days and then re-watered for 10 days in growth chambers. Single-leaf net photosynthetic rate (A), stomatal conductance (g(s)) and transpiration rate (Tr) decreased during drought, with a less rapid decline in 'Midnight' than in 'Brilliant'. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in 'Midnight' than in 'Brilliant'. The relationship between A and internal leaf CO(2) concentration (A/Ci curve) during drought and re-watering was analyzed to estimate the relative influence of stomatal and non-stomatal components on photosynthesis. Stomatal limitation (Ls %), non-stomatal limitation (Lns %), CO(2) compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in 'Midnight'. Maximum CO(2) assimilation rate (A(max)), carboxylation efficiency (CE) and mesophyll conductance (g(m)) declined, but 'Midnight' had significantly higher levels of A(max), CE and g(m) than 'Brilliant'. Maximum carboxylation rate of Rubisco (V(cmax)) and ribulose-1,5-bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (J(max)) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in 'Brilliant' than in 'Midnight'. After re-watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, g(s), Tr and Fv/Fm was only partially recovered, with a higher recovery level in 'Midnight' than in 'Brilliant'. Rubisco activity and

  12. Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity.

    Science.gov (United States)

    Li, Tao; Kromdijk, Johannes; Heuvelink, Ep; van Noort, F R; Kaiser, Elias; Marcelis, Leo F M

    2016-01-01

    The stimulating effect of diffuse light on radiation use efficiency (RUE) of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD). Two Anthurium andreanum cultivars ('Pink Champion' and 'Royal Champion') were grown in two glasshouses covered by clear (control) and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (g s) varied strongly in response to transient PPFD in 'Royal Champion,' whereas it remained relatively constant in 'Pink Champion.' Instantaneous net leaf photosynthesis (P n) in both cultivars approached steady state P n in diffuse light treatment. In control treatment this only occurred in 'Pink Champion.' These cultivar differences were reflected by a higher RUE (8%) in 'Royal Champion' in diffuse light treatment compared with control, whereas no effect on RUE was observed in 'Pink Champion.' We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  13. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica).

    Science.gov (United States)

    Eichert, Thomas; Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Heredia, Antonio; Fernández, Victoria

    2010-01-01

    There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach (Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F(V)/F(M)), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO(2) and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.

  14. [Effects of soil compactness stress on root activity and leaf photosynthesis of cucumber].

    Science.gov (United States)

    Sun, Yan; Wang, Yi-Quan; Yang, Mei; Xu, Lei

    2005-10-01

    Responses of root activity and leaf photosynthesis to soil compactness stress were studied in cucumber plants grown in pots. Soil compaction was expressed by soil bulk density. There were three compactness treatments with soil bulk densities, 1.2, 1.4 and 1.6 g/cm(3). The results showed that when the soil compactness increased, the dry weight and activity of roots reduced (Fig. 1); the relative electrical conductivity and malondialdehyde (MDA) content of cucumber leaf (Fig. 2) increased; the soluble protein content decreased (Fig. 3); the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased (Fig. 4); net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E) and specific leaf weight (SLW) decreased, but intercellular CO(2) concentration (Ci) increased (Fig. 5). These results mean that high soil compaction brings stress to cucumber plants.

  15. Reintroducing Photosynthesis

    Science.gov (United States)

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  16. Buckwheat stomatal traits under aluminium toxicity

    OpenAIRE

    Oleksandr E. Smirnov; Anatoliy M. Kosyan; Oksana I. Kosyk; Natalia Yu. Taran

    2014-01-01

    Aluminium influence on some stomatal parameters of common buckwheat (Fagopyrum esculentum Moench.) was studied. Significant changes in stomatal density, stomatal index and stomatal shape coefficient under aluminium treatment were revealed. Stomatal closure and no difference in total stomatal potential conductance index of treatment plants were suggested as aluminium resistance characteristics.

  17. Buckwheat stomatal traits under aluminium toxicity

    Directory of Open Access Journals (Sweden)

    Oleksandr E. Smirnov

    2014-04-01

    Full Text Available Aluminium influence on some stomatal parameters of common buckwheat (Fagopyrum esculentum Moench. was studied. Significant changes in stomatal density, stomatal index and stomatal shape coefficient under aluminium treatment were revealed. Stomatal closure and no difference in total stomatal potential conductance index of treatment plants were suggested as aluminium resistance characteristics.

  18. Differential Effects of Ozone Exposure on Carbon Assimilation and Stomatal Conductance

    Science.gov (United States)

    Lombardozzi, D.; Bonan, G. B.; Levis, S.; Sparks, J. P.

    2009-12-01

    Humans are indirectly increasing concentrations of surface ozone through industrial processes. Ozone is known to have negative impacts on plants, including reductions in crop yields, plant growth, and visible leaf injury. Ozone directly influences photosynthesis via two mechanisms: 1) the oxidation of cellular components (i.e., influencing leaf internal biochemistry and transport) and 2) altering stomatal functioning, ultimately changing conductance. Carbon exchange at the leaf level is governed by both conductance and carboxylation processes, but water exchange depends primarily on the size of the stomatal aperture. Thus, the possibility exists that ozone exposure will differentially affect plant-mediated carbon and water fluxes. Further, these differential effects of ozone are not explicitly expressed in most modeling efforts. We investigated how ozone changes both stomatal conductance and carbon assimilation using controlled open-top chamber experiments and then incorporated our experimental findings into modified Farquhar and Ball-Berry based photosynthesis and stomatal conductance models. In experiments, we observed carbon assimilation and conductance decreases in response to ozone. However, the decrease in carbon assimilation was larger than the decrease in conductance to water vapor, thereby changing the relationship between carbon gain and water loss at the leaf level. In addition, the relationship between photosynthesis and transpiration weakened significantly after 12 weeks of ozone exposure, suggesting a decoupling of photosynthesis and stomatal conductance. We used this information to modify biochemical parameters in the Farquhar model and the Ball-Berry coefficient to determine whether these models are able to simulate plant performance under ozone exposure.

  19. Expression of Arabidopsis hexokinase in citrus guard cells controls stomatal aperture and reduces transpiration

    Directory of Open Access Journals (Sweden)

    Nitsan eLugassi

    2015-12-01

    Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  20. The effect of Silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L. under high-zinc stress.

    Directory of Open Access Journals (Sweden)

    Alin Song

    Full Text Available The main objectives of this study were to elucidate the roles of silicon (Si in alleviating the effects of 2 mM zinc (high Zn stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L. grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY, Os05g48630 (PsaH, Os07g37030 (PetC, Os03g57120 (PetH, Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis.

  1. The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress

    Science.gov (United States)

    Song, Alin; Li, Ping; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis. PMID:25426937

  2. Effects of soil moisture regimes on photosynthesis and growth in cattail ( Typha latifolia)

    Science.gov (United States)

    Li, Shuwen; Pezeshki, S. Reza; Goodwin, Shirlean

    2004-03-01

    Both waterlogging and water deficiency are major environmental factors affecting plant growth and functioning in many wetland and floodplain ecosystems across North America. Wetland plants possess various characteristics that enable them to survive and function in the intermittently flooded wetland environments, while their sensitivity to drought has received less attention. The present study quantified the photosynthetic and growth responses of cattail ( Typha latifolia), an important species of freshwater wetlands, to a wide range of soil moisture regimes. In addition, changes in the efficiency of photosynthetic apparatus following initiation of the treatments were investigated. Under greenhouse conditions, seedlings were subjected to four soil moisture regimes: (1) drained (control), (2) continuous flooding, (3) periodic flooding, and (4) periodic drought. Results indicated that dark fluorescence yield was increased in response to periodic drought, while it showed decreases under continuous flooding. Net photosynthesis and stomatal conductance were enhanced by continuous flooding and periodic flooding. In contrast, these parameters exhibited reduction under periodic drought. In addition, leaf chlorophyll content was adversely affected by periodic drought. Recovery of net photosynthesis was noted, along with enhanced height growth, in both continuously and periodically flooded plants. Meanwhile, continuous flooding enhanced biomass production while periodic drought led to biomass reduction. Periodic drought also contributed to substantial reduction in root growth compared with shoot growth. Therefore, the combined photosynthetic performance and growth responses of cattail are likely to contribute to the ability of this species to thrive in flooded condition but be susceptive to periodic drought.

  3. Recurrent Aphthous Stomatitis: A Review.

    Science.gov (United States)

    Edgar, Natalie Rose; Saleh, Dahlia; Miller, Richard A

    2017-03-01

    Aphthous stomatitis is a painful and often recurrent inflammatory process of the oral mucosa that can appear secondary to various well-defined disease processes. Idiopathic recurrent aphthous stomatitis is referred to as recurrent aphthous stomatitis. The differential diagnosis for recurrent aphthous ulcerations is extensive and ranges from idiopathic benign causes to inherited fever syndromes, to connective tissue disease, or even inflammatory bowel diseases. A thorough history and review of systems can assist the clinician in determining whether it is related to a systemic inflammatory process or truly idiopathic. Management of aphthous stomatitis is challenging. For recurrent aphthous stomatitis or recalcitrant aphthous stomatitis from underlying disease, first-line treatment consists of topical medications with use of systemic medications as necessary. Herein, the authors discuss the differential diagnosis and treatment ladder of aphthous stomatitis as described in the literature.

  4. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S V; Yin, X; Vos, J; Danalatos, N G; Struik, P C

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)-C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)-I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)-C(i) or from A(n)-I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)-I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model.

  5. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  6. Recurrent aphthous stomatitis.

    Science.gov (United States)

    Akintoye, Sunday O; Greenberg, Martin S

    2005-01-01

    The cause of recurrent aphthous stomatitis (RAS) remains unknown despite considerable research. This article reviews the evidence for current theories regarding this disorder, including possible suspected relationships with microbial and immunologic factors, and presents medical diseases that mimic RAS lesions in certain patients. Topical management of the common form of minor RAS is described along with systemic therapy currently available to patients with severe forms of this disease.

  7. Stomatal Development in Arabidopsis

    Science.gov (United States)

    Pillitteri, Lynn Jo; Dong, Juan

    2013-01-01

    Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants. PMID:23864836

  8. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes.

    Science.gov (United States)

    Ramalho, J C; Zlatev, Z S; Leitão, A E; Pais, I P; Fortunato, A S; Lidon, F C

    2014-01-01

    The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψ(p) were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced A(max) indicated non-stomatal limitations that contributed to the negligible P(n). These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (F(v)'/F(m)'), quantum yield of photosynthetic non-cyclic electron transport (ϕ(e)) and energy-driven photochemical events (q(P)), although the impact on these parameters would also include down-regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non-photochemical quenching, zeaxanthin, lutein, β-carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced A(max) due to daytime stomatal closure in well-watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non-stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed

  9. Recurrent Aphthous Stomatitis: A Review

    OpenAIRE

    Edgar, Natalie Rose; Saleh, Dahlia; Miller, Richard A.

    2017-01-01

    Aphthous stomatitis is a painful and often recurrent inflammatory process of the oral mucosa that can appear secondary to various well-defined disease processes. Idiopathic recurrent aphthous stomatitis is referred to as recurrent aphthous stomatitis. The differential diagnosis for recurrent aphthous ulcerations is extensive and ranges from idiopathic benign causes to inherited fever syndromes, to connective tissue disease, or even inflammatory bowel diseases. A thorough history and review of...

  10. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pompelli, Marcelo F.; Santos, Mauro G.; Almeida-Cortez, Jarcilene S. [Federal University of Pernambuco, Department of Botany, Plant Physiology Laboratory, Prof. Moraes Rego Av. s/n, Cidade Universitaria 50670901, Recife, PE (Brazil); Barata-Luis, Ricardo [Superior Institute of Agronomy, Technical University of Lisbon, Lisbon (Portugal); Vitorino, Hermerson S.; Goncalves, Eduardo R.; Rolim, Eduardo V.; Ferreira, Vilma M.; Lemos, Eurico E.; Endres, Lauricio [Plant Physiology Laboratory, Federal University of Alagoas, Maceio, Alagoas (Brazil)

    2010-08-15

    Biodiesel is an alternative to petroleum diesel fuel. It is a renewable, a biodegradable, and also a non-toxic fuel. The general interest to produce biodiesel from Jatropha (Jatropha curcas L.) seeds oil has increased but its ability to grow on drought-prone areas has barely been investigated. The objective of this work was to identify some physiological processes that allow the Jatropha to produce in severe arid conditions by studying its leaf gas exchange and antioxidant systems under drought stress and recovering. It measured the activity of antioxidant enzymes involved in the scavenge of reactive oxygen species (ROS), as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutamine synthetase (GS), as well as malondialdehyde (MDA) content. It was also analyzed the chlorophyll (CHL), carotenoids, amino acids and soluble proteins contents. Net photosynthesis (A) and stomata conductance (g{sub s}) decreased associate with drought stress and dropped to zero in soil water beneath 5%. Drought induced decrease in stomatal and non-stomatal photosynthetic activity. The activities of SOD, CAT, APX and GS and MDA content in leaves were significantly higher in the water-stressed plants compared to well-watered plants and decreased when the plants were rewatered. These observations suggest that oxidative stress resulting from drought deficit in Jatropha could result in the production of antioxidative enzymes to counteract the oxidative damage, and the enzymes may contribute to its ability to survive in the adverse arid environment. (author)

  11. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves

    NARCIS (Netherlands)

    Savvides, A.; Fanourakis, D.; Ieperen, van W.

    2012-01-01

    Long-term effects of light quality on leaf hydraulic conductance (Kleaf) and stomatal conductance (gs) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640

  12. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).

    Science.gov (United States)

    Tomar, Rupal Singh; Jajoo, Anjana

    2014-11-01

    The toxic effect of fluoranthene (FLT) on seed germination, growth of seedling and photosynthesis processes of wheat (Triticum aestivum) was investigated. Wheat seeds were exposed to 5 µM and 25 µM FLT concentrations for 25 days and it was observed that FLT had inhibiting effect on rate of seed germination. The germination rate of wheat seeds decreased by 11% at 25 µM FLT concentration. Root/shoot growth and biomass production declined significantly even at low concentrations of FLT. Chlorophyll a fluorescence and gas exchange parameters were measured after 25 days to evaluate the effects of FLT on Photosystem II (PSII) activity and CO2 assimilation rate. The process of CO2 assimilation decreased more effectively by FLT as compared to the yield of PSII. A negative correlation was found between plant net photosynthesis, stomatal conductance, carboxylation capacity and biomass production with FLT. It is concluded that inhibiting effects of FLT on photosynthesis are contributed more by inhibition in the process of CO2 fixation rather than inhibition of photochemical events. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms.

    Science.gov (United States)

    Petit, Anne-Noëlle; Wojnarowiez, Geneviève; Panon, Marie-Laure; Baillieul, Fabienne; Clément, Christophe; Fontaine, Florence; Vaillant-Gaveau, Nathalie

    2009-02-01

    The effects of the two botryticides, fludioxonil (fdx) and fenhexamid (fhd), were investigated on grapevine leaves (Vitis vinifera L. cv. Pinot noir) following photosynthesis and defense mechanisms. Treatments were carried out in vineyard at the end of flowering. Phytotoxicity of both fungicides was evaluated by measuring variations of leaf photosynthetic parameters and correlated expression of photosynthesis-related genes. Results demonstrated that similar decrease in photosynthesis was caused by fdx and fhd applications. Moreover, the mechanism leading to photosynthesis alteration seems to be the same for both fungicides. Stomatal limitation to photosynthetic gas exchange did not change following treatments indicating that inhibition of photosynthesis was mostly attributed to non-stomatal factors. Nevertheless, fungicides-induced depression of photosynthesis was related neither to a decrease in Rubisco carboxylation efficiency and in the capacity for regeneration of ribulose 1,5-bisphosphate nor to loss in PSII activity. However, fdx and fhd treatments generated repression of genes encoding proteins involved in the photosynthetic process. Indeed, decreased photosynthesis was coupled with repression of PsbP subunit of photosystem II (psbP1), chlorophyll a/b binding protein of photosystem I (cab) and Rubisco small subunit (rbcS) genes. A repression of these genes may participate in the photosynthesis alteration. To our knowledge, this is the first study of photosynthesis-related gene expression following fungicide stress. In the meantime, defense responses were followed by measuring chitinase activity and expression of varied defense-related genes encoding proteins involved in phenylpropanoid synthesis (PAL) or octadecanoid synthesis (LOX), as well as pathogenesis-related protein (Chi4C). No induction of defense was observed in botryticides-treated leaves. To conclude, the photosynthesis is affected without any triggering of plant defense responses.

  14. Limitations to photosynthesis of lettuce grown under tropical conditions: alleviation by root-zone cooling.

    Science.gov (United States)

    He, J; Lee, S K; Dodd, I C

    2001-06-01

    Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 degrees C-RZT and a fluctuating ambient (A-) RZT from 23-40 degrees C. Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (gs), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio Fv/Fm than 20 degrees C-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although Fv/Fm did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (gs sat) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure. However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O2 evolution (Pmax), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P(max) during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.

  15. Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration

    Science.gov (United States)

    Pavlovič, Andrej; Demko, Viktor; Hudák, Ján

    2010-01-01

    Background and Aims The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays an important role in closure. Because electrical signals are involved in reduction of the photosynthetic rate in different plant species, we hypothesized that trap closure and subsequent movement of prey in the trap will result in transient downregulation of photosynthesis, thus representing the energetic costs of carnivory associated with an active trapping mechanism, which has not been previously described. Methods Traps were enclosed in a gas exchange cuvette and the trigger hairs irritated with thin wire, thus simulating insect capture and retention. Respiration rate was measured in darkness (RD). In the light, net photosynthetic rate (AN), stomatal conductance (gs) and intercellular CO2 concentration (ci) were measured, combined with chlorophyll fluorescence imaging. Responses were monitored in the lamina and trap separately. Key Results Irritation of trigger hairs resulted in decreased AN and increased RD, not only immediately after trap closure but also during the subsequent period when prey retention was simulated in the closed trap. Stomatal conductance remained stable, indicating no stomatal limitation of AN, so ci increased. At the same time, the effective quantum yield of photosystem II (ΦPSII) decreased transiently. The response was confined mainly to the digestive zone of the trap and was not observed in the lamina. Stopping mechanical irritation resulted in recovery of AN, RD and ΦPSII. Conclusions We put forward the first experimental evidence for energetic demands and carbon costs during insect trapping and retention in carnivorous plants, providing a new

  16. Optimal Stomatal Behaviour Around the World: Synthesis of a Global Stomatal Conductance Database and Scaling from Leaf to Ecosystem

    Science.gov (United States)

    Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.

    2014-12-01

    Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.

  17. [Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters].

    Science.gov (United States)

    Hao, Xing-yu; Han, Xue; Li, Ping; Yang, Hong-bin; Lin, Er-da

    2011-10-01

    By using free air CO2 enrichment (FACE) system, a pot experiment under field condition was conducted to study the effects of elevated CO2 concentration (550 +/- 60 micromol mol(-1)) on the leaf photosynthesis and chlorophyll fluorescence parameters of mung bean. Comparing with the control (CO2 concentration averagely 389 +/- 40 micromol mol(-1)), elevated CO2 concentration increased the leaf intercellular CO2 concentration (Ci) and net photosynthesis rate (P(n)) at flowering and pod growth stage by 9.8% and 11.7%, decreased the stomatic conductance (G(s)) and transpiration rate (T(r)) by 32.0% and 24.6%, respectively, and increased the water use efficiency (WUE) by 83.5%. Elevated CO2 concentration had lesser effects on the minimal fluorescence (F0), maximal fluorescence (F(m)), variable fluorescence (F(v)), ratio of variable fluorescence to minimal fluorescence (F(v)/F0), and ratio of variable fluorescence to maximal fluorescence (F(v)/F(m)) at bud stage, but increased the F0 at pod filling stage by 19.1% and decreased the Fm, F(v), F(v)/F0, and F(v)/F(m) by 9.0%, 14.3%, 25.8% , and 6.2%, respectively. These results suggested that elevated CO2 concentration could damage the structure of leaf photosystem II and consequently decrease the leaf photosynthetic capacity in the late growth phase of mung bean.

  18. Climate changes and photosynthesis

    Directory of Open Access Journals (Sweden)

    G.Sh Tkemaladze

    2016-06-01

    Solar energy is environmentally friendly and its conversion to energy of chemical substances is carried out only by photosynthesis – effective mechanism characteristic of plants. However, microorganism photosynthesis occurs more frequently than higher plant photosynthesis. More than half of photosynthesis taking place on the earth surface occurs in single-celled organisms, especially algae, in particular, diatomic organisms.

  19. Integrating O3 influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modeling

    Science.gov (United States)

    Lombardozzi, D.; Sparks, J. P.; Bonan, G.

    2013-11-01

    Plants have a strong influence on climate by controlling the transfer of carbon dioxide and water between the biosphere and atmosphere during the processes of photosynthesis and transpiration. Chronic exposure to surface ozone (O3) differentially affects photosynthesis and transpiration because it damages stomatal conductance, the common link that controls both processes, in addition to the leaf biochemistry that only affects photosynthesis. Because of the integral role of O3 in altering plant interactions with the atmosphere, there is a strong motivation to incorporate the influence of O3 into regional and global models. However, there are currently no analyses documenting both photosynthesis and stomatal conductance responses to O3 exposure through time using a standardized O3 parameter that can be easily incorporated into models. Therefore, models often rely on photosynthesis data derived from the responses of one or a few plant species that exhibit strong negative correlations with O3 exposure to drive both rates of photosynthesis and transpiration, neglecting potential divergence between the two fluxes. Using data from the peer-reviewed literature, we have compiled photosynthetic and stomatal responses to chronic O3 exposure for all plant types with data available in the peer-reviewed literature as a standardized function of cumulative uptake of O3 (CUO), which integrates O3 flux into leaves through time. These data suggest that stomatal conductance decreases ~11% after chronic O3 exposure, while photosynthesis independently decreases ~21%. Despite the overall decrease in both variables, high variance masked any correlations between the decline in photosynthesis or stomatal conductance with increases in CUO. Though correlations with CUO are not easily generalized, existing correlations demonstrate that photosynthesis tends to be weakly but negatively correlated with CUO while stomatal conductance is more often positively correlated with CUO. Results suggest

  20. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem‐respired CO2 in a coastal Douglas‐fir forest

    National Research Council Canada - National Science Library

    CAI, TIEBO; FLANAGAN, LAWRENCE B; JASSAL, RACHHPAL S; BLACK, T. ANDREW

    2008-01-01

    We developed and applied an ecosystem‐scale model that calculated leaf CO 2 assimilation, stomatal conductance, chloroplast CO 2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately...

  1. Increasing stomatal conductance in response to rising atmospheric CO2.

    Science.gov (United States)

    Purcell, C; Batke, S P; Yiotis, C; Caballero, R; Soh, W K; Murray, M; McElwain, J C

    2018-01-31

    Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, gs can increase in response to elevated CO2. Using (1) an extensive, up-to-date synthesis of gs responses in free air CO2 enrichment (FACE)experiments, (2) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8 % of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2 = 0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.

  2. CAM Photosynthesis in Submerged Aquatic Plants

    Science.gov (United States)

    Keeley, J.E.

    1998-01-01

    Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, including Isoe??tes, Sagittaria, Vallisneria, Crassula, and Littorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high diffusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(Pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic

  3. [Recurrent aphthous stomatitis in Rheumatology].

    Science.gov (United States)

    Riera Matute, Gabriel; Riera Alonso, Elena

    2011-01-01

    Recurrent aphthous stomatitis consists on recurring oral ulcers of unknown etiology. Oral ulcers may be different in number and size depending on the clinical presentation, which also determines the time needed for healing. Moreover, there are factors associated to outbreaks but not implicated in its etiopathogenesis. When oral aphthosis has a known etiology, it is not considered as recurrent aphthous stomatitis. The severity and the clinical presentation helps in the differential diagnosis. Treatment is symptomatic in recurrent aphthous stomatitis while, if there is an underlying systemic disease, the treatment of such disease is need in addition to topical treatment. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  4. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2016-01-01

    Full Text Available Dramatic increase in the use of nanoparticles (NPs in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ~20% and 80%, respectively, in comparison to the control. Pigments measurement showed Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO, CHLOROPHYLL SYNTHASE (CHLG, COPPER RESPONSE DEFECT 1 (CRD1, MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM and MG-CHELATASE SUBUNIT D (CHLD, and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2, PHOTOSYSTEM I SUBUNIT E-2 (PSAE2, PHOTOSYSTEM I SUBUNIT K (PSAK and PHOTOSYSTEM I SUBUNIT K (PSAN were reduced about 5-fold in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6, PHYTOENE SYNTHASE (PSY PHYTOENE DESATURASE (PDS, and ZETA-CAROTENE DESATURASE (ZDS were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  5. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    KAUST Repository

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  6. OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions.

    Science.gov (United States)

    Udomchalothorn, Thanikarn; Plaimas, Kitiporn; Sripinyowanich, Siriporn; Boonchai, Chutamas; Kojonna, Thammaporn; Chutimanukul, Panita; Comai, Luca; Buaboocha, Teerapong; Chadchawan, Supachitra

    2017-04-01

    OsNUC1 encodes rice nucleolin, which has been shown to be involved in salt stress responses. Expression of the full-length OsNUC1 gene in Arabidopsis resulted in hypersensitivity to ABA during germination. Transcriptome analysis of the transgenic lines, in comparison with the wild type, revealed that the RNA abundance of >1,900 genes was significantly changed under normal growth conditions, while under salt stress conditions the RNAs of 999 genes were found to be significantly regulated. Gene enrichment analysis showed that under normal conditions OsNUC1 resulted in repression of genes involved in photosynthesis, while in salt stress conditions OsNUC1 increased expression of the genes involved in the light-harvesting complex. Correspondingly, the net rate of photosynthesis of the transgenic lines was increased under salt stress. Transgenic rice lines with overexpression of the OsNUC1-L gene were generated and tested for photosynthetic performance under salt stress conditions. The transgenic rice lines treated with salt stress at the booting stage had a higher photosynthetic rate and stomatal conductance in flag leaves and second leaves than the wild type. Moreover, higher contents of Chl a and carotenoids were found in flag leaves of the transgenic rice. These results suggest a role for OsNUC1 in the modification of the transcriptome, especially the gene transcripts responsible for photosynthesis, leading to stabilization of photosynthesis under salt stress conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Recurrent aphthous stomatitis.

    Science.gov (United States)

    Cui, Ricky Z; Bruce, Alison J; Rogers, Roy S

    2016-01-01

    Recurrent aphthous stomatitis (RAS) is the most common acute oral ulcerative condition in North America. RAS is divided into a mild, common form, simple aphthosis, and a severe, less common form, complex aphthosis. Aphthosis is a reactive condition. The lesions of RAS can represent the mucosal manifestation of a variety of conditions. These include conditions with oral and genital aphthae such as ulcus vulvae acutum, reactive nonsexually related acute genital ulcers, and Behçet disease. The mouth is the beginning of the gastrointestinal (GI) tract, and the lesions of RAS can be a manifestation of GI diseases such as gluten-sensitive enteropathy, ulcerative colitis, and Crohn disease. Complex aphthosis may also have correctable causes. The clinician should seek these in a careful evaluation. Successful management of both simple and complex aphthosis depends on accurate diagnosis, proper classification, recognition of provocative factors, and the identification of associated diseases. The outlook for patients with both simple and complex aphthosis is positive. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Discoveries in Photosynthesis

    Science.gov (United States)

    Govindjee; Beatty, J. T.; Gest, H.; Allen, J. F.

    "Life Is Bottled Sunshine" [Wynwood Reade, Martyrdom of Man, 1924]. This inspired phrase is a four-word summary of the significance of photosynthesis for life on earth. The study of photosynthesis has attracted the attention of a legion of biologists, biochemists, chemists and physicists for over 200 years. Discoveries in Photosynthesis presents a sweeping overview of the history of photosynthesis investigations, and detailed accounts of research progress in all aspects of the most complex bioenergetic process in living organisms.

  9. Photosynthesis. Agricultural Lesson Plans.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on photosynthesis. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about photosynthesis. The following topics are among those discussed: the photosynthesis process and its importance, the organisms that…

  10. Reconstruction of palaeoatmospheric carbon dioxide using stomatal densities of various beech plants (Fagaceae): testing and application of a mechanistic model

    Science.gov (United States)

    Grein, M.; Roth-Nebelsick, A.; Konrad, W.

    2006-12-01

    A mechanistic model (Konrad &Roth-Nebelsick a, in prep.) was applied for the reconstruction of atmospheric carbon dioxide using stomatal densities and photosynthesis parameters of extant and fossil Fagaceae. The model is based on an approach which couples diffusion and the biochemical process of photosynthesis. Atmospheric CO2 is calculated on the basis of stomatal diffusion and photosynthesis parameters of the considered taxa. The considered species include the castanoid Castanea sativa, two quercoids Quercus petraea and Quercus rhenana and an intermediate species Eotrigonobalanus furcinervis. In the case of Quercus petraea literature data were used. Stomatal data of Eotrigonobalanus furcinervis, Quercus rhenana and Castanea sativa were determined by the authors. Data of the extant Castanea sativa were collected by applying a peeling method and by counting of stomatal densities on the digitalized images of the peels. Additionally, isotope data of leaf samples of Castanea sativa were determined to estimate the ratio of intercellular to ambient carbon dioxide. The CO2 values calculated by the model (on the basis of stomatal data and measured or estimated biochemical parameters) are in good agreement with literature data, with the exception of the Late Eocene. The results thus demonstrate that the applied approach is principally suitable for reconstructing palaeoatmospheric CO2.

  11. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.

    Science.gov (United States)

    Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero

    2017-07-01

    Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    Science.gov (United States)

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  13. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees

    Science.gov (United States)

    Yong-Jiang Zhang; Frederick C. Meinzer; Qi Jin-Hua; Guillermo Goldstein; Cao. Kun-Fang

    2012-01-01

    Midday depressions in stomatal conductance (gs/>) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs/> differed between...

  14. Relating Leaf Nitrogen, Leaf Photosynthesis and Canopy CO2 Exchange in a Temperate Winter Barley Field

    Science.gov (United States)

    Jensen, R.; Boegh, E.; Herbst, M.; Friborg, T.

    2012-12-01

    Net exchange of CO2 between the atmosphere and the soil-vegetation interface (NEE) is controlled by a wide range of biochemical and biophysical processes where leaf photosynthesis is often the most important. In mechanistically and physically based photosynthesis models (e.g. Farquhar et al. 1980) leaf nutrient status is a limiting factor for the photosynthetic capacity since it is implicitly incorporated through the parameters of maximum rate of carboxylation of CO2 (Vcmax) and the maximum rate of electron transport (Jmax). These are closely related to leaf nitrogen concentration (Na) and leaf chlorophyll content (Cab) and often show a characteristic seasonal dynamic. When simulating CO2 exchange, model outputs are sensitive to leaf photosynthetic capacity, which is labour consuming to verify through field measurements. A less time consuming method is to measure leaf "greenness" (SPAD), which is closely related to chlorophyll content and thus photosynthetic capacity. In the present study field measurements of leaf photosynthesis (LI-6400, LICOR Inc.), leaf reflectance (SPAD-502, Minolta), and LAI (LAI-2000, LICOR Inc.) were conducted on agricultural fields in Western Denmark during one growing season. The leaf photosynthesis measurements provided the basis for estimating photosynthetic capacity. SPAD measurements and LAI was measured with a higher spatial and temporal resolution. SPAD readings were calibrated against Cab and Na analyzed on leaf material in the laboratory and later correlated to photosynthetic capacity. These data were used to parameterize a coupled photosynthesis and stomatal model that was run for the growing season 2012 to estimate NEE. As a part of the hydrological observatory HOBE (hobe.dk), fluxes of greenhouse gasses are continuously measured by eddy covariance systems at three field sites in the Skjern River Catchment, Western Denmark, providing the basis for estimating the exchange of energy, water vapour, and CO2 on canopy scale. One of

  15. [Effects of drying and re-watering on the photosynthesis and active oxygen metabolism of Periploca sepium seedlings].

    Science.gov (United States)

    An, Yu-yan; Hao, Wen-fang; Gong, Chun-mei; Han, Rui-lian; Liang, Zong-suo

    2010-12-01

    Taking two-year-old Periploca sepium seedlings as test materials, an experiment with controlled soil water contents was conducted to study the effects of repeated drying and re-watering on the leaf photosynthetic characteristics and the lipid peroxidation and antioxidant system in young leaves, mature leaves, old leaves, new stems, and fine roots. The seedlings were subjected to three cycles of drying and re-watering, with regular irrigation to maintain the soil water content at around 80% of field capacity as the control (CK). Under drying, the leaf relative water content (RWC) and net photosynthesis rate (Pn) decreased significantly, while the leaf photosynthetic pigments content increased. When the seedlings were re-watered, their leaf RWC recovered to the CK level, showing a strong repair capacity after drying. Both the leaf chlorophyll content and the Pn after repeated drying and re-watering presented a higher level than those of the CK, indicating a compensatory effect appeared and an appropriate drought stress being able to induce the adaptability of P. sepium to drought stress. Stomatal closure was the main factor limiting P. sepium photosynthesis under drought stress, while non-stomatal limitation only worked at noon. Under drying, the superoxide anion radical (O2-*) production rate in young leaves, new stems, and fine roots increased while the malondialdehyde (MDA) contents decreased, suggesting that these young tissues were not suffered from the oxidative stress. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in different organs had different variation trends, with those in fine roots changed actively, suggesting the important role of fine roots in the acclimation of P. sepium to drought environment. It was the cooperation and coordination among plant organs that made P. sepium more adaptive to the repeated drying and wetting conditions in drought-prone regions.

  16. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    Science.gov (United States)

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.

  17. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  18. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut ( Castanea dentata) seedlings

    National Research Council Canada - National Science Library

    Wang, G. Geoff; Bauerle, William L; Mudder, Bryan T

    2006-01-01

    ...) to examine how light intensity affects photosynthesis, growth, and biomass allocation. Net photosynthetic rate increased linearly with increasing irradiance while instantaneous water use efficiency peaked at 32...

  19. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2.

    Science.gov (United States)

    Assmann, Sarah M; Jegla, Timothy

    2016-10-01

    By controlling the opening and closure of the stomatal pores through which gas exchange occurs, guard cells regulate two of the most important plant physiological processes: photosynthesis and transpiration. Accordingly, guard cells have evolved exquisite sensory systems. Here we summarize recent literature on guard cell sensing of light, drought (via the phytohormone abscisic acid (ABA)), and CO2. New advances in our understanding of how guard cells satisfy the energetic and osmotic requirements of stomatal opening and utilize phosphorylation to regulate the anion channels and aquaporins involved in ABA-stimulated stomatal closure are highlighted. Omics and modeling approaches are providing new information that will ultimately allow an integrated understanding of guard cell physiology. Copyright © 2016. Published by Elsevier Ltd.

  20. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... maximum net photosynthesis (Pmax), light component point (LCP) and apparent quantum efficiency. (AQE) of the top fourth leaf of ... apparent quantum efficiency; Pn, net photosynthetic rate;LCP,light component ...... Science of rice production in Jiangsu Nanjing: Jiangsu Science and Technology Publisher ...

  1. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, R.E.

    2001-12-15

    Photosynthesis is a biological process that is as complex as it is fundamental. It is a field that spans time scales from the cosmic to the femtosecond, and bridges disciplines from biochemistry to geology. In the last ten years major advances in the field and improved research techniques have further deepened the understanding of the process of photosynthesis. Molecular Mechanisms of Photosynthesis stands as an ideal introduction to this subject. The author, a leading authority in photosynthesis research, offers a modern approach to photosynthesis in this accessible and well-illustrated text. The book provides a concise overview of the basic principles of energy storage and the history of the field, then progresses into more advanced topics such as electron transfer pathways, kinetics, genetic manipulations, and evolution. Throughout, the author includes an interdisciplinary emphasis that makes this book appealing across fields. authorship: leading authority in photosynthesis and the President of the International Society of Photosynthesis Research. First authoritative text to enter the market in 10 years. Stresses an interdisciplinary approach, which appeals to all science students. Emphasizes the recent advances in molecular structures and mechanisms. Only text to contain comprehensive coverage of both bacterial and plant photosynthesis. Includes the latest insights and research on structural information, improved spectroscopic techniques as well as advances in biochemical and genetic methods. Presents the most extensive treatment of the Origin and evolution of photosynthesis. Comprehensive appendix, which includes a detailed introduction to the physical basis of photosynthesis, including thermodynamics, kinetics and spectroscopy. (author)

  2. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  3. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana

    NARCIS (Netherlands)

    Kaiser, Elias; Morales Sierra, Alejandro; Harbinson, Jeremy; Heuvelink, Ep; Prinzenberg, Aina E.; Marcelis, Leo F.M.

    2016-01-01

    A better understanding of the metabolic and diffusional limitations of photosynthesis in fluctuating irradiance can help identify targets for improving crop yields. We used different genotypes of Arabidopsis thaliana to characterise the importance of Rubisco activase (Rca), stomatal conductance

  4. Attenuation of salt-induced changes in photosynthesis by ...

    African Journals Online (AJOL)

    In parallel, NO application in salt-stressed plants attenuated the decrease in the photosynthetic parameters such as leaf chlorophyll, net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), the ratio of variable to maximum fluorescence (Fv/Fm), electron transport rate (ETR), the efficiency of excitation ...

  5. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency.

    Science.gov (United States)

    Jákli, Bálint; Tavakol, Ershad; Tränkner, Merle; Senbayram, Mehmet; Dittert, Klaus

    2017-02-01

    Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO2 assimilation (AN) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO2 fixation or from a limitation to CO2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L.) under K deficiency and PEG- induced water deficit were quantified and their implications on plant- and leaf-scale WUE (WUEP, WUEL) were evaluated. Results show that neither maximum quantum use efficiency (Fv/Fm) nor in-vivo RubisCo activity were directly affected by K deficiency and that the observed impairment of AN was primarily due to decreased CO2 mesophyll conductance (gm). K deficiency additionally impaired leaf area development which, together with reduced AN, resulted in inhibition of plant growth and a reduction of WUEP. Contrastingly, WUEL was not affected by K supply which indicated no inhibition of stomatal control. PEG-stress further impeded AN by stomatal closure and resulted in enhanced WUEL and high oxidative stress. It can be concluded from this study that reduction of gm is a major response of leaves to K deficiency, possibly due to changes in leaf anatomy, which negatively affects AN and contributes to the typical symptoms like oxidative stress, growth inhibition and reduced WUEP. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. [Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems].

    Science.gov (United States)

    Zheng, You-fei; Hu, Cheng-da; Wu, Rong-jun; Liu, Rui-na; Zhao, Ze; Zhang, Jin-en

    2010-07-01

    Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched. Concrete expression of SOD activity first increased rapidly and then gradually decreased, the activity of POD showed a decrease firstly and then rapidly increased. From the jointing stage to the blooming stage and from the grain filling stage one to grain filling stage two, the activity of CAT rapidly increased first and then comparatively decreased, but the content of MDA kept steadily rising. The carotenoid content increased first and then decreased, heat dissipation of unit leaf area increased. These results indicate that antioxidant enzymes can not completely eliminate excessive reactive oxygen species in vivo of winter wheat, then lead to accumulation of reactive oxygen species, further exacerbate the lipid peroxidation, that result in the increase of membrane permeability, degradation of chlorophyll, reduction of net photosynthetic rate, imposing on the winter wheat leaves senescence process.

  7. Limitations to photosynthesis in leaves of wheat plants infected by Pyricularia oryzae.

    Science.gov (United States)

    Debona, Daniel; Rodrigues, Fabrício Ávila; Rios, Jonas Alberto; Martins, Samuel Cordeiro Vitor; Pereira, Lucas Felisberto; DaMatta, Fábio Murilo

    2014-01-01

    Blast, caused by Pyricularia oryzae, has become an economically important disease in wheat in Brazil, but little effort has been devoted to understanding the wheat-P. oryzae interaction. This study was intended to determine the effects of P. oryzae infection on the photosynthetic process in wheat plants using a susceptible (BR 18) and a partially resistant cultivar (BRS 229). It was found that the net carbon assimilation rate (A), stomatal conductance (gs), and transpiration rate were dramatically reduced in both cultivars due to P. oryzae infection but to a lesser degree in BRS 229. Photosynthesis was impaired in asymptomatic leaf tissues, indicating that blast severity is not an acceptable indicator for predicting P. oryzae-induced reductions in A. The proportionally larger decreases in A than in gs, in parallel with increases in internal CO2 concentration (Ci), suggest that the lower influx of CO2 into the diseased leaves caused by stomatal closure was not a prominent factor associated with the reduction in A. Additional support for this conclusion comes from the nonsignificant correlation between A and gs, the negative correlation between A and Ci and the positive correlation between blast severity and Ci. Both the maximum rate of carboxylation and the maximum rate of electron transport were dramatically depressed at advanced stages of P. oryzae infection, mainly in BR 18, although the reduction in A was not closely related to the decrease in the electron transport rate. In conclusion, biochemical limitations likely related to the reduced activity of Rubisco, rather than diffusive limitations, were the main factor associated with decreases in A during the infection process of P. oryzae on wheat leaves.

  8. Recurrent aphthous stomatitis. An update.

    Science.gov (United States)

    Ship, J A

    1996-02-01

    Recurrent aphthous ulceration or recurrent aphthous stomatitis is the most common oral mucosal disease known to human beings. Despite much clinical and research attention, the causes remain poorly understood, the ulcers are not preventable, and treatment is symptomatic. The most common presentation is minor recurrent aphthous stomatitis: recurrent, round, clearly defined, small, painful ulcers that heal in 10 to 14 days without scarring. Major recurrent aphthous stomatitis lesions are larger (greater than 5 mm), can last for 6 weeks or longer, and frequently scar. The third variety of recurrent aphthous stomatitis is herpetiform ulcers, which present as multiple small clusters of pinpoint lesions that can coalesce to form large irregular ulcers and last 7 to 10 days. Diagnosis of all varieties is usually made after clinical examination. Many local and systemic factors have been associated with these conditions, and there is evidence that there may be a genetic and immunopathogenic basis for recurrent aphthous ulceration. Management of this condition depends on the clinical presentation and symptoms and includes analgesic, antimicrobial, and immunomodulatory drugs. As dental clinicians and researchers become better trained in oral medicine and stomatology, it is anticipated that the pathophysiology, prevention, and treatment of recurrent aphthous ulceration will improve in the future.

  9. Prosthetic stomatitis with removable dentures

    Directory of Open Access Journals (Sweden)

    Rozalieva Yu.Yu.

    2012-06-01

    Full Text Available The Research Objective: To study patients with prosthetic stomatitis, who use the removable laminar dentures. Materials: The consultations and treatment of 79 patients aged 47-65 years have been conducted. The patients have been divided into two clinical groups. The first clinical group (39 persons with the performance of immediate prosthet-ics; the second control clinical group (40 persons — the permanent dentures were produced without the preliminary instruction. Results: All the patients, having the laminar dentures without the preliminary use of immediate constructions of dentures, in spite of repeated correction of them, have had changes of dentures and transitory fold. Patients have been exposed to prosthetic stomatitis of different etiology (without trauma; the single-shot or multiple correction of dentures by the method of rebasing with using of cold cure plastics has been made. Conclusion: Structural and functional changes of dentition during the prosthetic stomatitis lead to disorders, associated by the mucositis. Use of the term of «prosthetic stomatitis» reflects etiological and pathogenetic component of changes in the denture-supporting tissues

  10. Stomatal complex types, stomatal density, and the stomatal index in some species of dioscorea

    Directory of Open Access Journals (Sweden)

    Abdulrahaman A.A.

    2009-01-01

    Full Text Available Dioscorea alata L. has three stomatal complex types, namely, paracytic, anisocytic, and tetracytic stomata, with percentage frequency values of 50, 18, and 32, respectively. Dioscorea bulbifera has paracytic and anisocytic stomata, with percentage frequency values of 87.60 and 12.40, respectively. Dioscorea cayenensis has anisocytic stomata, with a percent­age frequency value of 100. Dioscorea dumetorum has tetracytic and paractytic stomata, with percentage frequency values of 91.05 and 8.95, respectively. Both D. esculenta and D. rotundata have paracytic stomata, with a percentage frequency of 100. The range of variation of stomatal density is from 10 (lowest value in D. alata and D. dumentorum to 27 (highest value in D. bulbifera. The stomatal index also varies, from 24 in D. alata to 47 in D. cayenensis. The size of stomata in all species is small, varying in length from 0.74 μm in D. alata to 1.79 μm in D. dumentorum. An indented dichotomous key based on stomatal features was constructed to distinguish and identify the species.

  11. Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2

    Directory of Open Access Journals (Sweden)

    Matthew Haworth

    2016-10-01

    Full Text Available Physiological control of stomatal conductance (Gs permits plants to balance CO2-uptake for photosynthesis (PN against water-loss, so optimising water use efficiency (WUE. An increase in the atmospheric concentration of carbon dioxide ([CO2] will result in a stimulation of PN and reduction of Gs in many plants, enhancing carbon gain while reducing water-loss. It has also been hypothesised that the increase in WUE associated with lower Gs at elevated [CO2] would reduce the negative impacts of drought on many crops. Despite the large number of CO2-enrichment studies to date, there is relatively little information regarding the effect of elevated [CO2] on stomatal control. Five crop species with active physiological stomatal behaviour were grown at ambient (400 ppm and elevated (2000 ppm [CO2]. We investigated the relationship between stomatal function, stomatal size and photosynthetic capacity in the five species, and then assessed the mechanistic effect of elevated [CO2] on photosynthetic physiology, stomatal sensitivity to [CO2] and the effectiveness of stomatal closure to darkness. We observed positive relationships between the speed of stomatal response and the maximum rates of PN and Gs sustained by the plants; indicative of close co-ordination of stomatal behaviour and PN. In contrast to previous studies we did not observe a negative relationship between speed of stomatal response and stomatal size. The sensitivity of stomata to [CO2] declined with the ribulose-1,5-bisphosphate limited rate of PN at elevated [CO2]. The effectiveness of stomatal closure was also impaired at high [CO2]. Growth at elevated [CO2] did not affect the performance of photosystem II indicating that high [CO2] had not induced damage to the photosynthetic physiology, and suggesting that photosynthetic control of Gs is either directly impaired at high [CO2], sensing/signalling of environmental change is disrupted or elevated [CO2] causes some physical effect that

  12. Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts.

    Science.gov (United States)

    Zhang, Lingrui; Xing, Da

    2008-03-01

    Chloroplasts are one of the most susceptible systems to salt and osmotic stresses. Based on quantitative measurements of delayed fluorescence (DF) of the chloroplasts, we have investigated the damage to photosynthesis caused by these two kinds of stresses in Arabidopsis seedlings by using a custom-built multi-channel biosensor. Results showed that the DF intensity and net photosynthesis rate (Pn) decreased in a similar way with increasing NaCl or sorbitol concentration. Incubation of the seedlings in 200 mM NaCl induced a rapid and reversible decline and subsequent slow and irreversible loss in both the DF intensity and Pn. The rapid decline was dominantly related to osmotic stress, whereas the slow declines in the DF intensity and Pn were specific to ionic stress and could be reversed to a similar extent by a Na+-channel blocker. The DF intensity and Pn also exhibited a similar response to irradiation light under NaCl or sorbitol stress. All results indicated that the DF intensity correlated well with Pn under salt and osmotic stresses. We thus conclude that DF is an excellent marker for detecting the damage to photosynthesis caused by these two stresses. The mechanism of the correlation between the DF intensity and Pn under salt and osmotic stresses was also analyzed in theory and investigated with experiments by measuring intercellular CO2 concetration (Ci), stomatal conductance (Gs), chlorophyll fluorescence parameter, and chlorophyll content. This proposed DF technique holds the potential to be a useful means for analyzing the dynamics of salt and osmotic stresses in vivo and elucidating the mechanism by which plants respond to stress.

  13. Long-Term Overgrazing-Induced Memory Decreases Photosynthesis of Clonal Offspring in a Perennial Grassland Plant

    Directory of Open Access Journals (Sweden)

    Xiangyang Hou

    2017-04-01

    Full Text Available Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis

  14. Evaluation of the biophysical limitations on photosynthesis of four varietals of Brassica rapa

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B.; Weinig, C.

    2014-12-01

    Evaluating performance of agricultural varietals can support the identification of genotypes that will increase yield and can inform management practices. The biophysical limitations of photosynthesis are amongst the key factors that necessitate evaluation. This study evaluated how four biophysical limitations on photosynthesis, stomatal response to vapor pressure deficit, maximum carboxylation rate by Rubisco (Ac), rate of photosynthetic electron transport (Aj) and triose phosphate use (At) vary between four Brassica rapa genotypes. Leaf gas exchange data was used in an ecophysiological process model to conduct this evaluation. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) integrates the carbon uptake and utilization rate limiting factors for plant growth. A Bayesian framework integrated in TREES here used net A as the target to estimate the four limiting factors for each genotype. As a first step the Bayesian framework was used for outlier detection, with data points outside the 95% confidence interval of model estimation eliminated. Next parameter estimation facilitated the evaluation of how the limiting factors on A different between genotypes. Parameters evaluated included maximum carboxylation rate (Vcmax), quantum yield (ϕJ), the ratio between Vc-max and electron transport rate (J), and trios phosphate utilization (TPU). Finally, as trios phosphate utilization has been shown to not play major role in the limiting A in many plants, the inclusion of At in models was evaluated using deviance information criteria (DIC). The outlier detection resulted in a narrowing in the estimated parameter distributions allowing for greater differentiation of genotypes. Results show genotypes vary in the how limitations shape assimilation. The range in Vc-max , a key parameter in Ac, was 203.2 - 223.9 umol m-2 s-1 while the range in ϕJ, a key parameter in AJ, was 0.463 - 0.497 umol m-2 s-1. The added complexity of the TPU limitation did not improve model

  15. Hysteresis response of daytime net ecosystem exchange during drought

    Directory of Open Access Journals (Sweden)

    N. Pingintha

    2010-03-01

    Full Text Available Continuous measurements of net ecosystem CO2 exchange (NEE using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR was the primary driver controlling daytime NEE, accounting for as much as 67 to 89% of the variation in NEE. However, soil water content became the dominant factor limiting the NEE-PAR response during the peak growth stage. NEE was significantly depressed when high PAR values coincided with very low soil water content. The presence of a counter-clockwise hysteresis of daytime NEE with PAR was observed during periods of water stress. This is a result of the stomatal closure control of photosynthesis at high vapor pressure deficit and enhanced respiration at high temperature. This result is significant since this hysteresis effect limits the range of applicability of the Michaelis-Menten equation and other related expressions in the determination of daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limited field conditions. Including this step is therefore likely to improve current evaluation of ecosystem response to increased precipitation variability arising from climatic changes.

  16. Leaf anatomy and photosynthesis

    NARCIS (Netherlands)

    Berghuijs, H.N.C.

    2016-01-01

    Keywords: CO2 diffusion, C3 photosynthesis, mesophyll conductance, mesophyll resistance, re-assimilation, photorespiration, respiration, tomato Herman Nicolaas Cornelis Berghuijs (2016). Leaf anatomy and photosynthesis; unravelling the CO2 diffusion pathway in C3 leaves. PhD thesis. Wageningen

  17. Sink regulation of photosynthesis

    National Research Council Canada - National Science Library

    Matthew J. Paul; Christine H. Foyer

    2001-01-01

    ... in the effects of elevated CO2 on photosynthesis. Photosynthesis is one of the most highly integrated and regulated metabolic processes to maximize the use of available light, to minimize the damaging effects of excess light and to optimize the use...

  18. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D.C.; Marrs, B.L.

    1987-06-01

    Knowledge of the molecular interactions, structure and genetic basis of the photosynthetic reaction center makes it possible to ask more detailed questions about its function. Spectroscopy, X-ray crystallography and molecular genetics combine to give a detailed picture of events in photosynthesis and shown how particular molecules contribute to the process. The molecular biology of the photosynthesis center of Rhodopseudomonas is investigated.

  19. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    Science.gov (United States)

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  20. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress.

    Science.gov (United States)

    Ali, Shafaqat; Farooq, Muhammad Ahsan; Yasmeen, Tahira; Hussain, Sabir; Arif, Muhammad Saleem; Abbas, Farhat; Bharwana, Saima Aslam; Zhang, Guoping

    2013-03-01

    Silicon (Si) is generally considered as a benefic element for higher plants, especially for those grown under abiotic stressed environments. Current study is carried out in a hydroponic experiment to analyze the effect of Si application on barley growth, photosynthesis and ultra-structure under chromium (Cr) stress. The treatments consisted of three Si (0, 1 and 2mM) and two Cr (0 and 100 μM) levels. The results showed that Si application at both levels enhanced plant growth relative to the control, and alleviated Cr toxicity, reflected by significant increase in growth and photosynthetic parameters, such as SPAD value, net photosynthetic rate (P(n)), cellular CO(2) concentration (C(i)), stomatal conductance (G(s)) and transpiration rate (T(r)), and chlorophyll fluorescence efficiency (Fv/Fm), with 2mM Si having greater effect than 1mM Si. Cr stress caused ultra-structural disorders in leaves, such as uneven swelling of chloroplast, increased amount of plastoglobuli, disintegrated and disappeared thylakoid membranes, increased size and number of starch granules in leaves, and root ultra-structural modification, including increased vacuolar size, presence of Cr metal in cell walls and vacuoles, disruption and disappearance of nucleus. Exogenous Si alleviated these ultra-structural disorders both in roots and leaves. Apparently, Si and Cr behaved antagonistically, indicating that Si could be a candidate for Cr detoxification in crops under Cr-contaminated soil. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Photosynthesis and metabolite responses of Isatis indigotica Fortune to elevated [CO2

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-08-01

    Full Text Available Climate change is affecting global crop productivity, food quality, and security. However, few studies have addressed the mechanism by which elevated CO2 may affect the growth of medicinal plants. Isatis indigotica Fortune is a widely used Chinese medicinal herb with multiple pharmacological properties. To investigate the physiological mechanism of I. indigotica response to elevated [CO2], plants were grown at either ambient [CO2] (385 μmol mol−1 or elevated [CO2] (590 μmol mol−1 in an open-top chamber (OTC experimental facility in North China. A significant reduction in transpiration rate (Tr and stomatal conductance (gs and a large increase in water-use efficiency contributed to an increase in net photosynthetic rate (Pn under elevated [CO2] 76 days after sowing. Leaf non-photochemical quenching (NPQ was decreased, so that more energy was used in effective quantum yield of PSII photochemistry (ΦPSII under elevated [CO2]. High ΦPSII, meaning high electron transfer efficiency, also increased Pn. The [CO2]-induced increase in photosynthesis significantly increased biomass by 36.8%. Amounts of metabolic compounds involved in sucrose metabolism, pyrimidine metabolism, flavonoid biosynthesis, and other processes in leaves were reduced under elevated [CO2]. These results showed that the fertilization effect of elevated [CO2] is conducive to increasing dry weight but not secondary metabolism in I. indigotica.

  2. Allergic Stomatitis From Orthodontic Adhesives.

    Science.gov (United States)

    Peterson, Mark R; Wong, Priscilla H; Dickson, Scott D; Coop, Christopher A

    2017-03-01

    We report a case of a type IV hypersensitivity reaction causing oral stomatitis, presumed to be the result of common dental adhesives. The case was diagnosed using patch testing to the dental adhesives that were used in the patient. Both of the adhesives tested contained a form of acrylate that is being seen more frequently in the literature as a cause of type IV hypersensitivity reactions. Metals can cause allergic reactions; however, other contact items need to be considered as a cause of oral allergic reactions. Cases of allergic stomatitis are rising and there is question if all-in-one adhesives may be contributing to this rise. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  3. An Attempt to Partition Stomatal and Non-stomatal Ozone Deposition Parts on a Short Grassland

    Science.gov (United States)

    Horváth, L.; Koncz, P.; Móring, A.; Nagy, Z.; Pintér, K.; Weidinger, T.

    2017-10-01

    To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index {LAI}model. We then derived the stomatal conductance of ozone using the Penman-Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI = 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with {LAI}≈ 1 , the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with {LAI}ozone deposition.

  4. Stomatal design principles in synthetic and real leaves

    DEFF Research Database (Denmark)

    Zwieniecki, Maciej A.; Haaning, Katrine S; Boyce, C. Kevin

    2016-01-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water and CO2 availability and on the geometrical properties of the stoma pores. The link between...... stoma geometry and environmental factors has informed a wide range of scientific fields-from agriculture to climate science, where observed variations in stoma size and density are used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible...... efficient use of space and maximum control of dynamic gas conductivity, and that the capacity for gas exchange in plants has remained constant over at least the last 325 Myr. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics....

  5. Photosynthesis and fluctuating asymmetry as indicators of plant response to soil disturbance in the Fall-Line Sandhills of Georgia: a case study using Rhus copallinum and Ipomoea pandurata

    Science.gov (United States)

    Freeman, D. Carl; Brown, Michelle L.; Duda, Jeffrey J.; Graham, John H.; Emlen, John M.; Krzysik, Anthony J.; Balbach, Harold E.; Kovacic, David A.; Zak, John C.

    2004-01-01

    We examined net photosynthesis, transpiration, stomatal conductance, and leaf fluctuating asymmetry on two species (Rhus copallinum and Ipomoea pandurata) as indicators of stress at nine sites across a gradient of soil disturbance at Fort Benning, Georgia. There were three sites for each of three disturbance levels. Physical habitat disturbance was caused by activities associated with infantry training, including mechanized elements (tanks and personnel carriers) and foot soldiers. In addition, we examined the influence of prescribed burns and microhabitat effects (within meter‐square quadrats centered about the plant) on these measures of plant stress. Net photosynthesis declined with increasing disturbance in the absence of burning for both species. However, when sites were burned the previous year, net photosynthesis increased with increasing disturbance. Developmental instability in Rhus, as measured by fluctuating asymmetry, also declined with increasing disturbance in the absence of burning but increased with disturbance if sites were burned the previous year. Developmental instability was much less sensitive to burning in Ipomoea and in general was lowest at intermediate disturbance sites. Microenvironmental and microhabitat effects were weakly correlated with measures of plant stress when all sites were combined. However, higher correlations were obtained within site categories, especially when the recent history of prescribed burning was used as a category. Finally, using all of the combined data in a discriminant function analysis allowed us to correctly predict the disturbance level of more than 80% of the plants. Plant stress is responsive to both large‐scale perturbations, such as burning, and microhabitat parameters. Because of this, it is important to include macro‐ and microhabitat parameters when assessing stress. Similarly, we found a combination of developmental and physiological indicators of stress was superior to using them

  6. A chamber for measurement of net photosynthesis on a whole plant = Uma câmara para medir fotossíntese líquida em plantas inteiras

    Directory of Open Access Journals (Sweden)

    Celso Jamil Marur

    2007-07-01

    Full Text Available A limitation for quantifying photosynthesis with existing equipment is that they were designed to measure of plant parts, such as one leaf or group of few leaves, which has a great variability over the whole plant. As a consequence, it is difficult to integrateaccurately the measurements taken on plant parts in order to assess the process over the entire plant. The objectives of this work were to show in detail a chamber built to measure whole plant photosynthesis and present measurements taken with this apparatus on coffee plants under field conditions. The chamber makes possible to obtain reliable measurements of CO2 assimilation rates over canopies of different LAI and levels of light exposure. The plant with LAI equal to 1.84 had higher assimilation rates for the whole canopy, butautoshading decreased assimilation rates per leaf area unit, as compared with the plant with LAI of 0.86.Os atuais aparelhos portáteis que medem fotossíntese no campo foram concebidos para proceder a leituras de uma folha, de parte de uma folha ou de um grupo de poucas folhas, que apresentam grande variabilidade em uma planta. A grande variabilidade entre as partesda planta dificulta a integração das medidas. Há, portanto, a necessidade de se desenvolver medidas do fluxo de CO2 na planta como um todo, em seu ambiente natural, para então utilizar os valores medidos para avaliar a performance dos modelos em simular o processoenvolvido. O objetivo deste trabalho foi mostrar os detalhes de construção de uma câmara para medir fotossíntese de plantas inteiras de cafeeiro, em condições de campo. Os resultados indicaram que a câmara construída tornou possível a medição da fotossíntese emplantas inteiras, em folhas expostas a diferentes intensidades de radiação solar. A planta com IAF 1,84 apresentou maior assimilação por planta e menor taxa fotossintética por unidade de área foliar do que aquela com IAF 0,86.

  7. Stomatal design principles in synthetic and real leaves.

    Science.gov (United States)

    Zwieniecki, Maciej A; Haaning, Katrine S; Boyce, C Kevin; Jensen, Kaare H

    2016-11-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water and CO2 availability and on the geometrical properties of the stoma pores. The link between stoma geometry and environmental factors has informed a wide range of scientific fields-from agriculture to climate science, where observed variations in stoma size and density are used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible for major trends in stomatal patterning are not well understood. Here, we use a combination of biomimetic experiments and theory to rationalize the observed changes in stoma geometry. We show that the observed correlations between stoma size and density are consistent with the hypothesis that plants favour efficient use of space and maximum control of dynamic gas conductivity, and that the capacity for gas exchange in plants has remained constant over at least the last 325 Myr. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics. © 2016 The Author(s).

  8. Stomatal Responses to CO2 in Paphiopedilum and Phragmipedium1

    Science.gov (United States)

    Assmann, Sarah M.; Zeiger, Eduardo

    1985-01-01

    A role of the guard cell chloroplasts in the CO2 response of stomata was investigated through a comparison of the leaf gas exchange characteristics of two closely related orchids: Paphiopedilum harrisianum, which lacks guard cell chloroplasts and Phragmipedium longifolium, which has chlorophyllous guard cells. Leaves of both species had an apparent quantum yield for assimilation of about 0.05, with photosynthesis saturating at 0.300 to 0.400 millimoles per square meter per second. CO2 curves were obtained by measuring steady-state assimilation and stomatal conductance under 0.180 or 0.053 millimoles per square meter per second white light, or darkness, at 0 to 400 microliters per liter ambient CO2. The response of assimilation to changes in CO2 was similar in the two species, but the response of conductance was consistently weaker in Paphiopedilum than in Phragmipedium. The data suggest involvement of guard cell chloroplasts in the stomatal response to CO2 and in the coupling of assimilation and conductance in the intact leaf. PMID:16664075

  9. Microtubule arrays and Arabidopsis stomatal development

    National Research Council Canada - National Science Library

    Jessica R. Lucas; Jeanette A. Nadeau; Fred D. Sack

    Microtubule arrays in living cells were analysed during Arabidopsis stomatal development in order to more closely define stages in the pathway and contexts where intercellular signalling might operate...

  10. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  11. Does elevated CO2 protect photosynthesis from damage by high temperature via modifying leaf water status in maize seedlings?

    Science.gov (United States)

    Because high temperatures under field conditions are associated with high water vapor pressure deficits, often causing leaf desiccation, we hypothesized that decreased stomatal conductance at elevated carbon dioxide may increase leaf water potential and protect photosynthesis in C4 species from dama...

  12. [Light and temperature and their effects on photosynthesis characteristics of stereoscopic cultivation in Panax notoginseng].

    Science.gov (United States)

    Wang, Yao-long; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Li, Rui-bo; Wang, Cheng-xiao; Yang, Xiao-yan; Liu, Da-hui; Yang, Ye

    2015-08-01

    Light intensity, gas temperature, soil temperature and gas exchange parameters were determined of three years old Panax notoginseng planted on different layers seedbed and different location (left, middle, right) of the same layer in greenhouse. Result show that diurnal variation of light intensity, gas temperature and soil temperature showed that upper layer > middle layer > lower layer; different locations of the same layer showed that light intensity of upper layer was not different among different locations; light intensity of middle and lower layer in right and left were the same, and significantly higher than those in the middle position; the gas temperature of each layer all with less different of each location; soil temperature of 12 cm depth is the lowest, and was gradually increased to the upper and lower surface; net photosynthetic efficiency of P. notoginseng showed that upper layer > middle layer > lower layer; there were significant correlation between soil temperature, stomatal conductance, intercellular CO2 concentration and photosynthetic rate were correlated with light intensity significantly; transpiration rates had notable correlation with light intensity and gas temperature. All above indicated that net photosynthesis rate of P. notoginseng was affected by light intensity directly, gas temperature and soil temperature indirectly. Inconclusion, stereoscopic cultivation of P. notoginseng was practicable in present study. The planting quality of P. notoginseng under stereoscopic cultivation could be improved by ameliorate the structure of seedbed to enhance the light intensity of middle and lower layer. Increase the thickness of the seedbed to decrease the temperature difference of soil. Further the management of ventilation facilities of greenhouse to control the gas temperature.

  13. Disponibilidade de luz em macieiras 'Fuji' cobertas com telas antigranizo e seus efeitos sobre a fotossíntese, o rendimento e a qualidade dos frutos Light supply to 'Fuji' apple trees covered with hail protection nets and its effects on photosynthesys, yield and fruit quality

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2009-09-01

    light supplied to the plants increased the mean area and the specific area of the leaves and reduced the potential photosynthesis, leading to a reduction of yield (number and weight of fruits per cm-2 of trunk cross section area and the red color of the fruit. The white and black hail protection nets reduced the incidence of sunburn but had no effect on russeting severity and number of seeds/fruit.

  14. INFLUENCE OF ROOT OXYGEN DEFICIENCY ON PHOTOSYNTHESIS AND SACCHARIDE CONTENTS OF CAREX SPECIES

    NARCIS (Netherlands)

    MOOG, PR; BRUGGEMANN, W

    1993-01-01

    The responses to root oxygen deficiency concerning the photosynthesis, saccharide contents and mineral uptake have been investigated in Carex species, which were different in their anoxia-tolerance. The net rate of photosynthesis (P-N) of the anoxia-sensitive C. extensa was not affected by root

  15. Optimal stomatal behaviour around the world

    DEFF Research Database (Denmark)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.

    2015-01-01

    , a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour diers among...

  16. Urban legends: recurrent aphthous stomatitis.

    Science.gov (United States)

    Baccaglini, L; Lalla, R V; Bruce, A J; Sartori-Valinotti, J C; Latortue, M C; Carrozzo, M; Rogers, R S

    2011-11-01

    Recurrent aphthous stomatitis (RAS) is the most common idiopathic intraoral ulcerative disease in the USA. Aphthae typically occur in apparently healthy individuals, although an association with certain systemic diseases has been reported. Despite the unclear etiopathogenesis, new drug trials are continuously conducted in an attempt to reduce pain and dysfunction. We investigated four controversial topics: (1) Is complex aphthosis a mild form of Behçet's disease (BD)? (2) Is periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome a distinct medical entity? (3) Is RAS associated with other systemic diseases [e.g., celiac disease (CD) and B12 deficiency]? (4) Are there any new RAS treatments? Results from extensive literature searches, including a systematic review of RAS trials, suggested the following: (1) Complex aphthosis is not a mild form of BD in North America or Western Europe; (2) Diagnostic criteria for PFAPA have low specificity and the characteristics of the oral ulcers warrant further studies; (3) Oral ulcers may be associated with CD; however, these ulcers may not be RAS; RAS is rarely associated with B12 deficiency; nevertheless, B12 treatment may be beneficial, via mechanisms that warrant further study; (4) Thirty-three controlled trials published in the past 6 years reported some effectiveness, although potential for bias was high. © 2011 John Wiley & Sons A/S.

  17. Histopathological study of stomatitis nicotina.

    Science.gov (United States)

    Reddy, C R; Kameswari, V R; Ramulu, C; Reddy, P G

    1971-09-01

    One hundred and thirteen biopsies of the palate in people accustomed to smoking cigars, most of them with the burning end of the cigar inside the mouth, have been studied.Thirty-eight of these showed mild to severe atypical changes in the epithelium. There were 19 lesions showing orthokeratosis and 53 showing hyperorthokeratosis.The earliest atypical change is seen in the mouths of the ducts of the glands.There were 3 cases showing microinvasive carcinomas.Pigmentation is a prominent feature in these cases.The papules with umbilication could be due to hyperplasia of the mucous glands.It is suggested that stomatitis nicotina occurring in men and women with the habit of reverse smoking is probably precancerous because of the presence of atypical changes in the epithelium and also the finding of 3 microinvasive carcinomas without any macroscopic evidence.There is no acceptable explanation why the soft palate escapes getting either stomatitis nicotina lesion or carcinoma in reverse smokers.

  18. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (gs), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (Vcmax) and the initial slope of A-Ci curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in Vcmax, k, gs and ATP production driven by electron transport (Jatp). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in Vcmax, gs and Jatp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Stomatal design principles for gas exchange in synthetic and real leaves

    Science.gov (United States)

    Jensen, Kaare H.; Haaning, Katrine; Boyce, C. Kevin; Zwieniecki, Maciej

    2016-11-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water, and CO2 availability and on geometric properties of the stomata pores. The link between stomata geometry and environmental factors have informed a wide range of scientific fields - from agriculture to climate science, where observed variations in stomata size and density is used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible for major trends in stomatal patterning, are not well understood. Here we use a combination of biomimetic experiments and theory to rationalize the observed changes in stomatal geometry. We show that the observed correlations between stomatal size and density are consistent with the hypothesis that plants favor efficient use of space and maximum control of dynamic gas conductivity, and - surprisingly - that the capacity for gas exchange in plants has remained constant over at least the last 325 million years. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics. Supported by the Carlsberg Foundation (2013-01-0449), VILLUM FONDEN (13166) and the National Science Foundation (EAR-1024041).

  20. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    Energy Technology Data Exchange (ETDEWEB)

    Zapletal, Milos, E-mail: milos.zapletal@ekotoxa.cz [Ekotoxa s.r.o. - Centre for Environment and Land Assessment, Oticka 37, 746 01 Opava (Czech Republic); Silesian University at Opava, Faculty of Philosophy and Science, Masarykova 37, 746 01 Opava (Czech Republic); Cudlin, Pavel [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Na Sadkach 7, 37005 Ceske Budejovice (Czech Republic); Chroust, Petr [Ekotoxa s.r.o. - Centre for Environment and Land Assessment, Oticka 37, 746 01 Opava (Czech Republic); Urban, Otmar; Pokorny, Radek [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Porici 3b, 60300 Brno (Czech Republic); Edwards-Jonasova, Magda [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Na Sadkach 7, 37005 Ceske Budejovice (Czech Republic); Czerny, Radek; Janous, Dalibor; Taufarova, Klara [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Porici 3b, 60300 Brno (Czech Republic); Vecera, Zbynek; Mikuska, Pavel [Institute of Analytical Chemistry of the AS CR, v.v.i., Veveri 97, 60200 Brno (Czech Republic); Paoletti, Elena [Institute of Plant Protection, National Research Council of Italy, via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2011-05-15

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s{sup -1} and 0.36 cm s{sup -1} by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s{sup -1}. In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O{sub 3} concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: > We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. > The mean stomatal uptake of ozone is approximately 47% of the total deposition. > We measure net ecosystem production (NEP) using Eddy Covariance. > We test whether elevated total deposition and stomatal uptake of O{sub 3} imply a reduction of NEP. > Deposition and stomatal uptake of O{sub 3} decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  1. Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.

    Directory of Open Access Journals (Sweden)

    Yasutomo Hoshika

    Full Text Available Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU. Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3 than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3 effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.

  2. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  3. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  4. Artificial photosynthesis: closing remarks.

    Science.gov (United States)

    Hammarström, Leif

    2017-06-02

    This paper derives from my closing remarks lecture at the 198th Faraday Discussion meeting on Artificial Photosynthesis, Kyoto, Japan, February 28-March 2. The meeting had sessions on biological approaches and fundamental processes, molecular catalysts, inorganic assembly catalysts, and integration of systems for demonstrating realistic devices. The field has had much progress since the previous Faraday Discussion on Artificial Photosynthesis in Edinburgh, UK, in 2011. This paper is a personal account of recent discussions and developments in the field, as reflected in and discussed during the meeting. First it discusses the general directions of artificial photosynthesis and some considerations for a future solar fuels technology. Then it comments on some scientific directions in the area of the meeting.

  5. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rust Neves, Natalia; Oliva, Marco Antonio; Cruz Centeno, Danilo da; Costa, Alan Carlos; Ferreira Ribas, Rogerio [Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Av. PH Rolfs, Campus, Vicosa, Minas Gerais, 36570-000 (Brazil); Gusmao Pereira, Eduardo, E-mail: egpereira@gmail.com [Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Av. PH Rolfs, Campus, Vicosa, Minas Gerais, 36570-000 (Brazil)

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM{sub Fe}) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM{sub Fe} application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  6. A comparison of two photosynthesis parameterization schemes for an alpine meadow site on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Xufeng; Cheng, Guodong; Li, Xin; Lu, Ling; Ma, Mingguo; Su, Peixi; Zhu, Gaofeng; Tan, Junlei

    2016-11-01

    Photosynthesis is a very important sub-process in the carbon cycle and is a crucial sub-modular function in carbon cycle models. In this study, two typical photosynthesis parameterization schemes were compared based on meteorological and eddy covariance (EC) observations at an alpine meadow site. The photosynthesis model parameters were estimated using the Markov Chain Monte Carlo (MCMC) method. The results indicated that the Farquhar-conductance coupled model better predicted the gross primary production (GPP) for the alpine meadow ecosystem at an hourly time scale than the light use efficiency (LUE) model even though the Farquhar-conductance coupled model has a lower computational efficiency than the LUE model. Compared to the Ball-Woodrow-Berry (BWB) stomatal conductance model, coupling the Farquhar model with the Leuning stomatal conductance model more accurately simulated GPP.

  7. Seasonal Photosynthesis in Fertilized and Nonfertilized Loblolly Pine

    Science.gov (United States)

    Christopher M. Gough; John R. Seiler; Kurt H. Johnsen; David Arthur Sampson

    2004-01-01

    Net photosynthesis (Pn) of loblolly pine (Pinus taeda L.) foliage was monitored monthly in 14 yr old stands under near-ambient conditions over an entire year in upper and lower crowns and in both nonfertilized stands and stands receiving nutrient amendments for six consecutive years. Air temperature, humidity, vapor pressure...

  8. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    2009-11-14

    With LI-6400 portable photosynthesis system, the photosynthetic characteristics of artificially cultured Eichhornia crassipes in Jiangsu, China, were monitored from June 1 to November 14, 2009. Both the net photosynthetic rate (Pn) in different positions and light and temperature-response curves of the top fourth leaf were ...

  9. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... fluxes, where discrepancies are largely attributable to a lack of forest floor evaporation in the model. Simulations in which vertical heterogeneity was artificially suppressed revealed that the vertical distribution of light is the driver of vertical heterogeneity. Despite large differences between...

  10. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  11. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-10-01

    Full Text Available Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM

  12. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  13. Realizing artificial photosynthesis.

    Science.gov (United States)

    Gust, Devens; Moore, Thomas A; Moore, Ana L

    2012-01-01

    Artificial photosynthesis comprises the design of systems for converting solar energy into useful forms based on the fundamental science underlying natural photosynthesis. There are many approaches to this problem. In this report, the emphasis is on molecule-based systems for photochemical production of fuels using sunlight. A few examples of typical components of artificial photosynthetic systems including antennas, reaction centres, catalysts for fuel production and water oxidation, and units for photoprotection and photoregulation are presented in order to illustrate the current state of the field and point out challenges yet to be fully addressed.

  14. Acclimation of photosynthesis to low leaf water potentials

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.A.; Boyer, J.S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (PSI/sub l/) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. The authors evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and PSI/sub l/, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower PSI/sub l/ in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO/sub 2/ at all partial pressures of CO/sub 2/, and in vitro by photosystem II activity of isolated organelles, was inhibited at low PSI/sub l/ but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low PSI/sub l/. 32 references, 8 figures.

  15. Acclimation of Photosynthesis to Low Leaf Water Potentials 1

    Science.gov (United States)

    Matthews, Mark A.; Boyer, John S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl. PMID:16663372

  16. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  17. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition.

    Science.gov (United States)

    Gattward, James N; Almeida, Alex-Alan F; Souza, José O; Gomes, Fábio P; Kronzucker, Herbert J

    2012-11-01

    In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop. Copyright © Physiologia Plantarum 2012.

  18. Teaching Photosynthesis with ELL Students

    Science.gov (United States)

    Piper, Susan; Shaw, Edward Lewis, Jr.

    2010-01-01

    Although the teaching of photosynthesis occurs yearly in elementary classrooms, one thing that makes it challenging is the inclusion of English language learners (ELLs). This article presents several activities for teaching and assessing of photosynthesis in a third grade classroom. The activities incorporate the photosynthesis content, teaching…

  19. Limits on Natural Photosynthesis

    NARCIS (Netherlands)

    van Grondelle, Rienk; Boeker, Egbert

    2017-01-01

    Photosynthesis in nature does not use the far infrared part of the solar spectrum (lambda > 900 nm), comprising about 30% of the incoming solar energy. By simple thermodynamic arguments it is explained that this is due to the unavoidable back reactions during the night. It follows that lambda

  20. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration......, it became negative in those low in malate. • CAM in aquatic plants enables higher rates of underwater net photosynthesis over large O2 and CO2 concentration ranges in floodwaters, via increased CO2 fixation and suppression of photorespiration....... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...

  1. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  2. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  3. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  4. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  5. TREATMENT OF APHTHOUS STOMATITIS IN ADOLESCENTS

    National Research Council Canada - National Science Library

    L. M. Kozlova; O. A. Zorina; N. B. Petrukhina

    2014-01-01

    ...) has been in use in clinical practice for years. The study was aimed at comparing the clinical efficacy of the drug based on the listed active substances and other stomatological agents in adolescents with aphthous stomatitis. Results...

  6. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  7. An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea cultivars that differ in photosynthetic capacity

    Directory of Open Access Journals (Sweden)

    Khan NA

    2004-12-01

    Full Text Available Abstract Background The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea cultivars differing in photosynthetic capacity were studied. Results The effects of ethephon on photosynthetic rate (PN, stomatal conductance (gS, carbonic anhydrase (CA activity, 1-aminocyclopropane carboxylic acid synthase (ACS activity and ethylene evolution were similar in both the cultivars. Increasing ethephon concentration up to 1.5 mM increased PN, gS and CA maximally, whereas 3.0 mM ethephon proved inhibitory. ACS activity and ethylene evolution increased with increasing concentrations of ethephon. The corresponding changes in gs and CA activity suggest that the changes in photosynthesis in response to ethephon were triggered by altered stomatal and mesophyll processes. Stomatal conductance changed in parallel with changes in mesophyll photosynthetic properties. In both the cultivars ACS activity and ethylene increased up to 3.0 mM ethephon, but 1.5 mM ethephon caused maximum effects on photosynthetic parameters. Conclusion These results suggest that ethephon affects foliar gas exchange responses. The changes in photosynthesis in response to ethephon were due to stomatal and mesophyll effects. The changes in gS were a response maintaining stable intercellular CO2 concentration (Ci under the given treatment in both the cultivars. Also, the high photosynthetic capacity cultivar, Varuna responded less to ethephon than the low photosynthetic capacity cultivar, RH30. The photosynthetic

  8. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Marie Desclos-Theveniau

    2012-02-01

    Full Text Available Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5 negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO(2 uptake and photosynthesis.

  9. Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest.

    Science.gov (United States)

    Guàrdia, Mercè; Fernàndez, Jordi; Elena, Georgina; Fleck, Isabel

    2012-07-01

    The evergreen holm oak Quercus ilex L. is the most representative tree in Mediterranean forests. Accurate estimation of the limiting factors of photosynthesis for Q. ilex and the prediction of ecosystem water-use efficiency by mechanistic models can be achieved only by establishing whether this species shows heterogenic stomatal aperture, and, if so, the circumstances in which this occurs. Here, we collected gas-exchange and chlorophyll fluorescence data in Q. ilex leaves from a nursery to measure the effects of stomatal oscillations on PSII quantum yield (Φ(PSII)) under water stress. Stomatal conductance (g(s)) was used as an integrative indicator of the degree of water stress. Images of chlorophyll fluorescence showed heterogeneous Φ(PSII) when g(s) was 2.5%. A parallel study in the forest confirmed heterogeneous Φ(PSII) values in leaves in response to declining water availability. Three kinds of Q. ilex individuals were distinguished: those resprouting after a clear-cut (resprouts, R); intact individuals growing in the same clear-cut area as resprouts (controls, C); and intact individuals in a nearby, undisturbed area (forest controls, CF). Patchiness increased in C and CF in response to increasing drought from early May to late July, whereas in R, Φ(PSII) values were maintained as a result of their improved water relations since the pre-existing roots were associated with a smaller aerial biomass. Patchiness was related to a % CV of Φ(PSII) values >4 and associated in the summer with mean g(s) values of 30 mmol H(2)O m(-2) s(-1). Under milder drought in spring, Φ(PSII) patchiness was less strictly related to g(s) variations, pointing to biochemical limitants of photosynthesis. The occurrence of heterogenic photosynthesis caused by patchy stomatal closure in Q. ilex during severe drought should be taken into account in ecosystem modelling in which harsher water stress conditions associated with climate change are predicted.

  10. AIDS and Recurrent Aphthous Stomatitis.

    Science.gov (United States)

    Miziara, Ivan Dieb; Araujo Filho, Bernardo Cunha; Weber, Raimar

    2005-01-01

    The immunodeficiency state in HIV infected patients has been the cause of severe episodes of Recurrent Aphthous Stomatitis (RAS). Our study aims to establish correlation between the manifestations of RAS and the immunosuppression state caused by HIV infection, through counting of CD4+ cells, CD8+ cells, CD4+:CD8+ cells ratio and viral load. Series study. Ninety-four HIV infected patients (25 women and 69 men) with RAS were evaluated in the ENT Department of the University of Sao Paulo-Medical School from January 1998 to December 2003. The age ranged between 19 and 63 years (mean = 35.3 years). The patients were divided in two groups: AIDS group and HIV infected group. The patients with AIDS and HIV infection presented, respectively, eight ulcers and two ulcers by outbreaks. Similarly, patients with major RAS presented smaller counting of cells CD8+, CD4+ and CD4+/CD8+ cells, and higher mean value of viral load than the patients with herpetiform and minor RAS. Between patients with minor and herpetiform RAS there were no statistical differences. The emergence of the lesions, mainly in major RAS, is directly related to the immunological state of the HIV infected patient. These patients frequently present nutritional deficits and worsening in life style. Thus, diagnosis and treatment of RAS is a challenge that should not be neglected.

  11. Isoprene emission and photosynthesis during heatwaves and drought in black locust

    Directory of Open Access Journals (Sweden)

    I. Bamberger

    2017-08-01

    Full Text Available Extreme weather conditions like heatwaves and drought can substantially affect tree physiology and the emissions of isoprene. To date, however, there is only limited understanding of isoprene emission patterns during prolonged heat stress and next to no data on emission patterns during coupled heat–drought stress or during post-stress recovery. We studied gas exchange and isoprene emissions of black locust trees under episodic heat stress and in combination with drought. Heatwaves were simulated in a controlled greenhouse facility by exposing trees to outside temperatures +10 °C, and trees in the heat–drought treatment were supplied with half of the irrigation water given to heat and control trees. Leaf gas exchange of isoprene, CO2 and H2O was quantified using self-constructed, automatically operating chambers, which were permanently installed on leaves (n = 3 per treatment. Heat and combined heat–drought stress resulted in a sharp decline of net photosynthesis (Anet and stomatal conductance. Simultaneously, isoprene emissions increased 6- to 8-fold in the heat and heat–drought treatment, which resulted in a carbon loss that was equivalent to 12 and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15-day-long heatwaves, stomatal conductance remained reduced, while isoprene emissions and Anet recovered quickly to values of the control trees. Further, we found that isoprene emissions covaried with Anet during nonstress conditions, while during the heatwaves, isoprene emissions were not related to Anet but to light and temperature. Under standard air temperature and light conditions (here 30 °C and photosynthetically active radiation of 500 µmol m−2 s−1, isoprene emissions of the heat trees were by 45 % and the heat–drought trees were by 27 % lower than in control trees. Moreover, temperature response curves showed that not only the isoprene emission

  12. Isoprene emission and photosynthesis during heatwaves and drought in black locust

    Science.gov (United States)

    Bamberger, Ines; Ruehr, Nadine K.; Schmitt, Michael; Gast, Andreas; Wohlfahrt, Georg; Arneth, Almut

    2017-08-01

    Extreme weather conditions like heatwaves and drought can substantially affect tree physiology and the emissions of isoprene. To date, however, there is only limited understanding of isoprene emission patterns during prolonged heat stress and next to no data on emission patterns during coupled heat-drought stress or during post-stress recovery. We studied gas exchange and isoprene emissions of black locust trees under episodic heat stress and in combination with drought. Heatwaves were simulated in a controlled greenhouse facility by exposing trees to outside temperatures +10 °C, and trees in the heat-drought treatment were supplied with half of the irrigation water given to heat and control trees. Leaf gas exchange of isoprene, CO2 and H2O was quantified using self-constructed, automatically operating chambers, which were permanently installed on leaves (n = 3 per treatment). Heat and combined heat-drought stress resulted in a sharp decline of net photosynthesis (Anet) and stomatal conductance. Simultaneously, isoprene emissions increased 6- to 8-fold in the heat and heat-drought treatment, which resulted in a carbon loss that was equivalent to 12 and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15-day-long heatwaves, stomatal conductance remained reduced, while isoprene emissions and Anet recovered quickly to values of the control trees. Further, we found that isoprene emissions covaried with Anet during nonstress conditions, while during the heatwaves, isoprene emissions were not related to Anet but to light and temperature. Under standard air temperature and light conditions (here 30 °C and photosynthetically active radiation of 500 µmol m-2 s-1), isoprene emissions of the heat trees were by 45 % and the heat-drought trees were by 27 % lower than in control trees. Moreover, temperature response curves showed that not only the isoprene emission factor changed during both heat and heat

  13. New Concept of Photosynthesis

    Directory of Open Access Journals (Sweden)

    Komissarov Gennadiy Germanovich

    2014-12-01

    Full Text Available The history of the formation of a new concept of photosynthesis proposed by the author is considered for the period since 1966 to 2013. Its essence consists in the following facts: the photosynthetic oxygen (hydrogen source is not water, but exo- and endogenous hydrogen peroxide; thermal energy is a necessary part of the photosynthetic process; along with the carbon dioxide the air (oxygen, inert gases is included in the photosynthetic equation. The mechanism of the photovoltaic (Becquerel effect in films of chlorophyll and its synthetic analogue - phthalocyanine are briefly touched upon in the article. The article presents the works on artificial photosynthesis performed in the laboratory of Photobionics of N.N. Semenov Institute of Chemical Physics, RAS.

  14. [C4 type photosynthesis].

    Science.gov (United States)

    Drozak, Anna; Wasilewska, Wioleta; Buczyńska, Alicja; Romanowska, Elzbieta

    2012-01-01

    C4 photosynthesis includes several anatomical and biochemical modifications that allow plants to concentrate CO2 at the site of Rubisco. The photorespiratory pathway is repressed in C4 plants, since the rates of photosynthesis and biomass production are increased. This is an adaptation to high light intensities, high temperatures and dryness. C4 plants contain two distinct types of photosynthetic cells, mesophyll and bundle sheath. The processes of assimilation and reduction of CO2 are separated spatiality and catayzed by two different enzymes. Only the bundle sheath chloroplasts perform the reactions of the Calvin-Benson cycle with the help of the Rubisco enzyme present exclusively in this cell type. The primary CO2 fixation occurs in mesophyll cells through the action of the phosphoenolpyruvate carboxylase. The light-dependent reactions of the photosynthesis occur exclusively in the latter cell type. These differences in photochemistry lead to distinct redox profiles in both types of cells. C4 plants are divided into three biochemical subtypes on the basis of differences in the mechanisms of decarboxylation of the C4 acids. C4 plants will provide the main source of food for humans and animals in the nearest decade.

  15. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  16. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  17. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.

    Science.gov (United States)

    Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter

    2006-01-01

    The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.

  18. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks.

    Science.gov (United States)

    Osuna, Jessica L; Baldocchi, Dennis D; Kobayashi, Hideki; Dawson, Todd E

    2015-05-01

    The California Mediterranean savanna has harsh summer conditions with minimal soil moisture, high temperature, high incoming solar radiation and little or no precipitation. Deciduous blue oaks, Quercus douglasii Hook. and Arn., are winter-deciduous obligate phreatophytes, transpiring mostly groundwater throughout the summer drought. The objective of this work is to fully characterize the seasonal trends of photosynthesis in blue oaks as well as the mechanistic relationships between leaf structure and function. We estimate radiative load of the leaves via the FLiES model and perform in situ measurements of leaf water potential, leaf nitrogen content, an index of chlorophyll content (SPAD readings), photosynthetic and electron transport capacity, and instantaneous rates of CO2 assimilation and electron transport. We measured multiple trees over 3 years providing data from a range of conditions. Our study included one individual that demonstrated strong drought stress as indicated by changes in SPAD readings, leaf nitrogen and all measures of leaf functioning. In the year following severe environmental stress, one individual altered foliation patterns on the crown but did not die. In all other individuals, we found that net carbon assimilation and photosynthetic capacity decreased during the summer drought. SPAD values, electron transport rate (ETR) and quantum yield of photosystem II (PSII) did not show a strong decrease during the summer drought. In most individuals, PSII activity and SPAD readings did not indicate leaf structural or functional damage throughout the season. While net carbon assimilation was tightly coupled to stomatal conductance, the coupling was not as tight with ETR possibly due to contributions from photorespiration or other protective processes. Our work demonstrates that the blue oaks avoid structural damage by maintaining the capacity to convert and dissipate incoming solar radiation during the hot summer drought and are effective at fixing

  19. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  20. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States.

    Science.gov (United States)

    Ruiz-Vera, Ursula M; Siebers, Matthew; Gray, Sharon B; Drag, David W; Rosenthal, David M; Kimball, Bruce A; Ort, Donald R; Bernacchi, Carl J

    2013-05-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol(-1)) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops.

  1. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    Science.gov (United States)

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  2. [Stomatitis in childhood, not always benign].

    Science.gov (United States)

    Oudshoorn, A M; Ramaker, C

    2000-10-14

    Two boys of 1 and 16 year had painful buccal lesions and were admitted for dehydration. The younger had finger and toe blisters; the older, severely ill, had conjunctivitis, urethritis and skin lesions. Only symptomatic treatment with lidocaine gel and paracetamol gave good recovery. A 5-year-old Turkish girl had recurrent painful buccal ulcers which each time cleared up spontaneously. Stomatitis is common in childhood. Viral infections are the most common causes of stomatitis, in particular infections with herpes simplex virus (herpes gingivostomatitis), Coxsackie virus (herpangina, hand-foot-mouth-disease), chickenpox and infectious mononucleosis. Bacterial infections are rare and mostly secondary to the viral infections. In infants oral candidiasis (thrush) is a common cause of stomatitis. Most infections are self-limiting and reassurance of parents is important. Dehydration is a common complication and admission to hospital can be prevented by analgesics. The most important non-infectious conditions that cause stomatitis in children are recurrent aphthous stomatitis, erythema multiforme major (Stevens-Johnson syndrome), Behçet's disease, malignancy (leukaemia), immune-mediated disorders (agranulocytosis, cyclic neutropenia), traumata, blistering disorders of the skin and lichen planus. A complete history and a thorough physical examination usually give the correct diagnosis and further investigations are seldom necessary.

  3. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda

    2017-09-01

    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  4. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  5. [Effect of elevated CO2 concentration on photosynthesis and antioxidative enzyme activities of wheat plant grown under drought condition].

    Science.gov (United States)

    Chen, X; Wu, D; Wang, G; Ren, H

    2000-12-01

    The photosynthesis and antioxidative enzyme activities of wheat plants grown in two open-top chambers with CO2 concentrations of 350 mumol.mol-1 and 700 mumol.mol-1 were examined under drought stress. The result showed that elevated CO2 concentration obviously enhanced the photosynthesis, stomatal resistance and water use efficiency, but decreased the transpiration of wheat. Doubled CO2 concentration significantly increased the activities of CAT, POD and SOD, which enhanced the abilities of antioxidative defence and drought tolerance.

  6. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  7. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  8. Fruit photosynthesis in Satsuma mandarin.

    Science.gov (United States)

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System

    Directory of Open Access Journals (Sweden)

    Xiaohua Ma

    2017-04-01

    Full Text Available Salt stress critically affects the physiological processes and morphological structure of plants, resulting in reduced plant growth. Salicylic acid (SA is an important signal molecule that mitigates the adverse effects of salt stress on plants. Large pink Dianthus superbus L. (Caryophyllaceae usually exhibit salt-tolerant traits under natural conditions. To further clarify the salt-tolerance level of D. superbus and the regulating mechanism of exogenous SA on the growth of D. superbus under different salt stresses, we conducted a pot experiment to examine the biomass, photosynthetic parameters, stomatal structure, chloroplast ultrastructure, reactive oxygen species (ROS concentrations, and antioxidant activities of D. superbus young shoots under 0.3, 0.6, and 0.9% NaCl conditions, with and without 0.5 mM SA. D. superbus exhibited reduced growth rate, decreased net photosynthetic rate (Pn, increased relative electric conductivity (REC and malondialdehyde (MDA contents, and poorly developed stomata and chloroplasts under 0.6 and 0.9% salt stress. However, exogenously SA effectively improved the growth, photosynthesis, antioxidant enzyme activity, and stoma and chloroplast development of D. superbus. However, when the plants were grown under severe salt stress (0.9% NaCl condition, there was no significant difference in the plant growth and physiological responses between SA-treated and non-SA-treated plants. Therefore, our research suggests that exogenous SA can effectively counteract the adverse effect of moderate salt stress on D. superbus growth and development.

  10. Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng.

    Science.gov (United States)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-09-01

    One-year-old Metasequoia glyptostroboides seedlings were exposed to non-filtered ambient air (NF) and elevated ozone (E-O3, NF+60 ppb) in open-top chambers for two years. E-O3 accelerated leaf senescence, as indicated by significant decreases in photosynthetic pigment contents with the elongation of O3 exposure. E-O3 significantly affected gas exchange and carboxylation, inducing reductions in light-saturated photosynthesis (Asat), the maximum activity of Rubisco (Vc,max) and the maximum electron transport rate (Jmax). Chl a/b, Vc,max/Jmax and stomatal limitation (l) were not affected. Stomatal conductance (gs) was significantly decreased by E-O3 in the first year, but remained unchanged in the second year. It can be inferred that the decrease in Asat by E-O3 was mainly attributed to the changes in non-stomatal factors. After two years' exposure, E-O3 caused significant decreases in canopy photosynthesis and leaf mass per area, and a significant increase in the number of branches, but induced slight, not significant decreases in growth and biomass. Therefore, it can be concluded that the carbon accumulation of the species M. glyptostroboides could be negatively affected after long-term exposure to high O3 concentration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  12. [Cytokinins and photosynthesis].

    Science.gov (United States)

    Pilarska, Maria; Skowron, Ernest; Niewiadomska, Ewa

    2015-01-01

    Almost six decades of studies explained many aspects of cytokinin complex metabolism, such as, biogenesis, degradation, signal perception and interaction with other phytohormones (mainly with auxins). A dual character of cytokinins' action on the nuclear genes (activation and repression) has been explained by recognition of the two types on nuclear receptors, which ensure a precise mechanism of self-control. Cytokinins promote the process of photosynthesis at different levels of plant- and cellular organization (development of leaves and plastids, influence on the photosynthetic proteins, activation of photosynthetic genes, etc.). An anti-senescing action of these hormones has been recently attributed to the activation of intra-cellular invertase, which suppress floem loading and change the sink-source pattern of the leaf.

  13. Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert.

    Science.gov (United States)

    Huxman, Travis E; Smith, Stanley D

    2001-07-01

    Annual and short-lived perennial plant performance during wet years is important for long-term persistence in the Mojave Desert. Additionally, the effects of elevated CO2 on desert plants may be relatively greater during years of high resource availability compared to dry years. Therefore, during an El Niño year at the Nevada Desert FACE Facility (a whole-ecosystem CO2 manipulation), we characterized photosynthetic investment (by assimilation rate-internal CO2 concentration relationships) and evaluated the seasonal pattern of net photosynthesis (A net) and stomatal conductance (g s) for an invasive annual grass, Bromus madritensis ssp. rubens and a native herbaceous perennial, Eriogonum inflatum. Prior to and following flowering, Bromus showed consistent increases in both the maximum rate of carboxylation by Rubisco (V Cmax) and the light-saturated rate of electron flow (J max) at elevated CO2. This resulted in greater A net at elevated CO2 throughout most of the life cycle and a decrease in the seasonal decline of maximum midday A net upon flowering as compared to ambient CO2. Eriogonum showed significant photosynthetic down-regulation to elevated CO2 late in the season, but the overall pattern of maximum midday A net was not altered with respect to phenology. For Eriogonum, this resulted in similar levels of A net on a leaf area basis as the season progressed between CO2 treatments, but greater photosynthetic activity over a typical diurnal period. While g s did not consistently vary with CO2 in Bromus, it did decrease in Eriogonum at elevated CO2 throughout much of the season. Since the biomass of both plants increased significantly at elevated CO2, these patterns of gas exchange highlight the differential mechanisms for increased plant growth. The species-specific interaction between CO2 and phenology in different growth forms suggests that important plant strategies may be altered by elevated CO2 in natural settings. These results indicate the importance of

  14. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis.

    Science.gov (United States)

    Ha, Yunmi; Shang, Yun; Nam, Kyoung Hee

    2016-12-01

    Stomatal movement in response to water availability is an important physiological process in the survival of land plants. The plant hormone abscisic acid (ABA) and brassinosteroids (BRs) regulate stomatal closure. The physiological functions of ABA and BRs, including germination, cell elongation and stomatal movement, are generally known to be antagonistic. Here, we investigated how BRs affect stomatal movement alone and in combination with ABA. We demonstrate that brassinoslide (BL), the most active BR, promotes stomatal closure in an ABA-independent manner. Interestingly, BL also inhibited ABA-induced stomatal closure when a high concentration of BL was added to ABA. Furthermore, we found that the induction of some genes for reactive oxygen species (ROS) generation by ABA (AtrbohD, NIA1 and NIA2) and subsequent ROS production were repressed by BL treatment. The BR signaling mutant bri1-301 failed to inhibit ABA-induced stomatal closure upon BL treatment. However, BRI1-overexpressing transgenic plants were hypersensitive to ABA during stomatal closure, and BL reversed ABA-induced stomatal closure more completely than in wild type plants. Taken together, these results suggest that BRs can positively and negatively modulate ABA-induced stomatal closure. Therefore, interactions between ABA and BR signaling are important for the regulation of stomatal closure. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance

    NARCIS (Netherlands)

    Gaastra, P.

    1959-01-01

    The effect was estimated of light intensity, leaf temperature, and C0 2 concentration on photosynthetic rate in leaves of crop plants. The potential capacities of photochemical and biochemical processes and of C0 2 transport were compared.

    Resistance to C0 2

  16. Artificial Photosynthesis: Beyond Mimicking Nature.

    Science.gov (United States)

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-11-23

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on "Artificial Photosynthesis for Sustainable Fuels". They discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO2 reduction, and photoelectrochemical systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Regulation of photosynthesis by light quality and its mechanism in plants].

    Science.gov (United States)

    Zheng, Jie; Hu, Mei-Jun; Guo, Yan-Ping

    2008-07-01

    Photosynthesis is the basis of plant growth and development. The regulations of photosynthesis by light quality include regulations of stomatal movement, leaf growth, chloroplast structure, photosynthetic pigment, D1 protein and its gene and photosynthetic carbon assimilation by visible light, and effect of ultraviolet light on photosystem II in plant. Blue light and red light can promote the opening of stomata, while the green light can close stomata. Blue light can improve the development of chloroplast, complex light of red, blue and green lights can expand leaf area, and red light can increase the accumulation of photosynthesis production. Effects of different light quality differ in various plants, organs and tissues. Blue light and far red light can promote the accumulation of psbA gene transcription. Most higher plants and green algae have highest photosynthesis rate in orange and red lights, secondly in blue-violet light, and minimum in green light. Ultraviolet light can decline the electron transfer activity of photosystem II. Moreover, questions regarding the effect of light quality on photosynthesis and some topics for future study were also discussed in this paper.

  18. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Heuvelink, Ep; Prinzenberg, Aina E.; Marcelis, Leo F. M.

    2016-01-01

    A better understanding of the metabolic and diffusional limitations of photosynthesis in fluctuating irradiance can help identify targets for improving crop yields. We used different genotypes of Arabidopsis thaliana to characterise the importance of Rubisco activase (Rca), stomatal conductance (gs), non-photochemical quenching of chlorophyll fluorescence (NPQ) and sucrose phosphate synthase (SPS) on photosynthesis in fluctuating irradiance. Leaf gas exchange and chlorophyll fluorescence were measured in leaves exposed to stepwise increases and decreases in irradiance. rwt43, which has a constitutively active Rubisco enzyme in different irradiance intensities (except in darkness), showed faster increases than the wildtype, Colombia-0, in photosynthesis rates after step increases in irradiance. rca-2, having decreased Rca concentration, showed lower rates of increase. In aba2-1, high gs increased the rate of change after stepwise irradiance increases, while in C24, low gs tended to decrease it. Differences in rates of change between Colombia-0 and plants with low levels of NPQ (npq1-2, npq4-1) or SPS (spsa1) were negligible. In Colombia-0, the regulation of Rubisco activation and of gs were therefore limiting for photosynthesis in fluctuating irradiance, while levels of NPQ or SPS were not. This suggests Rca and gs as targets for improvement of photosynthesis of plants in fluctuating irradiance. PMID:27502328

  19. What drives the seasonal pattern of δ13C in the net land-atmosphere CO2 exchange across the United States?

    Science.gov (United States)

    Raczka, B. M.; Dlugokencky, E. J.; Ehleringer, J. R.; Lai, C. T.; Pataki, D. E.; Saleska, S. R.; Torn, M. S.; Vaughn, B. H.; Wehr, R. A.; Bowling, D. R.

    2016-12-01

    The seasonal pattern of δ13C of atmospheric CO2 depends upon both local and non-local land-atmosphere exchange and atmospheric transport. It has been suggested that the seasonal pattern is driven primarily from local variation in the δ13C of the net CO2 flux (exchange between vegetation and the atmosphere) as a result of variation of stomatal conductance of the vegetation. Here we study local variation of δ13C of the land-atmosphere exchange at 7 sites across the United States representing forests (Harvard, Howland, Niwot Ridge, Wind River), grasslands (Southern Great Plains, Rannell Prairie) and an urban center (Salt Lake City). Using a simple 2-part mixing model with background corrections we find that the δ13C of the net exchange of CO2 was most enriched at the grassland sites (-18.9 o/oo), and most depleted at the urban site (-29.6 o/oo) due to the contribution of C4 photosynthesis and fossil fuel emissions, respectively. The amplitude of the seasonal cycle was most pronounced at the C3/C4 grassland and the urban sites. In contrast, the forested sites have a reduced seasonal cycle, and remain almost constant during the growing season (0.49 o/oo change). Furthermore, by accounting for relatively fast δ13C variations in non-local sources at Niwot Ridge we find that the seasonal pattern in δ13C of net exchange is eliminated altogether. These results support the idea that a coherent, global seasonal pattern in δ13C of net exchange is influenced by seasonal transitions in C3/C4 grass, and the intensity and seasonal timing of fossil fuel emissions. This will have important implications for studies that use δ13C to constrain large-scale carbon fluxes.

  20. When did oxygenic photosynthesis evolve?

    National Research Council Canada - National Science Library

    Roger Buick

    2008-01-01

    ...2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event...

  1. Plasmon-induced artificial photosynthesis

    National Research Council Canada - National Science Library

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-01-01

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia...

  2. Artificial photosynthesis for solar fuels.

    Science.gov (United States)

    Styring, Stenbjörn

    2012-01-01

    This contribution was presented as the closing lecture at the Faraday Discussion 155 on artificial photosynthesis, held in Edinburgh Scotland, September 5-7 2011. The world needs new, environmentally friendly and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap and "endless" resources that are available everywhere. The new research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis expands rapidly and most of the different scientific visions for solar fuels are briefly overviewed. Research strategies and the development of artificial photosynthesis research to produce solar fuels are overviewed. Some conceptual aspects of research for artificial photosynthesis are discussed in closer detail.

  3. My journey in photosynthesis research.

    Science.gov (United States)

    Shuvalov, Vladimir A

    2015-08-01

    At the invitation of Suleyman I. Allakhverdiev, I provide here a brief autobiography for this special issue that recognizes my service and research for the larger international community of photosynthesis research.

  4. Recent advances in understanding photosynthesis

    OpenAIRE

    Fl?gge, Ulf-Ingo; Westhoff, Peter; Leister, Dario

    2016-01-01

    Photosynthesis is central to all life on earth, providing not only oxygen but also organic compounds that are synthesized from atmospheric CO 2 and water using light energy as the driving force. The still-increasing world population poses a serious challenge to further enhance biomass production of crop plants. Crop yield is determined by various parameters, inter alia by the light energy conversion efficiency of the photosynthetic machinery. Photosynthesis can be looked at from different per...

  5. Modeling the protection of photosynthesis

    OpenAIRE

    Harbinson, J.

    2012-01-01

    It is hard to overstate the importance of photosynthesis for mankind and the biosphere. It produces the oxygen we breathe and the food we eat, and images of Earth from space show the green of terrestrial vegetation and swirls of marine phytoplankton. To meet our increasing demand for food and energy, it seems inevitable that we will need to increase the efficiency of photosynthesis in plants and algae. There is therefore some urgency in our drive to better understand the operation, regulation...

  6. Dark states in quantum photosynthesis

    CERN Document Server

    Kozyrev, S V

    2016-01-01

    We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.

  7. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff

    2013-04-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and

  8. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    Science.gov (United States)

    Chen, Tsu-Wei; Henke, Michael; de Visser, Pieter H B; Buck-Sorlin, Gerhard; Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2014-09-01

    Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (S(L)), mesophyll (M(L)), biochemical (B(L)) and light (L(L)) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. In the virtual cucumber canopy, B(L) and L(L) were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (S(L) + M(L)) contributed Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55%. Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to

  9. [How to cope with recurrent aphthous stomatitis].

    Science.gov (United States)

    Madrid, C; Jaques, B; Bouferrrache, K; Broome, M

    2010-10-06

    Recurrent aphthous stomatitis (RAS) is the most common oral mucosa ailment. This condition is frequently considered as idiopathic due to the doubts about its etiology, probably related to a minor immunological dysregulation in a context of genetic predisposition. However, ulcers that resemble recurrent aphthous stomatitis in some respects can be found in systemic disorders that must be ruled out for the differential diagnosis of SAR, particularly when they appear after adolescence and/or when associated lesions exist out of the oral cavity. SAR management lies on the elimination of predisposing factors (drugs, oral trauma, food allergies...) and if needed, topical corticosteroids are the first choice regimen. More severe cases may require systemic regimens.

  10. Recurrent aphthous stomatitis: genetic aspects of etiology

    Science.gov (United States)

    Szponar, Elżbieta; Kowalska, Anna

    2013-01-01

    Recurrent aphthous stomatitis (RAS; recurrent aphthous ulcers – RAU; canker sores) is a chronic inflammatory, ulcerative condition of the oral mucosa. Its prevalence in the general population ranges between 5% and 20%, depending on the method and group studied. The etiopathogenesis of the disease is considered to be multifactorial, but remains still not fully understood. In patients with RAS, an enhanced immunologic response occurs to some trigger factors that may include: mechanical injury, stress or bacterial and viral antigens. Higher prevalence of aphthae in relatives may also indicate the genetic background of the condition. The inheritance of some specific gene polymorphisms, especially those encoding proinflammatory cytokines, which play a role in the formation of aphthous ulcer, may predispose family members to RAS. The purpose of this paper was to present the main clinical features of recurrent aphthous stomatitis, epidemiologic data and crucial etiopathogenetic factors with a special emphasis on genetic background of the condition. PMID:24278055

  11. STUDY REGARDING STOMATAL DENSITY IN MAGNOLIA SP.

    Directory of Open Access Journals (Sweden)

    Nicoleta-Valentina GROZA

    2013-06-01

    Full Text Available The purpose of this study is to reveal the structural aspects of the leaf as occurring in the genus Magnolia. The leaves are bifacial and hypostomatic. Secretory oil cells are a constant presence. We have revealed significant dissimilarities in stomatal density and size as occurring in three ornamental species: Magnolia kobus, Magnolia x soulangeana “Soulange-Bodin” (M. denudata x M. liliiflora and Magnolia x “Susan” (M. kobus var. stellata “Rosea” x M. liliiflora “Nigra”. The highest stomatal density was recorded in the diploid species Magnolia kobus. The stomata are significantly elongated in Magnolia x soulangeana “Soul.-Bod.” and wide in Magnolia kobus.

  12. Photosynthesis, water relations, and growth of planted Pinus strobus L. on burned sites in the southern Appalachians

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    1994-01-01

    We measured net photosynthesis,leaf conductance, xylem water potential, and growth of Pinus strbus L. seedlings two years after planting on two clear-cut and burned sites in the southern Appalachians. Multiple regression analysis was used to relate seedling net pholosynthesis to vapor pressure deficit, seedling crown temperature, photosynthetically active radiation (...

  13. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.

    Science.gov (United States)

    Reed, Charlotte C; Loik, Michael E

    2016-05-01

    Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.

  14. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L. by Regulating Gene Expression

    Directory of Open Access Journals (Sweden)

    Ni Ma

    2017-09-01

    Full Text Available Rapeseed (Brassica napus L. is a very important edible oil crop in the world, and the production is inhibited by abiotic stresses, such as salinity. Plant hormones can alleviate the stress by regulating the physiological processes and gene expression. To study the plant responses to salinity in combination with GR24, a synthesized strigolactone, the oilseed rape variety (Zhongshuang 11 replications were grown in the pots in a controlled growth chamber under three levels of salinity (0, 100, and 200 mM NaCl and 0.18 μM GR24 treatments at the seedling stage for 7 days. The results showed that salinity depressed the shoots and roots growth, whereas GR24 improved the growth under salt stress. Leaf chlorophyll contents and gas exchange parameters (net photosynthetic rates, stomatal conductance, intercellular CO2 concentration, and transpiration rate were also reduced significantly with increasing salinity, and these effects could be partially reversed by GR24 application. Additionally, GR24 treatment significantly increased and decreased the photosystem II quantum yield and non-photochemical quenching, respectively, under salinity stress conditions. The activities of peroxidase and superoxide dismutase increased, and lipid peroxidation measured by the level of malondialdehyde reduced due to GR24 application. The transcriptome analysis of root and shoot was conducted. Three hundred and forty-two common differentially expressed genes (DEGs after GR24 treatment and 166 special DEGs after GR24 treatment under salinity stress were identified in root and shoot. The DEGs in root were significantly more than that in shoot. Quantitative PCR validated that the stress alleviation was mainly related to the gene expression of tryptophan metabolism, plant hormone signal transduction, and photosynthesis.

  15. Overcompensation or limitation to photosynthesis and root hydraulic conductance altered by rehydration in seedlings of sorghum and maize

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2017-08-01

    Full Text Available In view of the prospect of irregular extremes of high and low rainfall due to climate change, the mechanisms underlying plant responses to periods of drought and re-watering need to be understood. Sorghum (Sorghum bicolor L. and maize (Zea mays L. were grown in pots of loess soil at three soil moisture levels to examine the effects of different levels of drought over 10 days and plant responses to re-watering (5 days of rehydration. Photosynthesis-related traits recovered rapidly both in sorghum and maize on re-watering, suggesting that photosynthetic function was not severely damaged after a short drought period, although the values of these traits were dramatically reduced during drought per se. However, the two species differed in the extent to which they recovered from severe stress. In sorghum, net photosynthetic rate (Pn, stomatal conductance (Gs, and maximum photochemical efficiency of PSII (Fv/Fm returned to control levels after re-watering. However, in maize, these parameters exceeded control levels after re-watering. Both overcompensation and pre-drought limitation were observed. Over a range of growth conditions, close relationships between Gs and root hydraulic conductance (Kr were observed in pooled data sets. Pn, Kr, and their related characteristics were compared among species and treatments. Our results showed that the recovery of Kr is similar between sorghum and maize, at least after a short time of re-watering, although the two species differ in drought-tolerance capacity. Our results also suggest that sorghum can endure moderate drought by adjusting certain traits, but is still as vulnerable as maize under severe drought stress.

  16. Plant virus infections control stomatal development

    Science.gov (United States)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-09-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  17. Vesicular stomatitis forecasting based on Google Trends

    Science.gov (United States)

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  18. [Responses of tomato leaf photosynthesis to rapid water stress].

    Science.gov (United States)

    Han, Guo-Jun; Chen, Nian-lai; Huang, Hai-xia; Zhang, Ping; Zhang, Kai; Guo, Yan-hong

    2013-04-01

    By using polyethylene glycol (PEG-6000) solution to regulate the water potential of tomato (Lycopersicon esculentum) rhizosphere to simulate water stress, this paper studied the dynamic changes of net photosynthetic rate, dark respiratory rate and CO2 compensatory concentration of detached tomato leaves in the process of photosynthetic induction. Under 1000 micromol m-2 s-1 of light induction, the time required to reach the maximum net photosynthetic rate of water-stressed tomato leaves was shortened by 1/3, while the stomatal conductance was increased by 1.5 times, as compared to the non-stress control. Also, the light saturation point (LSP) of water-stressed tomato leaves was lowered by 65% to 85%, and the light compensation point (LCP) was increased by 75% to 100%, suggesting that the effective range of light utilized by tomato leaves was reduced. Furthermore, water stress decreased the maximum photosynthetic capacity of tomato leaves by 40%, but increased the dark respiration rate by about 45% . It was suggested that rapid water stress made the stomata of tomato leaves quickly opened, without initial photosynthetic induction stage. In conclusion, water stress could induce the decrease of plant light-energy use efficiency and potential, being the main reason for the decrease of plant productivity, and stomatal regulation could be the main physiological mechanism of tomato plants to adapt to rapid water stress.

  19. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    Science.gov (United States)

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  20. Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, I.; Rodriguez-Calcerrada, J.; Robson, T. M.; Cano, F. J.; Alte, L.; Sanchez-Gomez, D.

    2012-07-01

    Limitations to diffusion and biochemical factors affecting leaf carbon uptake were analyzed in young beech seedlings (Fagus sylvtica L.) growing in natural gaps of a beech-wood at the southern limit of the species. Half of the seedlings received periodic watering in addition to natural rainfall to reduce the severity of the summer drought. Plant water status was evaluated by measuring predawn water potential. Basic biochemical parameters were inferred from chlorophyll fluorescence and photosynthesis-CO{sub 2} curves (A-C{sub c}) under saturating light. The curves were established on three dates during the summer months. The main variables studied included: stomatal and mesophyll conductance to CO{sub 2} (g{sub s} and g{sub m} respectively), maximum velocity of carboxylation (V{sub c}max) and maximum electron transport capacity (J{sub m}ax). The gm was estimated by two methodologies: the curve-fitting and J constant methods. Seedlings withstood moderate water stress, as the leaf predawn water potential ({Psi}{sub p}d) measured during the study was within the range -0.2 to -0.5 MPa. Mild drought caused gs and gm to decrease only slightly in response to {Psi}{sub p}d. However both diffusional parameters explained most of the limitations to CO{sub 2} uptake. In addition, it should be highlighted that biochemical limitations, prompted by V{sub c}max and J{sub m}ax, were related mainly to ontogenic factors, without any clear relationship with drought under the moderate water stress experienced by beech seedlings through the study. The results may help to further understanding of the functional mechanisms influencing the carbon fixation capacity of beech seedlings under natural conditions. (Author) 68 refs.

  1. Quantification of temperature, CO2, and light effects on crop photosynthesis as a basis for model-based greenhouse climate control

    NARCIS (Netherlands)

    Körner, O.; Heuvelink, E.; Niu, Q.

    2009-01-01

    Detailed measurements of crop photosynthesis at supra-optimal temperatures and high CO2 levels, to validate models for use in model-based greenhouse climate control, are still lacking. We performed CO2 gas exchange measurements to estimate gross crop photosynthesis (Pgc) from measured net crop gas

  2. Delayed fluorescence in photosynthesis.

    Science.gov (United States)

    Goltsev, Vasilij; Zaharieva, Ivelina; Chernev, Petko; Strasser, Reto J

    2009-01-01

    Photosynthesis is a very efficient photochemical process. Nevertheless, plants emit some of the absorbed energy as light quanta. This luminescence is emitted, predominantly, by excited chlorophyll a molecules in the light-harvesting antenna, associated with Photosystem II (PS II) reaction centers. The emission that occurs before the utilization of the excitation energy in the primary photochemical reaction is called prompt fluorescence. Light emission can also be observed from repopulated excited chlorophylls as a result of recombination of the charge pairs. In this case, some time-dependent redox reactions occur before the excitation of the chlorophyll. This delays the light emission and provides the name for this phenomenon-delayed fluorescence (DF), or delayed light emission (DLE). The DF intensity is a decreasing polyphasic function of the time after illumination, which reflects the kinetics of electron transport reactions both on the (electron) donor and the (electron) acceptor sides of PS II. Two main experimental approaches are used for DF measurements: (a) recording of the DF decay in the dark after a single turnover flash or after continuous light excitation and (b) recording of the DF intensity during light adaptation of the photosynthesizing samples (induction curves), following a period of darkness. In this paper we review historical data on DF research and recent advances in the understanding of the relation between the delayed fluorescence and specific reactions in PS II. An experimental method for simultaneous recording of the induction transients of prompt and delayed chlorophyll fluorescence and decay curves of DF in the millisecond time domain is discussed.

  3. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  4. Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum.

    Science.gov (United States)

    Talbott, Lawrence D; Zhu, Jianxin; Han, Seung Won; Zeiger, Eduardo

    2002-06-01

    Guard cells of the orchid genus, Paphiopedilum have been reported to lack developed chloroplasts and detectable chlorophyll a autofluorescence. Paphiopedilum stomata lack a photosynthesis-dependent opening response but have a blue light-specific opening. The present study found that low fluence rate green and red light elicited stomatal opening in Paphiopedilum and this opening was reversed by far red light, indicating the presence of a phytochrome-mediated opening response. Phytochrome-dependent, red light-stimulated opening was largest under low fluence rates and decreased to near zero as fluence rate increased. A recently discovered green light reversibility of blue light-specific stomatal opening was used to probe the properties of the blue light response in Paphiopedilum stomata. Blue light-stimulated opening was completely reversed by green light in the presence of far red light. Red light enhanced the blue light response of Paphiopedilum guard cells when given as a pretreatment or together with blue light. Analysis of guard cell pigments showed that guard cells have small amounts of chlorophyll a and b, zeaxanthin, violaxanthin, antheraxanthin and lutein. Zeaxanthin content increased in response to blue light or ascorbate and declined in the dark or under illumination in the presence of dithiothreitol, indicating the presence of an active xanthophyll cycle. Thus Paphiopedilum stomata possess both a blue light-mediated opening response with characteristics similar to species with normal chloroplast development and a novel phytochrome-mediated opening response.

  5. Stomatal Responses to CO(2) in Paphiopedilum and Phragmipedium: Role of the Guard Cell Chloroplast.

    Science.gov (United States)

    Assmann, S M; Zeiger, E

    1985-02-01

    A role of the guard cell chloroplasts in the CO(2) response of stomata was investigated through a comparison of the leaf gas exchange characteristics of two closely related orchids: Paphiopedilum harrisianum, which lacks guard cell chloroplasts and Phragmipedium longifolium, which has chlorophyllous guard cells. Leaves of both species had an apparent quantum yield for assimilation of about 0.05, with photosynthesis saturating at 0.300 to 0.400 millimoles per square meter per second. CO(2) curves were obtained by measuring steady-state assimilation and stomatal conductance under 0.180 or 0.053 millimoles per square meter per second white light, or darkness, at 0 to 400 microliters per liter ambient CO(2). The response of assimilation to changes in CO(2) was similar in the two species, but the response of conductance was consistently weaker in Paphiopedilum than in Phragmipedium. The data suggest involvement of guard cell chloroplasts in the stomatal response to CO(2) and in the coupling of assimilation and conductance in the intact leaf.

  6. MINYAK GOSOK DAPAT MENGOBATI STOMATITIS APTOSA REKUREN SECARA TOPIKAL

    OpenAIRE

    Ali Yusran; Donald RN

    2016-01-01

    Many studies have been done to get the right material in the treatment of recurrent minor aphthous stomatitis, but the result still unsatisfied. The aim ofthistudy was to know the influence application of rubbing oil against the healing and comportable at recurrent minor aphthous stomatitis. This study was a clinical observasionally and healing was resulted in about four days. The use of topical rubbing oil in the treatment of recurrent minor aphthous stomatitis could...

  7. Drought induces alterations in the stomatal development program in Populus

    Science.gov (United States)

    Campbell, Malcolm M

    2012-01-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar. PMID:22760471

  8. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  9. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-05-01

    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  11. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  12. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    Water use efficiency; global terrestrial ecosystems; MODIS; net primary production; evapotranspiration;. Köppen–Geiger climate classification. ... Terrestrial plants fix or trap carbon dioxide via photosynthesis to produce the material ...... S W 2007 Evaluating water stress controls on primary production in biogeochemical and ...

  13. Isotopic tracers for net primary productivity for a terrestrial esocystem ...

    African Journals Online (AJOL)

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water ...

  14. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, A.; Beier, C.

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... respiration from October to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important in the annual carbon cycle of the ecosystem. Model fit of R-E of a classic, first-order exponential equation related to temperature ( second year; R-2 = 0......) of 2.5 by the modified model. The model introduces R-photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated carbon dioxide flux at 0 degrees C and 35% at 20 degrees C implying a high sensitivity of respiration to photosynthesis...

  15. THE INDUCTION PERIOD IN PHOTOSYNTHESIS.

    Science.gov (United States)

    Smith, E L

    1937-11-20

    1. Measurements on the photosynthesis of Cabomba caroliniana show an induction period at low and high light intensities and CO(2) concentrations. 2. The equation which describes the data for Cabomba also describes the data obtained by other investigators on different species. The phenomenon is thus shown to be similar in plants representative of three phyla. 3. A derivation of the induction period equation is made from a consideration of the cycle of light and dark processes known to occur in photosynthesis. The equation indicates that light intensity enters as the square, and that the same light reactions are involved as those which affect the stationary state rates. However, a different dark reaction appears to limit photosynthesis during the induction period.

  16. Nanobiocatalytic assemblies for artificial photosynthesis.

    Science.gov (United States)

    Kim, Jae Hong; Nam, Dong Heon; Park, Chan Beum

    2014-08-01

    Natural photosynthesis, a solar-to-chemical energy conversion process, occurs through a series of photo-induced electron transfer reactions in nanoscale architectures that contain light-harvesting complexes, protein-metal clusters, and many redox biocatalysts. Artificial photosynthesis in nanobiocatalytic assemblies aims to reconstruct man-made photosensitizers, electron mediators, electron donors, and redox enzymes for solar synthesis of valuable chemicals through visible light-driven cofactor regeneration. The key requirement in the design of biocatalyzed artificial photosynthetic process is an efficient and forward electron transfer between each photosynthetic component. This review describes basic principles in combining redox biocatalysis with photocatalysis, and highlights recent research outcomes in the development of nanobiocatalytic assemblies that can mimic natural photosystems I and II, respectively. Current issues in biocatalyzed artificial photosynthesis and future perspectives will be briefly discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of elevated pressure on rate of photosynthesis during plant growth.

    Science.gov (United States)

    Takeishi, Hiroyuki; Hayashi, Jun; Okazawa, Atsushi; Harada, Kazuo; Hirata, Kazumasa; Kobayashi, Akio; Akamatsu, Fumiteru

    2013-10-20

    The aim of this study is to investigate the effects of an artificially controlled environment, particularly elevated total pressure, on net photosynthesis and respiration during plant growth. Pressure directly affects not only cells and organelles in leaves but also the diffusion coefficients and degrees of solubility of CO2 and O2. In this study, the effects of elevated total pressure on the rates of net photosynthesis and respiration of a model plant, Arabidopsis thaliana, were investigated in a chamber that newly developed in this study to control the total pressure. The results clearly showed that the rate of respiration decreased linearly with increasing total pressure at a high humidity. The rate of respiration decreased linearly with increasing total pressure up to 0.2 MPa, and increased with increasing total pressure from 0.3 to 0.5 MPa at a low humidity. The rate of net photosynthesis decreased linearly with increasing total pressure under a constant partial pressure of CO2 at 40 Pa. On the other hand, the rate of net photosynthesis was clearly increased by up to 1.6-fold with increasing total pressure and partial pressure of CO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2009-01-01

    Nearly three decades ago Farquhar, von Caemmerer and Berry published a biochemical model for C3 photosynthetic rates (the FvCB model). The model predicts net photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assimilation (Ac) and the electron transport-limited rate of CO2

  19. Modeling stomatal conductance in the Earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-05-01

    The empirical Ball-Berry stomatal conductance model is commonly used in Earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must both be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA) to numerically optimize photosynthetic carbon gain per unit water loss while preventing leaf water potential dropping below a critical minimum level. We evaluated two alternative optimization algorithms: intrinsic water-use efficiency (Δ An/Δ gs, the marginal carbon gain of stomatal opening) and water-use efficiency (Δ An/Δ El, the marginal carbon gain of water loss). We implemented the stomatal models in a multi-layer plant canopy model, to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using: (1) leaf analyses; (2) canopy net radiation, sensible heat flux, latent heat flux, and gross primary production at six AmeriFlux sites spanning 51 site-years; and (3) parameter sensitivity analyses. Without soil moisture stress, the performance of the SPA stomatal conductance model was generally comparable to or somewhat better than the Ball-Berry model in flux tower simulations, but was significantly better than the Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from the physiological theory linking leaf water-use efficiency and water flow to and from the leaf along the soil-to-leaf pathway rather than being imposed a priori, as in the Ball-Berry model. Similar functional dependence of gs on Ds emerged from the water-use efficiency optimization. Sensitivity analyses showed that two parameters (stomatal efficiency and

  20. The paleobiological record of photosynthesis

    Science.gov (United States)

    2010-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established. PMID:20607406

  1. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas.

    Science.gov (United States)

    Lahr, Eleanor C; Schade, Gunnar W; Crossett, Caitlin C; Watson, Matthew R

    2015-11-01

    Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. © 2015 John Wiley & Sons Ltd.

  2. Growth, yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2.

    Science.gov (United States)

    Bhatt, R K; Baig, M J; Tiwari, H S; Roy, Sharmila

    2010-07-01

    Plant height, biomass production, assimilatory functions and chlorophyll accumulation of Panicum maximum and Stylosanthes hamata in intercropping systems was influenced significantly under elevated CO2 (600 +/- 50 ppm) in open top chambers (OTCs). The plant height increased by 32.0 and 49.0% over the control in P. maximum and S. hamata respectively in intercropping system under elevated CO2 over open field grown crops (Ca). P. maximum and S. hamata produced 67 and 85% higher fresh and dry biomass respectively under elevated CO2. Rates of photosynthesis and stomatal conductance increased in both the crop species in intercropping systems under elevated CO2. The canopy photosynthesis (photosynthesis x leaf area index) of these crop species increased significantly under elevated CO2 over the open grown crops. The chlorophyll a and b accumulation were also higher in the leaves of both the crop species as grown in OTC with elevated CO2. The increased chlorophyll content, leaf area index and canopy photosynthesis led to higher growth and biomass production in these crop species under elevated CO2. The total carbon sequestration in crop biomass and soils during the three years was 21.53 Mg C/ha under elevated CO2. The data revealed that P. maximum and S. hamata intercropping system is the potential as a sink for the increasing level of CO2 in the atmosphere in the semi-arid tropics.

  3. Effects of high temperature on photosynthesis and related gene expression in poplar

    Science.gov (United States)

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  4. A Microscale Model for Combined CO2 Diffusion and Photosynthesis in Leaves

    Science.gov (United States)

    Ho, Quang Tri; Verboven, Pieter; Yin, Xinyou; Struik, Paul C.; Nicolaï, Bart M.

    2012-01-01

    Transport of CO2 in leaves was investigated by combining a 2-D, microscale CO2 transport model with photosynthesis kinetics in wheat (Triticum aestivum L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO2. The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO2 levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO2 concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO2 diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure. PMID:23144870

  5. Dynamic photosynthesis in different environmental conditions

    NARCIS (Netherlands)

    Kaiser, M.E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M.

    2015-01-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this

  6. Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat : a microsensor study

    OpenAIRE

    R. Ludwig; Pringault, Olivier; Wit, R.; De Beer, D; Jonkers, H.M.

    2006-01-01

    Microbial mats are characterized by high primary production but low growth rates, pointing to a limitation of growth by the lack of nutrients or substrates. We identified compounds that instantaneously stimulated photosynthesis rates and oxygen consumption rates in a hypersaline microbial mat by following the short-term response (c. 6 h) of these processes to addition of nutrients, organic and inorganic carbon compounds, using microsensors. Net photosynthesis rates were not stimulated by comp...

  7. Total antioxidant status and oxidative stress in recurrent aphthous stomatitis.

    Science.gov (United States)

    Tugrul, Selahattin; Koçyiğit, Abdurrahim; Doğan, Remzi; Eren, Sabri Baki; Senturk, Erol; Ozturan, Orhan; Ozar, Omer Faruk

    2016-03-01

    Recurrent aphthous stomatitis is an idiopathic, chronic, recurrent inflammatory disease of the oral mucosa. It is thought that oxidative stress caused by systemic inflammation plays a basic role in the etiopathogenesis of recurrent aphthous stomatitis. The aim of this study is to review oxidative status and DNA damage in recurrent aphthous stomatitis. The study included 42 patients with an active recurrent aphthous stomatitis lesion and 39 healthy volunteers with similar demographic characteristics. DNA damage was analyzed using alkaline single cell gel electrophoresis (comet assay). Plasma levels of total antioxidant status and total oxidative status were determined by using an automated measurement method. Oxidative stress index was calculated as total oxidative status/total antioxidant status and × 100. The total oxidative status and oxidative stress index values were significantly higher in the recurrent aphthous stomatitis group compared to the control group, while total antioxidant status values were significantly lower. In the recurrent aphthous stomatitis group, DNA damage was observed to be significantly higher than the control group. In correlation analysis, significant correlation was found between DNA damage and the oxidative stress index and total oxidative status values in the recurrent aphthous stomatitis group. This is the first report in the literature that demonstrates association of recurrent aphthous stomatitis with increased oxidative status. © 2015 The International Society of Dermatology.

  8. Stomatal characteristics of Eucalyptus grandis clonal hybrids in ...

    African Journals Online (AJOL)

    The aim was to investigate the degree to which stomatal conductance (gs) and stomatal density differ between the clonal hybrids across seasons and in response to water stress. Plants from one E. grandis x E. camaldulensis (GC) and two E. grandis x E. urophylla (GU1 and GU2) clones were grown for 18 months in 80 l ...

  9. Dynamic changes of stomatal characteristics during the flower, fruit ...

    African Journals Online (AJOL)

    The results showed that there were stomata on the median region of exocarps, adaxial and abaxial epidermis of the petals and leaf midribs. The petal and fruit epidermal cells were polygonal in shape, while leaf epidermal cells were strip. The leaf stomatal index and stomatal density were the largest in the surfaces ...

  10. Quantitative trait loci mapping for stomatal traits in interspecific ...

    Indian Academy of Sciences (India)

    Dr.YASODHA

    Cartographer v 2.5 (Wang et al. 2007) to identify QTLs for stomatal density, stomatal area and pore length in adaxial and abaxial leaf surfaces adopting backcross model. The LOD threshold was determined by permutation analysis with 1000 repetitions. The size of the analysis window was maintained at 10 cM with a walk ...

  11. Urban Legends Series: Recurrent Aphthous Stomatitis

    Science.gov (United States)

    Baccaglini, Lorena; Lalla, Rajesh V.; Bruce, Alison J.; Sartori-Valinotti, Julio C.; Latortue, Marie C.; Carrozzo, Marco; Rogers, Roy S.

    2011-01-01

    Recurrent aphthous stomatitis (RAS) is the most common idiopathic intraoral ulcerative disease in the USA. Aphthae typically occur in apparently healthy individuals, although an association with certain systemic diseases has been reported. Despite the unclear etiopathogenesis, new drug trials are continuously conducted in an attempt to reduce pain and dysfunction. We investigated four controversial topics: (1) Is complex aphthosis a mild form of Behçet’s disease (BD)? (2) Is periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome a distinct medical entity? (3) Is RAS associated with other systemic diseases (e.g., celiac disease and B12 deficiency)? (4) Are there any new RAS treatments? Results from extensive literature searches, including a systematic review of RAS trials, suggested that: (1) Complex aphthosis is not a mild form of BD in North America or Western Europe; (2) Diagnostic criteria for PFAPA have low specificity and the characteristics of the oral ulcers warrant further studies; (3) Oral ulcers may be associated with celiac disease; however, these ulcers may not be RAS; RAS is rarely associated with B12 deficiency; nevertheless, B12 treatment may be beneficial, via mechanisms that warrant further study; (4) Thirty-three controlled trials published in the past 6 years reported some effectiveness, though potential for bias was high. PMID:21812866

  12. Vertical distribution of pelagic photosynthesis

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke

    As phytoplankton photosynthesis is dependent on light, one might assume that all the phytoplankton activity occurs in the surface of our oceans. This assumption was, however, challenged early in the history of biological oceanography when chlorophyll sampling and fluorescence profiling showed deep...

  13. Growth and photosynthesis of lettuce

    NARCIS (Netherlands)

    Holsteijn, van H.M.C.

    1981-01-01

    Butterhead lettuce is an important glass-house crop in the poor light period in The Netherlands. Fundamental data about the influence of temperature, light and CO 2 on growth and photosynthesis are important e.g. to facilitate selection criteria for new cultivars. In

  14. Modeling the protection of photosynthesis

    NARCIS (Netherlands)

    Harbinson, J.

    2012-01-01

    It is hard to overstate the importance of photosynthesis for mankind and the biosphere. It produces the oxygen we breathe and the food we eat, and images of Earth from space show the green of terrestrial vegetation and swirls of marine phytoplankton. To meet our increasing demand for food and

  15. Eukaryotic vs. cyanobacterial oxygenic photosynthesis

    OpenAIRE

    Schmelling, Nicolas

    2015-01-01

    Slides of my talk about the differences between eukaryotic and cyanobacterial oxygenic photosynthesis.  The talk is a more generell overview about the differences of the two systems. Slides and Figures are my own. For comments, questions and suggestions please contact me via twitter @derschmelling or via mail

  16. Chlorophylls, Symmetry, Chirality, and Photosynthesis.

    OpenAIRE

    Senge, Mathias O.; Aoife A. Ryan; Kristie A. Letchford; MacGowan, Stuart A.; Tamara Mielke

    2014-01-01

    PUBLISHED Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecula...

  17. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  18. Artificial photosynthesis at soft interfaces.

    Science.gov (United States)

    Schaming, Delphine; Hatay, Imren; Cortez, Fernando; Olaya, Astrid; Méendez, Manuel A; Ge, Pei Yu; Deng, Haiqiang; Voyame, Patrick; Nazemi, Zahra; Girault, Hubert

    2011-01-01

    The concept of artificial photosynthesis at a polarised liquid membrane is presented. It includes two photosystems, one at each interface for the hydrogen and oxygen evolution respectively. Both reactions involve proton coupled electron transfer reactions, and some ultrafast steps at the photosensitization stage.

  19. Injecting Inquiry into Photosynthesis Investigations

    Science.gov (United States)

    Salter, Irene; Smith, Rebecca; Nielsen, Katherine

    2008-01-01

    This is the story of how a typical middle school lab was transformed into an open-ended inquiry experience through a few small, but very powerful, changes. By allowing students to follow their own questions, the classroom filled with enthusiasm and students learned much more about photosynthesis, respiration, and the scientific processes. The…

  20. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    Science.gov (United States)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  1. The K+ channel KZM2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells.

    Science.gov (United States)

    Gao, Yong-Qiang; Wu, Wei-Hua; Wang, Yi

    2017-11-01

    Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1-like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin ) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2-KZM3 heteromeric channel became slower than the KZM3 channel. Patch-clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  3. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Science.gov (United States)

    Saradadevi, Renu; Palta, Jairo A.; Siddique, Kadambot H. M.

    2017-01-01

    End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE). When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA) is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under terminal drought

  4. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    Energy Technology Data Exchange (ETDEWEB)

    Roper, T.R.; Williams, L.E. (Univ. of California, Davis (USA) Kearney Agricultural Center, Parlier, CA (USA))

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  5. CO2-induced decrease of canopy stomatal conductance of mature conifer and broadleaved trees

    Science.gov (United States)

    Tor-ngern, P.; Oren, R.; Ward, E. J.; Palmroth, S.; McCarthy, H. R.; domec, J.

    2013-12-01

    Together with canopy leaf area, mean canopy stomatal conductance (GS) controls forest-atmosphere exchanges of energy and mass. Expectations for stomatal response to elevated atmospheric [CO2] (CO2E) based on seedling studies range from large decreases of conductance in foliage of broadleaved species to little or no response in conifers. These responses are not directly translatable to forest canopies, and their underlying mechanisms are ill-defined. The uncertainty of canopy-scale stomatal response to CO2E reduces confidence in modeled predictions of future forest productivity and carbon sequestration, and of partitioning of net radiation between latent and sensible heat flux. Thus, debates on the potential effects of CO2E-induced stomatal closure continue. We used a Free-Air CO2 Enrichment (FACE) experiment in a 27-year-old, 25 m tall forest, to generate a whole-canopy CO2-response and test whether canopy-scale GS response to CO2E of widely distributed, fast growing shade-intolerant species, Pinus taeda (L.) and co-occurring broadleaved species dominated by Liquidambar styraciflua (L.), was indirectly affected by slow changes such as hydraulic adjustments and canopy development, as opposed to quickly responding to CO2 concentrations in the leaf-internal air space. Our results show indirect CO2E-induced reductions of GS of 10% and 30%, respectively, and no signs of a direct stomatal response even as CO2E was pushed to 685 μmol mol-1 (~1.8 of ambient). Modeling the effect of CO2E on the water, energy and carbon cycles of forests must consider slow-response indirect mechanisms producing large variation in the reduction of GS, such as the previously observed inconsistent CO2E effect on canopy leaf area and plant hydraulics. Moreover, the new generation of CO2E studies in forests must allow indirect effects caused by, e.g., hydraulic adjustments and canopy development, to play out. Such acclimation will be particularly prolonged in slowly developing ecosystems, such

  6. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.

    Science.gov (United States)

    Tang, Lu; Ying, Rong-Rong; Jiang, Dan; Zeng, Xiao-Wen; Morel, Jean-Louis; Tang, Ye-Tao; Qiu, Rong-Liang

    2013-12-01

    Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P. divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75 μM Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5 μM Cd to 68.8% at 75 μM Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ΦPSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P. divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P. divaricata. Copyright © 2013. Published by Elsevier Masson SAS.

  7. Management of Recurrent Aphthous Stomatitis in Children.

    Science.gov (United States)

    Montgomery-Cranny, Jodie A; Wallace, Ann; Rogers, Helen J; Hughes, Sophie C; Hegarty, Anne M; Zaitoun, Halla

    2015-01-01

    Recurrent oral ulceration is common and may present in childhood. Causes of recurrent oral ulceration are numerous and there may be an association with underlying systemic disease. Recurrent aphthous stomatitis (RAS) is the most common underlying diagnosis in children. The discomfort of oral ulcers can impact negatively on quality of life of a child, interfering with eating, speaking and may result in missed school days. The role of the general dental practitioner is to identify patients who can be treated with simple measures in primary dental care and those who require assessment and treatment in secondary care. Management may include topical agents for symptomatic relief, topical corticosteroids and, in severe recalcitrant cases, systemic agents may be necessary.

  8. Haematological parameters and recurrent aphthous stomatitis.

    Science.gov (United States)

    Khan, Nabiha Farasat; Saeed, Mohammad; Chaudhary, Saima; Khan, Nabiha Farasat

    2013-02-01

    To find out the relationship between recurrent aphthous stomatitis (RAS) with deficiencies of haemoglobin, haematocrit, serum vitamin B12, serum Ferritin and red blood cells (RBC) Folate level. An analytical cross-sectional study. Department of Oral Health Sciences, Shaikh Zayed Federal Postgraduate Medical Complex, Lahore, from February to July 2008. Sixty consecutive subjects with active RAS were taken as the aphthous group; 60 age and gender matched subjects without RAS were as the Non-Aphthous group. Five milliliter blood was taken from both groups to evaluate the levels of serum B12, and RBC Folate through radio immuno assay and serum ferritin with enzyme linked immuno-sorbent assay tests. Complete blood count was carried out to determine the level of haemoglobin and haematocrit in both groups. Proportion of subjects with lower values was compared using 2 text of proportions with significance at p aphthous group.

  9. Recurrent aphthous stomatitis and Helicobacter pylori.

    Science.gov (United States)

    Gomes, Carolina-Cavaliéri; Gomez, Ricardo-Santiago; Zina, Lívia-Guimarães; Amaral, Fabrício-Rezende

    2016-03-01

    Recurrent aphthous stomatitis (RAS) is a recurrent painful ulcerative disorder that commonly affects the oral mucosa. Local and systemic factors such as trauma, food sensitivity, nutritional deficiencies, systemic conditions, immunological disorders and genetic polymorphisms are associated with the development of the disease. Helicobacter pylori (H. pylori) is a gram-negative, microaerophile bacteria, that colonizes the gastric mucosa and it was previously suggested to be involved in RAS development. In the present paper we reviewed all previous studies that investigated the association between RAS and H. pylori. A search in Pubmed (MEDLINE) databases was made of articles published up until July 2015 using the following keywords: Helicobacter Pylori or H. pylori and RAS or Recurrent aphthous stomatitis. Fifteen experimental studies that addressed the relationship between infection with H. pylori and the presence of RAS and three reviews, including a systematic review and a meta-analysis were included in this review. The studies reviewed used different methods to assess this relationship, including PCR, nested PCR, culture, ELISA and urea breath test. A large variation in the number of patients included in each study, as well as inclusion criteria and laboratorial methods was observed. H. pylori can be detected in the oral mucosa or ulcerated lesion of some patients with RAS. The quality of the all studies included in this review was assessed using levels of evidence based on the University of Oxford's Center for Evidence Based Medicine Criteria. Although the eradication of the infection may affect the clinical course of the oral lesions by undetermined mechanisms, RAS ulcers are not associated with the presence of the bacteria in the oral cavity and there is no evidence that H. pylori infection drives RAS development.

  10. Origins and Evolution of Stomatal Development1[OPEN

    Science.gov (United States)

    2017-01-01

    The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, FAMA, and ICE/SCREAMs (SCRMs), which promote stomatal formation. These factors are regulated via a signaling cascade, which includes mobile EPIDERMAL PATTERNING FACTOR (EPF) peptides to enforce stomatal spacing. Mosses and hornworts, the most ancient extant lineages to possess stomata, possess orthologs of these Arabidopsis (Arabidopsis thaliana) stomatal toolbox genes, and manipulation in the model bryophyte Physcomitrella patens has shown that the bHLH and EPF components are also required for moss stomatal development and patterning. This supports an ancient and tightly conserved genetic origin of stomata. Here, we review recent discoveries and, by interrogating newly available plant genomes, we advance the story of stomatal development and patterning across land plant evolution. Furthermore, we identify potential orthologs of the key toolbox genes in a hornwort, further supporting a single ancient genetic origin of stomata in the ancestor to all stomatous land plants. PMID:28356502

  11. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress

    Directory of Open Access Journals (Sweden)

    Fu Yang

    2008-06-01

    Full Text Available The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00–10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00–13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.

  12. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...... fourfold from communities with a very uneven to a more even light distribution. Photosynthetic characteristics of communities are strongly influenced by plant density, absorption, and distribution of light and cannot be interpreted from the photosynthetic behavior of phytoelements. Thus, many examples...

  13. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  14. The interplanetary exchange of photosynthesis.

    Science.gov (United States)

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  15. Moss functioning in different taiga ecosystems in interior Alaska : I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns.

    Science.gov (United States)

    Skre, O; Oechel, W C

    1981-02-01

    Carbon dioxide exchange rates in excised 2-year-old shoot sections of five common moss species were measured by infrared gas analysis in mosses collected from different stands of mature vegetation near Fairbanks, Alaska. The maximum rates of net photosynthesis ranged from 2.65 mg CO 2 g -1 h -1 in Polytrichum commune Hedw. to 0.25 in Spagnum nemoreum Scop. Intermediate values were found in Sphagnum subsecundum Nees., Hylocomium splendens (Hedw.) B.S.G., and Pleurozium schreberi (Brid.) Mitt. Dark respiration rates at 15°C ranged from 0.24 mg CO 2 g -1 h -1 in S. subsecundum to 0.57 mg CO 2 g -1 h -1 in H. splendens. The dark respiration rates were found to increase in periods of growth or restoration of tissue (i.e., after desiccation). There was a strong decrease in the rates of net photosynthesis during the winter and after long periods of desiccation.Due to increasing amounts of young, photosynthetically active tissue there was a gradual increase in the rates of net photosynthesis during the season to maximum values in late August. As an apparent result of constant respiration rates and increasing gross photosynthetic rates, the optimum temperature for photosynthesis at light saturation and field capacity increased during the season in all species except Polytrichum, with a corresponding drop in the compensation light intensities. Sphagnum subsecundum seemed to be the most light-dependent species.Leaf water content was found to be an important limiting factor for photosynthesis in the field. A comparison between sites showed that the maximum rates of net photosynthesis increased with increasing nutrient content in the soil but at the permafrostfree sites photosynthesis was inhibited by frequent moisture stress.

  16. Exogenous 5-Aminolevulenic Acid Promotes Antioxidative Defence System, Photosynthesis and Growth in Soybean against Cold Stress

    Directory of Open Access Journals (Sweden)

    Elahe MANAFI

    2015-12-01

    Full Text Available In the present study, the possibility of enhancing cold stress tolerance of young soybean plants (Glycine max [L.] Merr by exogenous application of 5-aminolevulinic acid (ALA was investigated. ALA was applied at various concentrations (0, 0.3, 0.6 and 0.9 mM by seed priming and foliar application method. After ALA treatment, the plants were subjected to cold stress at 10 ± 0.5 °C for 72 h. Cold stress significantly decreased plant growth, relative water content, chlorophyll, photosynthesis and stomatal conductivity, while it increased electrolyte leakage and proline accumulation. ALA at low concentrations (0.3 mM protected plants against cold stress, enhancing plant height, shoot fresh and dry weight, chlorophyll content, photosynthesis, stomatal conductivity as well as relative water content. Increase of electrolyte leakage was also prevented by 0.6 mM ALA. ALA also enhanced superoxide dismutase and catalase activities at 0.6 mM concentration especially under cold stress conditions. Proline increased with increasing in ALA concentration under both temperature conditions. In most cases, application of ALA by spraying method was better than seed priming method. Results showed that ALA, which is considered as an endogenous plant growth regulator, can be used effectively to protect soybean plants from the damaging effects of cold stress, by enhancing the activity of antioxidative enzymes, protecting cell membrane against reactive oxygen species and finally by promoting chlorophyll synthesis, leading to more intense photosynthesis and more carbon fixation, without any adverse effect on the plant growth.

  17. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  18. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees

    Science.gov (United States)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux ( J s,n) or transpiration ( E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux ( J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47 %, while J s,n decreased by 12.03 % in covered trees as compared to that of control, and the difference was statistically significant ( P photosynthesis in covered trees. Predawn ( ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance ( g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ13C between the two groups, while leaf nitrogen content and δ15N were significantly higher in covered trees than that of the control ( P oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  19. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    Science.gov (United States)

    Yue, Xu; Keenan, Trevor F; Munger, William; Unger, Nadine

    2016-11-01

    Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O3 ] as a predictor was slight, and independent of O3 concentrations, which suggests limited high-frequency O3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O3 inhibition of 10.4% for 1992-2011. A decline of [O3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m(-2)  s(-1)  yr(-1) , which is negligible relative to the total observed GPP trend of 0.41 μmol C m(-2)  s(-1)  yr(-1) . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O3 ], thus helping to buffer the changes of total photosynthesis due to varied [O3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems. © 2016 John Wiley & Sons Ltd.

  20. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens.

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Veromann, Linda-Liisa; Niinemets, Ülo

    2016-07-01

    Fungal infections result in decreases in photosynthesis, induction of stress and signaling volatile emissions and reductions in constitutive volatile emissions, but the way different physiological processes scale with the severity of infection is poorly known. We studied the effects of infection by the obligate biotrophic fungal pathogen Melampsora larici-populina Kleb., the causal agent of poplar leaf rust disease, on photosynthetic characteristics, and constitutive isoprene and induced volatile emissions in leaves of Populus balsamifera var. suaveolens (Fisch.) Loudon. exhibiting different degrees of damage. The degree of fungal damage, quantified by the total area of chlorotic and necrotic leaf areas, varied between 0 (noninfected control) and ∼60%. The rates of all physiological processes scaled quantitatively with the degree of visual damage, but the scaling with damage severity was weaker for photosynthetic characteristics than for constitutive and induced volatile release. Over the whole range of damage severity, the net assimilation rate per area (AA) decreased 1.5-fold, dry mass per unit area 2.4-fold and constitutive isoprene emissions 5-fold, while stomatal conductance increased 1.9-fold and dark respiration rate 1.6-fold. The emissions of key stress and signaling volatiles (methanol, green leaf volatiles, monoterpenes, sesquiterpenes and methyl salicylate) were in most cases nondetectable in noninfested leaves, and increased strongly with increasing the spread of infection. The moderate reduction in AA resulted from the loss of photosynthetically active biomass, but the reduction in constitutive isoprene emissions and the increase in induced volatile emissions primarily reflected changes in the activities of corresponding biochemical pathways. Although all physiological alterations in fungal-infected leaves occurred in a stress severity-dependent manner, modifications in primary and secondary metabolic pathways scaled differently due to contrasting

  1. Photosynthesis and biochemical responses to elevated O3 in Plantago major and Sonchus oleraceus growing in a lowland habitat of northern China.

    Science.gov (United States)

    Su, Benying; Zhou, Meihua; Xu, Hong; Zhang, Xiujie; Li, Yonggeng; Su, Hua; Xiang, Bao

    2017-03-01

    A field experiment was carried out to compare the responses to ozone (O3) in two common herbaceous plant species, Plantago major L. and Sonchus oleraceus L., by building open-top growth chambers in situ to simulate O3 stress (+O3, 85±5ppb, 9hr/day for 30days) in a lowland habitat in Inner Mongolia, Northern China. Responses to O3 of gas exchange, chlorophyll a fluorescence, leaf pigment content, antioxidant capability, soluble protein content, membrane lipid peroxidation and dark respiration (Rd) were analyzed. Results showed that elevated O3 exposure significantly reduced the light-saturated net photosynthesis (PNsat), stomatal conductance (gs) and transpiration rate (E) in both species. Although non-significant interactive effect between species and O3 on PNsat was analyzed, the reduction in PNsat in S. oleraceus might be due primarily to the higher fraction of close PSII reaction centers and impaired activities of plant mesophyll cells as evidences by decreased maximum efficiency of PSII photochemistry after dark adapted state (Fv/Fm) and unchanged intercellular CO2 concentration (Ci). Besides, biochemical analysis showed that S. oleraceus had lower antioxidant ability compared to P. major. As a result, S. oleraceus was damaged to the larger extent in terms of lipid peroxidation and visible O3 injury, indicating that S. oleraceus was more sensitive to O3 than P. major. Our results indicated that wild herbaceous plant species growing in a lowland habitat in sandy grassland were sensitive to O3 stress and S. oleraceus can be considered as one of the bio-indicators for high O3 concentration in semi-arid grassland of northern China. Copyright © 2016. Published by Elsevier B.V.

  2. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton.

    Science.gov (United States)

    Farooq, Muhammad Ahsan; Ali, Shafaqat; Hameed, Amjad; Ishaque, Wajid; Mahmood, Khalid; Iqbal, Zafar

    2013-10-01

    Biotic systems face immense environmental hazards such as accumulation of heavy metals, particularly in agricultural ecosystems that might cause deterioration of yield and quality of crops. In this study, we evaluated the role of silicon (Si) in alleviating the heavy metal (Cd) stress tolerance in cotton by analyzing the induced Physio-chemical changes. Cotton plants were grown in hydroponic culture with three different Cd levels (0, 1 and 5μM) along with two Si treatment levels (0 and 1mM). The data showed that Cd alone reduced the plant growth as well as the efficiency of antioxidant activity as compared to control plants. Plant growth, gas exchange characteristics (net photosynthetic rate, stomatal conductance, transpiration rate, water use efficiency) chlorophyll contents, and carotenoids as well as the performance of antioxidant enzymes were improved by the exogenous application of Si. The adverse effects of Cd on plant growth were alleviated by the exogenous application of Si. It was observed that Si effectively mitigated the adverse effects of Cd on cotton plants and markedly enhanced the growth, biomass and photosynthetic parameters while decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolytic leakage (EL). The antioxidant enzyme activities in cotton leaves and roots increased significantly, when Si was added to control as well as Cd stressed plants. In conclusion, Si improved the growth and photosynthesis attributes of cotton plants by mitigating the adverse effects of Cd stress through reduced EL, MDA and H2O2 contents and improved activities of antioxidant enzymes. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  4. Stomatal and non-stomatal effects of exogenous abscisic acid during plant hardening

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, Jana; Synková, Helena; Haisel, Daniel; Baťková, Petra

    2008-01-01

    Roč. 133, - (2008), P09-131 ISSN 0031-9317 R&D Projects: GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Keywords : phytohormones * micropropagation * photosynthesis Subject RIV: ED - Physiology Impact factor: 2.334, year: 2008

  5. Microbial photosynthesis in coral reef sediments (Heron Reef, Australia)

    Science.gov (United States)

    Werner, Ursula; Blazejak, Anna; Bird, Paul; Eickert, Gabriele; Schoon, Raphaela; Abed, Raeid M. M.; Bissett, Andrew; de Beer, Dirk

    2008-03-01

    We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O 2 m -2 h -1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m -2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2-1.0 mmol Ca 2+ m -2 h -1). The sediments of at least three stations were net calcifying. Sedimentary N 2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N 2 m -2 h -1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N 2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.

  6. Role of Sucrose in Emerging Mechanisms of Stomatal Aperture Regulation.

    Energy Technology Data Exchange (ETDEWEB)

    Outlaw, W. H.

    2000-09-15

    Focused on the second of 2 hypotheses that were proposed for testing that transpiration rate determines the extent to which suc accumulates in the GC wall providing a mechanism for regulating stomatal aperture size.

  7. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    Science.gov (United States)

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  8. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  9. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  10. Understanding of photosynthesis among primary school pupils

    OpenAIRE

    Murn, Špela

    2014-01-01

    Photosynthesis is considered one of the most difficult subjects for pupils. It is very complex topic, which is very difficult to understand. The goal of our research was to examine the knowledge on photosynthesis of the pupils of the primary school, their attitude towrds it, and whether there were any misconceptions about photosynthesis. The research was conducted on a sample of 120 pupils in Dolenjske Toplice primary school. The questionnaire consisted of 19 questions. In the first part o...

  11. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane.

    Science.gov (United States)

    De Souza, Amanda Pereira; Gaspar, Marilia; Da Silva, Emerson Alves; Ulian, Eugênio César; Waclawovsky, Alessandro Jaquiel; Nishiyama, Milton Yutaka; Dos Santos, Renato Vicentini; Teixeira, Marcelo Menossi; Souza, Glaucia Mendes; Buckeridge, Marcos Silveira

    2008-08-01

    Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (approximately 370 ppm) and elevated (approximately 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.

  12. Seed photosynthesis enhances Posidonia oceanica seedling growth

    National Research Council Canada - National Science Library

    Celdrán, David; Marín, Arnaldo

    2013-01-01

    Posidonia oceanica seeds demonstrate photosynthetic activity during germination as well as throughout seedling development, a fact which suggests that seed photosynthesis can influence seedling growth...

  13. Stomatal conductance of semi-natural Mediterranean grasslands: Implications for the development of ozone critical levels

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, R. [Ecotoxicology of Air Pollution, CIEMAT (Ed. 70), Avda. Complutense 22, Madrid 28040 (Spain)]. E-mail: rocio.alonso@ciemat.es; Bermejo, V. [Ecotoxicology of Air Pollution, CIEMAT (Ed. 70), Avda. Complutense 22, Madrid 28040 (Spain); Sanz, J. [Ecotoxicology of Air Pollution, CIEMAT (Ed. 70), Avda. Complutense 22, Madrid 28040 (Spain); Valls, B. [Ecotoxicology of Air Pollution, CIEMAT (Ed. 70), Avda. Complutense 22, Madrid 28040 (Spain); Elvira, S. [Ecotoxicology of Air Pollution, CIEMAT (Ed. 70), Avda. Complutense 22, Madrid 28040 (Spain); Gimeno, B.S. [Ecotoxicology of Air Pollution, CIEMAT (Ed. 70), Avda. Complutense 22, Madrid 28040 (Spain)

    2007-04-15

    Intra-genus and intra-specific variation and the influence of nitrogen enrichment on net assimilation and stomatal conductance of some annual Trifolium species of Mediterranean dehesa grasslands were assessed under experimental conditions. Also gas exchange rates were compared between some Leguminosae and Poaceae species growing in the field in a dehesa ecosystem in central Spain. The results showed that the previously reported different O{sub 3} sensitivity of some Trifolium species growing in pots does not seem to be related to different maximum g {sub s} values. In addition, no clear differences on gas exchange rates could be attributed to Leguminosae and Poaceae families growing in the field, with intra-genus variation being more important than differences found between families. Further studies are needed to increase the database for developing a flux-based approach for setting O{sub 3} critical levels for semi-natural Mediterranean species. - The stomatal conductance model incorporated within the EMEP DO{sub 3}SE deposition module needs to be re-parameterised for Mediterranean semi-natural vegetation.

  14. Solar fuels via artificial photosynthesis.

    Science.gov (United States)

    Gust, Devens; Moore, Thomas A; Moore, Ana L

    2009-12-21

    Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge

  15. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components.

    Science.gov (United States)

    Aasamaa, Krõõt; Aphalo, Pedro José

    2017-02-01

    Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role. © The Author 2016. Published

  16. Helicobacter pylori DNA in recurrent aphthous stomatitis.

    Science.gov (United States)

    Victória, Júnia Maria Netto; Kalapothakis, Evanguedes; Silva, Jeane de Fátima Correia; Gomez, Ricardo Santiago

    2003-04-01

    Considering not only the fact that recurrent aphthous stomatitis (RAS) and stomach ulcers are immunologically mediated ulcers associated with Helicobacter pylori, but also the recent evidence that anaemia can be associated with both diseases, and the discovery of H. pylori in the oral mucosa led us to hypothesize that this bacteria may be related to RAS pathogenesis. Thirty-six consecutive subjects affected by minor and major forms of RAS and 48 healthy volunteers were included in the present study. The nested polymerase chain reaction (PCR) technique was used to detect the presence of H. pylori in the oral lesion, the normal contralateral mucosa of patients affected by RAS and the oral mucosa of control subjects. The chi2- and Fisher's tests were used for statistical analysis. No association between RAS lesions and H. pylori was observed. However, 14 out of 36 (38.9%) of the patients with RAS were found to show the presence of H. pylori DNA in the lesion and/or contralateral mucosa. Sixteen out of 48 (33.3%) of the patients without RAS (control subjects) were positive (P > 0.05). The present study does not give support to the assumption that H. pylori could be involved in RAS development.

  17. Oxidative stress and recurrent aphthous stomatitis.

    Science.gov (United States)

    Bagan, Jose; Saez, Guillermo; Tormos, Carmen; Gavalda, Carmen; Sanchis, Jose M; Bagan, Leticia; Scully, Crispian

    2014-11-01

    This study analyzed the oxidative stress status in patients with recurrent aphthous stomatitis (RAS) in the presence and absence of active ulceration. Oxidative stress was analyzed in peripheral mononuclear cells of 28 RAS patients with active ulceration and 29 controls. A further blood sample was collected from nine subjects randomly selected from the 28 RAS cases, during the period in which the patients did not have active oral ulceration. The reduced glutathione (GSH), malondialdehyde (MDA), and oxidized glutathione (GSSG) levels were measured in these samples. The mean MDA and GSSG levels were significantly higher in patients with active RAS than in the controls, while GSH was lower in the RAS group (p < 0.01). There was a nonsignificant tendency toward higher MDA and GSSG levels in patients with major RAS compared with minor RAS. On comparing the serum findings in the nine RAS patients in the presence and absence of lesions, the presence of ulceration was associated with even higher MDA and GSSG levels and lower GSH concentrations (p < 0.05) CONCLUSIONS: Oxidative stress was detected in our RAS patients.

  18. Psychological stress and recurrent aphthous stomatitis

    Directory of Open Access Journals (Sweden)

    Camila de Barros Gallo

    2009-01-01

    Full Text Available INTRODUCTION AND OBJECTIVES: Recurrent aphthous stomatitis (RAS is the most common type of ulcerative disease of the oral mucosa. Despite its worldwide occurrence and the extensive amount of research that has been devoted to the subject, the etiology of RAS remains unclear. Nevertheless, several hereditary, nutritional, infectious and psychological factors have been associated with RAS. The aim of this case-control study was to assess the influence of psychological stress on the manifestation of RAS. METHOD: Fifty patients were enrolled in the trial. Twenty-five RAS patients constituted the study group and another 25 non-RAS patients who were similarly matched for sex, age and socioeconomic status constituted the control group. Each patient was evaluated in terms of the four domains of stress (emotional, physical, social and cognitive using an internationally validated questionnaire, which was comprised of 59 items and measured the frequency and intensity of stress symptoms. The RAS group was interviewed during an active RAS episode. Completed questionnaires were submitted to proper analytical software and interpreted by an expert psychologist. RESULTS: There was a higher level of psychological stress among RAS group patients when compared to the control group (P < 0.05. CONCLUSION: Psychological stress may play a role in the manifestation of RAS; it may serve as a trigger or a modifying factor rather than being a cause of the disease.

  19. Recurrent aphthous stomatitis: a case report

    Directory of Open Access Journals (Sweden)

    Xiomara Serpa-Romero

    2016-07-01

    Full Text Available Recurrent aphthosus stomatitis is an alteration of the oral mucosa in some cases associated with depression of the immune system that affects the tissue response at the level of the epithelium, triggering repetitive clinical picture of small and medium ulcers (3-5 mm which necrotic presented erythematous background and lasting no more than 15 days. The picture becomes recurrent, symptomatic, compromising the health of the patient who consults again with the same characteristics in oral cavity. The literature associates the process with hormonal changes, trauma, prolonged intake of medications, and stress. A case of female patient 53, who attends the service of dentistry to present multiple oral thrush that hard to swallow, drooling and feverish marked presents in Santa Marta, at the Center for Implantology and Oral Rehabilitation. According to the interrogation and clinical examination it is associated with a reactive inflammatory process caused by the intake of drugs to treat infectious or viral process, which is given the presumptive diagnosis of erythema drug. Any medication intake was suspended and additional tests are ordered antinuclear antibodies

  20. Stomatal responses to CO/sub 2/ in Paphiopedilum and Phragmipedium: role of the guard cell chloroplast

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, S.M.; Zeiger, E.

    1985-02-01

    A role of the guard cell chloroplasts in the CO/sub 2/ response of stomata was investigated through a comparison of the leaf gas exchange characteristics of two closely related orchids: Paphiopedilum harrisianum, which lacks guard cell chloroplasts and Phragmipedium longifolium, which has chlorophyllous guard cells. Leaves of both species had an apparent quantum yield for assimilation of about 0.05, with photosynthesis saturating at 0.300 to 0.400 millimoles per square meter per second. The response of assimilation to changes in CO/sub 2/ was similar in the two species, but the response of conductance was consistently weaker in Paphiopedilum than in Phragmipedium. The data suggest involvement of guard cell chloroplasts in the stomatal response to CO/sub 2/ and in the coupling of assimilation and conductance in the intact leaf.

  1. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    Science.gov (United States)

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli. © 2014 Scandinavian Plant Physiology Society.

  2. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves

    Science.gov (United States)

    Adachi, Shunsuke; Tsuru, Yukiko; Nito, Naoko; Murata, Kazumasa; Yamamoto, Toshio; Ebitani, Takeshi; Ookawa, Taiichiro; Hirasawa, Tadashi

    2011-01-01

    DNA marker-assisted selection appears to be a promising strategy for improving rates of leaf photosynthesis in rice. The rate of leaf photosynthesis was significantly higher in a high-yielding indica variety, Habataki, than in the most popular Japanese variety, Koshihikari, at the full heading stage as a result of the higher level of leaf nitrogen at the same rate of application of nitrogen and the higher stomatal conductance even when the respective levels of leaf nitrogen were the same. The higher leaf nitrogen content of Habataki was caused by the greater accumulation of nitrogen by plants. The higher stomatal conductance of Habataki was caused by the higher hydraulic conductance. Using progeny populations and selected lines derived from a cross between Koshihikari and Habataki, it was possible to identify the genomic regions responsible for the rate of photosynthesis within a 2.1 Mb region between RM17459 and RM17552 and within a 1.2 Mb region between RM6999 and RM22529 on the long arm of chromosome 4 and on the short arm of chromosome 8, respectively. The designated region on chromosome 4 of Habataki was responsible for both the increase in the nitrogen content of leaves and hydraulic conductance in the plant by increasing the root surface area. The designated region on chromosome 8 of Habataki was responsible for the increase in hydraulic conductance by increasing the root hydraulic conductivity. The results suggest that it may be possible to improve photosynthesis in rice leaves by marker-assisted selection that focuses on these regions of chromosomes 4 and 8. PMID:21296764

  3. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  4. Stomatal conductance of semi-natural Mediterranean grasslands: implications for the development of ozone critical levels.

    Science.gov (United States)

    Alonso, R; Bermejo, V; Sanz, J; Valls, B; Elvira, S; Gimeno, B S

    2007-04-01

    Intra-genus and intra-specific variation and the influence of nitrogen enrichment on net assimilation and stomatal conductance of some annual Trifolium species of Mediterranean dehesa grasslands were assessed under experimental conditions. Also gas exchange rates were compared between some Leguminosae and Poaceae species growing in the field in a dehesa ecosystem in central Spain. The results showed that the previously reported different O3 sensitivity of some Trifolium species growing in pots does not seem to be related to different maximum g(s) values. In addition, no clear differences on gas exchange rates could be attributed to Leguminosae and Poaceae families growing in the field, with intra-genus variation being more important than differences found between families. Further studies are needed to increase the database for developing a flux-based approach for setting O3 critical levels for semi-natural Mediterranean species.

  5. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species.

    Science.gov (United States)

    Cao, X; Jia, J B; Li, H; Li, M C; Luo, J; Liang, Z S; Liu, T X; Liu, W G; Peng, C H; Luo, Z B

    2012-07-01

    Although fast-growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUE(i) ), stable carbon isotope composition (δ(13) C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUE(i) and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUE(i) /δ(13) C, whereas P. × euramericana had a considerable growth increment and the highest WUE(i) /δ(13) C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (g(s) ) and lowest WUE(i) /δ(13) C. Moreover, significant correlations were observed between WUE(i) and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUE(i) and δ(13) C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUE(i) . It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water-limited regions and others, e.g. P. cathayana, may be better for water-abundant areas. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    Science.gov (United States)

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  7. Photochemistry and enzymology of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R.

    1979-07-30

    In the first task, a specially designed mass spectrometer system monitors the gas exchange occurring in response to single short flashes of light. This apparatus will be primarily used to study photosystem II donor reactions, such as the photooxidation of hydroxylamine, hydrazine, and hydrogen peroxide. This technique will also be used to study the light-induced exchange of O/sub 2/ and CO/sub 2/ in algae. The second task, biochemical studies, will focus on the role of chloroplast copper in photosynthesis. We propose to isolate, purify, and characterize the chloroplast copper enzyme polyphenol oxidase, and attempt to elucidate its role in photosynthesis. These studies will be integrated with a new program devoted to the biochemical response of the photosynthetic membrane to stress. The third task is a series of studies on the light-harvesting and electron-transport mechanisms of C/sub 4/ plants. This program will address three basic problems: (1) the effect of different preparative procedures on various photosynthetic reactions, with particular emphasis on photosystem II reactions in corn bundle sheath chloroplasts; (2) the development and testing of photosystem II assays; and (3) studies of the stoichiometry of electron carriers in bundle sheath chloroplasts, and whether cyclic phosphorylation could be a major pathway in this tissue.

  8. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  9. Transition metals in plant photosynthesis.

    Science.gov (United States)

    Yruela, Inmaculada

    2013-09-01

    Transition metals are involved in essential biological processes in plants since they are cofactors of metalloproteins and also act as regulator elements. Particularly, plant chloroplasts are organelles with high transition metal ion demand because metalloproteins are involved in the photosynthetic electron transport chain. The transition metal requirement of photosynthetic organisms greatly exceeds that of non-photosynthetic organisms, and either metal deficiency or metal excess strongly impacts photosynthetic functions. In chloroplasts, the transition metal ion requirement needs a homeostasis network that strictly regulates metal uptake, chelation, trafficking and storage since under some conditions metals cause toxicity. This review gives an overview of the current understanding of main features concerning the role of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) in plant photosynthesis as well as the mechanisms involved in their homeostasis within chloroplasts. The metalloproteins functioning in photosynthetic proteins of plants as well as those proteins participating in the metal transport and metal binding assembly are reviewed. Furthermore, the role of nickel (Ni) in artificial photosynthesis will be discussed.

  10. Stomatal regulation based on competition for water, stochastic rainfall, and xylem hydraulic vulnerability - a new theoretical model

    Science.gov (United States)

    Lu, Y.; Duursma, R.; Farrior, C.; Medlyn, B. E.

    2016-12-01

    Stomata control the exchange of soil water for atmospheric CO2, which is one of the most important resource trade-offs for plants. This trade-off has been studied a lot but not in the context of competition. Based on the theory of evolutionarily stable strategy, we search for the uninvadable (or the ESS) response of stomatal conductance to soil water content under stochastic rainfall, with which the dominant plant population should never be invaded by any rare mutants in the water competition due to a higher fitness. In this study, we define the fitness as the difference between the long-term average photosynthetic carbon gain and a carbon cost of stomatal opening. This cost has traditionally been considered an unknown constant. Here we extend this framework by assuming it as the energy required for xylem embolism refilling. With regard to the refilling process, we explore 2 questions 1) to what extent the embolized xylem vessels can be repaired via refilling; and 2) whether this refilling is immediate or has a time delay following the formation of xylem embolism. We compare various assumptions in a total of 5 scenarios and find that the ESS exists only if the xylem damage can be repaired completely. Then, with this ESS, we estimate annual vegetation photosynthesis and water consumption and compare them with empirical results. In conclusion, this study provides a different insight from the existing empirical and mechanistic models as well as the theoretical models based on the optimization theory. In addition, as the model result is a simple quantitative relation between stomatal conductance and soil water content, it can be easily incorporated into other vegetation function models.

  11. Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis

    Science.gov (United States)

    Rates of carbon dioxide assimilation through photosynthesis are readily modeled through the Farquhar, von Caemmerer and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 carbon assimilation. As models of CO2 assimilation are used more broadly for simula...

  12. Antifungal activity of Malaysian honey and propolis extracts against pathogens implicated in denture stomatitis

    Science.gov (United States)

    Yusoff, Nik Yusliyana Nik; Mohamad, Suharni; Abdullah, Haswati@Nurhayati; Rahman, Nurhayu Ab

    2016-12-01

    Malaysian honey and propolis extracts were investigated for their antifungal properties against pathogens implicated in denture stomatitis. Each of the honey and aqueous extracts propolis at net preparation, 1:1 and 1:2 dilutions was evaluated by using agar well diffusion assay and further investigated by minimum inhibitory concentration (MIC) within the range of 500 mg/mL to 62.5 mg/mL against oral fungi. The findings indicated that there was no effect of propolis on Candida spp for both types of propolis based on no inhibition zones was recorded. Meanwhile, for antifungal activity of honey, only honey from Trigona spp has shown activity at net preparation against C. albicans (10.47 ± 0.23 mm), C. tropicalis (12.29 ± 0.23 mm) and C. glabrata (8.69 ± 0.53 mm). For minimum inhibitory concentration, the data indicates that both propolis have shown inhibitory effect at 500 mg/mL. As for honey, Trigona spp was the effective honey that give MIC value at 250 mg/mL against Candida spp. Apis dorsata honey has shown MIC value at 500 mg/mL while Apis mellifera honey had inhibited C.albicans and C.glabrata at 500 mg/mL except for C.tropicalis at 250 mg/mL. It can be concluded that both propolis has shown weaker antifungal activity against oral fungi while only honey produced from Trigona spp had strong antifungal activity compare to other honey against oral fungi implicated in denture stomatitis.

  13. Photosynthesis (The Path of Carbon in Photosynthesis and thePrimary Quantum Conversion Act of Photosynthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and i t s variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll i s a physical sensitizer handing i t s excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, i s given.

  14. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  15. Chronic gingivitis and aphthous stomatitis relationship hypothesis: A neuroimmunobiological approach

    Directory of Open Access Journals (Sweden)

    Chiquita Prahasanti

    2009-03-01

    Full Text Available Background: Traumatic injuries to the oral mucosa in fixed orthodontic patients are common, especially in the first week of bracket placement, and occasionally lead to the development of aphthous stomatitis or ulcers. Nevertheless, these lesions are selflimiting. Purpose: The objective of this study is to reveal the connection between chronic gingivitis and aphthous stomatitis which is still unclear. Case: A patient with a persistent lesion for more than six months. Case Management: RAS was treated with scaling procedure, the gingival inflammation was healed. However, in this case report, despite the appropriate management procedures had been done, the lesion still worsen and became more painful. Moreover, the symptoms did not heal for more than two weeks. Actually, they had been undergone orthodontic treatment more than six months and rarely suffered from aphthous stomatitis. Coincidentally, at that time they also suffered from chronic gingivitis. It was interesting that after scaling procedures, the ulcer subsides in two days. Conclusion: Recently, the neuroimmunobiological researches which involved neurotransmitters and cytokines on cell-nerve signaling, and heat shock proteins in gingivitis and stomatitis are in progress. Nevertheless, they were done separately, thus do not explain the interrelationship. This proposed new concept which based on an integrated neuroimmunobiological approach could explain the benefit of periodontal treatment, especially scaling procedures, for avoiding prolonged painful episodes and unnecessary medications in aphthous stomatitis. However, for widely acceptance of the chronic gingivitis and aphthous stomatitis relationship, further clinical and laboratory study should be done. Regarding to the relatively fast healing after scaling procedures in this case report; it was concluded that the connection between chronic gingivitis and aphthous stomatitis is possible.

  16. Modelling Photosynthesis to Increase Conceptual Understanding

    Science.gov (United States)

    Ross, Pauline; Tronson, Deidre; Ritchie, Raymond J.

    2006-01-01

    Biology students in their first year at university have difficulty understanding the abstract concepts of photosynthesis. The traditional didactic lecture followed by practical exercises that show various macroscopic aspects of photosynthesis often do not help the students visualise or understand the submicroscopic (molecular-level) reactions that…

  17. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  18. Bioluminescence as a light source for photosynthesis.

    Science.gov (United States)

    Yuan, Huanxiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2013-11-25

    The luminol bioluminescence system containing luminol, hydrogen peroxide and HRP was used as a potential substitute light source of sunlight for the photosynthesis of plants, in which the electron flow of the photosynthesis process was proven using chloroplasts isolated from spinach leaves.

  19. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  20. Environmental and physiological control of dynamic photosynthesis

    NARCIS (Netherlands)

    Kaiser, M.E.

    2016-01-01

    Irradiance is the main driver of photosynthesis. In natural conditions, irradiance incident on a leaf often fluctuates, due to the movement of leaves, clouds and the sun. These fluctuations force photosynthesis to respond dynamically, however with delays that are subject to rate constants of

  1. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?

    Directory of Open Access Journals (Sweden)

    Monika Benešová

    Full Text Available Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L. genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.

  2. The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?

    Science.gov (United States)

    Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L.; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena

    2012-01-01

    Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance. PMID:22719860

  3. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  4. Multivitamin therapy for recurrent aphthous stomatitis

    Science.gov (United States)

    Lalla, Rajesh V.; Choquette, Linda E.; Feinn, Richard S.; Zawistowski, Harriet; Latortue, Marie C.; Kelly, Edward T.; Baccaglini, Lorena

    2013-01-01

    Background Recurrent aphthous stomatitis (RAS) is a painful condition of unknown etiology, affecting more than 2.5 billion people worldwide. Vitamin deficiencies have been implicated as a possible cause. Methods The authors conducted a single-center, randomized, parallel-arm, double-masked, placebo-controlled study to examine the effect of daily multivitamin supplementation on the number and duration of RAS episodes. The authors randomly assigned 160 adults who had a validated history of at least three episodes of idiopathic minor RAS within the previous 12 months to one of two groups: the first group (n = 83) received a once-daily multivitamin containing 100 percent of the U.S. reference daily intake (RDI) of essential vitamins, and the second group (n = 77) received once-daily placebo for up to 365 days. Results The results showed no significant difference in the mean number of new RAS episodes between the multivitamin (4.19 episodes) and placebo (4.60 episodes) arms during the study period (P = .69). The mean duration of new RAS episodes also was similar for the multivitamin (8.66 days) and placebo (8.99 days) arms (P = .60). Furthermore, the authors found no differences between the two arms with regard to mouth pain, normalcy of diet or compliance with the study medication regimen. Conclusion Daily multivitamin supplementation, with the RDI of essential vitamins, did not result in a reduction in the number or duration of RAS episodes. Clinical Implications Clinicians should not recommend multi-vitamin supplementation routinely as prophylaxis for RAS. PMID:22467697

  5. The impact of cold on photosynthesis in genotypes of Coffea spp.--photosystem sensitivity, photoprotective mechanisms and gene expression.

    Science.gov (United States)

    Batista-Santos, P; Lidon, F C; Fortunato, A; Leitão, A E; Lopes, E; Partelli, F; Ribeiro, A I; Ramalho, J C

    2011-05-15

    Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4°C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica×C. canephora) and Piatã (C. dewevrei×C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on A(max) and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb(6)/f

  6. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  7. Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception.

    Science.gov (United States)

    Meza-Canales, Ivan D; Meldau, Stefan; Zavala, Jorge A; Baldwin, Ian T

    2017-07-01

    Herbivory-induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (A C ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1-5 ribulose-1,5-bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12-oxo-phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen-activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen-activated protein kinase 4 in CO 2 -mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid-mediated defence responses, also elicit 12-oxo-phytodienoic acid-mediated changes in stomatal conductance and A C , an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack. © 2016 John Wiley & Sons Ltd.

  8. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    Science.gov (United States)

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. From natural to artificial photosynthesis.

    Science.gov (United States)

    Barber, James; Tran, Phong D

    2013-04-06

    Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO(2)) emissions demands that stabilizing the atmospheric CO(2) levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an 'artificial leaf' able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural

  10. From natural to artificial photosynthesis

    Science.gov (United States)

    Barber, James; Tran, Phong D.

    2013-01-01

    Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO2) emissions demands that stabilizing the atmospheric CO2 levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an ‘artificial leaf’ able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural

  11. Senescence-induced loss in photosynthesis enhances cell wall beta-glucosidase activity.

    Science.gov (United States)

    Mohapatra, Pranab Kishor; Patro, Lichita; Raval, Mukesh Kumar; Ramaswamy, Nemmara Krishnan; Biswal, Udaya Chand; Biswal, Basanti

    2010-03-01

    A link between senescence-induced decline in photosynthesis and activity of beta-glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50 degrees C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall-bound beta-glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy-dependent senescence program.

  12. Evolutionary Conservation of ABA Signaling for Stomatal Closure1[OPEN

    Science.gov (United States)

    Huang, Yuqing; Dai, Fei; Franks, Peter J.; Nevo, Eviatar; Soltis, Douglas E.; Soltis, Pamela S.; Xue, Dawei; Zhang, Guoping; Pogson, Barry J.

    2017-01-01

    Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. PMID:28232585

  13. Regeneration of Ribulose 1,5-bisphosphate and Ribulose 1,5-bisphosphate carboxylase/oxygenase Activity Associated with Lack of Oxygen Inhibition of Photosynthesis at Low Temperature

    OpenAIRE

    H. Schnyder; MÄCHLER, F.; NÖSBERGER, J.

    2017-01-01

    The nature of the lack of oxygen inhibition of C3-photosynthesis at low temperature was investigated in white clover (Trifolium repens L.). Detached leaves were brought to steady-state photosynthesis in air (34 Pa p(CO2), 21 kPa p(O2), balance N2) at temperatures of 20°C and 8°C, respectively. Net photosynthesis, ribulose 1,5-bisphosphate (RuBP) and ATP contents, and ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities were followed before and after changing to 2·0 kPa p(O2). A...

  14. Lessons of Photosynthesis for Nanotechnologies

    Science.gov (United States)

    Sturgis, J. N.

    2013-05-01

    The last years have seen several major discoveries in the study of photosynthesis with a potentially large impact on the development of bio-inspired nanosciences. These discoveries include important aspects of different enzymes responsible for various reactions, notably the reaction that allows the photolysis of water. This makes possible important steps towards the realization of systems able to produce hydrogen and oxygen from water using light and also for non-polluting fuel cells. A second group of discoveries concerns the way light is concentrated in photosynthetic systems. This biological concentration system has been found in some circumstances to rely on long distance quantum effects, of interest both for the production of high efficiency photovoltaic devices, and for the production and evolution of quantum computing systems.

  15. Plasmon-induced artificial photosynthesis.

    Science.gov (United States)

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-06-06

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst.

  16. The oldest records of photosynthesis

    Science.gov (United States)

    Awramik, S. M.

    1992-01-01

    There is diverse, yet controversial fossil evidence for the existence of photosynthesis 3500 million years ago. Among the most persuasive evidence is the stromatolites described from low grade metasedimentary rocks in Western Australia and South Africa. Based on the understanding of the paleobiology of stromatolites and using pertinent fossil and Recent analogs, these Early Archean stromatolites suggest that phototrophs evolved by 3500 million years ago. The evidence allows further interpretation that cyanobacteria were involved. Besides stromatolites, microbial and chemical fossils are also known from the same rock units. Some microfossils morphologically resemble cyanobacteria and thus complement the adduced cyanobacterial involvement in stromatolite construction. If cyanobacteria had evolved by 3500 million years ago, this would indicate that nearly all prokaryotic phyla had already evolved and that prokaryotes diversified rapidly on the early Earth.

  17. Global Patterns in Human Consumption of Net Primary Production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  18. INTERACTIVE ILUSTRATION FOR PHOTOSYNTHESIS TEACHING

    Directory of Open Access Journals (Sweden)

    M.R. Pereira

    2004-05-01

    Full Text Available Computational resources became the major tool in the challenge of making high education moreeasy and motivating. Complex Biochemical pathways can now be presented in interactive and three-dimensional animations. One of the most complex (detailed and interesting metabolic pathway thatstudents must understand in biochemical courses is photosynthesis. The light-dependent reactionsare of special interest since they involve many dierent kinds of mechanisms, as light absorptionby membrane complexes, proteins movement inside membranes, reactions of water hydrolysis, andelectrons ow; making it dicult to understand by static bi-dimensional representations.The resources of animation and ActionScript programming were used to make an interactive ani-mation of photosynthesis, which at some times even simulates three-dimensionality. The animationbegins with a leaf and progressively zooms in, until we have a scheme of a tylakoyd membrane, whereeach of the dierent steps of the pathway can be clicked to reveal a more detailed scheme of it. Whereappropriate, the energy graphs are shown side by side with the reactions. The electron is representedwith a face, so it can be shown to be stressing while going up in the energy graphs. Finally, there isa simplied version of the whole pathway, to illustrate how it all goes together.The objective is to help professors on teaching the subject in regular classes, since currently allthe explanations are omitted. In a future version, texts will be added to each step so it can beself-explicative to the students, helping them even on home or on-line learning.

  19. Shallow cumulus rooted in photosynthesis

    Science.gov (United States)

    Vila-Guerau Arellano, J.; Ouwersloot, H.; Horn, G.; Sikma, M.; Jacobs, C. M.; Baldocchi, D.

    2014-12-01

    We investigate the interaction between plant evapotranspiration, controlled by photosynthesis (for a low vegetation cover by C3 and C4 grasses), and the moist thermals that are responsible for the formation and development of shallow cumulus clouds (SCu). We perform systematic numerical experiments at fine spatial scales using large-eddy simulations explicitly coupled to a plant-physiology model. To break down the complexity of the vegetation-atmospheric system at the diurnal scales, we design the following experiments with increasing complexity: (a) clouds that are transparent to radiation, (b) clouds that shade the surface from the incoming shortwave radiation and (c) plant stomata whose apertures react with an adjustment in time to cloud perturbations. The shading by SCu leads to a strong spatial variability in photosynthesis and the surface energy balance. As a result, experiment (b) simulates SCu that are characterized by less extreme and less skewed values of the liquid water path and cloud-base height. These findings are corroborated by the calculation of characteristics lengths scales of the thermals and clouds using autocorrelation and spectral analysis methods. We find that experiments (a) and (b) are characterized by similar cloud cover evolution, but different cloud population characteristics. Experiment (b), including cloud shading, is characterized by smaller clouds, but closer to each other. By performing a sensitivity analysis on the exchange of water vapor and carbon dioxide at the canopy level, we show that the larger water-use efficiency of C4 grass leads to two opposing effects that directly influence boundary-layer clouds: the thermals below the clouds are more vigorous and deeper driven by a larger buoyancy surface flux (positive effect), but are characterized by less moisture content (negative effect). We conclude that under the investigated mid-latitude atmospheric and well-watered soil conditions, SCu over C4 grass fields is characterized

  20. [CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].

    Science.gov (United States)

    Koridze, Kh; Aladashvili, L; Taboridze, I

    2015-09-01

    The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.

  1. Incidence of Helicobacter Pylori in oral aphthous stomatitis

    Directory of Open Access Journals (Sweden)

    Surender Sharma

    2016-01-01

    Full Text Available Background/Aims: The aim of this study was to determine probable HP infection in oral aphthous samples by RUT in patients with recurrent aphthous stomatitis. Materials and Methods: This in vivo cross-sectional study was approved by the Ethics Committee of Swami Devi Dayal Dental College and Hospital according to the ethical standards. A total of 30 patients with minor recurrent aphthous stomatitis and 20 healthy control groups were included in the study. Results: Out of 30 patients with minor recurrent aphthous stomatitis, including 17 male and 13 female patients, with mean age of 47 and 38 years respectively, 21 patients (70% were RUT (positive. Out of 20 healthy control groups, 12 males and 8 females, 2 (10% were RUT (positive [Table 1]. Conclusion: HP may play a role in the etiology of RAS; also it is likely that RUT may be rapid and reliable for investigation of HP in RAS lesions.

  2. Treatment of radiation- and chemotherapy-induced stomatitis

    Energy Technology Data Exchange (ETDEWEB)

    Carnel, S.B.; Blakeslee, D.B.; Oswald, S.G.; Barnes, M. (Fitzsimons Army Medical Center, Aurora, CO (USA))

    1990-04-01

    Severe stomatitis is a common problem encountered during either radiation therapy or chemotherapy. Most therapeutic regimens are empirical, with no scientific basis. The purpose of this study is to determine the efficacy of various topical solutions in the treatment of radiation- or chemotherapy-induced stomatitis. Eighteen patients were entered into a prospective double-blinded study to test several topical solutions: (1) viscous lidocaine with 1% cocaine; (2) dyclonine hydrochloride 1.0% (Dyclone); (3) kaolin-pectin solution, diphenhydramine plus saline (KBS); and (4) a placebo solution. Degree of pain relief, duration of relief, side effects, and palatability were evaluated. The results showed that Dyclone provided the most pain relief. Dyclone and viscous lidocaine with 1% cocaine provided the longest pain relief, which averaged 50 minutes This study provides objective data and defines useful guidelines for treatment of stomatitis.

  3. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  4. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  5. Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells.

    Science.gov (United States)

    Carter, Ross; Woolfenden, Hugh; Baillie, Alice; Amsbury, Sam; Carroll, Sarah; Healicon, Eleanor; Sovatzoglou, Spyros; Braybrook, Sioban; Gray, Julie E; Hobbs, Jamie; Morris, Richard J; Fleming, Andrew J

    2017-10-09

    It has long been accepted that differential radial thickening of guard cells plays an important role in the turgor-driven shape changes required for stomatal pore opening to occur [1-4]. This textbook description derives from an original interpretation of structure rather than measurement of mechanical properties. Here we show, using atomic force microscopy, that although mature guard cells display a radial gradient of stiffness, this is not present in immature guard cells, yet young stomata show a normal opening response. Finite element modeling supports the experimental observation that radial stiffening plays a very limited role in stomatal opening. In addition, our analysis reveals an unexpected stiffening of the polar regions of the stomata complexes, both in Arabidopsis and other plants, suggesting a widespread occurrence. Combined experimental data (analysis of guard cell wall epitopes and treatment of tissue with cell wall digesting enzymes, coupled with bioassay of guard cell function) plus modeling lead us to propose that polar stiffening reflects a mechanical, pectin-based pinning down of the guard cell ends, which restricts increase of stomatal complex length during opening. This is predicted to lead to an improved response sensitivity of stomatal aperture movement with respect to change of turgor pressure. Our results provide new insight into the mechanics of stomatal function, both negating an established view of the importance of radial thickening and providing evidence for a significant role for polar stiffening. Improved stomatal performance via altered cell-wall-mediated mechanics is likely to be of evolutionary and agronomic significance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Modeling stomatal conductance and ozone uptake of Fagus crenata grown under different nitrogen loads.

    Science.gov (United States)

    Azuchi, Fumika; Kinose, Yoshiyuki; Matsumura, Tomoe; Kanomata, Tomoaki; Uehara, Yui; Kobayashi, Ayumi; Yamaguchi, Masahiro; Izuta, Takeshi

    2014-01-01

    A multiplicative stomatal conductance model was constructed to estimate stomatal O3 uptake of Fagus crenata exposed to O3 under different N loads to the soil. Our stomatal conductance model included environmental functions such as the stomatal responses of F. crenata to diurnal changes, chronic O3 stress (AOT0), acute O3 stress (O3 concentration), and nitrogen load to soil. The model could explain 62% of the variability in stomatal conductance. We suggest therefore that stomatal closure induced by O3 and N load-induced soil acidification must be taken into account in developing a stomatal conductance model for estimating stomatal O3 uptake for future risk assessment of O3 impact on Japanese forest tree species such as F. crenata. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Measurement of Stomatal Aperture by Digital Image Processing

    OpenAIRE

    Kenji, Omasa; Morio, Onoe; Division of Engineering The National Institute for Environmental Studies; Institute of Industrial Science, University of Tokyo

    1984-01-01

    We developed a new digital image processing technique for exactly measuring the degree of stomatal opening, that is, the ratio of the width to the maximum length of a stomatal pore, and the pore area. We applied this technique to evaluate responses to SO_2 of neighboring stomata in a small region of an intact attached leaf, with the following results: 1) The pore region could be exactly extracted even when the original digital image was of poor quality. The standard errors in the evaluation o...

  8. Carbon-Fixing Reactions of Photosynthesis.

    Science.gov (United States)

    2016-07-01

    Summaryplantcell;28/7/tpc.116.tt0716/FIG1F1fig1Photosynthesis in plants converts the energy of sunlight into chemical energy. Although photosynthesis involves many proteins and catalytic processes, it often is described as two sets of reactions, the light-dependent reactions and the carbon-fixing reactions. This lesson introduces the core biochemistry of the carbon-fixing reactions of photosynthesis, as well as its variations, C4 and CAM. Finally, it addresses how and why plants are affected by rising atmospheric CO2 levels, and research efforts to increase photosynthetic efficiency in current and future conditions. © 2016 American Society of Plant Biologists. All rights reserved.

  9. The Path of Carbon in Photosynthesis

    Science.gov (United States)

    Calvin, M.; Benson, A. A.

    1948-03-08

    The dark fixation of carbon dioxide by green algae has been investigated and found to be closely related to photosynthesis fixation. By illumination in the absence of carbon dioxide followed by treatment with radioactive carbon dioxide in the dark, the amount fixed has been increased ten to twenty fold. This rate of maximum fixation approaches photosynthesis maximum rates. The majority of the radioactive products formed under these conditions have been identified and isolated and the distribution of labeled carbon determined. From these results a tentative scheme for the mechanism of photosynthesis is set forth.

  10. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  11. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings.

    Science.gov (United States)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-01-01

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O3), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O3 (AA + 60 ppb O3, E-O3) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O3 exposure. Results indicated that E-O3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O3 risk on evergreen woody species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain.

    Science.gov (United States)

    Dolatabadian, Aria; Sanavy, Seyed Ali Mohammad Modarres; Gholamhoseini, Majid; Joghan, Aydin Khodaei; Majdi, Mohammad; Kashkooli, Arman Beyraghdar

    2013-04-01

    The response of photosynthesis parameters, catalase, superoxide dismutase and peroxidase activity, malondialdehyde, proline, chlorophyll, yield and yield components to foliar application of calcium and simulated acid rain in wheat were investigated. Foliar treatment of calcium led to significant increases in the photosynthesis rate, transpiration rate, stomatal conductance, proline, chlorophyll, yield and yield components in plants subjected to acid rain. Antioxidant enzyme activity and lipid peroxidation in the wheat leaves decreased because of calcium foliar application. Calcium hindered degradation of the rubisco subunits under acid rain treatment compared with water-treated plants. Results suggest that acid rain induces the production of free radicals resulting in lipid peroxidation of the cell membrane so that significant increase in antioxidant enzyme activity was observed. In addition, photosynthetic parameters i.e. photosynthesis rate, transpiration rate and stomatal conductance were drastically suppressed by acid rain. The cellular damage caused by free radicals might be reduced or prevented by a protective metabolism including antioxidative enzymes and calcium. We report that foliar application of calcium before acid rain may ameliorate the adverse effects of acid rain in wheat plants.

  13. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Science.gov (United States)

    Killi, Dilek; Haworth, Matthew

    2017-01-01

    Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. PMID:29039809

  14. Effects of Elevated CO2 Concentration on Photosynthesis and Respiration of Populus Deltodies

    Science.gov (United States)

    Anderson, Angela M.

    1998-01-01

    To determine how increased atmospheric CO2 will affect the physiology of cottonwood trees, cuttings of the cloned Populus deltodies [cottonwood] were grown in open-top chambers containing ambient or elevated CO2 concentration. The control treatment was maintained at ambient Biosphere 2 atmospheric CO2 (c. 450 +/- 50 micro l/l), and elevated CO2 treatment was maintained at approximately double ambient Biosphere 2 atmospheric CO2 (c. 1000 +/- 50 micro l/l). The effects of elevated CO2 on leaf photosynthesis, and stomatal conductance were measured. The cottonwoods exposed to CO2 enrichment showed no significant indication of photosynthetic down-regulation. There was no significant difference in the maximum assimilation rate between the treatment and the control (P less than 0.24). The CO2 enriched treatment showed a decreased stomatal conductance of 15% (P less than 0.03). The elevated CO2 concentrated atmosphere had an effect on the respiration rates of the plants; the compensation point of the treatment was on average 13% higher than the control (P less than 0.01).

  15. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress.

    Science.gov (United States)

    Killi, Dilek; Haworth, Matthew

    2017-10-17

    Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO₂ transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment-protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution.

  16. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilek Killi

    2017-10-01

    Full Text Available Quinoa (Chenopodium quinoa Willd. has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution.

  17. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis

    Science.gov (United States)

    Keeling, Ralph F.; Graven, Heather D.; Welp, Lisa R.; Resplandy, Laure; Bi, Jian; Piper, Stephen C.; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A. J.

    2017-09-01

    A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

  18. [Effects of nitrogen fertilization on wheat leaf photosynthesis under elevated atmospheric CO2 concentration].

    Science.gov (United States)

    Yu, Xian-feng; Zhang, Xu-cheng; Guo, Tian-wen; Yu, Jia

    2010-09-01

    In this paper, the effects of nitrogen (N) fertilization on the wheat leaf photosynthesis under long-term elevated atmospheric CO2 concentration (760 micromol x mol(-1)) was studied, based on the measurements of photosynthetic gas exchange parameters and light intensity-photosynthetic rate response curves at jointing stage. Under the long-term elevated atmospheric CO2 concentration, applying sufficient N could increase the wheat leaf photosynthetic rate (Pn), transpiration rate (Tr), and instantaneous water use efficiency (WUEi). Comparing with those under ambient atmospheric CO2 concentration, the Po and WUEi under the elevated atmospheric CO2 concentration increased, while the stomatal conductance (Gs) and intercellular CO2 concentration (Ci) decreased. With the increase of light flux intensity, the Pn and WUEi under the elevated atmospheric CO2 concentration were higher those under ambient atmospheric CO2 concentration, Gs was in adverse, while Ci and Tr had less change. At high fertilization rate of N, the Gs was linearly positively correlated with Pn, Tr, and WUEi, and the Gs and Ci had no correlation with each other under the elevated atmospheric CO2 concentration but negatively correlated under ambient atmospheric CO2 concentration. At low fertilization rate of N, the Gs had no correlations with Pn and WUEi but linearly positively correlated with Ci and Tr. It was suggested that under the elevated atmospheric CO2 concentration, the wheat leaf Pn at low N fertilization rate was limited by non-stomatal factor.

  19. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  20. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  1. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  2. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  3. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L. exposed to different ratios of red light to blue light

    Directory of Open Access Journals (Sweden)

    Jun eWang

    2016-03-01

    Full Text Available Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L. were exposed to 200 μmol•m-2•s-1 irradiance for a 16 h•d-1 photoperiod under the following six treatments: monochromatic red light (R, monochromatic blue light (B and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax and photosynthetic rate (Pn increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6% and 11.8% reduction in comparison with those under R/B=1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. Shoot dry weight increased with increasing R/B ratio with the greatest value under R/B=12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B=12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation.

  4. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    Science.gov (United States)

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  5. Spatial heterogeneity in stomatal features during leaf elongation: an analysis using Rosa hybrida

    NARCIS (Netherlands)

    Fanourakis, D.; Heuvelink, E.; Carvalho, S.M.P.

    2015-01-01

    Within-leaf heterogeneity in stomatal traits poses a key uncertainty in determining a representative value for the whole leaf. Accounting for this heterogeneity, we studied stomatal initiation on expanding leaves and estimated stomatal conductance (gs) of mature leaves. The entire lamina was

  6. Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics

    Science.gov (United States)

    Foliar stomatal movements are critical for regulating plant water status and gas exchange. Elevated carbon dioxide (CO2) concentrations are known to induce stomatal closure. However, current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report the metabolomic respo...

  7. Final report, Feedback limitations of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D.

    1999-07-22

    Final report of research on carbon metabolism of photosynthesis. The feedback from carbon metabolism to primary photosynthetic processes is summarized, and a comprehensive list of published scientific papers is provided.

  8. The carbon (formerly dark) reactions of photosynthesis.

    Science.gov (United States)

    Buchanan, Bob B

    2016-05-01

    In this brief account, I describe the background for dividing photosynthesis into "light" and "dark" reactions and show how this concept changed to "light" and "carbon" reactions as science in the field advanced.

  9. Artificial Photosynthesis with Semiconductor-Liquid Junctions

    National Research Council Canada - National Science Library

    Guijarro, Néstor; Formal, Florian Le; Sivula, Kevin

    2015-01-01

    .... solar fuel engineering. In this review we give an overview of the field of artificial photosynthesis using a semiconductor-electrolyte interface employed in a photoelectrochemical device or as a heterogeneous photocatalyst...

  10. Using photosynthesis to detect plant stress

    Science.gov (United States)

    1994-01-01

    Two Stennis Space Center scientists use a photosynthesis measuring system on a pine tree at the Harrison County Experimental Forest about 15 miles north of Gulfport, Miss. The scientists have discovered a new method of detecting plant stress.

  11. A quantum protective mechanism in photosynthesis

    NARCIS (Netherlands)

    Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R.

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product

  12. Photorespiration and the potential to improve photosynthesis.

    Science.gov (United States)

    Hagemann, Martin; Bauwe, Hermann

    2016-12-01

    The photorespiratory pathway, in short photorespiration, is an essential metabolite repair pathway that allows the photosynthetic CO2 fixation of plants to occur in the presence of oxygen. It is necessary because oxygen is a competing substrate of the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase, forming 2-phosphoglycolate that negatively interferes with photosynthesis. Photorespiration very efficiently recycles 2-phosphoglycolate into 3-phosphoglycerate, which re-enters the Calvin-Benson cycle to drive sustainable photosynthesis. Photorespiration however requires extra energy and re-oxidises one quarter of the 2-phosphoglycolate carbon to CO2, lowering potential maximum rates of photosynthesis in most plants including food and energy crops. This review discusses natural and artificial strategies to reduce the undesired impact of air oxygen on photosynthesis and in turn plant growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Steady‐state models of photosynthesis

    National Research Council Canada - National Science Library

    CAEMMERER, SUSANNE

    2013-01-01

    .... Despite these shortcomings steady‐state models of photosynthesis provide simple easy to use tools for thought experiments to explore photosynthetic pathway changes such as redirecting photorespiratory CO 2 , inserting bicarbonate...

  14. Photobioreactors to Accelerate Our Understanding of Photosynthesis

    Science.gov (United States)

    2012-05-12

    genes required for photosynthesis in green algae: 1) Characterized the growth rates of wild-type under different light intensities , 2) Demonstrated...green algae: 1) Characterized the growth rates of a Chlamydomonas wild-type strain as a function of different light intensities . 2) Tested our...our ability to measure growth rates in a pool of 2,000 mutnats, 3) Ran a proof-of-concept screen of 20,000 mutants. Photobioreactors, photosynthesis

  15. Foliar phloem infrastructure in support of photosynthesis

    OpenAIRE

    William Walter Adams; Christopher M Cohu; Onno eMuller; Barbara eDemmig-Adams

    2013-01-01

    Acclimatory adjustments of foliar minor loading veins in response to growth at different temperatures and light intensities are evaluated. These adjustments are related to their role in providing infrastructure for the export of photosynthetic products as a prerequisite for full acclimation of photosynthesis to the respective environmental conditions. Among winter-active apoplastic loaders, higher photosynthesis rates were associated with greater numbers of sieve elements per minor vein as we...

  16. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  17. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  18. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  19. Flag leaf photosynthesis and stomatal function of grain sorghum as influenced by changing photosynthetic photon flux densities

    Science.gov (United States)

    Data on physiological parameters of A, gs, Em, Ci, and IWUE in grain sorghum (Sorghum bicolor L. Moench) is limited. Flag leaves from three plants of two hybrids, grown using added N fertilizer rates of 0.0, 112, and 224 kg ha-1 near Elizabeth, MS were field sampled for these parameters at growth s...

  20. Mammalian target of rapamycin inhibitor-associated stomatitis

    NARCIS (Netherlands)

    Boers-Doets, Christine B.; Raber-Durlacher, Judith E.; Treister, Nathaniel S.; Epstein, Joel B.; Arends, Anniek B. P.; Wiersma, Diede R.; Lalla, Rajesh V.; Logan, Richard M.; van Erp, Nielka P.; Gelderblom, Hans

    2013-01-01

    With the recent introduction of inhibitors of mammalian target of rapamycin (mTOR) in oncology, distinct cutaneous and oral adverse events have been identified. In fact, stomatitis and rash are documented as the most frequent and potentially dose-limiting side effects. Clinically, mTOR

  1. Detection of salivary interleukin-2 in recurrent aphthous stomatitis.

    Science.gov (United States)

    Kalpana, R; Thubashini, M; Sundharam, B Sivapatha

    2014-01-01

    The present study was undertaken to estimate and compare salivary interleukin-2 (IL-2) levels in patients with recurrent aphthous stomatitis, among healthy controls and their variation with age and sex. Saliva was collected from 60 patients within the age range of 16-60 years which included 30 patients (17 Females and 13 Males) with recurrent aphthous stomatitis and healthy control group consisted of 30 participants (18 Females and 12 Males). IL-2 estimation was done in both the groups using enzyme linked immunosorbent assay (ELISA). Statistical analysis of the data was done using Independent 't' test. The results showed increased salivary IL-2 levels in patients with recurrent aphthous stomatitis compared to the healthy controls. The IL-2 levels were also increased in patients with the age group of 16-30 years compared to other age groups. Similar increase of IL-2 was also seen in female patients. Age related and sex related alterations of IL-2 in recurrent aphthous stomatitis patients were observed.

  2. mechanisms of drought resistance in grain ii:.stomatal regulation ...

    African Journals Online (AJOL)

    Preferred Customer

    whereby photosythesis was reduced by 75% in common bean but only by 20% in chickpea. Significant ... induced stomatal closure, thereby a decrease in the ... 7 or 15 days at soil water content of 40% (-0.15 MPa. SWP). ... chamber were kept constant with a light intensity ... determination of highway distances on maps. At.

  3. Influence of climate variables on Cyperus papyrus stomatal ...

    African Journals Online (AJOL)

    Cyperus papyrus forms highly productive wetlands in tropical Africa, but the environmental control of transpirational water loss in wetlands is poorly understood. The influence of climate variables on papyrus stomatal conductance in dry and wet seasons of the year was investigated in a wetland in Kampala, Uganda, ...

  4. Effects of Moisture and Mycorrhiza on Stomatal Conductance and ...

    African Journals Online (AJOL)

    acer

    Both the ecto and endo mycorrhizae significantly (P<0.05)affected the Stomatal Conductance and Xylem Pressure Potential of the plant even under stressed conditions. The use of mycorrhiza is thus recommended as a strategy for efficient water utilization and water conservation. KEYWORDS: Faidherbia albida, mycorrhiza, ...

  5. Linking stomatal sensitivity and whole-tree hydraulic architecture

    Science.gov (United States)

    Katherine A. McCulloh; David R. Woodruff

    2012-01-01

    Despite the complexity of the relationship between stomatal sensitivity, water loss and vulnerability to embolism, the goal of teasing apart the subtleties is a necessary one. As Litvak et al. (2012) mention, determining transpiration patterns based on vulnerability to embolism would be much easier than the lengthy and potentially expensive processes involved in sap...

  6. Improvement of herpetic stomatitis therapy in patients with chronic tonsillitis

    Directory of Open Access Journals (Sweden)

    Lepilin А.V.

    2011-12-01

    Full Text Available The research goal is to determine the clinical and pathogenetic efficacy of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis. Materials and methods: Medical examination and treatment of 60 patients have been carried out. The marker of endogenous intoxication, infectious severity and immunity has been investigated. Results. It has been established that use of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis has allowed to decrease infectious severity in par-odontal recess and evidence of local inflammation, to normalize immunity indices and reduce the level of endogenous intoxication that has been liable for acceleration of recuperation processes and lowering of frequency of stomatitis recurrences. Conclusion. The clinical efficacy of Cycloferon liniment in the therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis conditioned by the decreasing of activity of local inflammatory process according to the reducing of level pro-inflammatory cytokines, infectious burden of the mouth cavity, endogenous intoxication

  7. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  8. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  9. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.

    Science.gov (United States)

    Yang, Yanjuan; Yu, Li; Wang, Liping; Guo, Shirong

    2015-08-15

    Previously, we found that the amelioration of photosynthetic capacity by bottle gourd (Lagenaria siceraria Standl.) rootstock in watermelon seedlings (Citrullus lanatus [Thunb.] Mansf.) with salt treatment might be closely related to the enzymes in Calvin cycle such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Yang et al., 2012). We confirmed this and showed more details in this study that improved photosynthesis of watermelon plants by bottle gourd rootstock was associated with the decreased stomata resistance and the increased photochemical activity and photosynthetic metabolism with or without 100mM NaCl stress for 3 days. The analysis of gas exchange parameters showed that self-grafted plants suffered serious non-stomatal limitation to photosynthesis under salt stress while rootstock-grafted plants were mainly affected by stomata limitation in stress conditions. Further, results showed that NaCl stress markedly reduced the chlorophyll content, damaged the structure of photosynthetic apparatus, and inhibited photochemical activity and CO2 assimilation in self-grafted plants. In contrast, rootstock-grafting increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosystem II (PSII) reaction center and the thylakoids structure induced by NaCl stress. Furthermore, rootstock-grafting enhanced the content and activity of Rubisco and thus elevated carbon fixation in the leaves of watermelon scions under salt stress. The gene expressions of enzymes related to ribulose-1,5-bisphosphate (RuBP) regeneration were also up-regulated by rootstock and this probably guaranteed the sufficient supply of RuBP for the operation of Calvin cycle in watermelon scions under salt stress. Thus, bottle gourd rootstock promoted photosynthesis by the activation of stomatal and non-stomatal abilities, especially the regulation of a variety of photosynthetic enzymes, including Rubisco in grafted watermelon plants under NaCl stress

  10. Evolutionary Conservation of ABA Signaling for Stomatal Closure.

    Science.gov (United States)

    Cai, Shengguan; Chen, Guang; Wang, Yuanyuan; Huang, Yuqing; Marchant, D Blaine; Wang, Yizhou; Yang, Qian; Dai, Fei; Hills, Adrian; Franks, Peter J; Nevo, Eviatar; Soltis, Douglas E; Soltis, Pamela S; Sessa, Emily; Wolf, Paul G; Xue, Dawei; Zhang, Guoping; Pogson, Barry J; Blatt, Michael R; Chen, Zhong-Hua

    2017-06-01

    Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species Pproliferum and Nephrolepis exaltata In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2.

    Science.gov (United States)

    He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M

    2018-04-01

    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    NARCIS (Netherlands)

    Ali Niaei Fard, S.; Malcolm Matamoros, P.; Meeteren, van U.

    2014-01-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed

  13. A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation.

    Science.gov (United States)

    Xie, Xiu-Lan; Xia, Xiao-Jian; Kuang, Sheng; Zhang, Xi-Li; Yin, Xue-Ren; Yu, Jing-Quan; Chen, Kun-Song

    2017-03-01

    Ethylene responsive factors (ERFs) act as critical downstream components of the ethylene signalling pathway in regulating plant development and stress responses. However little is known about its role in regulation of photosynthesis. Here, we identified an ethylene-inducible ERF gene in citrus, CitERF13. Transient over-expression of CitERF13 in N. tabacum leaves, resulted in a significant decrease in net photosynthetic rate. Closer examination of photosynthetic activity of PSII and PSI indicated that CitERF13 overexpression led to declines of Fv/Fm, Y(II) and Y(I). However, change in NPQ was less pronounced. CitERF13 overexpression also significantly reduced Vc,max, Jmax and AQY, indicating inhibition of the Calvin cycle. The expression of photosynthesis-related genes was suppressed to a variable extent in leaf blades transiently over-expressing CitERF13. CitERF13 transient overexpression in tobacco or citrus both resulted in a decline of Chlorophyll content and CitERF13 overexpressing tobacco leaf disc was more susceptible to chlorosis in response to MV-mediated oxidative stress. The results suggest that CitERF13 is potentially involved in suppressing photosynthesis through multiple pathways, for instance, inhibiting photochemical activity of photosynthesis, CO2 carboxylation capacity and chlorophyll metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Symbiodinium photosynthesis in Caribbean octocorals.

    Directory of Open Access Journals (Sweden)

    Blake D Ramsby

    Full Text Available Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals. Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9 and P. wagenaari (n = 6 colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and

  15. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  16. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  17. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  18. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Science.gov (United States)

    Comeau, Steeve; Edmunds, Peter J.; Lantz, Coulson A.; Carpenter, Robert C.

    2017-07-01

    The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet-PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet-PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  19. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  20. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.

    Science.gov (United States)

    Pinto, Harshini; Sharwood, Robert E; Tissue, David T; Ghannoum, Oula

    2014-07-01

    Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C4 grasses with NAD-ME, PCK, and NADP-ME subtypes, one C3 grass, and one C3-C4 grass grown under ambient (400 μl l(-1)) and glacial (180 μl l(-1)) CO2. Glacial CO2 caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C4 relative to C3 and C3-C4 species. Panicum bisulcatum (C3) acclimated to glacial [CO2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C3-C4), possibly due to its high leaf N and Rubisco contents. Glacial CO2 up-regulated Rubisco and PEPC activities in concert for several C4 grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C4 metabolism. Despite having larger stomatal conductance at glacial CO2, C4 species maintained greater PWUE and PNUE relative to C3-C4 and C3 species due to higher photosynthetic rates. Relative to other C4 subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C3, the C3-C4 grass had higher PWUE and similar PNUE at glacial CO2. Biomass accumulation was reduced by glacial CO2 in the C3 grass relative to the C3-C4 grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO2, high resource use efficiency offers a key evolutionary advantage for the transition from C3 to C4 photosynthesis in water- and nutrient-limited environments. © The Author 2014

  1. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 μmol mol−1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  2. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 mol mol-1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  3. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars.

    Science.gov (United States)

    Liu, Houjun; Zhang, Chengxin; Wang, Junmei; Zhou, Chongjun; Feng, Huan; Mahajan, Manoj D; Han, Xiaori

    2017-03-01

    In this study, a soil pot experiment was conducted to investigate the changes in photosynthesis and antioxidative enzymes in two rice varieties (Shendao 6 and Shennong 265) supplied with iron (Fe), cadmium (Cd), and Fe and Cd together. The concentrations of Fe and Cd in the soil were 0, 1.0 g Fe·kg-1 and 0, 2.0 mg Cd·kg-1, respectively. Photosynthetic indices and antioxidative enzyme activities were recorded at different rice growth stages. At the early stage, Cd showed a transient stimulatory effect on the photosynthetic rate of Shennong 265. For Shendao 6, however, Cd showed a transient stimulatory effect on photosynthetic rate, intercellular CO2 concentration, stomatal conductance and transpiration efficiency. In addition, the results show that Cd can also enhance the superoxide dismutase (SOD) and peroxidase (POD) activities, but reduce the malondialdehyde (MDA) and soluble protein contents in the two rice cultivars. Subsequently, Cd starts to inhibit photosynthesis and SOD activity until the ripening stage, causing the lowest photosynthetic rate and SOD activity at this stage. In contrast, Fe alleviates the Cd-induced changes at earlier or later growth stage. Notably at the later growth stage, the results show that the interaction between Fe and Cd increases the SOD and catalase (CAT) activities, while decreasing the lipid peroxidation and promoting photosynthesis. As a result, it ultimately increases the biomass. The results from this study suggest that Fe (as Fe fertilizer) is a promising alternative for agricultural use to enhance the plant development and, simultaneously, to reduce Cd toxicity in extensively polluted soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis.

    Science.gov (United States)

    Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin

    2017-03-01

    To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (gs) and effective quantum efficiency of PSII (ΦPSII) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (Ex) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  6. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  7. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  8. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  9. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  10. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  11. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  12. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  13. Sixty years in algal physiology and photosynthesis.

    Science.gov (United States)

    Pirson, A

    1994-06-01

    This personal perspective records research experiences in chemistry and biology at four German universities, two before and two after World War II. The research themes came from cytophysiology of green unicellular algae, in particular their photosynthesis. The function of inorganic ions in photosynthesis and dark respiration was investigated at different degrees of specific mineral stress (deficiencies), and the kinetics of recovery followed after the addition of the missing element. Two types of recovery of photosynthesis were observed: indirect restitution via growth processes and immediate normalisation. From the latter case (K(+), phosphate, Mn(++)) the effect of manganese was emphasized as its role in photosynthetic O2 evolution became established during our research. Other themes of our group, with some bearing on photosynthesis were: synchronization of cell growth by light-dark change and effects of blue (vs. red) light on the composition of green cells. Some experiences in connection with algal mass cultures are included. Discussion of several editorial projects shows how photosynthesis, as an orginally separated field of plant biochemistry and biophysics, became included into general cell physiology and even ecophysiology of green plants. The paper contains an appreciation of the authors' main mentor Kurt Noack (1888-1963) and of Ernst Georg Pringsheim (1881-1970), founder of experimental phycology.

  14. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry......). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...

  15. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    Science.gov (United States)

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  16. [Treatment of chronic aphthous stomatitis combined with duodenal ulcer].

    Science.gov (United States)

    Dudchenko, M A; Skrypnikova, T P; Dudchenko, M A

    2014-01-01

    It is currently proved ulcerous stomatitis and duodenal ulcer to have common pathogenetic infectious link (the most studied agent being Helicobacter pylori) by concominant decrease of local and general immunity with hyperoxidation events. Eighty patients (44 female and 36 male aged 15-60) with chronic aphthous stomatitis (AS) combined with duodenal ulcer were included in the study and divided in two equal groups according to treatment received (control group of 40 patients was treated according to conventional scheme, while in 40 patients a new formulation Vipromak was added to treatment protocol). The symptoms of AS tend to resolve faster in vipromak group thus proving its efficiency in treatment of AS and duodenal ulcer.

  17. Remission of severe aphthous stomatitis of celiac disease with etanercept

    Science.gov (United States)

    2013-01-01

    Celiac disease is a common autoimmune disease triggered by gluten-containing foods (wheat, barley and rye) in genetically predisposed individuals. We present a patient with celiac disease complicated by severe aphthous stomatitis resulting in impairing swallowing, chewing and speaking. This led to weight loss, psychosocial problems as well as inability to perform her work. A variety of topical and systemic medications used resulted in either no improvement or only partial alleviation of the patient’s symptoms. After informed consent, etanercept was initiated and resulted in complete remission of aphthous stomatitis, decrease in arthralgia and fatigue and considerable improvement in her quality of life. The use of newer biological agents for selected and severe manifestations of celiac disease may lead to improved morbidity in these patients, but more studies are needed to determine long-term efficacy as well as safety of these drugs in the mucosal and/or systemic complications of this disease. PMID:24365222

  18. Artificial photosynthesis for solar water-splitting

    Science.gov (United States)

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.

    2012-08-01

    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  19. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  20. Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants.

    Science.gov (United States)

    Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław

    2016-07-01

    Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  1. Recurrent Aphthous Stomatitis: Diagnosis and Management in Primary Care

    Directory of Open Access Journals (Sweden)

    Jillian Hudson

    2014-11-01

    Full Text Available Recurrent aphthous stomatitis (canker sores is a very common oral condition that remains incompletely understood. Presentation has been well-classified into minor, major or herpetiform subcategories based on clinical features, but exact etiology is unknown. Because etiology is unclear, treatments are primarily empiric and aimed at symptom reduction rather than prevention or cure. However, there are several methods, both topical and systemic, that can be easily and affordably utilized in the primary care setting.

  2. Recurrent Aphthous Stomatitis: Diagnosis and Management in Primary Care

    OpenAIRE

    Jillian Hudson

    2014-01-01

    Recurrent aphthous stomatitis (canker sores) is a very common oral condition that remains incompletely understood. Presentation has been well-classified into minor, major or herpetiform subcategories based on clinical features, but exact etiology is unknown. Because etiology is unclear, treatments are primarily empiric and aimed at symptom reduction rather than prevention or cure. However, there are several methods, both topical and systemic, that can be easily and affordably utilized in the ...

  3. Understanding and altering cell tropism of vesicular stomatitis virus

    OpenAIRE

    Hastie, Eric; Cataldi, Marcela; Marriott, Ian; Valery Z Grdzelishvili

    2013-01-01

    Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV’s broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV’s neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a sa...

  4. Ozone treatment of recurrent aphthous stomatitis: a double blinded study

    OpenAIRE

    AL-Omiri, Mahmoud K.; Mohannad Alhijawi; AlZarea, Bader K.; Ra’ed S. Abul Hassan; Edward Lynch

    2016-01-01

    This study aimed to evaluate the use of ozone to treat recurrent aphthous stomatitis (RAS). Consecutive sixty-nine participants with RAS were recruited into this non-randomized double blind, controlled cohort observational study (test group). A control group of 69 RAS patients who matched test group with age and gender was recruited. RAS lesions in test group were exposed to ozone in air for 60?seconds while controls received only air. Ulcer size and pain were recorded for each participant at...

  5. Oral exfoliative cytology in female reverse smokers having stomatitis nicotina.

    Science.gov (United States)

    Reddy, C R; Sarma, P R; Kameswari, V R

    1975-01-01

    1. The Karyopyknotic index of the palatal and lingual mucosa is increased in female reverse smokers when compared to non-smoking females. 2. The Karyopyknotic index of the buccal mucosa did not show any change in female reverse smokers when compared to non-smoking females. 3. The Karyopyknotic index did not show any change with age in the non-smoking females. 4. Very few cases show epithelial atypia in palatal smears from female reverse smokers having stomatitis nicotina.

  6. Evaluation of Denture Stomatitis in Croatian Adult Population

    OpenAIRE

    Ćelić, R.; Knezović Zlatarić, D.; Baučić, I.

    2001-01-01

    Denture stomatitis (DS) is often found under the removable partial dentures (RPDs). There are many factors influencing it, such as patient’s age and gender, smoking habits, denture age, denture material, denture wearing habits, denture hygiene habits, oral hygiene instruction, denture cleanness and denture plaque accumulation. The aim of this study was to find out the influence these factors have on the prevalence of DS under RPDs and complete dentures (CDs). A total of 200 pat...

  7. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves

    Science.gov (United States)

    Magel, E.; Mayrhofer, S.; Müller, A.; Zimmer, I.; Hampp, R.; Schnitzler, J.-P.

    Gray poplar leaves emit high amounts of isoprene. In this context, we investigated the degree to which photosynthesis delivers necessary precursors for chloroplast isoprene biosynthesis, and whether this energy-consuming pathway could be involved in protecting the photosynthetic electron transport system. Such protection could result from consumption of a surplus in ATP and NADPH, generated under constricted net assimilation caused by high leaf temperatures and high light intensities. During the course of the day triose phosphate (TP) and dimethylallyl diphosphate (DMADP) concentrations showed pronounced diurnal variations closely related to net assimilation and isoprene emission rates, while other variables, e.g. energy (ATP/ADP) and redox (NADPH/NADP) ratio, as well as phosphoenolpyruvate (PEP) and pyruvate strongly scattered related to changing temperature and light intensities. Intra-day positive correlations were found mainly between leaf concentrations of TP and DMADP, and sucrose, ATP/ADP ratio and net assimilation rates. Under non-saturating light (200-400 μmol photons m -2 s -1), leaf DMADP pools were positively correlated mainly with PEP, starch, and fructose 2,6-bisphosphate (F26BP). Under saturating light, correlations improved and additionally involved sucrose, TP, and the ratio of NADPH/NADP. Study of temperature response curves showed that net assimilation and isoprene emission were negatively correlated to each other. This disconnection was mostly visible by the transient change of DMADP contents with maximum levels at 25 °C. At higher temperatures, declining pools of DMADP, TP and pyruvate indicated that DMADP consumption overcompensated DMADP production resulting in highest isoprene emission rates at declining pool sizes of precursors. In parallel to the reduction of net assimilation increases of NADPH/NADP and ATP/ADP ratios also portended that the MEP pathway dissipates a surplus of ATP and NADPH which cannot be used for carbon reduction under

  8. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  9. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  11. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  12. Modified water regimes affect photosynthesis, xylem water potential, cambial growth and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae)

    Science.gov (United States)

    James P. Dunn; Peter L. Jr. Lorio

    1993-01-01

    We modified soil water supply to two groups of juvenile loblolly pines, Pinus taeda L., by sheltering or irrigating root systems in early summer or in later summer and measured oleoresin flow (primary defense), net photosynthesis, xylem water potential, and cambial growth throughout the growing season. When consistent significant differences in...

  13. Effect of temperature and CO2-enrichment on photosynthesis and the levels of carbohydrates and isoprenoid pathway products in guayule, a latex producing shrub

    Science.gov (United States)

    The stems and roots of the desert shrub guayule, Parthenium argentatum, contain a significant amount of latex, a potential source of natural rubber. To determine the factors regulating carbon partitioning, net photosynthesis (Pn) and the levels of carbohydrates and isoprenoid compounds were measured...

  14. Contrasting water-use efficiency (WUE) responses of a potato mapping population and capability of modified ball-berry model to predict stomatal conductance and WUE measured at different environmental conditions

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Kørup, Kirsten; Kristensen, K.

    2015-01-01

    .001). The leaf chlorophyll content was lower in the high-WUE group indicating that the higher net photosynthesis rate was not due to higher leaf-N status. Less negative value of carbon isotope discrimination (δ13C) in the high-WUE group was only found in 2011. A modified Ball-Berry model was fitted to measured...

  15. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  16. Silver nitrate cauterization: a treatment option for aphthous stomatitis.

    Science.gov (United States)

    Soylu Özler, Gül

    2014-07-01

    In this study we compared silver nitrate cautery with placebo to assess the effect of silver nitrate cautery in aphthous stomatitis for pain relief and healing time. In this study, sixty-five patients with aphthous stomatitis were assessed. Silver nitrate sticks were used in group A (treatment group) and placebo sticks were used for group B (control group). Change in the severity of pain, change in the size of the ulcers, healing time, side effects of the procedure were assessed. Although the mean value of pain scores before the procedure was similar in both of the groups, there were statistically significant differences between two groups after the procedure on the first to the seventh day. On the seventh day after the procedure, the ulcers were completely reepithelialized in 21 patients (60%) in the treatment group and in 10 patients (32%) in the placebo group. The difference was statistically significant (p aphthous stomatitis. Also this treatment shortens the healing time of ulcers. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Oral mucosa and therapy of recurrent aphthous stomatitis.

    Science.gov (United States)

    Landová, Hana; Daněk, Zdeněk; Gajdziok, Jan; Vetchý, David; Stembírek, Jan

    2013-02-01

    Oral mucosa is one of the specific surfaces of the human body, which is permanently exposed to external factors related with food intake, breathing and speaking processes, which can lead to the onset of some problems. Disorders of the oral mucosa are a group of diseases, affecting, in the course of life, the majority of the population. Many of the oral mucosa ailments are manifested by lesions. Recurrent aphthous stomatitis (RAS) is the most common of these diseases. Despite much clinical and research attention, its causes remain poorly understood and treatment is only symptomatic. RAS is reported to affect up to 25% of the population worldwide. Topical or systemic therapy (corticosteroids, antiseptics, anti-inflamatory drugs, immunomodulating agents, etc.) can be used for treatment of RAS-associated symptoms. In general, topical therapy should be preferred due to the smaller drug load of the organism. In both cases, the active substance has to be in suitable dosage form. Recently, besides the conventional ways of application (rinses), the main disadvantage of which is the short time of resistance in the oral cavity, mucoadhesive dosage forms are used. The aim of this article is to give a theoretical overview of the oral mucosa topic and its most frequent disease - recurrent aphthous stomatitis in terms of various types of the disease classification, diagnosis and therapy, and in terms of the usage of various types of active substances and medical forms. oral mucosa recurrent aphthous stomatitis therapy mucoadhesive dosage forms.

  18. Ozone exposure and stomatal sluggishness in different plant physiognomic classes

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena, E-mail: e.paoletti@ipp.cnr.i [IPP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy); Grulke, Nancy E. [US Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2010-08-15

    Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O{sub 3} (ozone) exposure (70 ppb over 8 h per day in open-top chambers) were investigated. A delay in stomatal responses (i.e., 'sluggish' responses) to variable light was found to be both an effect of O{sub 3} exposure and a reason for increased O{sub 3} sensitivity in snap bean cultivars, as it implied higher O{sub 3} uptake during times of disequilibrium. Sluggishness increased the time to open (thus limiting CO{sub 2} uptake) and close stomata (thus increasing transpirational water loss) after abrupt changes in light level. Similar responses were shown by snap beans and oaks, suggesting that O{sub 3}-induced stomatal sluggishness is a common trait among different plant physiognomic classes. - Sluggish stomatal responses are suggested to be both an effect of O{sub 3} exposure and a reason of increased O{sub 3} sensitivity in plants.

  19. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  20. Development of a simplified plant stomatal resistance model and its validation for potentially transpiring and water-stressed water hyacinths

    Science.gov (United States)

    Idso, Sherwood B.

    A simple model of upper-canopy plant stomatal resistance ( ruC) was developed which requires but four input parameters: canopy aerodynamic resistance, upper-canopy foliage temperature, and air vapor pressure deficit and temperature. The model was tested against upper-canopy sunlit leaf stomatal resistance ( r l) measurements of both potentially and non-potentially transpiring water hyacinth plants over the upper-canopy-intercepted net radiation range of 300-450 W m -2 and over a 10-fold range of r l. In all instances, and indicative of the model's good performance, the ratio of r uC/r l consistently averaged about 1.25, due to partial self-shading of the upper-canopy foliage. The significance of this finding to air pollution studies arises from the facts that (1) contemporary knowledge of a plant canopy's leaf area index would allow the transformation of ruC to rC, the total canopy diffusive resistance, and (2) the proper accounting for different trace gas diffusivities would allow the transformation of rc for water vapor to the variety of rC values required to infer the gaseous deposition of important pollutant gas species at vegetated surfaces.