WorldWideScience

Sample records for net photosynthesis declined

  1. Can net photosynthesis and water relations provide a clue on the ...

    African Journals Online (AJOL)

    Net photosynthesis, sap flow density (SFD) and water use efficiency (WUE) were measured in a Quercus suber forest in north Tunisia in an attempt to explain the forest decline. In general, sap flow was positively related to light intensity and water loss, indicating that high light intensities can increase the SFD up to the ...

  2. Leaf area and net photosynthesis during development of Prunus serotina seedlings.

    Science.gov (United States)

    Horsley, S B; Gottschalk, K W

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prunus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >/= 75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage on leaf area and net photosynthesis were evaluated for leaves of differing age (horizontal series), leaves on plants of constant age (vertical series), and leaves of constant age (oblique series). Regression techniques were used to estimate leaf area from leaf blade dimensions. The best equations for predicting leaf area had R(2) values of 0.991-0.992 and used linear or logarithmic functions of both leaf length and width. Suitable, but less precise, equations with R(2) values of 0.946-0.962 were developed from either leaf length or leaf width. Leaf area development in black cherry seedlings was similar to that in other indeterminate species. Leaves of young plants reached full expansion at a lower leaf plastochron age than leaves of older plants. Maximum net photosynthesis per unit leaf area occurred 2-3 plastochrons before full leaf expansion. There was strong ontogenetic drift in net photosynthesis with leaf age; net photosynthesis decreased as plant age increased in leaves of the same plastochron age. Plots of the oblique series were particularly useful in providing information about interaction effects.

  3. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2002-01-01

    concentration. The experiment was conducted during 70 days during the autumn. Our system could not detect any ozone effects on dark respiration, but eventually effects on dark respiration could be masked in signal noise. An inhibition of daily net photosynthesis in ozone treated shoots was apparent......, and it is was found that a mean increase in ozone concentration of 10 nl l(-1) reduced net photosynthesis with 7.4 %. This effect should be related to a pre-exposure during the season of AOT40 12.5 mul l(-1) h....

  4. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  5. Net photosynthesis and respiration of sago pondweed (Potamogeton pectinatus) exposed to herbicides

    Science.gov (United States)

    Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Hughes, Jane S.; Biddinger, Gregory R.; Mones, Eugene

    1995-01-01

    We determined net photosynthesis and respiration rates for sago pondweed (potamogeton pectinatus) exposed to various concentrations of 11 herbicides widely used in Maryland during the past decade. Net photosynthesis and respiration were determined by measuring changes in the. oxygen content of solutions containing dilutions of technical grade herbicides. At 20-22? C and 58 umol/m2/sec of photosynthetically active radiation (PAR), oxygen production of undosed plants averaged 0.72-2.03 mg/g fresh wt/h. Respiration rates of undosed plants averaged 0.46-0.60 mg O2/g fresh wt/h. Nominal herbicide concentrations (ng/L) that reduced net photosynthesis by 5O percent (IC5O) were: metribuzin, 8; atrazine, 29; cyanazine, 32; linuron, 70; simazine, 164; and paraquat, 240. IC5O values for 2,4-D, acifluorfen, glyphosate and metolachlor exceeded the maximum test concentration of 10,000 ng/L. The IC5O value for alachlor was estimated to be between 1,000 and 10,000 ng/L. None of the herbicides tested had a significant effect on dark respiration.

  6. Research of the relationship between delayed fluorescence and net photosynthesis rate in spinach under NaCl stress

    Science.gov (United States)

    Zhang, Lingrui; Xing, Da

    2006-09-01

    Under NaCl stress conditions, the relationship between delayed fluorescence (DF) and net photosynthesis rate (Pn) in detached leaves of spinach (Spinacia oleracea L.) was surveyed. Results showed that the changes in DF intensity of the spinach leaves directly exposed to different NaCl concentrations demonstrated considerably high consistency with that in Pn. Incubation of the leaves in 200mmol/L NaCl induced a gradual increase and subsequent decline of the DF intensity and Pu, whereas incubation of the leaves in 300mmol/L NaCl induced a continuous decline of the DF intensity and Pn, suggesting that DF bad the same response to duration of treatment of different NaC1 concentrations with Pn. Both DF and Pn showed maximal Ca 2+ antagonism effects on stress of high concentration NaC1 when the concentration of CaC1 II reached l5mmolfL. All the results demonstrated that DF has an excellent correlation with Pn and can be used as a sensitive test for the state of photosynthetic apparatus under salt stress physiology.

  7. Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, James A.; Calvin, M.

    1955-02-01

    The overall process of photosynthesis involves a number of interconnected processes. These processes, which are cyclic with respect to both energy and material, are related at some points to well-known respiratory processes. The carbon-reduction cycle in photosynthesis is now known in detail. All enzymes involved in this cycle have been isolated and the sources of energy required for its operation have been identified in terms of reducing agents and 'high-energy' phosphate. These sources of energy a r e derived ultimately from absorbed light energy which brings about the photolysis of water. Possible mechanisms for this photolysis and for the transfer of energy from the photolysis products to the carbon-reduction cycle are discussed here. Experimental data, in the form of quantum efficiency measurements, are presented and partially confirm the theories proposed for the mechanisms of energy transfer. A diagram of the complete process of photosynthesis containing the several cycles and their relations is presented.

  8. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth.

    Science.gov (United States)

    Tang, Jianwu; Luyssaert, Sebastiaan; Richardson, Andrew D; Kutsch, Werner; Janssens, Ivan A

    2014-06-17

    The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.

  9. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  10. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination...... was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...

  11. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa; Efecto de la radiacion gamma sobre la fotosintesis neta y la respiracion de Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Fernandez, J.

    1983-07-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs.

  12. Internal and external control of net photosynthesis and stomatal conductance of mature eastern white pine (Pinus strobus)

    Science.gov (United States)

    Chris A. Maier; R.O. Teskey

    1992-01-01

    Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...

  13. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata.

    Science.gov (United States)

    Tetteh, Rashied; Yamaguchi, Masahiro; Wada, Yoshiharu; Funada, Ryo; Izuta, Takeshi

    2015-01-01

    To assess the effects of O(3)on growth, net photosynthesis and yield of two African varieties of cowpea(Vigna unguiculata L.), Blackeye and Asontem were exposed as potted plants to air that was either filtered to remove O(3) (FA), non-filtered air (NF), non-filtered with added O3 of approximately 50 nL L(-1) (ppb) from 11:00 to 16:00 (NF + O(3)) for 88 days in open-top chambers. The mean O(3) concentration (11:00-16:00) during the exposure period had a range from 16 ppb in the FA treatment to 118 ppb in the NF + O(3) treatment. Net photosynthetic rate and leaf area per plant were significantly reduced by exposure to O(3), reducing the growth of both varieties. Exposure to O(3) significantly reduced the 100-seed weight and number of seeds per pod. As a result, cowpea yield was significantly reduced by long-term exposure to O(3), with no difference in sensitivity between the varieties.

  14. Photosynthesis.

    Science.gov (United States)

    Johnson, Matthew P

    2016-10-31

    Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light reactions occur in the chloroplast thylakoid membrane and involve the splitting of water into oxygen, protons and electrons. The protons and electrons are then transferred through the thylakoid membrane to create the energy storage molecules adenosine triphosphate (ATP) and nicotinomide-adenine dinucleotide phosphate (NADPH). The ATP and NADPH are then utilized by the enzymes of the Calvin-Benson cycle (the dark reactions), which converts CO2 into carbohydrate in the chloroplast stroma. The basic principles of solar energy capture, energy, electron and proton transfer and the biochemical basis of carbon fixation are explained and their significance is discussed. © 2016 The Author(s).

  15. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    Science.gov (United States)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and

  16. Net photosynthesis, dark respiration, specific leaf weight, and growth of young apple trees as influenced by light regime

    Energy Technology Data Exchange (ETDEWEB)

    Barden, J.A.

    1974-11-01

    Eight different light treatments did not affect shoot length, leaf number, or total leaf area of young Red Yorking apple (Malus pumila Mill.) trees grown in a greenhouse. Dry weights of leaves and stems were suppressed by 80% shade. Net photosynthesis Pn, dark respiration (Rd), and specific leaf weight (SLW) were higher in sun than in shade leaves and adaptations in all 3 parameters occurred as a result of changing light conditions, even after leaf expansion had ceased. 5 figures, 1 table.

  17. Effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and Tl

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.W.; Bazzaz, F.A.; Rolfe, G.L.

    1975-08-01

    Corn and sunflower plants were grown in hydroponic culture and treated with various levels of Pb, Cd, Ni, and Tl salts. Net photosynthesis, transpiration and toxic metal ion concentration of leaf material and total plant biomass was measured. Tl was found to be the most toxic to new photosynthesis and growth of both species followed in order by Cd, Ni, and Pb. (auth)

  18. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuan, E-mail: xuan66chen@yahoo.co.j [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Aoki, Masatoshi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan); Takami, Akinori [National Institute for Environmental Studies, Onogawa 16-2, Tsukuba-shi, Ibaraki 305-8506 (Japan); Chai Fahe [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Hatakeyama, Shiro [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan)

    2010-05-15

    To investigate the effects of ambient-level gas-phase peroxides concurrent with O{sub 3} on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O{sub 3}, 100 ppb O{sub 3}, and 2-3 ppb peroxides + 50 ppb O{sub 3} in outdoor chambers. Compared with exposure to 100 ppb O{sub 3}, exposure to 2-3 ppb peroxides + 50 ppb O{sub 3} induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O{sub 3} exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O{sub 3} can cause more severe damage to plants than 100 ppb O{sub 3}, and that not only O{sub 3}, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas. - Ambient-level gas-phase peroxides coexisted with 50 ppb O{sub 3} may contribute to the herbaceous plants damage and forest decline observed in Japan.

  19. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  20. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves.

    Science.gov (United States)

    Harley, P.; Guenther, A.; Zimmerman, P.

    1996-01-01

    In June 1993, net photosynthetic rates, stomatal conductance and isoprene emission rates of sweetgum leaves (Liquidambar styraciflua L.) were measured at the top of the forest canopy (sun leaves) and within the canopy at a height of 8-10 m above ground level (shade leaves). Large differences in net photosynthetic rates and stomatal conductance were found between sun and shade leaves. Mean rates of isoprene emission, expressed on a leaf area basis, were significantly lower in shade leaves than in sun leaves (4.1 versus 17.1 nmol m(-2) s(-1)); however, because specific leaf area of sun leaves was lower than that of shade leaves (0.0121 versus 0.0334 m(2) g(-1)), the difference between sun and shade leaves was less, though still significant, when isoprene emissions were expressed on a dry mass basis (45.5 versus 29.0 micro g C g(-1) h(-1)). Saturation of both net photosynthesis and isoprene emission occurred at lower PPFDs in shade leaves than in sun leaves. The effect of leaf temperature on isoprene emissions also differed between sun and shade leaves. Sun leaves lost a significantly greater percentage of fixed carbon as isoprene than shade leaves. The leaf-level physiological measurements were used to derive parameters for a canopy-level isoprene flux model. The importance of incorporating differences between sun- and shade-leaf properties into existing models is discussed.

  1. Apple tree growth, net photosynthesis, dark respiration, and specific leaf weight as affected by continuous and intermittent shade

    Energy Technology Data Exchange (ETDEWEB)

    Barden, J.A.

    1977-07-01

    The effects of 80% shade from saran cloth and slats were very similar on young Delicious apple (Malus domestica Borkh.) trees. Shoot-length increase was suppressed about 10% by shade but leaf area was unaffected. Dry weight increase for shaded trees was about 50% of that for trees in full sun. Sun leaves required about 43.1 klx for light saturation and shade leaves needed only about 19.4 klx. Net photosynthesis (Pn) of shade leaves was about 70% of that of sun leaves at light saturation. Dark respiration (Rd) rates were also higher in sun- than shade-leaves. Specific leaf weight (SLW) of leaves near full expansion at the start of the experiment increased 15% under shade whereas sun-leaf SLW increased 40% during the experiment. For leaves unfolding under the differential light treatments, SLW of shade leaves averaged only 55% of sun leaves. 4 figures, 3 tables.

  2. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes

    NARCIS (Netherlands)

    Luyssaert, S.; Janssens, I.A.; Sulkava, M.; Papale, D.; Dolman, A.J.; Reichstein, M.; Hollmén, J.; Martin, J.G.; Suni, T.; Vesala, T.; Loustau, D.; Law, B.E.; Moors, E.J.

    2007-01-01

    The growth rate of atmospheric CO2 exhibits large temporal variation that is largely determined by year-to-year fluctuations in land¿atmosphere CO2 fluxes. This land¿atmosphere CO2-flux is driven by large-scale biomass burning and variation in net ecosystem exchange (NEE). Between- and within years,

  3. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  4. Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration.

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D; Borum, Jens; Zavala-Perez, Andrea; Kendrick, Gary A

    2016-06-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes. Temperature effects on net photosynthesis (PN ) and dark respiration (RD ) of leaves were evaluated. Daytime low tide was characterized by high pO2 (54 kPa), pH (8.8) and temperature (38°C) in shallow pools. As PN was maximum at 33°C (9.1 and 7.2 μmol O2  m(-2) s(-1) in T. hemprichii and E. acoroides, respectively), the high temperatures and reduced CO2 would have diminished PN , whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2  m(-2)  s(-1) , respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2 relieved the anoxia. Shoots exposed to 40°C for 4 h showed recovery of PN and RD , whereas 45°C resulted in leaf damage. These seagrasses are 'living near the edge', tolerant of current diel O2 and temperature extremes, but if temperatures rise both species may be threatened in this habitat. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. N sources affect growth, nutrient content, and net photosynthesis in maté (Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Sérgio Gaiad

    2006-09-01

    Full Text Available The influence of different N sources on the growth of maté (Ilex paragurariensis St.Hil. seedlings grown in greenhouse was studied. All seedlings received a base fertilization of 10 mg N.kg-1 soil as NH4NO3, 60 mg P2O5.and 40 mg K2O.kg-1 soil as KH2PO4 15 days before treatments application. Treatments were as follow: Control, with no extra N added; Urea = 100 mg N.kg-1 soil as Urea; NO3- = 100 mg N.kg-1 soil as Ca(NO32; and NH4+ = 100 mg N.kg-1 soil as (NH42SO4. It was concluded that: 1 increasing N content in leaves alone was not able to promote gain in biomass production of maté seedlings; 2 seedlings receiving N-NH4 showed a higher accumulation of P and Mg on shoot biomass; and 3 an increase in leaf area, leaf number and net photosynthesis observed at the N-NH4 treatment was coincident with an increasing absorption of P and Mg.A influência de diferentes fontes de N sobre o crescimento de mudas de erva-mate (Ilex paraguariensis St.Hil. foi estudada, em casa de vegetação. Todas as mudas receberam uma fertilização base de 10 mg N.kg-1 de solo na forma de NH4NO3, 60 mg P2O5.kg-1 e 40 mg K2O.kg-1 de solo na forma de KH2PO4 quinze dias antes da aplicação dos tratamentos. Os tratamentos foram os seguintes: Controle, sem adição extra de N; Uréia = 100 mg N.kg-1 de solo como Uréia; NO3- = 100 mg N.kg-1 de solo como Ca(NO32; e NH4+ = 100 mg N.kg-1 de solo como (NH42SO4. Concluiu-se que: 1 o aumento do conteúdo de N nas folhas, por si, não é capaz de promover ganhos na produção de biomassa em mudas de erva-mate; 2 mudas que receberam N-NH4 apresentaram maior acumulo de P e Mg na biomassa aérea; e 3 o aumento na absorção de P e Mg coincidiu com um aumento na área foliar, no número de folhas e na fotossíntese liquida na fonte N-NH4.

  6. Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts

    KAUST Repository

    Radecker, Nils

    2017-08-15

    The endosymbiosis between cnidarians and dinoflagellates of the genus Symbiodinium is key to the high productivity of tropical coral reefs. In this endosymbiosis, Symbiodinium translocate most of their photosynthates to their animal host in exchange for inorganic nutrients. Among these, carbon dioxide (CO ) derived fromhost respiration helps to meet the carbon requirements to sustain photosynthesis of the dinoflagellates. Nonetheless, recent studies suggest that productivity in symbiotic cnidarians such as corals is CO -limited. Here we show that glucose enrichment stimulates respiration and gross photosynthesis rates by 80 and 140%, respectively, in the symbiotic upside-down jellyfish Cassiopeia sp. from the Central Red Sea. Our findings show that glucose was rapidly consumed and respired within the Cassiopeia sp. holobiont. The resulting increase of CO availability in hospite in turn likely stimulated photosynthesis in Symbiodinium. Hence, the increase of photosynthesis under these conditions suggests that CO limitation of Symbiodinium is a common feature of stable cnidarian holobionts and that the stimulation of holobiont metabolism may attenuate this CO limitation.

  7. Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts

    Directory of Open Access Journals (Sweden)

    Nils Rädecker

    2017-08-01

    Full Text Available The endosymbiosis between cnidarians and dinoflagellates of the genus Symbiodinium is key to the high productivity of tropical coral reefs. In this endosymbiosis, Symbiodinium translocate most of their photosynthates to their animal host in exchange for inorganic nutrients. Among these, carbon dioxide (CO2 derived from host respiration helps to meet the carbon requirements to sustain photosynthesis of the dinoflagellates. Nonetheless, recent studies suggest that productivity in symbiotic cnidarians such as corals is CO2-limited. Here we show that glucose enrichment stimulates respiration and gross photosynthesis rates by 80 and 140%, respectively, in the symbiotic upside-down jellyfish Cassiopeia sp. from the Central Red Sea. Our findings show that glucose was rapidly consumed and respired within the Cassiopeia sp. holobiont. The resulting increase of CO2 availability in hospite in turn likely stimulated photosynthesis in Symbiodinium. Hence, the increase of photosynthesis under these conditions suggests that CO2 limitation of Symbiodinium is a common feature of stable cnidarian holobionts and that the stimulation of holobiont metabolism may attenuate this CO2 limitation.

  8. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.

    Science.gov (United States)

    Herrick, Jeffrey D; Thomas, Richard B

    2003-02-01

    We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.

  9. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture.

    Science.gov (United States)

    Locke, Anna M; Ort, Donald R

    2014-12-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K(leaf)), a measure of the leaf's water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K(leaf) would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K(leaf) was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K(leaf) were further correlated with decreases in g(s), although the relationship was not as strong as that with A. Separate experiments investigating the response of K(leaf) to drought demonstrated no acclimation of K(leaf) to drought conditions to protect against cavitation or loss of g(s) during drought and confirmed the effect of leaf age in K(leaf) observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K(leaf)becoming limiting to transpiration water flux. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  11. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.

    Science.gov (United States)

    Boesgaard, Kristine S; Albert, Kristian R; Ro-Poulsen, Helge; Michelsen, Anders; Mikkelsen, Teis N; Schmidt, Niels M

    2012-08-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic. Copyright © Physiologia Plantarum 2011.

  12. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.

    Science.gov (United States)

    Urban, Josef; Ingwers, Miles W; McGuire, Mary Anne; Teskey, Robert O

    2017-03-01

    The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon; Modello matematico-statistico per l`analisi della produttivita` primaria dell`alga Ulva nella laguna di Venezia

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, G.; Rizzo, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente; Bella, A.; Picci, M. [Rome Univ. La Sapienza (Italy). Dip. di Statistica e Probabilita` Applicata; Giordano, P. [Rome Univ. La Sapienza (Italy). Dip. di Biologia Vegetale

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality.

  14. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  15. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  16. Radiação, fotossíntese, rendimento e qualidade de frutos em macieiras 'Royal Gala' cobertas com telas antigranizo Radiation, photosynthesis, yield, and fruit quality of 'Royal Gala' apples under hail protection nets

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2007-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a intensidade e a qualidade da radiação solar disponibilizada às plantas e os seus impactos sobre a fotossíntese, rendimento e qualidade dos frutos, em macieiras 'Royal Gala', cobertas ou não com telas antigranizo nas cores branca e preta. A tela preta provocou redução maior na densidade de fluxo de fótons fotossinteticamente ativos acima do dossel das plantas (24,8%, em comparação à tela branca (21,2%. O interior do dossel das plantas sob tela preta recebeu menores valores de radiação ultravioleta, azul, verde, vermelho e vermelho distante, bem como da relação vermelho:vermelho distante, em relação às plantas descobertas. Estas alterações na quantidade e qualidade da luz sob tela preta aumentaram o teor de clorofila total e a área específica nas folhas, e reduziram a taxa fotossintética potencial, o peso de frutos por cm² de seção transversal de tronco e a coloração vermelha dos frutos. As telas antigranizo branca e preta reduziram a incidência de queimadura de sol, porém não tiveram efeito sobre a severidade de "russeting" e sobre o número de sementes por fruto.The objective of this work was to assess the amount and quality of the light supplied to plants, and the resulting impacts on photosynthesis, yield, and fruit quality of 'Royal Gala' apple trees uncovered or covered with white and black hail protection nets. The black net caused a higher reduction (24.8% of photosynthetic photon flux density, accumulated over the plant canopy during the day, than the white net (21.2%. The canopy internal portion of plants covered by black net received lower levels of ultraviolet, blue, green, red, and far red radiation, and light with a lower red:far red ratio, in comparison to uncovered plants; these ligth changes increased chlorophyll content and specific area of the leaves, and reduced the potential photosynthesis, the weight of fruits per cm² of trunk cross section area, and the

  17. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting...... irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes...... in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn...

  18. The potential effects of concurrent increases in temperature, CO sub 2 and O sub 3 on net photosynthesis, as mediated by rubisCO

    Energy Technology Data Exchange (ETDEWEB)

    Long, S. (Brookhaven National Lab., Upton, NY (United States) Essex Univ., Colchester (United Kingdom). Dept. of Biology)

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO{sub 2} concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0{sub 2} on carbon gain, but also the basic interactions of temperature, C0{sub 2} and 0{sub 3}. Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO{sub 2} concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis.

  19. The potential effects of concurrent increases in temperature, CO{sub 2} and O{sub 3} on net photosynthesis, as mediated by rubisCO

    Energy Technology Data Exchange (ETDEWEB)

    Long, S. [Brookhaven National Lab., Upton, NY (United States)]|[Essex Univ., Colchester (United Kingdom). Dept. of Biology

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO{sub 2} concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0{sub 2} on carbon gain, but also the basic interactions of temperature, C0{sub 2} and 0{sub 3}. Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO{sub 2} concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis.

  20. Improving photosynthesis.

    Science.gov (United States)

    Evans, John R

    2013-08-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO₂, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO₂ around Rubisco or by modifying the kinetic properties of Rubisco. The C₄ photosynthetic pathway is a CO₂-concentrating mechanism that generally enables C₄ plants to achieve greater efficiency in their use of light, nitrogen, and water than C₃ plants. To capitalize on these advantages, attempts have been made to engineer the C₄ pathway into C₃ rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO₂ leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging.

  1. Improving Photosynthesis

    Science.gov (United States)

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  2. Reintroducing Photosynthesis

    Science.gov (United States)

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  3. Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration

    DEFF Research Database (Denmark)

    Pedersen, Ole; Colmer, Timothy D.; Borum, Jens

    2016-01-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes......), the high temperatures and reduced CO2 would have diminished PN, whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2 m-2 s-1, respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2...

  4. A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation.

    Science.gov (United States)

    Xie, Xiu-Lan; Xia, Xiao-Jian; Kuang, Sheng; Zhang, Xi-Li; Yin, Xue-Ren; Yu, Jing-Quan; Chen, Kun-Song

    2017-03-01

    Ethylene responsive factors (ERFs) act as critical downstream components of the ethylene signalling pathway in regulating plant development and stress responses. However little is known about its role in regulation of photosynthesis. Here, we identified an ethylene-inducible ERF gene in citrus, CitERF13. Transient over-expression of CitERF13 in N. tabacum leaves, resulted in a significant decrease in net photosynthetic rate. Closer examination of photosynthetic activity of PSII and PSI indicated that CitERF13 overexpression led to declines of Fv/Fm, Y(II) and Y(I). However, change in NPQ was less pronounced. CitERF13 overexpression also significantly reduced Vc,max, Jmax and AQY, indicating inhibition of the Calvin cycle. The expression of photosynthesis-related genes was suppressed to a variable extent in leaf blades transiently over-expressing CitERF13. CitERF13 transient overexpression in tobacco or citrus both resulted in a decline of Chlorophyll content and CitERF13 overexpressing tobacco leaf disc was more susceptible to chlorosis in response to MV-mediated oxidative stress. The results suggest that CitERF13 is potentially involved in suppressing photosynthesis through multiple pathways, for instance, inhibiting photochemical activity of photosynthesis, CO2 carboxylation capacity and chlorophyll metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Falling through the Safety Net: Latinos and the Declining Effectiveness of Anti-Poverty Programs in the 1980s. Public Policy Report 1.

    Science.gov (United States)

    Brischetto, Robert R.; Leonard, Paul A.

    This report provides data and discusses trends in the demography and economics of Latinos. It was compiled in response to a request from Latino leaders for information on the needs of their constituents. In general the trends show that Latinos are falling through the safety net that government agencies are supposed to provide. Changes in the…

  6. Climate changes and photosynthesis

    Directory of Open Access Journals (Sweden)

    G.Sh Tkemaladze

    2016-06-01

    Solar energy is environmentally friendly and its conversion to energy of chemical substances is carried out only by photosynthesis – effective mechanism characteristic of plants. However, microorganism photosynthesis occurs more frequently than higher plant photosynthesis. More than half of photosynthesis taking place on the earth surface occurs in single-celled organisms, especially algae, in particular, diatomic organisms.

  7. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress

    National Research Council Canada - National Science Library

    Itzhak Kurek; Thom Kai Chang; Sean M. Bertain; Alfredo Madrigal; Lu Liu; Michael W. Lassner; Genhai Zhu

    2007-01-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco...

  8. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  9. Socioeconomic Status and Net Fertility during the Fertility Decline: A Comparative Analysis of Canada, Iceland, Sweden, Norway and the United States

    Science.gov (United States)

    Dribe, Martin; Hacker, J. David; Scalone, Francesco

    2014-01-01

    Most previous work on the historical fertility transition has been macro-oriented, using aggregate data to examine economic correlates of demographic behaviour at regional or national levels, while much less has been done using micro data, and specifically looking at behavioural differentials among social groups. In this paper we study at the impact of socioeconomic status on net fertility during the fertility transition in five Northern American and European Countries (Canada, Iceland, Norway, Sweden and the USA). We use micro-level census data in 1900, containing information on number of children by age, occupation of the mother and father, place of residence and household context. The results show highly similar patterns across countries, with the elite and upper middle classes having considerably lower net fertility early in the transition. These patterns remain also after controlling for a range of individual and community-level fertility determinants and geographical unobserved heterogeneity. PMID:24684711

  10. Thinning effect on photosynthesis depends on needle ages in a Chinese fir (Cunninghamia lanceolata) plantation.

    Science.gov (United States)

    Li, Ren-Shan; Yang, Qing-Peng; Zhang, Wei-Dong; Zheng, Wen-Hui; Chi, Yong-Gang; Xu, Ming; Fang, Yun-Ting; Gessler, Arthur; Li, Mai-He; Wang, Si-Long

    2017-02-15

    Canopies in evergreen coniferous plantations often consist of various-aged needles. However, the effect of needle age on the photosynthetic responses to thinning remains ambiguous. Photosynthetic responses of different-aged needles to thinning were investigated in a Chinese fir (Cunninghamia lanceolata) plantation. A dual isotope approach [simultaneous measurements of stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes] was employed to distinguish between biochemical and stomatal limitations to photosynthesis. Our results showed that increases in net photosynthesis rates upon thinning only occurred in the current-year and one-year-old needles, and not in the two- to four-year-old needles. The increased δ(13)C and declined δ(18)O in current year needles of trees from thinned stands indicated that both the photosynthetic capacity and stomatal conductance resulted in increasing photosynthesis. In one-year-old needles of trees from thinned stands, an increased needle δ(13)C and a constant needle δ(18)O were observed, indicating the photosynthetic capacity rather than stomatal conductance contributed to the increasing photosynthesis. The higher water-soluble nitrogen content in current-year and one-year-old needles in thinned trees also supported that the photosynthetic capacity plays an important role in the enhancement of photosynthesis. In contrast, the δ(13)C, δ(18)O and water-soluble nitrogen in the two- to four-year-old needles were not significantly different between the control and thinned trees. Thus, the thinning effect on photosynthesis depends on needle age in a Chinese fir plantation. Our results highlight that the different responses of different-aged needles to thinning have to be taken into account for understanding and modelling ecosystem responses to management, especially under the expected environmental changes in future. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Discoveries in Photosynthesis

    Science.gov (United States)

    Govindjee; Beatty, J. T.; Gest, H.; Allen, J. F.

    "Life Is Bottled Sunshine" [Wynwood Reade, Martyrdom of Man, 1924]. This inspired phrase is a four-word summary of the significance of photosynthesis for life on earth. The study of photosynthesis has attracted the attention of a legion of biologists, biochemists, chemists and physicists for over 200 years. Discoveries in Photosynthesis presents a sweeping overview of the history of photosynthesis investigations, and detailed accounts of research progress in all aspects of the most complex bioenergetic process in living organisms.

  12. Photosynthesis. Agricultural Lesson Plans.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on photosynthesis. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about photosynthesis. The following topics are among those discussed: the photosynthesis process and its importance, the organisms that…

  13. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  14. EFFECT OF AIR TEMPERATURE ON LEAF PHOTOSYNTHESIS IN ELDER

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2012-12-01

    Full Text Available Temperature with solar radiation intensity is the main external factor affecting photosynthesis process. Measurements were collected in the 2011 growing season. Photosynthesis and respiration measurements were made at Sambucus nigra leaves with a CO2 analyzer. The aim was to develop a model of photosynthesis in relation to temperature (which is in close relationship with air humidity. Photosynthesis of Sambucus nigra leaves is sensitive to temperature with an optimum around 25-28oC and rates declining by 18% with air temperature around 33-35oC.

  15. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut ( Castanea dentata) seedlings

    National Research Council Canada - National Science Library

    Wang, G. Geoff; Bauerle, William L; Mudder, Bryan T

    2006-01-01

    ...) to examine how light intensity affects photosynthesis, growth, and biomass allocation. Net photosynthetic rate increased linearly with increasing irradiance while instantaneous water use efficiency peaked at 32...

  16. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... maximum net photosynthesis (Pmax), light component point (LCP) and apparent quantum efficiency. (AQE) of the top fourth leaf of ... apparent quantum efficiency; Pn, net photosynthetic rate;LCP,light component ...... Science of rice production in Jiangsu Nanjing: Jiangsu Science and Technology Publisher ...

  17. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, R.E.

    2001-12-15

    Photosynthesis is a biological process that is as complex as it is fundamental. It is a field that spans time scales from the cosmic to the femtosecond, and bridges disciplines from biochemistry to geology. In the last ten years major advances in the field and improved research techniques have further deepened the understanding of the process of photosynthesis. Molecular Mechanisms of Photosynthesis stands as an ideal introduction to this subject. The author, a leading authority in photosynthesis research, offers a modern approach to photosynthesis in this accessible and well-illustrated text. The book provides a concise overview of the basic principles of energy storage and the history of the field, then progresses into more advanced topics such as electron transfer pathways, kinetics, genetic manipulations, and evolution. Throughout, the author includes an interdisciplinary emphasis that makes this book appealing across fields. authorship: leading authority in photosynthesis and the President of the International Society of Photosynthesis Research. First authoritative text to enter the market in 10 years. Stresses an interdisciplinary approach, which appeals to all science students. Emphasizes the recent advances in molecular structures and mechanisms. Only text to contain comprehensive coverage of both bacterial and plant photosynthesis. Includes the latest insights and research on structural information, improved spectroscopic techniques as well as advances in biochemical and genetic methods. Presents the most extensive treatment of the Origin and evolution of photosynthesis. Comprehensive appendix, which includes a detailed introduction to the physical basis of photosynthesis, including thermodynamics, kinetics and spectroscopy. (author)

  18. Leaf anatomy and photosynthesis

    NARCIS (Netherlands)

    Berghuijs, H.N.C.

    2016-01-01

    Keywords: CO2 diffusion, C3 photosynthesis, mesophyll conductance, mesophyll resistance, re-assimilation, photorespiration, respiration, tomato Herman Nicolaas Cornelis Berghuijs (2016). Leaf anatomy and photosynthesis; unravelling the CO2 diffusion pathway in C3 leaves. PhD thesis. Wageningen

  19. Sink regulation of photosynthesis

    National Research Council Canada - National Science Library

    Matthew J. Paul; Christine H. Foyer

    2001-01-01

    ... in the effects of elevated CO2 on photosynthesis. Photosynthesis is one of the most highly integrated and regulated metabolic processes to maximize the use of available light, to minimize the damaging effects of excess light and to optimize the use...

  20. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D.C.; Marrs, B.L.

    1987-06-01

    Knowledge of the molecular interactions, structure and genetic basis of the photosynthetic reaction center makes it possible to ask more detailed questions about its function. Spectroscopy, X-ray crystallography and molecular genetics combine to give a detailed picture of events in photosynthesis and shown how particular molecules contribute to the process. The molecular biology of the photosynthesis center of Rhodopseudomonas is investigated.

  1. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves

    Science.gov (United States)

    Magel, E.; Mayrhofer, S.; Müller, A.; Zimmer, I.; Hampp, R.; Schnitzler, J.-P.

    Gray poplar leaves emit high amounts of isoprene. In this context, we investigated the degree to which photosynthesis delivers necessary precursors for chloroplast isoprene biosynthesis, and whether this energy-consuming pathway could be involved in protecting the photosynthetic electron transport system. Such protection could result from consumption of a surplus in ATP and NADPH, generated under constricted net assimilation caused by high leaf temperatures and high light intensities. During the course of the day triose phosphate (TP) and dimethylallyl diphosphate (DMADP) concentrations showed pronounced diurnal variations closely related to net assimilation and isoprene emission rates, while other variables, e.g. energy (ATP/ADP) and redox (NADPH/NADP) ratio, as well as phosphoenolpyruvate (PEP) and pyruvate strongly scattered related to changing temperature and light intensities. Intra-day positive correlations were found mainly between leaf concentrations of TP and DMADP, and sucrose, ATP/ADP ratio and net assimilation rates. Under non-saturating light (200-400 μmol photons m -2 s -1), leaf DMADP pools were positively correlated mainly with PEP, starch, and fructose 2,6-bisphosphate (F26BP). Under saturating light, correlations improved and additionally involved sucrose, TP, and the ratio of NADPH/NADP. Study of temperature response curves showed that net assimilation and isoprene emission were negatively correlated to each other. This disconnection was mostly visible by the transient change of DMADP contents with maximum levels at 25 °C. At higher temperatures, declining pools of DMADP, TP and pyruvate indicated that DMADP consumption overcompensated DMADP production resulting in highest isoprene emission rates at declining pool sizes of precursors. In parallel to the reduction of net assimilation increases of NADPH/NADP and ATP/ADP ratios also portended that the MEP pathway dissipates a surplus of ATP and NADPH which cannot be used for carbon reduction under

  2. Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi-arid shrub.

    Science.gov (United States)

    León-Sánchez, Lupe; Nicolás, Emilio; Nortes, Pedro A; Maestre, Fernando T; Querejeta, José I

    2016-05-01

    Whereas warming enhances plant nutrient status and photosynthesis in most terrestrial ecosystems, dryland vegetation is vulnerable to the likely increases in evapotranspiration and reductions in soil moisture caused by elevated temperatures. Any warming-induced declines in plant primary production and cover in drylands would increase erosion, land degradation, and desertification. We conducted a four-year manipulative experiment in a semi-arid Mediterranean ecosystem to evaluate the impacts of a ~2°C warming on the photosynthesis, transpiration, leaf nutrient status, chlorophyll content, isotopic composition, biomass growth, and postsummer survival of the native shrub Helianthemum squamatum. We predicted that warmed plants would show reduced photosynthetic activity and growth, primarily due to the greater stomatal limitation imposed by faster and more severe soil drying under warming. On average, warming reduced net photosynthetic rates by 36% across the study period. Despite this strong response, warming did not affect stomatal conductance and transpiration. The reduction of peak photosynthetic rates with warming was more pronounced in a drought year than in years with near-average rainfall (75% and 25-40% reductions relative to controls, respectively), with no indications of photosynthetic acclimation to warming through time. Warmed plants had lower leaf N and P contents, δ (13)C, and sparser and smaller leaves than control plants. Warming reduced shoot dry mass production by 31%. However, warmed plants were able to cope with large reductions in net photosynthesis, leaf area, and shoot biomass production without changes in postsummer survival rates. Our findings highlight the key role of nonstomatal factors (biochemical and/or nutritional) in reducing net carbon assimilation rates and growth under warming, which has important implications for projections of plant carbon balance under the warmer and drier climatic scenario predicted for drylands worldwide

  3. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  4. A chamber for measurement of net photosynthesis on a whole plant = Uma câmara para medir fotossíntese líquida em plantas inteiras

    Directory of Open Access Journals (Sweden)

    Celso Jamil Marur

    2007-07-01

    Full Text Available A limitation for quantifying photosynthesis with existing equipment is that they were designed to measure of plant parts, such as one leaf or group of few leaves, which has a great variability over the whole plant. As a consequence, it is difficult to integrateaccurately the measurements taken on plant parts in order to assess the process over the entire plant. The objectives of this work were to show in detail a chamber built to measure whole plant photosynthesis and present measurements taken with this apparatus on coffee plants under field conditions. The chamber makes possible to obtain reliable measurements of CO2 assimilation rates over canopies of different LAI and levels of light exposure. The plant with LAI equal to 1.84 had higher assimilation rates for the whole canopy, butautoshading decreased assimilation rates per leaf area unit, as compared with the plant with LAI of 0.86.Os atuais aparelhos portáteis que medem fotossíntese no campo foram concebidos para proceder a leituras de uma folha, de parte de uma folha ou de um grupo de poucas folhas, que apresentam grande variabilidade em uma planta. A grande variabilidade entre as partesda planta dificulta a integração das medidas. Há, portanto, a necessidade de se desenvolver medidas do fluxo de CO2 na planta como um todo, em seu ambiente natural, para então utilizar os valores medidos para avaliar a performance dos modelos em simular o processoenvolvido. O objetivo deste trabalho foi mostrar os detalhes de construção de uma câmara para medir fotossíntese de plantas inteiras de cafeeiro, em condições de campo. Os resultados indicaram que a câmara construída tornou possível a medição da fotossíntese emplantas inteiras, em folhas expostas a diferentes intensidades de radiação solar. A planta com IAF 1,84 apresentou maior assimilação por planta e menor taxa fotossintética por unidade de área foliar do que aquela com IAF 0,86.

  5. Disponibilidade de luz em macieiras 'Fuji' cobertas com telas antigranizo e seus efeitos sobre a fotossíntese, o rendimento e a qualidade dos frutos Light supply to 'Fuji' apple trees covered with hail protection nets and its effects on photosynthesys, yield and fruit quality

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2009-09-01

    light supplied to the plants increased the mean area and the specific area of the leaves and reduced the potential photosynthesis, leading to a reduction of yield (number and weight of fruits per cm-2 of trunk cross section area and the red color of the fruit. The white and black hail protection nets reduced the incidence of sunburn but had no effect on russeting severity and number of seeds/fruit.

  6. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa

    Science.gov (United States)

    Sandoval-Gil, José M.; Marín-Guirao, Lázaro; Ruiz, Juan M.

    2012-12-01

    There are major concerns in the Mediterranean Sea over the effects of hypersaline effluents from seawater desalination plants on seagrass communities. However, knowledge concerning the specific physiological capacities of seagrasses to tolerate or resist salinity increases is still limited. In this study, changes in the photosynthetic characteristics, pigment content, leaf light absorption, growth and survival of the seagrass Cymodocea nodosa were examined across a range of simulated hypersaline conditions. To this end, large plant fragments were maintained under salinities of 37 (control ambient salinity), 39, 41 and 43 (practical salinity scale) in a laboratory mesocosm system for 47 days. At the end of the experimental period, net photosynthesis exhibited a modest, but significant, decline (12-17%) in all tested hypersaline conditions (39-43). At intermediate salinity levels (39-41), the decline in photosynthetic rates was mainly accounted for by substantial increases in respiratory losses (approximately 98% of the control), the negative effects of which on leaf carbon balance were offset by an improved capacity and efficiency of leaves to absorb light, mainly through changes in accessory pigments, but also in optical properties related to leaf anatomy. Conversely, inhibition of gross photosynthesis (by 19.6% compared to the control mean) in the most severe hypersaline conditions (43) reduced net photosynthesis. In this treatment, the respiration rate was limited in order to facilitate a positive carbon balance (similar to that of the control plants) and shoot survival, although vitality would probably be reduced if such metabolic alterations persisted. These results are consistent with the ecology of Mediterranean C. nodosa populations, which are considered to have high morphological and physiological plasticity and a capacity to grow in a wide variety of coastal environments with varying salinity levels. The results from this study support the premise that C

  7. INFLUENCE OF ROOT OXYGEN DEFICIENCY ON PHOTOSYNTHESIS AND SACCHARIDE CONTENTS OF CAREX SPECIES

    NARCIS (Netherlands)

    MOOG, PR; BRUGGEMANN, W

    1993-01-01

    The responses to root oxygen deficiency concerning the photosynthesis, saccharide contents and mineral uptake have been investigated in Carex species, which were different in their anoxia-tolerance. The net rate of photosynthesis (P-N) of the anoxia-sensitive C. extensa was not affected by root

  8. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  9. Artificial photosynthesis: closing remarks.

    Science.gov (United States)

    Hammarström, Leif

    2017-06-02

    This paper derives from my closing remarks lecture at the 198th Faraday Discussion meeting on Artificial Photosynthesis, Kyoto, Japan, February 28-March 2. The meeting had sessions on biological approaches and fundamental processes, molecular catalysts, inorganic assembly catalysts, and integration of systems for demonstrating realistic devices. The field has had much progress since the previous Faraday Discussion on Artificial Photosynthesis in Edinburgh, UK, in 2011. This paper is a personal account of recent discussions and developments in the field, as reflected in and discussed during the meeting. First it discusses the general directions of artificial photosynthesis and some considerations for a future solar fuels technology. Then it comments on some scientific directions in the area of the meeting.

  10. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).

    Science.gov (United States)

    Tomar, Rupal Singh; Jajoo, Anjana

    2014-11-01

    The toxic effect of fluoranthene (FLT) on seed germination, growth of seedling and photosynthesis processes of wheat (Triticum aestivum) was investigated. Wheat seeds were exposed to 5 µM and 25 µM FLT concentrations for 25 days and it was observed that FLT had inhibiting effect on rate of seed germination. The germination rate of wheat seeds decreased by 11% at 25 µM FLT concentration. Root/shoot growth and biomass production declined significantly even at low concentrations of FLT. Chlorophyll a fluorescence and gas exchange parameters were measured after 25 days to evaluate the effects of FLT on Photosystem II (PSII) activity and CO2 assimilation rate. The process of CO2 assimilation decreased more effectively by FLT as compared to the yield of PSII. A negative correlation was found between plant net photosynthesis, stomatal conductance, carboxylation capacity and biomass production with FLT. It is concluded that inhibiting effects of FLT on photosynthesis are contributed more by inhibition in the process of CO2 fixation rather than inhibition of photochemical events. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Seasonal Photosynthesis in Fertilized and Nonfertilized Loblolly Pine

    Science.gov (United States)

    Christopher M. Gough; John R. Seiler; Kurt H. Johnsen; David Arthur Sampson

    2004-01-01

    Net photosynthesis (Pn) of loblolly pine (Pinus taeda L.) foliage was monitored monthly in 14 yr old stands under near-ambient conditions over an entire year in upper and lower crowns and in both nonfertilized stands and stands receiving nutrient amendments for six consecutive years. Air temperature, humidity, vapor pressure...

  12. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    2009-11-14

    With LI-6400 portable photosynthesis system, the photosynthetic characteristics of artificially cultured Eichhornia crassipes in Jiangsu, China, were monitored from June 1 to November 14, 2009. Both the net photosynthetic rate (Pn) in different positions and light and temperature-response curves of the top fourth leaf were ...

  13. Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts.

    Science.gov (United States)

    Zhang, Lingrui; Xing, Da

    2008-03-01

    Chloroplasts are one of the most susceptible systems to salt and osmotic stresses. Based on quantitative measurements of delayed fluorescence (DF) of the chloroplasts, we have investigated the damage to photosynthesis caused by these two kinds of stresses in Arabidopsis seedlings by using a custom-built multi-channel biosensor. Results showed that the DF intensity and net photosynthesis rate (Pn) decreased in a similar way with increasing NaCl or sorbitol concentration. Incubation of the seedlings in 200 mM NaCl induced a rapid and reversible decline and subsequent slow and irreversible loss in both the DF intensity and Pn. The rapid decline was dominantly related to osmotic stress, whereas the slow declines in the DF intensity and Pn were specific to ionic stress and could be reversed to a similar extent by a Na+-channel blocker. The DF intensity and Pn also exhibited a similar response to irradiation light under NaCl or sorbitol stress. All results indicated that the DF intensity correlated well with Pn under salt and osmotic stresses. We thus conclude that DF is an excellent marker for detecting the damage to photosynthesis caused by these two stresses. The mechanism of the correlation between the DF intensity and Pn under salt and osmotic stresses was also analyzed in theory and investigated with experiments by measuring intercellular CO2 concetration (Ci), stomatal conductance (Gs), chlorophyll fluorescence parameter, and chlorophyll content. This proposed DF technique holds the potential to be a useful means for analyzing the dynamics of salt and osmotic stresses in vivo and elucidating the mechanism by which plants respond to stress.

  14. Realizing artificial photosynthesis.

    Science.gov (United States)

    Gust, Devens; Moore, Thomas A; Moore, Ana L

    2012-01-01

    Artificial photosynthesis comprises the design of systems for converting solar energy into useful forms based on the fundamental science underlying natural photosynthesis. There are many approaches to this problem. In this report, the emphasis is on molecule-based systems for photochemical production of fuels using sunlight. A few examples of typical components of artificial photosynthetic systems including antennas, reaction centres, catalysts for fuel production and water oxidation, and units for photoprotection and photoregulation are presented in order to illustrate the current state of the field and point out challenges yet to be fully addressed.

  15. Teaching Photosynthesis with ELL Students

    Science.gov (United States)

    Piper, Susan; Shaw, Edward Lewis, Jr.

    2010-01-01

    Although the teaching of photosynthesis occurs yearly in elementary classrooms, one thing that makes it challenging is the inclusion of English language learners (ELLs). This article presents several activities for teaching and assessing of photosynthesis in a third grade classroom. The activities incorporate the photosynthesis content, teaching…

  16. Limits on Natural Photosynthesis

    NARCIS (Netherlands)

    van Grondelle, Rienk; Boeker, Egbert

    2017-01-01

    Photosynthesis in nature does not use the far infrared part of the solar spectrum (lambda > 900 nm), comprising about 30% of the incoming solar energy. By simple thermodynamic arguments it is explained that this is due to the unavoidable back reactions during the night. It follows that lambda

  17. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration......, it became negative in those low in malate. • CAM in aquatic plants enables higher rates of underwater net photosynthesis over large O2 and CO2 concentration ranges in floodwaters, via increased CO2 fixation and suppression of photorespiration....... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...

  18. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  19. Temperate and Tropical Forest Canopies are Already Functioning beyond Their Thermal Thresholds for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Alida C. Mau

    2018-01-01

    Full Text Available Tropical tree species have evolved under very narrow temperature ranges compared to temperate forest species. Studies suggest that tropical trees may be more vulnerable to continued warming compared to temperate species, as tropical trees have shown declines in growth and photosynthesis at elevated temperatures. However, regional and global vegetation models lack the data needed to accurately represent such physiological responses to increased temperatures, especially for tropical forests. To address this need, we compared instantaneous photosynthetic temperature responses of mature canopy foliage, leaf temperatures, and air temperatures across vertical canopy gradients in three forest types: tropical wet, tropical moist, and temperate deciduous. Temperatures at which maximum photosynthesis occurred were greater in the tropical forests canopies than the temperate canopy (30 ± 0.3 °C vs. 27 ± 0.4 °C. However, contrary to expectations that tropical species would be functioning closer to threshold temperatures, photosynthetic temperature optima was exceeded by maximum daily leaf temperatures, resulting in sub-optimal rates of carbon assimilation for much of the day, especially in upper canopy foliage (>10 m. If trees are unable to thermally acclimate to projected elevated temperatures, these forests may shift from net carbon sinks to sources, with potentially dire implications to climate feedbacks and forest community composition.

  20. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  1. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  2. New Concept of Photosynthesis

    Directory of Open Access Journals (Sweden)

    Komissarov Gennadiy Germanovich

    2014-12-01

    Full Text Available The history of the formation of a new concept of photosynthesis proposed by the author is considered for the period since 1966 to 2013. Its essence consists in the following facts: the photosynthetic oxygen (hydrogen source is not water, but exo- and endogenous hydrogen peroxide; thermal energy is a necessary part of the photosynthetic process; along with the carbon dioxide the air (oxygen, inert gases is included in the photosynthetic equation. The mechanism of the photovoltaic (Becquerel effect in films of chlorophyll and its synthetic analogue - phthalocyanine are briefly touched upon in the article. The article presents the works on artificial photosynthesis performed in the laboratory of Photobionics of N.N. Semenov Institute of Chemical Physics, RAS.

  3. [C4 type photosynthesis].

    Science.gov (United States)

    Drozak, Anna; Wasilewska, Wioleta; Buczyńska, Alicja; Romanowska, Elzbieta

    2012-01-01

    C4 photosynthesis includes several anatomical and biochemical modifications that allow plants to concentrate CO2 at the site of Rubisco. The photorespiratory pathway is repressed in C4 plants, since the rates of photosynthesis and biomass production are increased. This is an adaptation to high light intensities, high temperatures and dryness. C4 plants contain two distinct types of photosynthetic cells, mesophyll and bundle sheath. The processes of assimilation and reduction of CO2 are separated spatiality and catayzed by two different enzymes. Only the bundle sheath chloroplasts perform the reactions of the Calvin-Benson cycle with the help of the Rubisco enzyme present exclusively in this cell type. The primary CO2 fixation occurs in mesophyll cells through the action of the phosphoenolpyruvate carboxylase. The light-dependent reactions of the photosynthesis occur exclusively in the latter cell type. These differences in photochemistry lead to distinct redox profiles in both types of cells. C4 plants are divided into three biochemical subtypes on the basis of differences in the mechanisms of decarboxylation of the C4 acids. C4 plants will provide the main source of food for humans and animals in the nearest decade.

  4. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  5. The effect of Silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L. under high-zinc stress.

    Directory of Open Access Journals (Sweden)

    Alin Song

    Full Text Available The main objectives of this study were to elucidate the roles of silicon (Si in alleviating the effects of 2 mM zinc (high Zn stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L. grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY, Os05g48630 (PsaH, Os07g37030 (PetC, Os03g57120 (PetH, Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis.

  6. The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress

    Science.gov (United States)

    Song, Alin; Li, Ping; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis. PMID:25426937

  7. DETERMINATION OF SENSITIVE SITES IN PHOTOSYNTHESIS DURING LONGTERM PLANT DEHYDRATION

    Directory of Open Access Journals (Sweden)

    M BRESTIČ

    2002-05-01

    Full Text Available The aim of this work was to measure the net CO2 assimilation, O2 evolution, Rubisco activity, 13C content, actual photochemical PSII efficiency, stomatal conductance, water and osmotic potentials as well as relative water content during increasing plant dehydration. The measurements allowed to determine vulnerability of individual segments of complex process of photosynthesis and characterise the stomatal and non-stomatal responses to dehydration and resistance of mechanisms of photosynthesis to gradual water stress. The sensitiveness of stomata, osmoprotection and isotopic 13C discrimination seem to be the most interesting parameters which act dynamically in plant acclimation to drought. They may be successfully used in screening new genotypes with efficient water and carbon use and in quantification of threshold of deleterious environmental effect to photosynthesis.

  8. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  9. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    Science.gov (United States)

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  10. Photosynthesis and fluctuating asymmetry as indicators of plant response to soil disturbance in the Fall-Line Sandhills of Georgia: a case study using Rhus copallinum and Ipomoea pandurata

    Science.gov (United States)

    Freeman, D. Carl; Brown, Michelle L.; Duda, Jeffrey J.; Graham, John H.; Emlen, John M.; Krzysik, Anthony J.; Balbach, Harold E.; Kovacic, David A.; Zak, John C.

    2004-01-01

    We examined net photosynthesis, transpiration, stomatal conductance, and leaf fluctuating asymmetry on two species (Rhus copallinum and Ipomoea pandurata) as indicators of stress at nine sites across a gradient of soil disturbance at Fort Benning, Georgia. There were three sites for each of three disturbance levels. Physical habitat disturbance was caused by activities associated with infantry training, including mechanized elements (tanks and personnel carriers) and foot soldiers. In addition, we examined the influence of prescribed burns and microhabitat effects (within meter‐square quadrats centered about the plant) on these measures of plant stress. Net photosynthesis declined with increasing disturbance in the absence of burning for both species. However, when sites were burned the previous year, net photosynthesis increased with increasing disturbance. Developmental instability in Rhus, as measured by fluctuating asymmetry, also declined with increasing disturbance in the absence of burning but increased with disturbance if sites were burned the previous year. Developmental instability was much less sensitive to burning in Ipomoea and in general was lowest at intermediate disturbance sites. Microenvironmental and microhabitat effects were weakly correlated with measures of plant stress when all sites were combined. However, higher correlations were obtained within site categories, especially when the recent history of prescribed burning was used as a category. Finally, using all of the combined data in a discriminant function analysis allowed us to correctly predict the disturbance level of more than 80% of the plants. Plant stress is responsive to both large‐scale perturbations, such as burning, and microhabitat parameters. Because of this, it is important to include macro‐ and microhabitat parameters when assessing stress. Similarly, we found a combination of developmental and physiological indicators of stress was superior to using them

  11. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  12. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  13. Fruit photosynthesis in Satsuma mandarin.

    Science.gov (United States)

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. [Cytokinins and photosynthesis].

    Science.gov (United States)

    Pilarska, Maria; Skowron, Ernest; Niewiadomska, Ewa

    2015-01-01

    Almost six decades of studies explained many aspects of cytokinin complex metabolism, such as, biogenesis, degradation, signal perception and interaction with other phytohormones (mainly with auxins). A dual character of cytokinins' action on the nuclear genes (activation and repression) has been explained by recognition of the two types on nuclear receptors, which ensure a precise mechanism of self-control. Cytokinins promote the process of photosynthesis at different levels of plant- and cellular organization (development of leaves and plastids, influence on the photosynthetic proteins, activation of photosynthetic genes, etc.). An anti-senescing action of these hormones has been recently attributed to the activation of intra-cellular invertase, which suppress floem loading and change the sink-source pattern of the leaf.

  15. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.

    Science.gov (United States)

    Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K

    2017-07-01

    Understanding of the extent of acclimation of light-saturated net photosynthesis (An ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax ) and electron transport (Jmax ) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth , An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth . Similarly, area-based rates of Vcmax at a measurement T of 25 °C (Vcmax25 ) linearly declined with increasing Tgrowth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth -mediated declines in Vcmax25 on An , complementing current photosynthetic thermal

  16. Artificial Photosynthesis: Beyond Mimicking Nature.

    Science.gov (United States)

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-11-23

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on "Artificial Photosynthesis for Sustainable Fuels". They discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO2 reduction, and photoelectrochemical systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Long-Term Overgrazing-Induced Memory Decreases Photosynthesis of Clonal Offspring in a Perennial Grassland Plant

    Directory of Open Access Journals (Sweden)

    Xiangyang Hou

    2017-04-01

    Full Text Available Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis

  18. [Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng)].

    Science.gov (United States)

    Liang, Yao; Jiang, Xiao-Li; Yang, Fen-Tuan; Cao, Qing-Jun; Li, Gang

    2014-08-01

    The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P lead concentration was also observed (P lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.

  19. When did oxygenic photosynthesis evolve?

    National Research Council Canada - National Science Library

    Roger Buick

    2008-01-01

    ...2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event...

  20. Plasmon-induced artificial photosynthesis

    National Research Council Canada - National Science Library

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-01-01

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia...

  1. Artificial photosynthesis for solar fuels.

    Science.gov (United States)

    Styring, Stenbjörn

    2012-01-01

    This contribution was presented as the closing lecture at the Faraday Discussion 155 on artificial photosynthesis, held in Edinburgh Scotland, September 5-7 2011. The world needs new, environmentally friendly and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap and "endless" resources that are available everywhere. The new research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis expands rapidly and most of the different scientific visions for solar fuels are briefly overviewed. Research strategies and the development of artificial photosynthesis research to produce solar fuels are overviewed. Some conceptual aspects of research for artificial photosynthesis are discussed in closer detail.

  2. My journey in photosynthesis research.

    Science.gov (United States)

    Shuvalov, Vladimir A

    2015-08-01

    At the invitation of Suleyman I. Allakhverdiev, I provide here a brief autobiography for this special issue that recognizes my service and research for the larger international community of photosynthesis research.

  3. Recent advances in understanding photosynthesis

    OpenAIRE

    Fl?gge, Ulf-Ingo; Westhoff, Peter; Leister, Dario

    2016-01-01

    Photosynthesis is central to all life on earth, providing not only oxygen but also organic compounds that are synthesized from atmospheric CO 2 and water using light energy as the driving force. The still-increasing world population poses a serious challenge to further enhance biomass production of crop plants. Crop yield is determined by various parameters, inter alia by the light energy conversion efficiency of the photosynthetic machinery. Photosynthesis can be looked at from different per...

  4. Modeling the protection of photosynthesis

    OpenAIRE

    Harbinson, J.

    2012-01-01

    It is hard to overstate the importance of photosynthesis for mankind and the biosphere. It produces the oxygen we breathe and the food we eat, and images of Earth from space show the green of terrestrial vegetation and swirls of marine phytoplankton. To meet our increasing demand for food and energy, it seems inevitable that we will need to increase the efficiency of photosynthesis in plants and algae. There is therefore some urgency in our drive to better understand the operation, regulation...

  5. Dark states in quantum photosynthesis

    CERN Document Server

    Kozyrev, S V

    2016-01-01

    We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.

  6. Photosynthesis, water relations, and growth of planted Pinus strobus L. on burned sites in the southern Appalachians

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    1994-01-01

    We measured net photosynthesis,leaf conductance, xylem water potential, and growth of Pinus strbus L. seedlings two years after planting on two clear-cut and burned sites in the southern Appalachians. Multiple regression analysis was used to relate seedling net pholosynthesis to vapor pressure deficit, seedling crown temperature, photosynthetically active radiation (...

  7. [Effects of Ozone on Photosynthesis of Several Plants].

    Science.gov (United States)

    Li, Miao-miao

    2015-05-01

    In order to investigate the effect of ozone on photosynthesis of Machilus pauhoi, Lindera setchuenensis, Phoebe bournei, Phoebe chekiangensis and Machilus thunbergii, the study was carried out in 12 open-top chambers( OTCs) with different levels of ozone in Qianyanzhou experimental station, and net photosynthesis rate (Pn) and stomatal conductance (Cond) were detected. The results indicated that ozone treatments changed the variation trend of photosynthesis of all tested plants, but ozone exposure did not always play an inhibitory role on them. In fact, photosynthesis changed with ozone concentration, experimental period, season and specific species. Exposed to ozone could even promote Pn to a peak in a short term, and the indicator of plants treated with ozone was higher than that of the control at this point. Low and medium concentrations of ozone treatment enhanced Pn of Phoebe bournei and Machilus thunbergii. The peak of treatment group also came earlier because of ozone. Furthermore, the positive correlation between Pn and Cond did not existed under the condition of ozone. Machilus thunbergii had the strongest resistance to ozone, followed by Phoebe bournei, by comparison, Phoebe chekiangensis, Machilus pauhoi and Lindera setchuenensis were more sensitive.

  8. Quantification of temperature, CO2, and light effects on crop photosynthesis as a basis for model-based greenhouse climate control

    NARCIS (Netherlands)

    Körner, O.; Heuvelink, E.; Niu, Q.

    2009-01-01

    Detailed measurements of crop photosynthesis at supra-optimal temperatures and high CO2 levels, to validate models for use in model-based greenhouse climate control, are still lacking. We performed CO2 gas exchange measurements to estimate gross crop photosynthesis (Pgc) from measured net crop gas

  9. Delayed fluorescence in photosynthesis.

    Science.gov (United States)

    Goltsev, Vasilij; Zaharieva, Ivelina; Chernev, Petko; Strasser, Reto J

    2009-01-01

    Photosynthesis is a very efficient photochemical process. Nevertheless, plants emit some of the absorbed energy as light quanta. This luminescence is emitted, predominantly, by excited chlorophyll a molecules in the light-harvesting antenna, associated with Photosystem II (PS II) reaction centers. The emission that occurs before the utilization of the excitation energy in the primary photochemical reaction is called prompt fluorescence. Light emission can also be observed from repopulated excited chlorophylls as a result of recombination of the charge pairs. In this case, some time-dependent redox reactions occur before the excitation of the chlorophyll. This delays the light emission and provides the name for this phenomenon-delayed fluorescence (DF), or delayed light emission (DLE). The DF intensity is a decreasing polyphasic function of the time after illumination, which reflects the kinetics of electron transport reactions both on the (electron) donor and the (electron) acceptor sides of PS II. Two main experimental approaches are used for DF measurements: (a) recording of the DF decay in the dark after a single turnover flash or after continuous light excitation and (b) recording of the DF intensity during light adaptation of the photosynthesizing samples (induction curves), following a period of darkness. In this paper we review historical data on DF research and recent advances in the understanding of the relation between the delayed fluorescence and specific reactions in PS II. An experimental method for simultaneous recording of the induction transients of prompt and delayed chlorophyll fluorescence and decay curves of DF in the millisecond time domain is discussed.

  10. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  11. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition.

    Science.gov (United States)

    Gattward, James N; Almeida, Alex-Alan F; Souza, José O; Gomes, Fábio P; Kronzucker, Herbert J

    2012-11-01

    In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop. Copyright © Physiologia Plantarum 2012.

  12. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  13. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    Water use efficiency; global terrestrial ecosystems; MODIS; net primary production; evapotranspiration;. Köppen–Geiger climate classification. ... Terrestrial plants fix or trap carbon dioxide via photosynthesis to produce the material ...... S W 2007 Evaluating water stress controls on primary production in biogeochemical and ...

  14. Isotopic tracers for net primary productivity for a terrestrial esocystem ...

    African Journals Online (AJOL)

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water ...

  15. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, A.; Beier, C.

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... respiration from October to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important in the annual carbon cycle of the ecosystem. Model fit of R-E of a classic, first-order exponential equation related to temperature ( second year; R-2 = 0......) of 2.5 by the modified model. The model introduces R-photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated carbon dioxide flux at 0 degrees C and 35% at 20 degrees C implying a high sensitivity of respiration to photosynthesis...

  16. THE INDUCTION PERIOD IN PHOTOSYNTHESIS.

    Science.gov (United States)

    Smith, E L

    1937-11-20

    1. Measurements on the photosynthesis of Cabomba caroliniana show an induction period at low and high light intensities and CO(2) concentrations. 2. The equation which describes the data for Cabomba also describes the data obtained by other investigators on different species. The phenomenon is thus shown to be similar in plants representative of three phyla. 3. A derivation of the induction period equation is made from a consideration of the cycle of light and dark processes known to occur in photosynthesis. The equation indicates that light intensity enters as the square, and that the same light reactions are involved as those which affect the stationary state rates. However, a different dark reaction appears to limit photosynthesis during the induction period.

  17. Nanobiocatalytic assemblies for artificial photosynthesis.

    Science.gov (United States)

    Kim, Jae Hong; Nam, Dong Heon; Park, Chan Beum

    2014-08-01

    Natural photosynthesis, a solar-to-chemical energy conversion process, occurs through a series of photo-induced electron transfer reactions in nanoscale architectures that contain light-harvesting complexes, protein-metal clusters, and many redox biocatalysts. Artificial photosynthesis in nanobiocatalytic assemblies aims to reconstruct man-made photosensitizers, electron mediators, electron donors, and redox enzymes for solar synthesis of valuable chemicals through visible light-driven cofactor regeneration. The key requirement in the design of biocatalyzed artificial photosynthetic process is an efficient and forward electron transfer between each photosynthetic component. This review describes basic principles in combining redox biocatalysis with photocatalysis, and highlights recent research outcomes in the development of nanobiocatalytic assemblies that can mimic natural photosystems I and II, respectively. Current issues in biocatalyzed artificial photosynthesis and future perspectives will be briefly discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of elevated pressure on rate of photosynthesis during plant growth.

    Science.gov (United States)

    Takeishi, Hiroyuki; Hayashi, Jun; Okazawa, Atsushi; Harada, Kazuo; Hirata, Kazumasa; Kobayashi, Akio; Akamatsu, Fumiteru

    2013-10-20

    The aim of this study is to investigate the effects of an artificially controlled environment, particularly elevated total pressure, on net photosynthesis and respiration during plant growth. Pressure directly affects not only cells and organelles in leaves but also the diffusion coefficients and degrees of solubility of CO2 and O2. In this study, the effects of elevated total pressure on the rates of net photosynthesis and respiration of a model plant, Arabidopsis thaliana, were investigated in a chamber that newly developed in this study to control the total pressure. The results clearly showed that the rate of respiration decreased linearly with increasing total pressure at a high humidity. The rate of respiration decreased linearly with increasing total pressure up to 0.2 MPa, and increased with increasing total pressure from 0.3 to 0.5 MPa at a low humidity. The rate of net photosynthesis decreased linearly with increasing total pressure under a constant partial pressure of CO2 at 40 Pa. On the other hand, the rate of net photosynthesis was clearly increased by up to 1.6-fold with increasing total pressure and partial pressure of CO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2009-01-01

    Nearly three decades ago Farquhar, von Caemmerer and Berry published a biochemical model for C3 photosynthetic rates (the FvCB model). The model predicts net photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assimilation (Ac) and the electron transport-limited rate of CO2

  20. The paleobiological record of photosynthesis

    Science.gov (United States)

    2010-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established. PMID:20607406

  1. Dynamic photosynthesis in different environmental conditions

    NARCIS (Netherlands)

    Kaiser, M.E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M.

    2015-01-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this

  2. Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat : a microsensor study

    OpenAIRE

    R. Ludwig; Pringault, Olivier; Wit, R.; De Beer, D; Jonkers, H.M.

    2006-01-01

    Microbial mats are characterized by high primary production but low growth rates, pointing to a limitation of growth by the lack of nutrients or substrates. We identified compounds that instantaneously stimulated photosynthesis rates and oxygen consumption rates in a hypersaline microbial mat by following the short-term response (c. 6 h) of these processes to addition of nutrients, organic and inorganic carbon compounds, using microsensors. Net photosynthesis rates were not stimulated by comp...

  3. Vertical distribution of pelagic photosynthesis

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke

    As phytoplankton photosynthesis is dependent on light, one might assume that all the phytoplankton activity occurs in the surface of our oceans. This assumption was, however, challenged early in the history of biological oceanography when chlorophyll sampling and fluorescence profiling showed deep...

  4. Growth and photosynthesis of lettuce

    NARCIS (Netherlands)

    Holsteijn, van H.M.C.

    1981-01-01

    Butterhead lettuce is an important glass-house crop in the poor light period in The Netherlands. Fundamental data about the influence of temperature, light and CO 2 on growth and photosynthesis are important e.g. to facilitate selection criteria for new cultivars. In

  5. Modeling the protection of photosynthesis

    NARCIS (Netherlands)

    Harbinson, J.

    2012-01-01

    It is hard to overstate the importance of photosynthesis for mankind and the biosphere. It produces the oxygen we breathe and the food we eat, and images of Earth from space show the green of terrestrial vegetation and swirls of marine phytoplankton. To meet our increasing demand for food and

  6. Eukaryotic vs. cyanobacterial oxygenic photosynthesis

    OpenAIRE

    Schmelling, Nicolas

    2015-01-01

    Slides of my talk about the differences between eukaryotic and cyanobacterial oxygenic photosynthesis.  The talk is a more generell overview about the differences of the two systems. Slides and Figures are my own. For comments, questions and suggestions please contact me via twitter @derschmelling or via mail

  7. Chlorophylls, Symmetry, Chirality, and Photosynthesis.

    OpenAIRE

    Senge, Mathias O.; Aoife A. Ryan; Kristie A. Letchford; MacGowan, Stuart A.; Tamara Mielke

    2014-01-01

    PUBLISHED Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecula...

  8. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  9. Artificial photosynthesis at soft interfaces.

    Science.gov (United States)

    Schaming, Delphine; Hatay, Imren; Cortez, Fernando; Olaya, Astrid; Méendez, Manuel A; Ge, Pei Yu; Deng, Haiqiang; Voyame, Patrick; Nazemi, Zahra; Girault, Hubert

    2011-01-01

    The concept of artificial photosynthesis at a polarised liquid membrane is presented. It includes two photosystems, one at each interface for the hydrogen and oxygen evolution respectively. Both reactions involve proton coupled electron transfer reactions, and some ultrafast steps at the photosensitization stage.

  10. Injecting Inquiry into Photosynthesis Investigations

    Science.gov (United States)

    Salter, Irene; Smith, Rebecca; Nielsen, Katherine

    2008-01-01

    This is the story of how a typical middle school lab was transformed into an open-ended inquiry experience through a few small, but very powerful, changes. By allowing students to follow their own questions, the classroom filled with enthusiasm and students learned much more about photosynthesis, respiration, and the scientific processes. The…

  11. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    Directory of Open Access Journals (Sweden)

    Graves Patricia M

    2011-12-01

    Full Text Available Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use. Methods Generalized linear latent and mixed models (GLLAMM were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy; net factors (condition, age, net density; household factors (number of rooms [2006] or sleeping spaces [2007], IRS, women's knowledge and school attendance [2007 only], wealth, altitude; and cluster level factors (rural or urban were investigated in univariate and multi-variable models for each survey. Results In 2006, increased net use was associated with: age 25-49 years (adjusted (a OR = 1.4, 95% confidence interval (CI 1.2-1.7 compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5; fewer nets with holes (Ptrend = 0.002; and increasing net density (Ptrend [all nets in HH good] = 1.6; 95% CI 1.2-2.1; increasing net density (Ptrend [per additional space] = 0.6, 95% CI 0.5-0.7; more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7; and increasing household altitude (Ptrend Conclusion In both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density, and improving net condition while focusing on education and promotion of net use, especially in school-age children

  12. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...... fourfold from communities with a very uneven to a more even light distribution. Photosynthetic characteristics of communities are strongly influenced by plant density, absorption, and distribution of light and cannot be interpreted from the photosynthetic behavior of phytoelements. Thus, many examples...

  13. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  14. The interplanetary exchange of photosynthesis.

    Science.gov (United States)

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  15. Moss functioning in different taiga ecosystems in interior Alaska : I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns.

    Science.gov (United States)

    Skre, O; Oechel, W C

    1981-02-01

    Carbon dioxide exchange rates in excised 2-year-old shoot sections of five common moss species were measured by infrared gas analysis in mosses collected from different stands of mature vegetation near Fairbanks, Alaska. The maximum rates of net photosynthesis ranged from 2.65 mg CO 2 g -1 h -1 in Polytrichum commune Hedw. to 0.25 in Spagnum nemoreum Scop. Intermediate values were found in Sphagnum subsecundum Nees., Hylocomium splendens (Hedw.) B.S.G., and Pleurozium schreberi (Brid.) Mitt. Dark respiration rates at 15°C ranged from 0.24 mg CO 2 g -1 h -1 in S. subsecundum to 0.57 mg CO 2 g -1 h -1 in H. splendens. The dark respiration rates were found to increase in periods of growth or restoration of tissue (i.e., after desiccation). There was a strong decrease in the rates of net photosynthesis during the winter and after long periods of desiccation.Due to increasing amounts of young, photosynthetically active tissue there was a gradual increase in the rates of net photosynthesis during the season to maximum values in late August. As an apparent result of constant respiration rates and increasing gross photosynthetic rates, the optimum temperature for photosynthesis at light saturation and field capacity increased during the season in all species except Polytrichum, with a corresponding drop in the compensation light intensities. Sphagnum subsecundum seemed to be the most light-dependent species.Leaf water content was found to be an important limiting factor for photosynthesis in the field. A comparison between sites showed that the maximum rates of net photosynthesis increased with increasing nutrient content in the soil but at the permafrostfree sites photosynthesis was inhibited by frequent moisture stress.

  16. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    Energy Technology Data Exchange (ETDEWEB)

    Glowacka, K; Adhikari, S; Peng, JH; Gifford, J; Juvik, JA; Long, SP; Sacks, EJ

    2014-09-08

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chilling treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.

  17. Microbial photosynthesis in coral reef sediments (Heron Reef, Australia)

    Science.gov (United States)

    Werner, Ursula; Blazejak, Anna; Bird, Paul; Eickert, Gabriele; Schoon, Raphaela; Abed, Raeid M. M.; Bissett, Andrew; de Beer, Dirk

    2008-03-01

    We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O 2 m -2 h -1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m -2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2-1.0 mmol Ca 2+ m -2 h -1). The sediments of at least three stations were net calcifying. Sedimentary N 2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N 2 m -2 h -1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N 2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.

  18. PHOTOSYNTHESIS AND RESOURCE ALLOCATION OF THREE MOJAVE DESERT GRASSES IN RESPONSE TO ELEVATED ATMOSPHERIC CO2

    Energy Technology Data Exchange (ETDEWEB)

    L. A. DEFALCO; C. K. IVANS; P. VIVIN; J. R. SEEMANN; R. S. NOWAK

    2004-01-01

    Gas exchange, biomass and N allocation were compared among three Mojave Desert grasses representing different functional types to determine if photosynthetic responses and the associated allocation of resources within the plant changed after prolonged exposure to elevated CO{sub 2}. Leaf gas exchange characteristics were measured for Bromus madritensis ssp. rubens (C{sub 3} invasive annual), Achnatherum hymenoides (C{sub 3} native perennial) and Pleuraphis rigida (C{sub 4} native perennial) exposed to 360 {micro}mol mol{sup -1} (ambient) and 1000 {micro}mol mol{sup -1} (elevated) CO{sub 2} concentrations in a glasshouse experiment, and tissue biomass and total N pools were quantified from three harvests during development. The maximum rate of carboxylation by the N-rich enzyme Rubisco (Vc{sub max}), which was inferred from the relationship between net CO{sub 2} assimilation (A{sub net}) and intracellular CO{sub 2} concentration (c{sub i}), declined in the C{sub 3} species Bromus and Achnatherum across all sampling dates, but did not change at elevated CO{sub 2} for the C{sub 4} Pleuraphis. Whole plant N remained the same between CO{sub 2} treatments for all species, but patterns of allocation differed for the short- and long-lived C{sub 3} species. For Bromus, leaf N used for photosynthesis was reallocated to reproduction at elevated CO{sub 2} as inferred from the combination of lower Vc{sub max} and N per leaf area (NLA) at elevated CO{sub 2}, but similar specific leaf area (SLA, cm{sup 2} g{sup -1}), and of greater reproductive effort (RE) for the elevated CO{sub 2} treatment. Vc{sub max}, leaf N concentration and NLA declined for the perennial Achnatherum at elevated CO{sub 2} potentially due to accumulation of carbohydrates or changes in leaf morphology inferred from lower SLA and greater total biomass at elevated CO{sub 2}. In contrast, Vc{sub max} for the C{sub 4} perennial Pleuraphis did not change at elevated CO{sub 2}, and tissue biomass and total N were

  19. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  20. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  1. POPULATION DECLINES OF THE PUERTO RICAN VIREO IN GUANICA FOREST.

    Science.gov (United States)

    JOHN FAABORG; KATE M. DUGGER; WAYNE J. ARENDT; BETHANY L. WOODWORTH; MICHAEL E. BALTZ

    1997-01-01

    Abundance of the Puerto Rican Vireo (Vireo Zutimeri) in Guanica Forest, Puerto Rico, has declined gradually over the period 1973-1996 as determined by constant effort mist netting. Concurrent studies of breeding vireos show low nesting success, primarily due to parasitism by Shiny Cowbirds (Molothrus bonariensis). This decline may reflect the rather recent entry of the...

  2. Understanding of photosynthesis among primary school pupils

    OpenAIRE

    Murn, Špela

    2014-01-01

    Photosynthesis is considered one of the most difficult subjects for pupils. It is very complex topic, which is very difficult to understand. The goal of our research was to examine the knowledge on photosynthesis of the pupils of the primary school, their attitude towrds it, and whether there were any misconceptions about photosynthesis. The research was conducted on a sample of 120 pupils in Dolenjske Toplice primary school. The questionnaire consisted of 19 questions. In the first part o...

  3. Optimizing sampling design to deal with mist-net avoidance in Amazonian birds and bats.

    Directory of Open Access Journals (Sweden)

    João Tiago Marques

    Full Text Available Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas.

  4. Optimizing sampling design to deal with mist-net avoidance in Amazonian birds and bats.

    Science.gov (United States)

    Marques, João Tiago; Ramos Pereira, Maria J; Marques, Tiago A; Santos, Carlos David; Santana, Joana; Beja, Pedro; Palmeirim, Jorge M

    2013-01-01

    Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas.

  5. Seed photosynthesis enhances Posidonia oceanica seedling growth

    National Research Council Canada - National Science Library

    Celdrán, David; Marín, Arnaldo

    2013-01-01

    Posidonia oceanica seeds demonstrate photosynthetic activity during germination as well as throughout seedling development, a fact which suggests that seed photosynthesis can influence seedling growth...

  6. Solar fuels via artificial photosynthesis.

    Science.gov (United States)

    Gust, Devens; Moore, Thomas A; Moore, Ana L

    2009-12-21

    Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge

  7. CAM Photosynthesis in Submerged Aquatic Plants

    Science.gov (United States)

    Keeley, J.E.

    1998-01-01

    Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, including Isoe??tes, Sagittaria, Vallisneria, Crassula, and Littorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high diffusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(Pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic

  8. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  9. Effects of recurring summer droughts on ecosystem photosynthesis and respiration in a mountain grassland

    Science.gov (United States)

    Schmitt, Michael; Ingrisch, Johannes; Sturm, Patrick; Ladreiter-Knauss, Thomas; Hasibeder, Roland; Bramboeck, Peter; Berger, Vanessa; Bahn, Michael

    2013-04-01

    Climatic changes in mountain regions play a key role in current and future grassland ecosystem processes. It is currently expected that droughts and heatwaves will become more frequent in a changing climate. All around the world mountain regions have been labelled as sensitive zones, where declining water availability and increasing temperature are expected to increase the vulnerability of these ecosystems. However, the effects of such extreme events on ecosystem carbon (C) fluxes and their coupling in temperate and so far non-water limited Alpine grasslands are not yet well understood. We studied effects of recurring summer drought on the C dynamics of a mountain meadow at 1820 m and an abandoned grassland at 2000 m in the Austrian Central Alps. The aim of the study was (1) to analyse the multiannual effect of drought on net ecosystem CO2 exchange (NEE) and its major component processes, i.e. gross primary productivity (GPP) and ecosystem respiration (Reco), and (2) to trace drought effects on the use of recent C in soil respiration. We tested the hypothesis that drought reduces NEE, GPP and Reco and the ratio of GPP / Reco and causes a reduction in the use of recent photoassimilates in belowground respiration. At each study site, exclusion of rainfall was achieved by establishing rain-out shelters for a period of two months (June, July), while control plots remained exposed to natural precipitation. To trace the fate of recent C from assimilation to respiration 13CO2 pulse-labelling was carried out at the meadow site, and the carbon isotope composition of soil respired CO2 was continuously monitored with an open dynamic-chamber system coupled with a quantum cascade laser. Our results showed that at both sites NEE, GPP and Reco showed a consistent reduction with reduction in soil water level. Drought reduced ecosystem respiration to a lesser extent than photosynthesis. We observed memory effects on all flux processes after 3 years of recurring drought on the

  10. Photochemistry and enzymology of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R.

    1979-07-30

    In the first task, a specially designed mass spectrometer system monitors the gas exchange occurring in response to single short flashes of light. This apparatus will be primarily used to study photosystem II donor reactions, such as the photooxidation of hydroxylamine, hydrazine, and hydrogen peroxide. This technique will also be used to study the light-induced exchange of O/sub 2/ and CO/sub 2/ in algae. The second task, biochemical studies, will focus on the role of chloroplast copper in photosynthesis. We propose to isolate, purify, and characterize the chloroplast copper enzyme polyphenol oxidase, and attempt to elucidate its role in photosynthesis. These studies will be integrated with a new program devoted to the biochemical response of the photosynthetic membrane to stress. The third task is a series of studies on the light-harvesting and electron-transport mechanisms of C/sub 4/ plants. This program will address three basic problems: (1) the effect of different preparative procedures on various photosynthetic reactions, with particular emphasis on photosystem II reactions in corn bundle sheath chloroplasts; (2) the development and testing of photosystem II assays; and (3) studies of the stoichiometry of electron carriers in bundle sheath chloroplasts, and whether cyclic phosphorylation could be a major pathway in this tissue.

  11. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  12. Transition metals in plant photosynthesis.

    Science.gov (United States)

    Yruela, Inmaculada

    2013-09-01

    Transition metals are involved in essential biological processes in plants since they are cofactors of metalloproteins and also act as regulator elements. Particularly, plant chloroplasts are organelles with high transition metal ion demand because metalloproteins are involved in the photosynthetic electron transport chain. The transition metal requirement of photosynthetic organisms greatly exceeds that of non-photosynthetic organisms, and either metal deficiency or metal excess strongly impacts photosynthetic functions. In chloroplasts, the transition metal ion requirement needs a homeostasis network that strictly regulates metal uptake, chelation, trafficking and storage since under some conditions metals cause toxicity. This review gives an overview of the current understanding of main features concerning the role of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) in plant photosynthesis as well as the mechanisms involved in their homeostasis within chloroplasts. The metalloproteins functioning in photosynthetic proteins of plants as well as those proteins participating in the metal transport and metal binding assembly are reviewed. Furthermore, the role of nickel (Ni) in artificial photosynthesis will be discussed.

  13. Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis

    Science.gov (United States)

    Rates of carbon dioxide assimilation through photosynthesis are readily modeled through the Farquhar, von Caemmerer and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 carbon assimilation. As models of CO2 assimilation are used more broadly for simula...

  14. Photosynthesis (The Path of Carbon in Photosynthesis and thePrimary Quantum Conversion Act of Photosynthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and i t s variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll i s a physical sensitizer handing i t s excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, i s given.

  15. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  16. Modelling Photosynthesis to Increase Conceptual Understanding

    Science.gov (United States)

    Ross, Pauline; Tronson, Deidre; Ritchie, Raymond J.

    2006-01-01

    Biology students in their first year at university have difficulty understanding the abstract concepts of photosynthesis. The traditional didactic lecture followed by practical exercises that show various macroscopic aspects of photosynthesis often do not help the students visualise or understand the submicroscopic (molecular-level) reactions that…

  17. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  18. Bioluminescence as a light source for photosynthesis.

    Science.gov (United States)

    Yuan, Huanxiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2013-11-25

    The luminol bioluminescence system containing luminol, hydrogen peroxide and HRP was used as a potential substitute light source of sunlight for the photosynthesis of plants, in which the electron flow of the photosynthesis process was proven using chloroplasts isolated from spinach leaves.

  19. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  20. Environmental and physiological control of dynamic photosynthesis

    NARCIS (Netherlands)

    Kaiser, M.E.

    2016-01-01

    Irradiance is the main driver of photosynthesis. In natural conditions, irradiance incident on a leaf often fluctuates, due to the movement of leaves, clouds and the sun. These fluctuations force photosynthesis to respond dynamically, however with delays that are subject to rate constants of

  1. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum.

    Science.gov (United States)

    Li, Tao; Liu, Li-Na; Jiang, Chuang-Dao; Liu, Yu-Jun; Shi, Lei

    2014-08-01

    In the field, close planting inevitably causes mutual shading and depression of leaf photosynthesis. To clarify the regulative mechanisms of photosynthesis under these conditions, the effects of planting density on leaf structure, gas exchange and proteomics were carefully studied in field-grown sorghum. In the absence of mineral deficiency, (1) close planting induced a significant decrease in light intensity within populations, which further resulted in much lower stomatal density and other anatomical characteristics associated with shaded leaves; (2) sorghum grown at high planting density had a lower net photosynthetic rate and stomatal conductance than those grown at low planting density; (3) approximately 62 protein spots changed their expression levels under the high planting density conditions, and 22 proteins associated with photosynthesis were identified by mass spectrometry. Further analysis revealed the depression of photosynthesis caused by mutual shading involves the regulation of leaf structure, absorption and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. Additionally, heat shock protein and oxygen-evolving enhancer protein play important roles in photoprotection in field-grown sorghum. A model for the regulation of photosynthesis under mutual shading was suggested based on our results. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  3. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  4. [Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems].

    Science.gov (United States)

    Zheng, You-fei; Hu, Cheng-da; Wu, Rong-jun; Liu, Rui-na; Zhao, Ze; Zhang, Jin-en

    2010-07-01

    Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched. Concrete expression of SOD activity first increased rapidly and then gradually decreased, the activity of POD showed a decrease firstly and then rapidly increased. From the jointing stage to the blooming stage and from the grain filling stage one to grain filling stage two, the activity of CAT rapidly increased first and then comparatively decreased, but the content of MDA kept steadily rising. The carotenoid content increased first and then decreased, heat dissipation of unit leaf area increased. These results indicate that antioxidant enzymes can not completely eliminate excessive reactive oxygen species in vivo of winter wheat, then lead to accumulation of reactive oxygen species, further exacerbate the lipid peroxidation, that result in the increase of membrane permeability, degradation of chlorophyll, reduction of net photosynthetic rate, imposing on the winter wheat leaves senescence process.

  5. From natural to artificial photosynthesis.

    Science.gov (United States)

    Barber, James; Tran, Phong D

    2013-04-06

    Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO(2)) emissions demands that stabilizing the atmospheric CO(2) levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an 'artificial leaf' able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural

  6. From natural to artificial photosynthesis

    Science.gov (United States)

    Barber, James; Tran, Phong D.

    2013-01-01

    Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO2) emissions demands that stabilizing the atmospheric CO2 levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an ‘artificial leaf’ able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural

  7. Regeneration of Ribulose 1,5-bisphosphate and Ribulose 1,5-bisphosphate carboxylase/oxygenase Activity Associated with Lack of Oxygen Inhibition of Photosynthesis at Low Temperature

    OpenAIRE

    H. Schnyder; MÄCHLER, F.; NÖSBERGER, J.

    2017-01-01

    The nature of the lack of oxygen inhibition of C3-photosynthesis at low temperature was investigated in white clover (Trifolium repens L.). Detached leaves were brought to steady-state photosynthesis in air (34 Pa p(CO2), 21 kPa p(O2), balance N2) at temperatures of 20°C and 8°C, respectively. Net photosynthesis, ribulose 1,5-bisphosphate (RuBP) and ATP contents, and ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities were followed before and after changing to 2·0 kPa p(O2). A...

  8. Lessons of Photosynthesis for Nanotechnologies

    Science.gov (United States)

    Sturgis, J. N.

    2013-05-01

    The last years have seen several major discoveries in the study of photosynthesis with a potentially large impact on the development of bio-inspired nanosciences. These discoveries include important aspects of different enzymes responsible for various reactions, notably the reaction that allows the photolysis of water. This makes possible important steps towards the realization of systems able to produce hydrogen and oxygen from water using light and also for non-polluting fuel cells. A second group of discoveries concerns the way light is concentrated in photosynthetic systems. This biological concentration system has been found in some circumstances to rely on long distance quantum effects, of interest both for the production of high efficiency photovoltaic devices, and for the production and evolution of quantum computing systems.

  9. Plasmon-induced artificial photosynthesis.

    Science.gov (United States)

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-06-06

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst.

  10. The oldest records of photosynthesis

    Science.gov (United States)

    Awramik, S. M.

    1992-01-01

    There is diverse, yet controversial fossil evidence for the existence of photosynthesis 3500 million years ago. Among the most persuasive evidence is the stromatolites described from low grade metasedimentary rocks in Western Australia and South Africa. Based on the understanding of the paleobiology of stromatolites and using pertinent fossil and Recent analogs, these Early Archean stromatolites suggest that phototrophs evolved by 3500 million years ago. The evidence allows further interpretation that cyanobacteria were involved. Besides stromatolites, microbial and chemical fossils are also known from the same rock units. Some microfossils morphologically resemble cyanobacteria and thus complement the adduced cyanobacterial involvement in stromatolite construction. If cyanobacteria had evolved by 3500 million years ago, this would indicate that nearly all prokaryotic phyla had already evolved and that prokaryotes diversified rapidly on the early Earth.

  11. Global Patterns in Human Consumption of Net Primary Production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  12. INTERACTIVE ILUSTRATION FOR PHOTOSYNTHESIS TEACHING

    Directory of Open Access Journals (Sweden)

    M.R. Pereira

    2004-05-01

    Full Text Available Computational resources became the major tool in the challenge of making high education moreeasy and motivating. Complex Biochemical pathways can now be presented in interactive and three-dimensional animations. One of the most complex (detailed and interesting metabolic pathway thatstudents must understand in biochemical courses is photosynthesis. The light-dependent reactionsare of special interest since they involve many dierent kinds of mechanisms, as light absorptionby membrane complexes, proteins movement inside membranes, reactions of water hydrolysis, andelectrons ow; making it dicult to understand by static bi-dimensional representations.The resources of animation and ActionScript programming were used to make an interactive ani-mation of photosynthesis, which at some times even simulates three-dimensionality. The animationbegins with a leaf and progressively zooms in, until we have a scheme of a tylakoyd membrane, whereeach of the dierent steps of the pathway can be clicked to reveal a more detailed scheme of it. Whereappropriate, the energy graphs are shown side by side with the reactions. The electron is representedwith a face, so it can be shown to be stressing while going up in the energy graphs. Finally, there isa simplied version of the whole pathway, to illustrate how it all goes together.The objective is to help professors on teaching the subject in regular classes, since currently allthe explanations are omitted. In a future version, texts will be added to each step so it can beself-explicative to the students, helping them even on home or on-line learning.

  13. Shallow cumulus rooted in photosynthesis

    Science.gov (United States)

    Vila-Guerau Arellano, J.; Ouwersloot, H.; Horn, G.; Sikma, M.; Jacobs, C. M.; Baldocchi, D.

    2014-12-01

    We investigate the interaction between plant evapotranspiration, controlled by photosynthesis (for a low vegetation cover by C3 and C4 grasses), and the moist thermals that are responsible for the formation and development of shallow cumulus clouds (SCu). We perform systematic numerical experiments at fine spatial scales using large-eddy simulations explicitly coupled to a plant-physiology model. To break down the complexity of the vegetation-atmospheric system at the diurnal scales, we design the following experiments with increasing complexity: (a) clouds that are transparent to radiation, (b) clouds that shade the surface from the incoming shortwave radiation and (c) plant stomata whose apertures react with an adjustment in time to cloud perturbations. The shading by SCu leads to a strong spatial variability in photosynthesis and the surface energy balance. As a result, experiment (b) simulates SCu that are characterized by less extreme and less skewed values of the liquid water path and cloud-base height. These findings are corroborated by the calculation of characteristics lengths scales of the thermals and clouds using autocorrelation and spectral analysis methods. We find that experiments (a) and (b) are characterized by similar cloud cover evolution, but different cloud population characteristics. Experiment (b), including cloud shading, is characterized by smaller clouds, but closer to each other. By performing a sensitivity analysis on the exchange of water vapor and carbon dioxide at the canopy level, we show that the larger water-use efficiency of C4 grass leads to two opposing effects that directly influence boundary-layer clouds: the thermals below the clouds are more vigorous and deeper driven by a larger buoyancy surface flux (positive effect), but are characterized by less moisture content (negative effect). We conclude that under the investigated mid-latitude atmospheric and well-watered soil conditions, SCu over C4 grass fields is characterized

  14. [Regulation of photosynthesis by light quality and its mechanism in plants].

    Science.gov (United States)

    Zheng, Jie; Hu, Mei-Jun; Guo, Yan-Ping

    2008-07-01

    Photosynthesis is the basis of plant growth and development. The regulations of photosynthesis by light quality include regulations of stomatal movement, leaf growth, chloroplast structure, photosynthetic pigment, D1 protein and its gene and photosynthetic carbon assimilation by visible light, and effect of ultraviolet light on photosystem II in plant. Blue light and red light can promote the opening of stomata, while the green light can close stomata. Blue light can improve the development of chloroplast, complex light of red, blue and green lights can expand leaf area, and red light can increase the accumulation of photosynthesis production. Effects of different light quality differ in various plants, organs and tissues. Blue light and far red light can promote the accumulation of psbA gene transcription. Most higher plants and green algae have highest photosynthesis rate in orange and red lights, secondly in blue-violet light, and minimum in green light. Ultraviolet light can decline the electron transfer activity of photosystem II. Moreover, questions regarding the effect of light quality on photosynthesis and some topics for future study were also discussed in this paper.

  15. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  16. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  17. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species.

    Science.gov (United States)

    Hu, Longxing; Wang, Zhaolong; Huang, Bingru

    2010-05-01

    Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re-watering in a C(3) perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, 'Midnight' (tolerant) and 'Brilliant' (sensitive), were subjected to drought stress for 15 days and then re-watered for 10 days in growth chambers. Single-leaf net photosynthetic rate (A), stomatal conductance (g(s)) and transpiration rate (Tr) decreased during drought, with a less rapid decline in 'Midnight' than in 'Brilliant'. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in 'Midnight' than in 'Brilliant'. The relationship between A and internal leaf CO(2) concentration (A/Ci curve) during drought and re-watering was analyzed to estimate the relative influence of stomatal and non-stomatal components on photosynthesis. Stomatal limitation (Ls %), non-stomatal limitation (Lns %), CO(2) compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in 'Midnight'. Maximum CO(2) assimilation rate (A(max)), carboxylation efficiency (CE) and mesophyll conductance (g(m)) declined, but 'Midnight' had significantly higher levels of A(max), CE and g(m) than 'Brilliant'. Maximum carboxylation rate of Rubisco (V(cmax)) and ribulose-1,5-bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (J(max)) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in 'Brilliant' than in 'Midnight'. After re-watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, g(s), Tr and Fv/Fm was only partially recovered, with a higher recovery level in 'Midnight' than in 'Brilliant'. Rubisco activity and

  18. Carbon-Fixing Reactions of Photosynthesis.

    Science.gov (United States)

    2016-07-01

    Summaryplantcell;28/7/tpc.116.tt0716/FIG1F1fig1Photosynthesis in plants converts the energy of sunlight into chemical energy. Although photosynthesis involves many proteins and catalytic processes, it often is described as two sets of reactions, the light-dependent reactions and the carbon-fixing reactions. This lesson introduces the core biochemistry of the carbon-fixing reactions of photosynthesis, as well as its variations, C4 and CAM. Finally, it addresses how and why plants are affected by rising atmospheric CO2 levels, and research efforts to increase photosynthetic efficiency in current and future conditions. © 2016 American Society of Plant Biologists. All rights reserved.

  19. The Path of Carbon in Photosynthesis

    Science.gov (United States)

    Calvin, M.; Benson, A. A.

    1948-03-08

    The dark fixation of carbon dioxide by green algae has been investigated and found to be closely related to photosynthesis fixation. By illumination in the absence of carbon dioxide followed by treatment with radioactive carbon dioxide in the dark, the amount fixed has been increased ten to twenty fold. This rate of maximum fixation approaches photosynthesis maximum rates. The majority of the radioactive products formed under these conditions have been identified and isolated and the distribution of labeled carbon determined. From these results a tentative scheme for the mechanism of photosynthesis is set forth.

  20. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  1. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  2. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  3. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  4. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  5. Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert.

    Science.gov (United States)

    Huxman, Travis E; Smith, Stanley D

    2001-07-01

    Annual and short-lived perennial plant performance during wet years is important for long-term persistence in the Mojave Desert. Additionally, the effects of elevated CO2 on desert plants may be relatively greater during years of high resource availability compared to dry years. Therefore, during an El Niño year at the Nevada Desert FACE Facility (a whole-ecosystem CO2 manipulation), we characterized photosynthetic investment (by assimilation rate-internal CO2 concentration relationships) and evaluated the seasonal pattern of net photosynthesis (A net) and stomatal conductance (g s) for an invasive annual grass, Bromus madritensis ssp. rubens and a native herbaceous perennial, Eriogonum inflatum. Prior to and following flowering, Bromus showed consistent increases in both the maximum rate of carboxylation by Rubisco (V Cmax) and the light-saturated rate of electron flow (J max) at elevated CO2. This resulted in greater A net at elevated CO2 throughout most of the life cycle and a decrease in the seasonal decline of maximum midday A net upon flowering as compared to ambient CO2. Eriogonum showed significant photosynthetic down-regulation to elevated CO2 late in the season, but the overall pattern of maximum midday A net was not altered with respect to phenology. For Eriogonum, this resulted in similar levels of A net on a leaf area basis as the season progressed between CO2 treatments, but greater photosynthetic activity over a typical diurnal period. While g s did not consistently vary with CO2 in Bromus, it did decrease in Eriogonum at elevated CO2 throughout much of the season. Since the biomass of both plants increased significantly at elevated CO2, these patterns of gas exchange highlight the differential mechanisms for increased plant growth. The species-specific interaction between CO2 and phenology in different growth forms suggests that important plant strategies may be altered by elevated CO2 in natural settings. These results indicate the importance of

  6. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark....... The longitudinal study on the high-tech cluster reveals that technological lock-in and exit of key firms have contributed to decline. Entrepreneurship has a positive effect on the cluster’s adaptive capabilities, while multinational companies have contradicting effects by bringing in new resources to the cluster...

  7. US Historic Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This programs derives a table of secular change in magnetic declination for a specified point in the conterminous United States. It utilizes the USD polynomial and...

  8. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    Science.gov (United States)

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production.

  9. Final report, Feedback limitations of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D.

    1999-07-22

    Final report of research on carbon metabolism of photosynthesis. The feedback from carbon metabolism to primary photosynthetic processes is summarized, and a comprehensive list of published scientific papers is provided.

  10. The carbon (formerly dark) reactions of photosynthesis.

    Science.gov (United States)

    Buchanan, Bob B

    2016-05-01

    In this brief account, I describe the background for dividing photosynthesis into "light" and "dark" reactions and show how this concept changed to "light" and "carbon" reactions as science in the field advanced.

  11. Artificial Photosynthesis with Semiconductor-Liquid Junctions

    National Research Council Canada - National Science Library

    Guijarro, Néstor; Formal, Florian Le; Sivula, Kevin

    2015-01-01

    .... solar fuel engineering. In this review we give an overview of the field of artificial photosynthesis using a semiconductor-electrolyte interface employed in a photoelectrochemical device or as a heterogeneous photocatalyst...

  12. Using photosynthesis to detect plant stress

    Science.gov (United States)

    1994-01-01

    Two Stennis Space Center scientists use a photosynthesis measuring system on a pine tree at the Harrison County Experimental Forest about 15 miles north of Gulfport, Miss. The scientists have discovered a new method of detecting plant stress.

  13. A quantum protective mechanism in photosynthesis

    NARCIS (Netherlands)

    Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R.

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product

  14. Photorespiration and the potential to improve photosynthesis.

    Science.gov (United States)

    Hagemann, Martin; Bauwe, Hermann

    2016-12-01

    The photorespiratory pathway, in short photorespiration, is an essential metabolite repair pathway that allows the photosynthetic CO2 fixation of plants to occur in the presence of oxygen. It is necessary because oxygen is a competing substrate of the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase, forming 2-phosphoglycolate that negatively interferes with photosynthesis. Photorespiration very efficiently recycles 2-phosphoglycolate into 3-phosphoglycerate, which re-enters the Calvin-Benson cycle to drive sustainable photosynthesis. Photorespiration however requires extra energy and re-oxidises one quarter of the 2-phosphoglycolate carbon to CO2, lowering potential maximum rates of photosynthesis in most plants including food and energy crops. This review discusses natural and artificial strategies to reduce the undesired impact of air oxygen on photosynthesis and in turn plant growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Steady‐state models of photosynthesis

    National Research Council Canada - National Science Library

    CAEMMERER, SUSANNE

    2013-01-01

    .... Despite these shortcomings steady‐state models of photosynthesis provide simple easy to use tools for thought experiments to explore photosynthetic pathway changes such as redirecting photorespiratory CO 2 , inserting bicarbonate...

  16. Photobioreactors to Accelerate Our Understanding of Photosynthesis

    Science.gov (United States)

    2012-05-12

    genes required for photosynthesis in green algae: 1) Characterized the growth rates of wild-type under different light intensities , 2) Demonstrated...green algae: 1) Characterized the growth rates of a Chlamydomonas wild-type strain as a function of different light intensities . 2) Tested our...our ability to measure growth rates in a pool of 2,000 mutnats, 3) Ran a proof-of-concept screen of 20,000 mutants. Photobioreactors, photosynthesis

  17. Foliar phloem infrastructure in support of photosynthesis

    OpenAIRE

    William Walter Adams; Christopher M Cohu; Onno eMuller; Barbara eDemmig-Adams

    2013-01-01

    Acclimatory adjustments of foliar minor loading veins in response to growth at different temperatures and light intensities are evaluated. These adjustments are related to their role in providing infrastructure for the export of photosynthetic products as a prerequisite for full acclimation of photosynthesis to the respective environmental conditions. Among winter-active apoplastic loaders, higher photosynthesis rates were associated with greater numbers of sieve elements per minor vein as we...

  18. Environmental and physiological control of dynamic photosynthesis

    OpenAIRE

    Kaiser, M.E.

    2016-01-01

    Irradiance is the main driver of photosynthesis. In natural conditions, irradiance incident on a leaf often fluctuates, due to the movement of leaves, clouds and the sun. These fluctuations force photosynthesis to respond dynamically, however with delays that are subject to rate constants of underlying processes, such as regulation of electron transport, activation states of enzymes in the Calvin cycle, and stomatal conductance (gs). For example, in leaves adapted to low irradiance that are s...

  19. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  1. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  2. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  3. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  4. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  5. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    Science.gov (United States)

    Yue, Xu; Keenan, Trevor F; Munger, William; Unger, Nadine

    2016-11-01

    Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O3 ] as a predictor was slight, and independent of O3 concentrations, which suggests limited high-frequency O3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O3 inhibition of 10.4% for 1992-2011. A decline of [O3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m(-2)  s(-1)  yr(-1) , which is negligible relative to the total observed GPP trend of 0.41 μmol C m(-2)  s(-1)  yr(-1) . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O3 ], thus helping to buffer the changes of total photosynthesis due to varied [O3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems. © 2016 John Wiley & Sons Ltd.

  6. Symbiodinium photosynthesis in Caribbean octocorals.

    Directory of Open Access Journals (Sweden)

    Blake D Ramsby

    Full Text Available Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals. Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9 and P. wagenaari (n = 6 colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and

  7. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  8. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  9. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  10. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Science.gov (United States)

    Comeau, Steeve; Edmunds, Peter J.; Lantz, Coulson A.; Carpenter, Robert C.

    2017-07-01

    The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet-PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet-PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  11. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  12. Well production decline

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, Branimir

    2008-12-15

    Effective rate-time analysis during a declining production in an oil or gas wells is an important tool for establishing a successful management. The reasons behind the production decline include reservoir, fracture and well conditions. A well's decline rate is transient, signifying that the pressure wave propagates freely from the wellbore, leading to depletion when the outer boundary for the well is reached and to the wave propagation coming to a halt. This thesis studies the transient decline, with emphasis on a horizontal well with fracture wellbore responses. It also deals with the depletion decline, investigating the wellbore pressure responses for a vertical well producing under variable rate conditions of Arps decline. The well decline model solutions are analytical, and the modelling itself is carried out in two steps. The first step involves modelling the transient well responses of a multi fractured horizontal well. These responses originate from an infinitive reservoir and are considered as full-time rate-time responses. Multi-fractured horizontal well rate-time responses represent the solutions to a diffusion equation with varying boundary conditions and different fracture options (i.e., with or without fracture, a variety of fracture orientations, various fracture lengths, etc). The transient model calculates individual fracture rates, productivity indexes and an equivalent wellbore radius for the multi-fractured well. For the transient decline of a fractured-horizontal well model, well data is matched and the reservoir diagnosis and production prognosis are improved through the individual fracture production, with a model screening ability, and novel model features that can handle wellbore conditions changing from rate-to-pressure. Screening analyses can generate valuable information for fracture diagnosis in addition to a well and fracture production prognosis. Further model runs are carried out to match the real well data. The model solution is

  13. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  14. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  15. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  16. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  17. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  18. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  19. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  20. Senescence-induced loss in photosynthesis enhances cell wall beta-glucosidase activity.

    Science.gov (United States)

    Mohapatra, Pranab Kishor; Patro, Lichita; Raval, Mukesh Kumar; Ramaswamy, Nemmara Krishnan; Biswal, Udaya Chand; Biswal, Basanti

    2010-03-01

    A link between senescence-induced decline in photosynthesis and activity of beta-glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50 degrees C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall-bound beta-glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy-dependent senescence program.

  1. Sixty years in algal physiology and photosynthesis.

    Science.gov (United States)

    Pirson, A

    1994-06-01

    This personal perspective records research experiences in chemistry and biology at four German universities, two before and two after World War II. The research themes came from cytophysiology of green unicellular algae, in particular their photosynthesis. The function of inorganic ions in photosynthesis and dark respiration was investigated at different degrees of specific mineral stress (deficiencies), and the kinetics of recovery followed after the addition of the missing element. Two types of recovery of photosynthesis were observed: indirect restitution via growth processes and immediate normalisation. From the latter case (K(+), phosphate, Mn(++)) the effect of manganese was emphasized as its role in photosynthetic O2 evolution became established during our research. Other themes of our group, with some bearing on photosynthesis were: synchronization of cell growth by light-dark change and effects of blue (vs. red) light on the composition of green cells. Some experiences in connection with algal mass cultures are included. Discussion of several editorial projects shows how photosynthesis, as an orginally separated field of plant biochemistry and biophysics, became included into general cell physiology and even ecophysiology of green plants. The paper contains an appreciation of the authors' main mentor Kurt Noack (1888-1963) and of Ernst Georg Pringsheim (1881-1970), founder of experimental phycology.

  2. Framing fishery decline

    NARCIS (Netherlands)

    Bush, S.R.

    2005-01-01

    Fishery decline is interpreted in a number of ways. These interpretations vary considerably from one observer to another, depending on the level at which each interacts with the fishery. Fish stock assessments, predominantly carried out through environmental impact statements, are often not

  3. Effect of water stress on photosynthesis and related parameters in Pinus halepensis

    Energy Technology Data Exchange (ETDEWEB)

    Melzack, R.N.; Bravdo, B.; Riov, J.

    1985-01-01

    Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6-7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of -0.8 MPa, whereas mesophyll resistance started to increase at about -1.4 MPa. Decreasing xylem water potentials increased the CO/sub 2/ compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.

  4. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry......). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...

  5. Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides x nigra.

    Science.gov (United States)

    Ow, Lai Fern; Griffin, Kevin L; Whitehead, David; Walcroft, Adrian S; Turnbull, Matthew H

    2008-01-01

    Dark respiration and photosynthesis were measured in leaves of poplar Populus deltoides x nigra ('Veronese') saplings to investigate the extent of respiratory and photosynthetic acclimation in pre-existing and newly emerged leaves to abrupt changes in air temperature. The saplings were grown at three temperature regimes and at high and low nitrogen availabilities. Rates of photosynthesis and dark respiration (R(d)) were measured at the initial temperature and the saplings were then transferred to a different temperature regime, where the plants remained for a second and third round of measurements on pre-existing and newly emerged leaves. Acclimation of photosynthesis was limited following transfer to warmer or cooler growing conditions. There was strong evidence of cold and warm acclimation of R(d) to growth temperature, but this was limited in pre-existing leaves. Full acclimation of R(d )was restricted to newly emerged leaves grown at the new growth temperature. These findings indicate that the extent of thermal acclimation differs significantly between photosynthesis and respiration. Importantly, pre-existing leaves in poplar were capable of some respiratory acclimation, but full acclimation was observed only in newly emerged leaves. The R(d)/A(max) ratio declined at higher growth temperatures, and nitrogen status of leaves had little impact on the degree of acclimation.

  6. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    Science.gov (United States)

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  7. Artificial photosynthesis for solar water-splitting

    Science.gov (United States)

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.

    2012-08-01

    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  8. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  9. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization.

    Science.gov (United States)

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11-4.28 and 4.78-7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52-3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48-4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26-9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield.

  10. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    Science.gov (United States)

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  11. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  12. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  14. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  15. Modified water regimes affect photosynthesis, xylem water potential, cambial growth and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae)

    Science.gov (United States)

    James P. Dunn; Peter L. Jr. Lorio

    1993-01-01

    We modified soil water supply to two groups of juvenile loblolly pines, Pinus taeda L., by sheltering or irrigating root systems in early summer or in later summer and measured oleoresin flow (primary defense), net photosynthesis, xylem water potential, and cambial growth throughout the growing season. When consistent significant differences in...

  16. Effect of temperature and CO2-enrichment on photosynthesis and the levels of carbohydrates and isoprenoid pathway products in guayule, a latex producing shrub

    Science.gov (United States)

    The stems and roots of the desert shrub guayule, Parthenium argentatum, contain a significant amount of latex, a potential source of natural rubber. To determine the factors regulating carbon partitioning, net photosynthesis (Pn) and the levels of carbohydrates and isoprenoid compounds were measured...

  17. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  18. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2011-01-01

    [CO2; free air CO2 enrichment (FACE)], drought (D; water-excluding curtains), and night-time warming (T; infrared-reflective curtains) in a temperate heath. A/Ci curves were measured, allowing analysis of light-saturated net photosynthesis (Pn), light- and CO2-saturated net photosynthesis (Pmax......), stomatal conductance (gs), the maximal rate of Rubisco carboxylation (Vcmax), and the maximal rate of ribulose bisphosphate (RuBP) regeneration (Jmax) along with leaf δ13C, and carbon and nitrogen concentration on a monthly basis in the grass Deschampsia flexuosa. Seasonal drought reduced Pn via gs......, but severe (experimental) drought decreased Pn via a reduction in photosynthetic capacity (Pmax, Jmax, and Vcmax). The effects were completely reversed by rewetting and stimulated Pn via photosynthetic capacity stimulation. Warming increased early and late season Pn via higher Pmax and Jmax. Elevated CO2 did...

  19. Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought.

    Science.gov (United States)

    Basu, P S; Ali, Masood; Chaturvedi, S K

    2007-03-01

    Eight chickpea advanced breeding lines (ABLs) and their parents were evaluated for osmotic adjustment (OA), leaf carbohydrates and gas exchange under dryland field . These (ABLs) were derived from crosses between CTS 60543 x Kaniva and Tyson x Kaniva. Mean leaf water potential (LWP) fell down from -1.00 MPa at pre-stress level to about -2.25 MPa during terminal stress. Relative water content (RWC) showed periodic changes with alternate decrease or increase at certain interval, which also influenced the values of OA (low or high) in number of genotypes e.g. Kaniva, CTS 60543, Tyson and M 75. Significant variation in OA ranging 0.45 to 0.88 MPa was observed at high level of stress at -2.5 MPa. However, none of the genotypes showed stability of OA over the period of stress. Leaf starch declined even at mild stress (LWP, -1.6 MPa) resulting in an increase in hexose sugars and activation state of sucrose-phosphate synthase (SPS) that led to accumulation of sucrose. Both photosynthesis (Pmax) and transpiration decreased concurrently in two chickpea lines M 129 and Tyson with increasing water stress. However, rate of decline in the photosynthesis slowed down even drought was further intensified. The observed periodic changes in OA, RWC and photosynthesis appeared to be associated with drought-induced changes in SPS and carbohydrates which modify water uptake of the leaves.

  20. Carbon economics of LAI drive photosynthesis patterns across an Amazonian precipitation gradient

    Science.gov (United States)

    Flack, Sophie; Williams, Mathew; Meir, Patrick; Malhi, Yadvinder

    2017-04-01

    The Amazon rainforest is an integral part of the terrestrial carbon cycle, yet whilst the physiological response of its plants to water availability is increasingly well quantified, constraints to photosynthesis through adaptive response to precipitation regime have received little attention. We use the Soil Plant Atmosphere model to apportion variation in photosynthesis to individual drivers for plots with detailed measurements of carbon cycling, leaf traits and canopy properties, along an Amazonian mean annual precipitation (MAP) gradient. We hypothesised that leaf area index (LAI) would be the principal driver of variation in photosynthesis. Differences in LAI are predicted to result from economic factors; plants balance the carbon cost of leaf construction and maintenance with assimilation potential, to maximise canopy carbon export. Model analysis showed that LAI was the primary driver of differences in GPP along the precipitation gradient, accounting for 49% of observed variation. Meteorology accounted for 19%, whilst plant traits accounted for only 5%. To explain the observed spatial trends in LAI we undertook model experiments. For each plot the carbon budget was quantified iteratively using the field measured LAI time-series of the other plots, keeping meteorology, soil and plant traits constant. The mean annual LAI achieving maximum photosynthesis and net canopy carbon export increased with MAP, reflecting observed LAI trends. At the driest site, alternative, higher LAI strategies were unsustainable. The carbon cost of leaf construction and maintenance was disproportional to GPP achieved. At high MAP, increased foliar carbon costs were remunerative and GPP was maximised by high LAI. Our evidence therefore suggests that observed LAI trends across the precipitation gradient are driven by carbon economics. Forests LAI response to temporal changes in precipitation reflects trends observed across spatial gradients, identifying LAI as a key mechanism for plant

  1. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  2. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2016-01-01

    Full Text Available Dramatic increase in the use of nanoparticles (NPs in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ~20% and 80%, respectively, in comparison to the control. Pigments measurement showed Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO, CHLOROPHYLL SYNTHASE (CHLG, COPPER RESPONSE DEFECT 1 (CRD1, MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM and MG-CHELATASE SUBUNIT D (CHLD, and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2, PHOTOSYSTEM I SUBUNIT E-2 (PSAE2, PHOTOSYSTEM I SUBUNIT K (PSAK and PHOTOSYSTEM I SUBUNIT K (PSAN were reduced about 5-fold in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6, PHYTOENE SYNTHASE (PSY PHYTOENE DESATURASE (PDS, and ZETA-CAROTENE DESATURASE (ZDS were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  3. Response of photosynthesis in the leaves of cucumber seedlings to light intensity and CO2 concentration under nitrate stress

    OpenAIRE

    Yang, Xiaoyu; Wang, Xiufeng; Wei, Min

    2014-01-01

    The effects of 2 nitrate levels, 14 (CK) and 140 mmol L-1 (T), on the leaf gas exchange variables of cucumber (Cucumis sativus L. cv. Xintaimici) seedlings grown in hydroponic culture were investigated. Photosynthetic light- and CO2-response curves from CK and T seedlings were determined and used for the analysis of photosynthetic capacity. The results showed that nitrate stress resulted in a significant reduction of net photosynthesis of T seedlings compared with CK. At the same time, the ap...

  4. EFFECT OF AIR TEMPERATURE ON LEAF PHOTOSYNTHESIS IN ELDER

    OpenAIRE

    Monica Popescu

    2012-01-01

    Temperature with solar radiation intensity is the main external factor affecting photosynthesis process. Measurements were collected in the 2011 growing season. Photosynthesis and respiration measurements were made at Sambucus nigra leaves with a CO2 analyzer. The aim was to develop a model of photosynthesis in relation to temperature (which is in close relationship with air humidity). Photosynthesis of Sambucus nigra leaves is sensitive to temperature with an optimum around 25-28oC and rates...

  5. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  6. La plataforma .NET

    OpenAIRE

    Fornas Estrada, Miquel

    2008-01-01

    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  7. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  8. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  9. Natural genetic variation in Arabidopsis thaliana photosynthesis

    NARCIS (Netherlands)

    Flood, P.J.

    2015-01-01

    Oxygenic photosynthesis is the gateway of the sun’s energy into the biosphere, it is where light becomes life. Genetic variation is the fuel of evolution, without it natural selection is powerless and adaptation impossible. In this thesis I have set out to study a relatively unexplored field

  10. Natural genetic variation in plant photosynthesis

    NARCIS (Netherlands)

    Flood, P.J.; Harbinson, J.; Aarts, M.G.M.

    2011-01-01

    Natural genetic variation in plant photosynthesis is a largely unexplored and as a result an underused genetic resource for crop improvement. Numerous studies show genetic variation in photosynthetic traits in both crop and wild species, and there is an increasingly detailed knowledge base

  11. Applying photosynthesis research to increase crop yields

    Science.gov (United States)

    Clayton C. Black; Shi-Jean S. Sung; Kristina Toderich; Pavel Yu Voronin

    2010-01-01

    This account is dedicated to Dr. Guivi Sanadze for his career long devotion to science and in recognition of his discovery of isoprene emission by trees during photosynthesis. Investigations on the emission of isoprene and other monoterpenes now have been extended globally to encompass other terrestrial vegetation, algae, waters, and marine life in the world's...

  12. Multiporous Supramolecular Microspheres for Artificial Photosynthesis.

    Science.gov (United States)

    Tao, Kai; Xue, Bin; Frere, Samuel; Slutsky, Inna; Cao, Yi; Wang, Wei; Gazit, Ehud

    2017-05-23

    Artificial photosynthesis shows a promising potential for sustainable supply of nutritional ingredients. While most studies focus on the assembly of the light-sensitive chromophores to 1-D architectures in an artificial photosynthesis system, other supramolecular morphologies, especially bioinspired ones, which may have more efficient light-harvesting properties, have been far less studied. Here, MCpP-FF, a bioinspired building block fabricated by conjugating porphyrin and diphenylalanine, was designed to self-assemble into nanofibers-based multiporous microspheres. The highly organized aromatic moieties result in extensive excitation red-shifts and notable electron transfer, thus leading to a remarkable attenuated fluorescence decay and broad-spectrum light sensitivity of the microspheres. Moreover, the enhanced photoelectron production and transfer capability of the microspheres are demonstrated, making them ideal candidates for sunlight-sensitive antennas in artificial photosynthesis. These properties induce a high turnover frequency of NADH, which can be used to produce bioproducts in biocatalytic reactions. In addition, the direct electron transfer makes external mediators unnecessary, and the insolubility of the microspheres in water allows their easy retrieval for sustainable applications. Our findings demonstrate an alternative to design new platforms for artificial photosynthesis, as well as a new type of bioinspired, supramolecular multiporous materials.

  13. Canopy Photosynthesis: From Basics to Applications

    NARCIS (Netherlands)

    Hikosaka, Kouki; Niinemets, Ülo; Anten, N.P.R.

    2016-01-01

    A plant canopy, a collection of leaves, is an ecosystem-level unit of photosynthesis that assimilates carbon dioxide and exchanges other gases and energy with the atmosphere in a manner highly sensitive to ambient conditions including atmospheric carbon dioxide and water vapor concentrations, light

  14. Advantages and disadvantages on photosynthesis measurement ...

    African Journals Online (AJOL)

    Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to molecular reaction centers for conversion into chemical energy with nearly 100% efficiency. Speed is the key as the transfer of the solar energy takes place almost instantaneously such that little energy is wasted as heat.

  15. Isoprene emission and photosynthesis during heatwaves and drought in black locust

    Directory of Open Access Journals (Sweden)

    I. Bamberger

    2017-08-01

    Full Text Available Extreme weather conditions like heatwaves and drought can substantially affect tree physiology and the emissions of isoprene. To date, however, there is only limited understanding of isoprene emission patterns during prolonged heat stress and next to no data on emission patterns during coupled heat–drought stress or during post-stress recovery. We studied gas exchange and isoprene emissions of black locust trees under episodic heat stress and in combination with drought. Heatwaves were simulated in a controlled greenhouse facility by exposing trees to outside temperatures +10 °C, and trees in the heat–drought treatment were supplied with half of the irrigation water given to heat and control trees. Leaf gas exchange of isoprene, CO2 and H2O was quantified using self-constructed, automatically operating chambers, which were permanently installed on leaves (n = 3 per treatment. Heat and combined heat–drought stress resulted in a sharp decline of net photosynthesis (Anet and stomatal conductance. Simultaneously, isoprene emissions increased 6- to 8-fold in the heat and heat–drought treatment, which resulted in a carbon loss that was equivalent to 12 and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15-day-long heatwaves, stomatal conductance remained reduced, while isoprene emissions and Anet recovered quickly to values of the control trees. Further, we found that isoprene emissions covaried with Anet during nonstress conditions, while during the heatwaves, isoprene emissions were not related to Anet but to light and temperature. Under standard air temperature and light conditions (here 30 °C and photosynthetically active radiation of 500 µmol m−2 s−1, isoprene emissions of the heat trees were by 45 % and the heat–drought trees were by 27 % lower than in control trees. Moreover, temperature response curves showed that not only the isoprene emission

  16. Isoprene emission and photosynthesis during heatwaves and drought in black locust

    Science.gov (United States)

    Bamberger, Ines; Ruehr, Nadine K.; Schmitt, Michael; Gast, Andreas; Wohlfahrt, Georg; Arneth, Almut

    2017-08-01

    Extreme weather conditions like heatwaves and drought can substantially affect tree physiology and the emissions of isoprene. To date, however, there is only limited understanding of isoprene emission patterns during prolonged heat stress and next to no data on emission patterns during coupled heat-drought stress or during post-stress recovery. We studied gas exchange and isoprene emissions of black locust trees under episodic heat stress and in combination with drought. Heatwaves were simulated in a controlled greenhouse facility by exposing trees to outside temperatures +10 °C, and trees in the heat-drought treatment were supplied with half of the irrigation water given to heat and control trees. Leaf gas exchange of isoprene, CO2 and H2O was quantified using self-constructed, automatically operating chambers, which were permanently installed on leaves (n = 3 per treatment). Heat and combined heat-drought stress resulted in a sharp decline of net photosynthesis (Anet) and stomatal conductance. Simultaneously, isoprene emissions increased 6- to 8-fold in the heat and heat-drought treatment, which resulted in a carbon loss that was equivalent to 12 and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15-day-long heatwaves, stomatal conductance remained reduced, while isoprene emissions and Anet recovered quickly to values of the control trees. Further, we found that isoprene emissions covaried with Anet during nonstress conditions, while during the heatwaves, isoprene emissions were not related to Anet but to light and temperature. Under standard air temperature and light conditions (here 30 °C and photosynthetically active radiation of 500 µmol m-2 s-1), isoprene emissions of the heat trees were by 45 % and the heat-drought trees were by 27 % lower than in control trees. Moreover, temperature response curves showed that not only the isoprene emission factor changed during both heat and heat

  17. Apparent photosynthesis and leaf stomatal diffusion in EDU treated ozone-sensitive bean plants

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.H.; Lee, E.H.; Heggestad, H.H.

    1978-01-01

    A new chemical, N-(2-(2-oxo-1-imidazolindinyl)ethyl)-N'-phenylurea (EDU), prevents O/sub 3/ injury to Bush Blue Lake 290 (BBL 290) leaves. Studies utilizing the chemical to understand the physiological and biochemical mechanisms of plant tolerance to O/sub 3/ required investigations into whether or not EDU altered stomatal diffusion rates and net photosynthesis Q/sub CO/sub 2//. This study indicates there were no significant differences in leaf conductance or Q/sub CO/sub 2// in soil-grown plants treated with EDU soil applications up to 50 mg/(15-cm dia.) pot. 11 references, 1 figure.

  18. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling

    OpenAIRE

    Yin, X; Struik, P.C.

    2009-01-01

    Nearly three decades ago Farquhar, von Caemmerer and Berry published a biochemical model for C3 photosynthetic rates (the FvCB model). The model predicts net photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assimilation (Ac) and the electron transport-limited rate of CO2 assimilation (Aj). Given its simplicity and the growing availability of the required enzyme kinetic constants, the FvCB model has been used for a wide range of studies, from analysing underlying C3 leaf bi...

  19. Photosynthesis and wood structure in Pinus radiata D. Don during dehydration and immediately after rewatering

    Energy Technology Data Exchange (ETDEWEB)

    Sheriff, D.W.; Whitehead, D.

    1984-01-01

    Experiments were carried out on Pinus radiata (D. Don) trees grown as cuttings from clonal parent stock. Some of these trees were about 0.4 m high while others were about 5 m high; all were grown in containers. The stem diameters at the tops and at the bottoms of the large trees, rates of photosynthesis, and needle water potentials were measured both when the trees were well watered and as they dehydrated after water was withheld. The water potentials of well-watered plants was highest in the small trees and lowest at the top of the large trees. When water was withheld, photosynthesis was in most cases unaffected by a small reduction in water potential, but the rate of photosynthesis fell as water potentials declined further. The stems of the large trees expanded at a constant rate when the trees were well watered and for part of the dehydration period, while subsequent stem shrinkage and the fall in photosynthesis both occurred at approximately the same time. Water potentials increased little in the 24 hours after rewatering and significant rates of photosynthesis were not measured until 2 or 3 days later while renewed stem expansion was not measured until 2 days after rewatering. Water deficits reduced the lumen diameter of newly matured stem tracheids, but increased the thickness of their walls. After 1 month of water potentials of about - 2.4 MPa, tracheid lumen diameter and wall thickness were both much reduced, and this reduction continued in tracheids maturing shortly after rewatering. 18 references.

  20. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  1. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  2. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  3. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  4. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  5. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  6. Identifying functional decline: a methodological challenge

    Directory of Open Access Journals (Sweden)

    Grimmer K

    2013-08-01

    changes in one were not generally correlated with changes in another. This result suggests that a wider measurement net could be cast to identify individuals who may not be coping safely or independently in the community after a minor health crisis. Individuals who declined in at least one outcome measure at 1 month, generally continued to decline over the next 2 months, thus suggesting early opportunities to screen and intervene to slow FD. Keywords: IADL, falls, hospitalization, quality of life, emergency department

  7. Conversion of a moderately rewetted fen to a shallow lake - implications for net CO2 exchange

    Science.gov (United States)

    Koebsch, Franziska; Glatzel, Stephan; Hofmann, Joachim; Forbrich, Inke; Jurasinski, Gerald

    2013-04-01

    Extensive rewetting projects to re-establish the natural carbon (C) sequestration function of degraded peatlands are currently taking place in Europe and North-America. Year-round flooding provides a robust measure to prevent periods of drought that are associated with ongoing peat mineralization and to initiate the accumulation of new organic matter. Here, we present measurements of net carbon dioxide (CO2) exchange during the gradual conversion of a moderately rewetted fen to a shallow lake. When we started our measurements in 2009, mean growing season water level (MWGL) was 0 cm. In 2010 the site was flooded throughout the year with MWGL of 36 cm. Extraordinary strong rainfalls in July 2011 resulted in a further increase of MWGL to 56 cm. Measurements of net ecosystem exchange (NEE) were conducted during growing seasons (May-October) using the Eddy Covariance method. Information about vegetation vitality was deduced from the enhanced vegetation index (EVI) based on MODIS data. Ecosystem respiration (Reco) and gross ecosystem production (GEP) were high during vegetation period 2009 (1273.4 and -1572.1 g CO2-C m-2), but decreased by 61 and 46% respectively when the fen was flooded throughout 2010. Under water-logged conditions, heterotrophic respiration declines and gas exchange is limited. Moreover, flooding is a severe stress factor for plants and decreases autotrophic respiration and photosynthesis. However, in comparison to 2010, rates of Reco and GEP doubled during the beginning of growing season 2011, indicating plastic response strategies of wetland plants to flooding. Presumably, plants were not able to cope with the further increase of water levels to up to 120 cm in June/July 2011, resulting in another drop of GEP and Reco. The effects of plant vitality on GEP were confirmed by the remote sensed vegetation index. Throughout all three growing seasons, the fen was a distinct net CO2 sink (2009: -333.3±12.3, 2010: -294.1±8.4, -352.4±5.1 g CO2-C m-2

  8. [Employment, a declining value].

    Science.gov (United States)

    Deberdt, Jean-Patrick

    2002-03-23

    Because of increase in unemployment, and the consequent lack of job security and exclusion it leads to, the positive bond associated with work has, globally, been broken. Success both in professional and private life has become a competing aspiration, with a decreasing tendency to sacrifice one's private life for one's work. Physicians are also affected by this tendency and a major link has been broken in the attachment of the medical corps to their work. The fact that work is considered as a declining value, also in the health sector, corresponds to specific economic and societal phenomena. The repositioning of health in the economic activity, the re-definition of the medical professions with their specific competence, are presently under discussion.

  9. Mangrove forest decline

    DEFF Research Database (Denmark)

    Malik, Abdul; Mertz, Ole; Fensholt, Rasmus

    2017-01-01

    Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds...... and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from...... satellite imagery and a survey of households, we provide an estimate of the mangrove change in the Takalar District during 1979–2011 and the consequences of those changes. Mangrove forest areas were reduced by 66.05 % (3344 hectares) during the 33-year period of analysis, and the biggest annual negative...

  10. A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis.

    Science.gov (United States)

    Kruse, Jörg; Alfarraj, Saleh; Rennenberg, Heinz; Adams, Mark

    2016-07-01

    Steady-state rates of leaf CO2 assimilation (A) in response to incubation temperature (T) are often symmetrical around an optimum temperature. A/T curves of C3 plants can thus be fitted to a modified Arrhenius equation, where the activation energy of A close to a low reference temperature is strongly correlated with the dynamic change of activation energy to increasing incubation temperature. We tested how [CO2] light, or [CO2] at 800 µmol mol(-1) and variable light affect parameters that describe A/T curves, and how these parameters are related to known properties of temperature-dependent thylakoid electron transport. Variation of light intensity and substomatal [CO2] had no influence on the symmetry of A/T curves, but significantly affected their breadth. Thermodynamic and kinetic (physiological) factors responsible for (i) the curvature in Arrhenius plots and (ii) the correlation between parameters of a modified Arrhenius equation are discussed. We argue that the shape of A/T curves cannot satisfactorily be explained via classical concepts assuming temperature-dependent shifts between rate-limiting processes. Instead the present results indicate that any given A/T curve appears to reflect a distinct flux mode, set by the balance between linear and cyclic electron transport, and emerging from the anabolic demand for ATP relative to that for NADPH.

  11. Does the 14C method estimate net photosynthesis? II. Implications from cyclostat studies of marine phytoplankton

    Science.gov (United States)

    Pei, Shaofeng; Laws, Edward A.

    2014-09-01

    Two species of marine phytoplankton, Isochrysis galbana and Chlorella kessleri, were grown in a continuous culture system on a 12-h:12-h light:dark cycle of illumination under nitrate-limited growth conditions. At growth rates of ~1 d-1, production rates estimated from 14C uptake were not significantly different from production rates estimated from changes in particulate organic carbon (POC) and total organic carbon (TOC). At growth rates of ~0.35 d-1, however, production rates based on uptake of 14C significantly (passimilation by a greater percentage at low growth rates than at high growth rates probably reflects the greater efficiency of intracellular recycling of respired CO2 at high growth rates. The fact that the extent of overestimation is greater when cells are grown on a light:dark cycle probably reflects the fact that not all carbon respired in the dark was fixed during the previous photoperiod and that intracellular recycling of respired CO2 during the photoperiod is inefficient during some phases of the synchronized growth that tends to be entrained by light:dark cycles.

  12. Can net photosynthesis and water relations provide a clue on the ...

    African Journals Online (AJOL)

    The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  13. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    Energy Technology Data Exchange (ETDEWEB)

    Albert, K.R.; Ro-Poulsen, H. (Univ. of Copenhagen, Dept. of Terrestrial Ecology, Copenhagen (DK)); Mikkelsen, T.N. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Biosystems Dept., Roskilde (DK))

    2008-06-15

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B. (au)

  14. Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis.

    Science.gov (United States)

    Campany, Courtney E; Medlyn, Belinda E; Duursma, Remko A

    2017-08-01

    Sink limitation is known to reduce plant growth, but it is not known how plant carbon (C) balance is affected, limiting our ability to predict growth under sink-limited conditions. We manipulated soil volume to impose sink limitation of growth in Eucalyptus tereticornis Sm. seedlings. Seedlings were grown in the field in containers of different sizes and planted flush to the soil alongside freely rooted (Free) seedlings. Container volume negatively affected aboveground growth throughout the experiment, and light saturated rates of leaf photosynthesis were consistently lower in seedlings in containers (-26%) compared with Free seedlings. Significant reductions in photosynthetic capacity in containerized seedlings were related to both reduced leaf nitrogen content and starch accumulation, indicating direct effects of sink limitation on photosynthetic downregulation. After 120 days, harvested biomass of Free seedlings was on average 84% higher than seedlings in containers, but biomass distribution in leaves, stems and roots was not different. However, the reduction in net leaf photosynthesis over the growth period was insufficient to explain the reduction in growth, so that we also observed an apparent reduction in whole-plant C-use efficiency (CUE) between Free seedlings and seedlings in containers. Our results show that sink limitation affects plant growth through feedbacks to both photosynthesis and CUE. Mass balance approaches to predicting plant growth under sink-limited conditions need to incorporate both of these feedbacks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Record of C4 Photosynthesis Through the Late Neogene and Pleistocene

    Science.gov (United States)

    Cerling, T. E.

    2016-12-01

    C4 photosynthesis is an adaptation to the low atmospheric carbon dioxide concentrations experienced in the Neogene; it is found principally in tropical to sub-tropical/temperate regions where temperatures are high in the growing season. Although C4 photosynthesis makes up about 50% of Net Primary Productivity in tropical regions, its macroscopic fossil record is extremely sparse. Therefore, inferences to its significance in local ecosystems are based primarily on stable isotopes, with phytoliths become more important as phytolith morphology becomes better associated with plant structure and classification. Stable isotopes have been the principal recorder for understanding the history of C4 photosynthesis; however, different materials record different aspects of the C4 contribution to ecosystem structure and thus are telling different parts of the same story. With the fossil record so poorly known, we often assume similar ecosystem structures and functions as we observe in modern analogues. It is likely that large evolutionary changes have taken place within C4 plants as they went from 50% tropical NPP in the late Neogene.

  16. History of sugar maple decline

    Science.gov (United States)

    David R. Houston

    1999-01-01

    Only a few episodes of sugar maple dieback or decline were recorded during the first half of the 20th Century. In contrast, the last 50 years have provided numerous reports of both urban and forest dieback/decline. In the late 1950s, a defoliation-triggered decline, termed maple blight, that occurred in Wisconsin prompted the first comprehensive, multidisciplinary...

  17. Modeling photosynthesis in sea ice-covered waters

    Science.gov (United States)

    Long, Matthew C.; Lindsay, Keith; Holland, Marika M.

    2015-09-01

    The lower trophic levels of marine ecosystems play a critical role in the Earth System mediating fluxes of carbon to the ocean interior. Many of the functional relationships describing biological rate processes, such as primary productivity, in marine ecosystem models are nonlinear functions of environmental state variables. As a result of nonlinearity, rate processes computed from mean fields at coarse resolution will differ from similar computations that incorporate small-scale heterogeneity. Here we examine how subgrid-scale variability in sea ice thickness impacts simulated net primary productivity (NPP) in a 1°×1° configuration of the Community Earth System Model (CESM). CESM simulates a subgrid-scale ice thickness distribution and computes shortwave penetration independently for each ice thickness category. However, the default model formulation uses grid-cell mean irradiance to compute NPP. We demonstrate that accounting for subgrid-scale shortwave heterogeneity by computing light limitation terms under each ice category then averaging the result is a more accurate invocation of the photosynthesis equations. Moreover, this change delays seasonal bloom onset and increases interannual variability in NPP in the sea ice zone in the model. The new treatment reduces annual production by about 32% in the Arctic and 19% in the Antarctic. Our results highlight the importance of considering heterogeneity in physical fields when integrating nonlinear biogeochemical reactions.

  18. Food Safety Nets:

    OpenAIRE

    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane

    2013-01-01

    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  19. Net technical assessment

    OpenAIRE

    Wegmann, David G.

    1989-01-01

    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  20. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    Science.gov (United States)

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  1. Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi?arid shrub

    OpenAIRE

    Leon-Sanchez, Lupe; Nicolás, Emilio; Nortes, Pedro A.; T. Maestre, Fernando; Querejeta, José I.

    2016-01-01

    Abstract Whereas warming enhances plant nutrient status and photosynthesis in most terrestrial ecosystems, dryland vegetation is vulnerable to the likely increases in evapotranspiration and reductions in soil moisture caused by elevated temperatures. Any warming?induced declines in plant primary production and cover in drylands would increase erosion, land degradation, and desertification. We conducted a four?year manipulative experiment in a semi?arid Mediterranean ecosystem to evaluate the ...

  2. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German

    1998-01-01

    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  3. Entropy production in oscillatory processes during photosynthesis.

    Science.gov (United States)

    López-Agudelo, Víctor A; Barragán, Daniel

    2014-01-01

    The flow of matter and heat and the rate of enzymatic reactions are examined using two models of photosynthesis that exhibit sustained and damped oscillatory dynamics, with the objective of calculating the rate of entropy generation and studying the effects of temperature and kinetic constants on the thermodynamic efficiency of photosynthesis. The global coefficient of heat transfer and the direct and inverse constants of the formation reaction of the RuBisCO-CO2 complex were used as control parameters. Results show that when the system moves from isothermal to non-isothermal conditions, the transition from a steady state to oscillations facilitates an increase in the energy efficiency of the process. The simulations were carried out for two photosynthetic models in a system on a chloroplast reactor scale.

  4. Artificial Photosynthesis with Semiconductor-Liquid Junctions.

    Science.gov (United States)

    Guijarro, Néstor; Formal, Florian Le; Sivula, Kevin

    2015-02-25

    Given the urgent need to develop a sustainable, carbon neutral energy storage system on a global scale, intense efforts are currently underway to advance the field of artificial photosynthesis: i.e. solar fuel engineering. In this review we give an overview of the field of artificial photosynthesis using a semiconductor-electrolyte interface employed in a photoelectrochemical device or as a heterogeneous photocatalyst. First we present a basic description of the operation principles of a semiconductor-liquid junction based device. The role of nanotechnology in the recent advances in the field is highlighted and common material systems under current study are briefly reviewed. The importance of the material surfaces are further scrutinized by presenting recent advances in interfacial engineering. Technical challenges and an outlook towards industrialization of the technology are given.

  5. A multi-box model study of the role of the biospheric metabolism in the recent decline of δ18O in atmospheric CO2

    Science.gov (United States)

    Ishizawa, Misa; Nakazawa, Takakiyo; Higuchi, Kaz

    2002-09-01

    From around 1993 to 1997, the NOAA-CU δ18O measurements at Pt. Barrow, Mauna Loa, Cape Kumukahi, Cape Grim and the South Pole show a decrease in atmospheric CO2δ18O of about 0.5‰. Recently, Gillon and Yakir (2001) have attributed this decrease to a conversion of C3 forests to C4 grasslands through anthropogenic land-use change. However, their explanation can account for only about 0.02‰ yr1 decrease rate. In this paper we offer a viable alternative explanation. We have used a multi-box model of the global carbon cycle and its δ18O to show that an increase in biospheric respiration (CO2 flux from plant with lower-than-atmosphere δ18O), combined with a decrease in the amount of CO2 (with higher-than-atmosphere δ18O) diffusing back from plant leaves before being assimilated as part of the gross primary production (GPP), could produce the observed decline in the atmospheric CO2δ18O. This decrease in the CO2 back diffusion out of leaves could be interpreted as an overall increase in both biospheric activities of photosynthesis and respiration. Change in the metabolic activities of the biosphere as a possible cause for the observed decrease in δ18O is a reasonable hypothesis, since isotopic fractionations that occur during CO2 exchange processes (photosynthesis and respiration) between the atmosphere and the biosphere contribute significantly to the observed variations in atmospheric CO2δ18O, while contribution from the net air-sea CO2 exchange is negligible.

  6. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    Science.gov (United States)

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum

  7. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    Directory of Open Access Journals (Sweden)

    Catherine J. Collier

    2017-08-01

    Full Text Available Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri. To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average. This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature. The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C and H. uninervis (33°C, but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The

  8. Foliar phloem infrastructure in support of photosynthesis

    Directory of Open Access Journals (Sweden)

    William Walter Adams

    2013-06-01

    Full Text Available Acclimatory adjustments of foliar minor loading veins in response to growth at different temperatures and light intensities are evaluated. These adjustments are related to their role in providing infrastructure for the export of photosynthetic products as a prerequisite for full acclimation of photosynthesis to the respective environmental conditions. Among winter-active apoplastic loaders, higher photosynthesis rates were associated with greater numbers of sieve elements per minor vein as well as an increased apparent total membrane area of cells involved in phloem loading (greater numbers of cells and/or greater cell wall invaginations. Among summer-active apoplastic loaders, higher photosynthesis rates were associated with increased vein density and, possibly, a greater number of sieve elements and companion cells per minor vein. Among symplastic loaders, minor loading vein architecture (number per vein and arrangement of cells was apparently constrained, but higher photosynthesis rates were associated with higher foliar vein densities and larger intermediary cells (presumably providing a greater volume for enzymes involved in active raffinose sugar synthesis. Winter-active apoplastic loaders thus apparently place emphasis on adjustments of cell membrane area (presumably available for transport proteins active in loading of minor veins, while symplastic loaders apparently place emphasis on increasing the volume of cells in which their active loading step takes place. Presumably to accommodate a greater flux of photosynthate through the foliar veins, winter-active apoplastic loaders also have a higher number of sieve elements per minor loading vein, whereas symplastic loaders and summer-active apoplastic loaders have a higher total number of veins per leaf area. These latter adjustments in the vasculature (during leaf development may also apply to the xylem (via greater numbers of tracheids per vein and/or greater vein density per leaf area

  9. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  10. Photosynthesis in reproductive structures: costs and benefits.

    Science.gov (United States)

    Raven, John A; Griffiths, Howard

    2015-04-01

    The role of photosynthesis by reproductive structures during grain-filling has important implications for cereal breeding, but the methods for assessing the contribution by reproductive structures to grain-filling are invasive and prone to compensatory changes elsewhere in the plant. A technique analysing the natural abundance of stable carbon isotopes in soluble carbohydrates has significant promise. However, it depends crucially on there being no more than two sources of organic carbon (leaf and ear/awn), with significantly different (13)C:(12)C ratios and no secondary fractionation during grain-filling. The role of additional peduncle carbohydrate reserves represents a potential means for N remobilization, as well as for hydraulic continuity during grain-filling. The natural abundance of the stable isotopes of carbon and oxygen are also useful for exploring the influence of reproduction on whole plant carbon and water relations and have been used to examine the resource costs of reproduction in females and males of dioecious plants. Photosynthesis in reproductive structures is widespread among oxygenic photosynthetic organisms, including many clades of algae and embryophytes of different levels of complexity. The possible evolutionary benefits of photosynthesis in reproductive structures include decreasing the carbon cost of reproduction and 'use' of transpiratory loss of water to deliver phloem-immobile calcium Ca(2+) and silicon [Si(OH)4] via the xylem. The possible costs of photosynthesis in reproductive structures are increasing damage to DNA from photosynthetically active, and hence UV-B, radiation and the production of reactive oxygen species. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Artificial photosynthesis in ranaspumin-2 based foam.

    Science.gov (United States)

    Wendell, David; Todd, Jacob; Montemagno, Carlo

    2010-09-08

    We present a cell-free artificial photosynthesis platform that couples the requisite enzymes of the Calvin cycle with a nanoscale photophosphorylation system engineered into a foam architecture using the Tungara frog surfactant protein Ranaspumin-2. This unique protein surfactant allowed lipid vesicles and coupled enzyme activity to be concentrated to the microscale Plateau channels of the foam, directing photoderived chemical energy to the singular purpose of carbon fixation and sugar synthesis, with chemical conversion efficiencies approaching 96%.

  12. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2

    Science.gov (United States)

    Johnson, Ian R.; Thornley, John H. M.; Frantz, Jonathan M.; Bugbee, Bruce

    2010-01-01

    Background and Aims The distribution of photosynthetic enzymes, or nitrogen, through the canopy affects canopy photosynthesis, as well as plant quality and nitrogen demand. Most canopy photosynthesis models assume an exponential distribution of nitrogen, or protein, through the canopy, although this is rarely consistent with experimental observation. Previous optimization schemes to derive the nitrogen distribution through the canopy generally focus on the distribution of a fixed amount of total nitrogen, which fails to account for the variation in both the actual quantity of nitrogen in response to environmental conditions and the interaction of photosynthesis and respiration at similar levels of complexity. Model A model of canopy photosynthesis is presented for C3 and C4 canopies that considers a balanced approach between photosynthesis and respiration as well as plant carbon partitioning. Protein distribution is related to irradiance in the canopy by a flexible equation for which the exponential distribution is a special case. The model is designed to be simple to parameterize for crop, pasture and ecosystem studies. The amount and distribution of protein that maximizes canopy net photosynthesis is calculated. Key Results The optimum protein distribution is not exponential, but is quite linear near the top of the canopy, which is consistent with experimental observations. The overall concentration within the canopy is dependent on environmental conditions, including the distribution of direct and diffuse components of irradiance. Conclusions The widely used exponential distribution of nitrogen or protein through the canopy is generally inappropriate. The model derives the optimum distribution with characteristics that are consistent with observation, so overcoming limitations of using the exponential distribution. Although canopies may not always operate at an optimum, optimization analysis provides valuable insight into plant acclimation to environmental

  13. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  14. Photosynthesis research on yellowtops: macroevolution in progress.

    Science.gov (United States)

    Kutschera, U; Niklas, K J

    2007-04-01

    The vast majority of angiosperms, including most of the agronomically important crop plants (wheat, etc.), assimilate CO2 through the inefficient C3 pathway of photosynthesis. Under ambient conditions these organisms loose about 1/3 of fixed carbon via photorespiration, an energetically wasteful process. Plants with C4 photosynthesis (such as maize) eliminate photorespiration via a biochemical CO2-pump and thus have a larger rate of carbon gain. The genus Flaveria (yellowtops, Asteraceae) contains not only C3 and C4 species, but also many C3-C4 intermediates, which have been interpreted as evolving from C3 to fully expressed C4 metabolism. However, the evolutionary significance of C3-C4Flaveria-intermediates has long been a matter of debate. A well-resolved phylogeny of nearly all Flaveria species has recently been published. Here, we review pertinent background information and combine this novel phylogeny with physiological data. We conclude that the Flaveria species complex provides a robust model system for the study of the transition from C3 to C4 photosynthesis, which is arguably a macroevolutionary event. We conclude with comments relevant to the current Intelligent Design debate.

  15. Chapter 27: Mortality of Marbled Murrelets in Gill Nets in North America

    Science.gov (United States)

    Harry R. Carter; Michael L.C. McAllister; M.E. Pete Isleib

    1995-01-01

    Mortality of Marbled Murrelets (Brachyramphus marmoratus) due to accidental capture in gill nets is one of the major threats to murrelet populations. Gill-net mortality of murrelets throughout their range has been occurring for several decades and probably has contributed to declines in populations, in conjunction with loss of nesting habitat and...

  16. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.

    2002-01-01

    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  17. Teaching Tennis for Net Success.

    Science.gov (United States)

    Young, Bryce

    1989-01-01

    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  18. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten

    2012-01-01

    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  19. Effects of soil moisture regimes on photosynthesis and growth in cattail ( Typha latifolia)

    Science.gov (United States)

    Li, Shuwen; Pezeshki, S. Reza; Goodwin, Shirlean

    2004-03-01

    Both waterlogging and water deficiency are major environmental factors affecting plant growth and functioning in many wetland and floodplain ecosystems across North America. Wetland plants possess various characteristics that enable them to survive and function in the intermittently flooded wetland environments, while their sensitivity to drought has received less attention. The present study quantified the photosynthetic and growth responses of cattail ( Typha latifolia), an important species of freshwater wetlands, to a wide range of soil moisture regimes. In addition, changes in the efficiency of photosynthetic apparatus following initiation of the treatments were investigated. Under greenhouse conditions, seedlings were subjected to four soil moisture regimes: (1) drained (control), (2) continuous flooding, (3) periodic flooding, and (4) periodic drought. Results indicated that dark fluorescence yield was increased in response to periodic drought, while it showed decreases under continuous flooding. Net photosynthesis and stomatal conductance were enhanced by continuous flooding and periodic flooding. In contrast, these parameters exhibited reduction under periodic drought. In addition, leaf chlorophyll content was adversely affected by periodic drought. Recovery of net photosynthesis was noted, along with enhanced height growth, in both continuously and periodically flooded plants. Meanwhile, continuous flooding enhanced biomass production while periodic drought led to biomass reduction. Periodic drought also contributed to substantial reduction in root growth compared with shoot growth. Therefore, the combined photosynthetic performance and growth responses of cattail are likely to contribute to the ability of this species to thrive in flooded condition but be susceptive to periodic drought.

  20. Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L. under drought

    Directory of Open Access Journals (Sweden)

    Samina Malik and Muhammad Ashraf

    2012-05-01

    Full Text Available Drought causes considerable reduction in plant growth. A hydroponic experiment was conducted to appraise the potential role of exogenously applied ascorbic acid in alleviating the effect of drought on wheat. Two contrasting wheat genotypes, a drought tolerant cultivar Chakwal-86 and a drought sensitive strain 6544-6 were used in the study. Drought was induced by dissolving 20% Polyethylene glycol (PEG8000 in the nutrient solution producing -0.6MPa osmotic stress. Drought caused a significant decrease in chlorophyll pigments and net photosynthesis resulting in growth reduction of both wheat genotypes. However, this decrease was more severe in the genotype 6544-6 compared to Chakwal-86. Ascorbic acid (AsA was applied through rooting medium, as a foliar spray and seed soaking treatment. Ascorbic acid treated seedlings of both genotypes maintained higher chlorophyll contents, net photosynthesis and growth compared to the non-treated plants. Of the three different modes of ascorbic acid application, rooting medium was more effective in alleviating the adversities of drought in wheat. `

  1. Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna.

    Science.gov (United States)

    Holtum, Joseph A M; Hancock, Lillian P; Edwards, Erika J; Winter, Klaus

    2017-07-01

    Low levels of crassulacean acid metabolism (CAM) are demonstrated in two species with C4 photosynthesis, Portulaca cyclophylla and P. digyna. The expression of CAM in P. cyclophylla and P. digyna is facultative, i.e. optional. Well-watered plants did not accumulate acid at night and exhibited gas-exchange patterns consistent with C4 photosynthesis. CAM-type nocturnal acidification was reversible in that it was induced following drought and lost when droughted plants were rewatered. In P. cyclophylla, droughting was accompanied by a small but discernible net uptake of CO2 during the dark, whereas in P. digyna, net CO2 exchange at night approached the CO2 compensation point but did not transition beyond it. This report brings the number of known C4 species with a capacity for expressing CAM to six. All are species of Portulaca. The observation of CAM in P. cyclophylla and P. digyna is the first for species in the opposite-leaved (OL) Portulacelloid-anatomy lineage of Portulaca and for the Australian clade therein. The other four species are within the alternate-leaved (AL) lineage, in the Atriploid-anatomy Oleracea and the Pilosoid-anatomy Pilosa clades. Studies of the evolutionary origins of C4 and CAM in Portulaca will benefit from a more wide-range survey of CAM across its species, particularly in the C3-C4 intermediate-containing Cryptopetala clade. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis.

    Science.gov (United States)

    Hu, Huiqing; Wang, Lihong; Li, Yueli; Sun, Jingwen; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    A great deal of literature is available regarding the environmental and ecological effects of rare earth element pollution on plants. These studies have shown that excess lanthanum (La) (III) in the environment can inhibit plant growth and even cause plant death. Moreover, inhibition of plant photosynthesis is known to be one of the physiological bases of these damages. However, the mechanism responsible for these effects is still unclear. In this study, the mechanism of La(III)-induced damage to plant photosynthesis was clarified from the viewpoint of the chloroplast ultrastructure, the contents of chloroplast mineral elements and chlorophyll, the transcription of chloroplast ATPase subunits and chloroplast Mg(2+)-ATPase activity, in which rice was selected as a study object. Following treatment with low level of La(III), the chloroplast ultrastructure of rice was not changed, and the contents of chloroplast mineral elements (Mg, P, K, Ca, Mn, Fe, Ni, Cu, and Zn) increased, but the chlorophyll content did not change significantly. Moreover, the transcription of chloroplast ATPase subunits, chloroplast Mg(2+)-ATPase activity, the net photosynthetic rate and growth indices increased. Following treatment with high levels of La(III), the chloroplast ultrastructure was damaged, chloroplast mineral elements (except Cu and Zn) and chlorophyll contents decreased, and the transcription of chloroplast ATPase subunits, chloroplast Mg(2+)-ATPase activity, the net photosynthetic rate and growth indices decreased. Based on these results, a possible mechanism of La(III)-induced damage to plant photosynthesis was proposed to provide a reference for scientific evaluation of the potential ecological risk of rare earth elements in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effect of Heading Back on Photosynthesis, Yield and Fruit Quality in Pear

    Directory of Open Access Journals (Sweden)

    Shehbaz SINGH

    2012-11-01

    Full Text Available A field study was conducted to examine the effect of low headed back of pear plants on photosynthesis, yield and fruit quality in pear trees cv. Patharnakh. Plants were maintained at heights of 1.0 m, 1.5 m, 2.0 m, 2.5 m and 3.0 m from ground level by removing top of the canopy during dormant season, while the control trees were not given any pruning treatment. The photosynthesis rate (Pn and photosynthetic active radiation (PAR were taken from April to July at fortnightly interval. Highest Pn of leaves trees was observed at morning time and it showed a positive relationship with PAR received. Both increased with advancement in season and recorded maximum in the 2nd fortnight of June, thereafter declined slightly. PAR and Pn increased with intensity of the pruning. Upper canopy of all the treatments recorded highest photosynthesis rate. Fruit yield per tree increased as the pruning height was raised and was recorded maximum in 2.5 m level of pruning. Fruit size enlarged linearly with the intensity of pruning. Pruning treatment improved soluble solids content of fruit.

  4. Effect of Heading Back on Photosynthesis, Yield and Fruit Quality in Pear

    Directory of Open Access Journals (Sweden)

    Shehbaz SINGH

    2012-11-01

    Full Text Available A field study was conducted to examine the effect of low headed back of pear plants on photosynthesis, yield and fruit quality in pear trees cv. �Patharnakh�. Plants were maintained at heights of 1.0 m, 1.5 m, 2.0 m, 2.5 m and 3.0 m from ground level by removing top of the canopy during dormant season, while the control trees were not given any pruning treatment. The photosynthesis rate (Pn and photosynthetic active radiation (PAR were taken from April to July at fortnightly interval. Highest Pn of leaves trees was observed at morning time and it showed a positive relationship with PAR received. Both increased with advancement in season and recorded maximum in the 2nd fortnight of June, thereafter declined slightly. PAR and Pn increased with intensity of the pruning. Upper canopy of all the treatments recorded highest photosynthesis rate. Fruit yield per tree increased as the pruning height was raised and was recorded maximum in 2.5 m level of pruning. Fruit size enlarged linearly with the intensity of pruning. Pruning treatment improved soluble solids content of fruit.

  5. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  6. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne

    2006-01-01

    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  7. Light environment alters ozone uptake per net photosynthetic rate in black cherry trees.

    Science.gov (United States)

    Fredericksen, T S; Kolb, T E; Skelly, J M; Steiner, K C; Joyce, B J; Savage, J E

    1996-05-01

    Foliar ozone uptake rates of different-sized black cherry (Prunus serotina Ehrh.) trees were compared within a deciduous forest and adjacent openings in north-central Pennsylvania during one growing season. Study trees included open-grown seedlings and saplings, forest understory seedlings and saplings, and sunlit and shaded portions of mature canopy tree crowns. Instantaneous ozone uptake rates were highest in high-light environments primarily because of higher stomatal conductances. Low ozone uptake rates of seedlings and saplings in the forest understory could be attributed partially to lower average ambient ozone concentrations compared to the canopy and open environments. Among the tree size and light combinations tested, ozone uptake rates were highest in open-grown seedlings and lowest in forest-grown seedlings. Despite lower ozone uptake rates of foliage in shaded environments, ozone uptake per net photosynthesis of foliage in shaded environments was significantly higher than that of foliage in sunlit environments because of weaker coupling between net photosynthesis and stomatal conductance in shaded environments. The potential for greater ozone injury in shaded environments as a result of greater ozone uptake per net photosynthesis is consistent with previous reports of greater ozone injury in shaded foliage than in sunlit foliage.

  8. [Effects of light intensity on photosynthesis and dry matter production of flue-cured tobacco at its seedling stage].

    Science.gov (United States)

    Wang, Rui; Liu, Guo-Shun; Chen, Guo-Hua; Xiang, De-En; Wu, Yun-Ping

    2010-08-01

    Taking flue-cured tobacco Yunyan 87 as test material, this paper studied its photosynthesis and dry matter production at seedling stage under 100%, 88%, 72%, and 62% natural light intensities. At noon of sunny days, 100% natural light intensity inhibited the photosynthesis, while proper shading (88% natural light intensity) could eliminate the inhibition, and the daily photosynthesis was significantly higher than other treatments. Shading reduced the light saturation point and compensation point, enhanced the apparent quantum yield of photosynthesis and the net photosynthetic rate under weak light, increased the chlorophyll a and chlorophyll b contents, but decreased the chlorophyll a/b and cartenoids contents. Under 88% natural light intensity, tobacco seedlings had higher light saturation point, lower compensation point, higher suitability to the change of light intensity, and higher photosynthetic potentiality. 100% natural light intensity was more advantageous to the transfer of dry matter and soluble sugar to stem, while 88% natural light intensity was more beneficial to the transfer of dry matter and soluble sugar to root. Under the conditions of this experiment, proper shading (88% natural light intensity treatment) could improve the seedling quality of flue-cured tobacco.

  9. Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus.

    Science.gov (United States)

    Lichtenberg, Mads; Kühl, Michael

    2015-08-01

    Macroalgae live in an ever-changing light environment affected by wave motion, self-shading and light-scattering effects, and on the thallus scale, gradients of light and chemical parameters influence algal photosynthesis. However, the thallus microenvironment and internal gradients remain underexplored. In this study, microsensors were used to quantify gradients of light, O2 concentration, variable chlorophyll fluorescence, photosynthesis and O2 consumption as a function of irradiance in the cortex and medulla layers of Fucus serratus. The two cortex layers showed more efficient light utilization compared to the medulla, calculated both from electron transport rates through photosystem II and from photosynthesis-irradiance curves. At moderate irradiance, the upper cortex exhibited onset of photosynthetic saturation, whereas lower thallus layers exhibited net O2 consumption. O2 consumption rates in light varied with depth and irradiance and were more than two-fold higher than dark respiration. We show that the thallus microenvironment of F. serratus exhibits a highly stratified balance of production and consumption of O2 , and when the frond was held in a fixed position, high incident irradiance levels on the upper cortex did not saturate photosynthesis in the lower thallus layers. We discuss possible photoadaptive responses and consequences for optimizing photosynthetic activity on the basis of vertical differences in light attenuation coefficients. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A.

    Science.gov (United States)

    Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-11-01

    Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (Pn) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the Pn by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the Pn by promoting stomatal factors while high-dose BPA decreased the Pn by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Elements of a dynamic systems model of canopy photosynthesis.

    Science.gov (United States)

    Zhu, Xin-Guang; Song, Qingfeng; Ort, Donald R

    2012-06-01

    Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  13. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    Science.gov (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01

    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net. PMID:25392426

  14. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  15. Can the photosynthesis first step quantum mechanism be explained?

    OpenAIRE

    Sacilotti, Marco; Almeida, Euclides; Mota, Claudia C. B. O.; Nunes, Frederico Dias; Gomes,Anderson S. L.

    2010-01-01

    Photosynthesis first step mechanism concerns the sunlight absorption and both negative and positive charges separation. Recent and important photosynthesis literature claims that this mechanism is quantum mechanics controlled, however without presenting qualitative or quantitative scientifically based mechanism. The present accepted and old-fashioned photosynthesis mechanism model suffers from few drawbacks and an important issue is the absence of driving force for negative and positive charg...

  16. The role of ethylene perception in the control of photosynthesis

    OpenAIRE

    Tholen, Danny; Pons, Thijs L.; Voesenek, Laurentius ACJ; Poorter, Hendrik

    2008-01-01

    The process of photosynthesis is under the control by several internal factors. Apart from the effect of abscisic acid on stomatal conductance, little is known about the interaction between hormonal signals and photosynthesis in fully-developed, nonsenescing leaves. Recently, we found that the ethylene transduction pathway is involved in the regulation of photosynthesis. Using an ethylene-insensitive tobacco genotype we showed that the absence of a functional ethylene receptor leads to a redu...

  17. Fermentative biohydrogen production: Evaluation of net energy gain

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Karnayakage Rasika J.; Ketheesan, Balachandran; Nirmalakhandan, Nagamany [Civil Engineering Department, New Mexico State University, Las Cruces, NM 88011 (United States); Gadhamshetty, Venkataramana [Civil and Environmental Engineering Dept., Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-11-15

    Most dark fermentation (DF) studies had resorted to above-ambient temperatures to maximize hydrogen yield, without due consideration of the net energy gain. In this study, literature data on fermentative hydrogen production from glucose, sucrose, and organic wastes were compiled to evaluate the benefit of higher fermentation temperatures in terms of net energy gain. This evaluation showed that the improvement in hydrogen yield at higher temperatures is not justified as the net energy gain not only declined with increase of temperature, but also was mostly negative when the fermentation temperature exceeded 25 C. To maximize the net energy gain of DF, the following two options for recovering additional energy from the end products and to determine the optimal fermentation temperature were evaluated: methane production via anaerobic digestion (AD); and direct electricity production via microbial fuel cells (MFC). Based on net energy gain, it is concluded that DF has to be operated at near-ambient temperatures for the net energy gain to be positive; and DF + MFC can result in higher net energy gain at any temperature than DF or DF + AD. (author)

  18. Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis.

    Science.gov (United States)

    Lee, Sahng Ha; Kim, Jae Hong; Park, Chan Beum

    2013-04-02

    In green plants, solar-energy utilization is accomplished through a cascade of photoinduced electron transfer, which remains a target model for realizing artificial photosynthesis. We introduce the concept of biocatalyzed artificial photosynthesis through coupling redox biocatalysis with photocatalysis to mimic natural photosynthesis based on visible-light-driven regeneration of enzyme cofactors. Key design principles for reaction components, such as electron donors, photosensitizers, and electron mediators, are described for artificial photosynthesis involving biocatalytic assemblies. Recent research outcomes that serve as a proof of the concept are summarized and current issues are discussed to provide a future perspective. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Photosynthesis of spring wheat (Triticum aestivum) in rainfed ...

    African Journals Online (AJOL)

    . ... observed environments. These physiological results of wheat genotypes can be used to find adaptive and potential genotypes for changing environment. Keywords: Wheat, photosynthesis, stomatal conductance, transpiration, environment.

  20. Underwater photosynthesis of submerged plants - recent advances and methods

    National Research Council Canada - National Science Library

    Pedersen, Ole; Colmer, Timothy D; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary...

  1. Hickory decline and mortality: Update on hickory decline research

    Science.gov (United States)

    Jennifer Juzwik; Ji-Huyn Park; Linda Haugen

    2010-01-01

    Research continued through the 2010 field season on the etiology of hickory decline that is characterized by thinning crowns with small, yellow leaves and hickory bark beetle attack on the upper main stem. This research is part of a larger project initiated in 2006 to assess the distribution and determine the cause(s) of Forest Health Monitoring reported decline and...

  2. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  3. Functional analysis of corn husk photosynthesis.

    Science.gov (United States)

    Pengelly, Jasper J L; Kwasny, Scott; Bala, Soumi; Evans, John R; Voznesenskaya, Elena V; Koteyeva, Nuria K; Edwards, Gerald E; Furbank, Robert T; von Caemmerer, Susanne

    2011-06-01

    The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C(3) photosynthetic pathway, in contrast to its leaves, which use the C(4) photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO(2) compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO(2) assimilation rate in the husk was less than that in the leaves and did not saturate at high CO(2), indicating CO(2) diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO(2) compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C(4)-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C(4) photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained.

  4. Role of ascorbic acid in photosynthesis.

    Science.gov (United States)

    Ivanov, B N

    2014-03-01

    Experimental data concerning the role of ascorbic acid in both the maintenance of photosynthesis and in the protection of the photosynthetic apparatus against reactive oxygen species and photoinhibition are reviewed. The function of ascorbic acid as an electron donor in the "Krasnovsky reaction", as well as its physiological role as a donor to components of the photosynthetic electron transport chain, which was first studied by A. A. Krasnovsky in the 1980s, is discussed. Data on the content and transport of ascorbic acid in plant cells and chloroplasts are presented.

  5. Enzyme Regulation in C4 Photosynthesis 12

    Science.gov (United States)

    Jacquot, Jean-Pierre P.; Buchanan, Bob B.; Martin, F.; Vidal, J.

    1981-01-01

    NADP-malate dehydrogenase, a light-modulated enzyme of C4 photosynthesis, was purified to homogeneity from leaves of corn. The pure enzyme was activated by thioredoxin m that was reduced either photochemically (with ferredoxin and ferredoxin-thioredoxin reductase) or chemically (with dithiothreitol). Unactivated corn leaf NADP-malate dehydrogenase had a molecular weight of 50,000 to 60,000 and was chromophorefree. The enzyme appeared to have a high content of serine and glycine and to contain both S—S and SH groups. Consequently, NADP-malate dehydrogenase seems to be capable of undergoing reversible oxidation/reduction during its photoregulation. PMID:16661905

  6. Photosynthesis and obtaining hydrogen. Photosynthese und Wasserstoffgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhoff, J.

    1989-01-01

    The individual processes of photo synthesis can be divided into groups of primary and secondary reactions. The primary reactions include the processes due to the effect of light and lead to splitting of water to form oxygen and to instituting both and hydrogen store and an energy store. Chlorophyl acts as an absorber and transmitter of light energy. The photolysis of water can only occur with the photons of visible light of relatively low energy, because the photosynthesis reaction centres have membranes which catch the light, collect it (by using its energy to separate electric charges) and this makes a multi-quantum process possible. (orig.).

  7. The Path of Carbon in Photosynthesis. XIV.

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin; Bassham, J.A.; Benson, A.A.; Kawaguchi, S.; Lynch, V.H.; Stepka, W.; Tolbert, N.E.

    1951-06-30

    It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

  8. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...

  9. Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni.

    Science.gov (United States)

    Papazoglou, E G; Karantounias, G A; Vemmos, S N; Bouranis, D L

    2005-02-01

    Giant reed (Arundo donax L.) was grown on surface soil and irrigated with mixed heavy metal solutions of Cd(II) and Ni(II) to study the impact of these heavy metals on its growth and photosynthesis. The tested concentrations were 5, 50, and 100 ppm for each heavy metal against the control and resulted in high cadmium and nickel (DTPA extractable) concentrations in the top zone of the pot soil. The examined parameters, namely, stem height and diameter, number of nodes, fresh and dry weight of leaves, and net photosynthesis (Pn) were not affected, indicating that plants tolerate the high concentrations of Cd and Ni. As giant reed plants are very promising energy plants, they can be cultivated in contaminated soils to provide biomass for energy production purposes.

  10. Mobility decline in old age

    DEFF Research Database (Denmark)

    Rantakokko, Merja; Mänty, Minna Regina; Rantanen, Taina

    2013-01-01

    Mobility is important for community independence. With increasing age, underlying pathologies, genetic vulnerabilities, physiological and sensory impairments, and environmental barriers increase the risk for mobility decline. Understanding how mobility declines is paramount to finding ways...... to promote mobility in old age....

  11. Terminal decline in motor function.

    Science.gov (United States)

    Wilson, Robert S; Segawa, Eisuke; Buchman, Aron S; Boyle, Patricia A; Hizel, Loren P; Bennett, David A

    2012-12-01

    The study aim was to test the hypothesis that motor function undergoes accelerated decline proximate to death. As part of a longitudinal clinical-pathologic study, 124 older Roman Catholic nuns, priests, and monks completed at least 7 annual clinical evaluations, died, and underwent brain autopsy and uniform neuropathologic examination. Each evaluation included administration of 11 motor tests and 19 cognitive tests from which global measures of motor and cognitive function were derived. The global motor measure (baseline M = 0.82, SD = 0.21) declined a mean 0.024 unit per year (95% confidence interval [CI]: -0.032, -0.016) until a mean of 2.46 years (95% CI: -2.870, -2.108) before death when rate of decline increased nearly fivefold to -0.117 unit per year (95% CI: -0.140, -0.097). The global cognitive measure (baseline M = 0.07, SD = 0.45) declined a mean of 0.027-unit per year (95% CI: -0.041, -0.014) until a mean of 2.76 years (95% CI: -3.157, -2.372) before death when rate of decline increased more than 13-fold to -0.371 unit per year (95% CI: -0.443, -0.306). Onset of terminal motor decline was highly correlated with onset of terminal cognitive decline (r = .94, 95% CI: 0.81, 0.99), but rates of motor and cognitive change were not strongly correlated (preterminal r = .20, 95% CI: -0.05, 0.38; terminal r = .34, 95% CI: 0.03, 0.62). Higher level of plaques and tangles was associated with earlier onset of terminal decline in motor function, but no pathologic measures were associated with rate of preterminal or terminal motor decline. The results demonstrate that motor and cognitive functions both undergo a period of accelerated decline in the last few years of life. 2013 APA, all rights reserved

  12. Carbon dioxide fixation by artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, Takashi; Koike, Kazuhide; Ishitani, Osamu [National Inst. for Resources and Environment, AIST, MITI, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Green plants can absorb atmospheric CO{sub 2} and transform it to sugars, carbohydrates through their photosynthetic systems, but they become the source of CO{sub 2} when they are dead. This is the reason why artificial leaves which can be alive forever should be developed to meet with global warming due to the increase of CO{sub 2} concentration. The goal of artificial photosynthesis is not to construct the same system as the photosynthetic one, but to mimic the ability of green plants to utilize solar energy to make high energy chemicals. Needless to say, the artificial photosynthetic system is desired to be as simple as possible and to be as efficient as possible. From the knowledge on photosynthesis and the results of previous investigations, the critical components of artificial photosynthetic system are understood as follows: (1) light harvesting chromophore, (2) a center for electron transfer and charge separation, (3) catalytic sites for converting small molecules like water and CO{sub 2} (mutilelectron reactions) which are schematically described.

  13. Strategies for improving C4 photosynthesis.

    Science.gov (United States)

    von Caemmerer, Susanne; Furbank, Robert T

    2016-06-01

    Recent activities to improve photosynthetic performance in crop plants has focused mainly on C3 photosynthesis where there are clear identified targets such as improving Rubisco kinetics, installation of a CO2 concentrating mechanism and alleviating limitations in chloroplast electron transport. Here we address strategies to improve photosynthetic performance in C4 plants, which utilize a CO2 concentrating mechanism, having evolved a complex blend of anatomy and biochemistry to achieve this. While the limitations to photosynthetic flux are not as well studied in C4 plants, work in transgenic Flaveria bidentis, a transformable model C4 dicot, and recent transcriptional analysis of leaves from diverse C4 plants, provides several gene candidates for improvement of carbon metabolism (such as pyruvate orthophosphate dikinase, phosphoenolpyruvate carboxylase and Rubisco) and for access of CO2 to phosphoenolpyruvate carboxylase in the mesophyll cells (such as carbonic anhydrase and CO2 porins). Chloroplast electron transport in C4 plants is shared between the two cell types, providing opportunities not only to alleviate limitations to flux through intersystem electron transport by targeting nuclear encoded proteins in the cytochrome (Cyt) b6/f complex, but in better sharing the harvesting of light energy between mesophyll and bundle sheath chloroplasts. Gene candidates for improvement of C4 photosynthesis could be utilized either through transgenic approaches or via mining natural allelic variation in sequenced populations of crop species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Coupled electron transfers in artificial photosynthesis.

    Science.gov (United States)

    Hammarström, Leif; Styring, Stenbjörn

    2008-03-27

    Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET.

  15. Selective and differential optical spectroscopies in photosynthesis.

    Science.gov (United States)

    Krausz, Elmars

    2013-10-01

    Photosynthetic pigments are inherently intense optical absorbers and have strong polarisation characteristics. They can also luminesce strongly. These properties have led optical spectroscopies to be, quite naturally, key techniques in photosynthesis. However, there are typically many pigments in a photosynthetic assembly, which when combined with the very significant inhomogeneous and homogeneous linewidths characteristic of optical transitions, leads to spectral congestion. This in turn has made it difficult to provide a definitive and detailed electronic structure for many photosynthetic assemblies. An electronic structure is, however, necessary to provide a foundation for any complete description of fundamental processes in photosynthesis, particularly those in reaction centres. A wide range of selective and differential spectral techniques have been developed to help overcome the problems of spectral complexity and congestion. The techniques can serve to either reduce spectral linewidths and/or extract chromophore specific information from unresolved spectral features. Complementary spectral datasets, generated by a number of techniques, may then be combined in a 'multi-dimensional' theoretical analysis so as to constrain and define effective models of photosynthetic assemblies and their fundamental processes. A key example is the work of Renger and his group (Raszewski, Biophys J 88(2):986-998, 2005) on PS II reaction centre assemblies. This article looks to provide an overview of some of these techniques and indicate where their strengths and weaknesses may lie. It highlights some of our own contributions and indicates areas where progress may be possible.

  16. The Path of Carbon in Photosynthesis

    Science.gov (United States)

    Bassham, J. A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  17. Review on optofluidic microreactors for artificial photosynthesis.

    Science.gov (United States)

    Huang, Xiaowen; Wang, Jianchun; Li, Tenghao; Wang, Jianmei; Xu, Min; Yu, Weixing; El Abed, Abdel; Zhang, Xuming

    2018-01-01

    Artificial photosynthesis (APS) mimics natural photosynthesis (NPS) to store solar energy in chemical compounds for applications such as water splitting, CO2 fixation and coenzyme regeneration. NPS is naturally an optofluidic system since the cells (typical size 10 to 100 µm) of green plants, algae, and cyanobacteria enable light capture, biochemical and enzymatic reactions and the related material transport in a microscale, aqueous environment. The long history of evolution has equipped NPS with the remarkable merits of a large surface-area-to-volume ratio, fast small molecule diffusion and precise control of mass transfer. APS is expected to share many of the same advantages of NPS and could even provide more functionality if optofluidic technology is introduced. Recently, many studies have reported on optofluidic APS systems, but there is still a lack of an in-depth review. This article will start with a brief introduction of the physical mechanisms and will then review recent progresses in water splitting, CO2 fixation and coenzyme regeneration in optofluidic APS systems, followed by discussions on pending problems for real applications.

  18. Artificial photosynthesis: understanding water splitting in nature.

    Science.gov (United States)

    Cox, Nicholas; Pantazis, Dimitrios A; Neese, Frank; Lubitz, Wolfgang

    2015-06-06

    In the context of a global artificial photosynthesis (GAP) project, we review our current work on nature's water splitting catalyst. In a recent report (Cox et al. 2014 Science 345, 804-808 (doi:10.1126/science.1254910)), we showed that the catalyst-a Mn4O5Ca cofactor-converts into an 'activated' form immediately prior to the O-O bond formation step. This activated state, which represents an all Mn(IV) complex, is similar to the structure observed by X-ray crystallography but requires the coordination of an additional water molecule. Such a structure locates two oxygens, both derived from water, in close proximity, which probably come together to form the product O2 molecule. We speculate that formation of the activated catalyst state requires inherent structural flexibility. These features represent new design criteria for the development of biomimetic and bioinspired model systems for water splitting catalysts using first-row transition metals with the aim of delivering globally deployable artificial photosynthesis technologies.

  19. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  20. Relating Leaf Nitrogen, Leaf Photosynthesis and Canopy CO2 Exchange in a Temperate Winter Barley Field

    Science.gov (United States)

    Jensen, R.; Boegh, E.; Herbst, M.; Friborg, T.

    2012-12-01

    Net exchange of CO2 between the atmosphere and the soil-vegetation interface (NEE) is controlled by a wide range of biochemical and biophysical processes where leaf photosynthesis is often the most important. In mechanistically and physically based photosynthesis models (e.g. Farquhar et al. 1980) leaf nutrient status is a limiting factor for the photosynthetic capacity since it is implicitly incorporated through the parameters of maximum rate of carboxylation of CO2 (Vcmax) and the maximum rate of electron transport (Jmax). These are closely related to leaf nitrogen concentration (Na) and leaf chlorophyll content (Cab) and often show a characteristic seasonal dynamic. When simulating CO2 exchange, model outputs are sensitive to leaf photosynthetic capacity, which is labour consuming to verify through field measurements. A less time consuming method is to measure leaf "greenness" (SPAD), which is closely related to chlorophyll content and thus photosynthetic capacity. In the present study field measurements of leaf photosynthesis (LI-6400, LICOR Inc.), leaf reflectance (SPAD-502, Minolta), and LAI (LAI-2000, LICOR Inc.) were conducted on agricultural fields in Western Denmark during one growing season. The leaf photosynthesis measurements provided the basis for estimating photosynthetic capacity. SPAD measurements and LAI was measured with a higher spatial and temporal resolution. SPAD readings were calibrated against Cab and Na analyzed on leaf material in the laboratory and later correlated to photosynthetic capacity. These data were used to parameterize a coupled photosynthesis and stomatal model that was run for the growing season 2012 to estimate NEE. As a part of the hydrological observatory HOBE (hobe.dk), fluxes of greenhouse gasses are continuously measured by eddy covariance systems at three field sites in the Skjern River Catchment, Western Denmark, providing the basis for estimating the exchange of energy, water vapour, and CO2 on canopy scale. One of

  1. On the relation between phototaxis and photosynthesis in Rhodospirillum Rubrum

    NARCIS (Netherlands)

    Thomas, J.B.; Nijenhuis, L.E.

    1950-01-01

    The relation between phototaxis and photosynthesis in Rhodospirillum rubrum has been studied. The light intensity at which saturation is reached in photosynthesis proved to coincide with that at which the contrast sensitivity starts to decrease. Potassium cyanide, which preferably inhibits the

  2. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  3. The Relation of Quantum Requirement in Photosynthesis toRespiration

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, James A.; Shibata, Kazuo; Calvin, M.

    1955-01-21

    1. The r a t e s of photosynthesis and subsequent respiration of Chlorella pyrenoidosa were measured using an oxygen analyzer (sensitive to paramagnetism). The energy absorbed during the photosynthesis periods was determined and the quantum requirement was calculated. 2. Dark respiration r a t e was found to depend on the r a t e of light absorption during the period of photosynthesis, and increased with increasing photosynthesis rate. 3 . The quantum requirement, corrected for respiration, varied from 4. 9 ( a t a ratio of photosynthesis to respiration of 1.4) to 6. 9 (at a r a t i o of 12). Both uncorrected and corrected quantum requirements approach an experimental value of 7. 4 a t high light intensity. 4. The lower quantum requirement obtained a t low light intensity is believed to be due to a relatively greater importance of contribution of energy from respiration t o photosynthesis. An expression i s derived for the relation between this contribution and the enhancement of dark respiration due to the level of photosynthesis to which the plants a r e conditioned. 5. Attempts to obtain the blue -light stimulation of photosynthesis with algae photosynthesizing in r e d light were unsuccessful.

  4. Influence of varying light regimes on photosynthesis and related ...

    African Journals Online (AJOL)

    Administrator

    Variation in the light environment in tropical forests affects plant germination, photosynthesis, growth, and reproduction (Longman and Jenik, 1987; Tokahashi and. Rustandi, 2006). Adequate data on photosynthesis are lacking for most forest species (Mooney et al., 1983). The capacity of plants to intercept and use radiant ...

  5. Modelling C₃ photosynthesis from the chloroplast to the ecosystem.

    Science.gov (United States)

    Bernacchi, Carl J; Bagley, Justin E; Serbin, Shawn P; Ruiz-Vera, Ursula M; Rosenthal, David M; Vanloocke, Andy

    2013-09-01

    Globally, photosynthesis accounts for the largest flux of CO₂ from the atmosphere into ecosystems and is the driving process for terrestrial ecosystem function. The importance of accurate predictions of photosynthesis over a range of plant growth conditions led to the development of a C₃ photosynthesis model by Farquhar, von Caemmerer & Berry that has become increasingly important as society places greater pressures on vegetation. The photosynthesis model has played a major role in defining the path towards scientific understanding of photosynthetic carbon uptake and the role of photosynthesis on regulating the earth's climate and biogeochemical systems. In this review, we summarize the photosynthesis model, including its continued development and applications. We also review the implications these developments have on quantifying photosynthesis at a wide range of spatial and temporal scales, and discuss the model's role in determining photosynthetic responses to changes in environmental conditions. Finally, the review includes a discussion of the larger-scale modelling and remote-sensing applications that rely on the leaf photosynthesis model and are likely to open new scientific avenues to address the increasing challenges to plant productivity over the next century. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    Science.gov (United States)

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  7. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    Science.gov (United States)

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  8. Photosynthesis sensitivity to climate change in land surface models

    Science.gov (United States)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  9. Growth response to a changing environment-Impacts of tropospheric ozone dose on photosynthesis of Norway spruce forests in Austria

    Science.gov (United States)

    Liu, Xiaozhen; Pietsch, Stephan; Hasenauer, Hubert

    2010-05-01

    Tropospheric ozone is an important air pollutant, although plants have active defense strategies (e.g. antioxidants), the cumulative ozone dose may lead to chronic damages to plant tissues. Ozone enters into plants through stomata and reacts with other chemicals to create toxic compounds. This affects plant photosynthesis and may reduce CO2 fixation, and consequently growth. Open top cambers (OTC) are usually used to study the effects of elevated ozone levels on photosynthesis; whereas field studies with on site occurring ozone levels are rare. A recent modelling study on Norway spruce stands in Austria exhibited trends in model errors indicating that an increase in ozone dose leads to a reduction in volume increment. This study aims to explore how different ozone doses affect photosynthesis under field conditions and may translate into growth response for 12 stands of Norway spruce, distributed along an ozone concentration gradient across Austria. A LI-6400xt photosynthesis system was utilized to collect physiological parameters including net photosynthesis, stomata conductance, internal CO2 concentration, transpiration, etc. Chlorophyll fluorescence data was collected by using a PEA chlorophyll fluorescence meter, and chlorophyll content was measured. Morphological characteristics and soil samples were also analyzed. Ozone dose to leaf tissue was calculated from external ozone concentration, the conductance of the stomata to ozone, the leaf area index and the time span of the day when ozone uptake takes place. Our results confirm that increasing cumulative ozone dose reduces maximum assimilation rate and carboxylation efficiency under field conditions. Our final goal is to quantify how far this ozone induced reduction in assimilation power ultimately translates into a growth reduction of Norway spruce in Austria.

  10. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  11. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange

    DEFF Research Database (Denmark)

    Colmer, Timothy David; Pedersen, Ole

    2007-01-01

    Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films, and......(N) was enhanced up to sixfold. Gas films on submerged leaves enable continued gas exchange via stomata and thus bypassing of cuticle resistance, enhancing exchange of O(2) and CO(2) with the surrounding water, and therefore underwater P(N) and respiration.......Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films......, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already...

  12. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S V; Yin, X; Vos, J; Danalatos, N G; Struik, P C

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)-C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)-I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)-C(i) or from A(n)-I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)-I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model.

  13. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  14. Net ecosystem exchange of carbon dioxide and evapotranspiration response of a high elevation Rocky Mountain (Wyoming, USA) forest to a bark beetle epidemic

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2011-12-01

    Bark beetle epidemics have caused major disturbance in the forests of western North America where significant tree mortality alters the balance of ecosystem photosynthesis, carbon balance, and water exchange. In this study we investigate the change in the growing-season light-response of net ecosystem exchange of carbon dioxide (NEE) and evapotranspiration (ET) in a high elevation Rocky Mountain forest over the three years preceding and three years following a bark beetle outbreak. The GLEES AmeriFlux site (southeastern Wyoming, USA) is located in a high elevation subalpine forest dominated by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) and recently experienced an epidemic of spruce beetle (Dendroctonus rufipennis). The peak beetle outbreak occurred in 2008, and has impacted 35% of the stems and 90% of the basal area of Engelmann spruce, which accounts for 30% of the trees and 70% of the basal area of the forest. Two semi-empirical light response curves for eddy-covariance carbon flux were compared, with a logistic sigmoid performing better because of residual bias than a rectangular hyperbola (Michaelis-Menten) at estimating the quantum yield of photosynthesis. In the first two years after the peak beetle outbreak the original quantum yield of 0.015 mol mol-1 was reduced by 25%. By the third year it was reduced by a half, which was composed of declines of 45% in the ecosystem's responses to diffuse radiation and 60% to direct radiation. The light-saturated rate of photosynthesis decreased by 10% in the first two years post outbreak, and fell by 40% in the third year. After the peak outbreak, the cumulative NEE over the growing season was reduced by over a half from a sink of 185 gC m-2 to 80 gC m-2, and by the third year it was reduced to near zero, or carbon neutral. The change in the ET response to light was similar in all years after the peak outbreak where the slope of the response curve was decreased by 25%. This led to a

  15. Can the photosynthesis first step quantum mechanism be explained?

    CERN Document Server

    Sacilotti, Marco; Mota, Claudia C B O; Nunes, Frederico Dias; Gomes, Anderson S L

    2010-01-01

    Photosynthesis first step mechanism concerns the sunlight absorption and both negative and positive charges separation. Recent and important photosynthesis literature claims that this mechanism is quantum mechanics controlled, however without presenting qualitative or quantitative scientifically based mechanism. The present accepted and old-fashioned photosynthesis mechanism model suffers from few drawbacks and an important issue is the absence of driving force for negative and positive charges separation. This article presents a new qualitative model for this first step mechanism in natural catalytic systems such as photosynthesis in green leaves. The model uses a concept of semiconductor band gap engineering, such as the staggered energy band gap line-up in semiconductors. To explain the primary mechanism in natural photosynthesis the proposal is the following: incident light is absorbed inside the leaves causing charges separation. The only energetic configuration that allows charges separation under illum...

  16. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States.

    Science.gov (United States)

    Ruiz-Vera, Ursula M; Siebers, Matthew; Gray, Sharon B; Drag, David W; Rosenthal, David M; Kimball, Bruce A; Ort, Donald R; Bernacchi, Carl J

    2013-05-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol(-1)) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops.

  17. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    Science.gov (United States)

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  18. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms.

    Science.gov (United States)

    Petit, Anne-Noëlle; Wojnarowiez, Geneviève; Panon, Marie-Laure; Baillieul, Fabienne; Clément, Christophe; Fontaine, Florence; Vaillant-Gaveau, Nathalie

    2009-02-01

    The effects of the two botryticides, fludioxonil (fdx) and fenhexamid (fhd), were investigated on grapevine leaves (Vitis vinifera L. cv. Pinot noir) following photosynthesis and defense mechanisms. Treatments were carried out in vineyard at the end of flowering. Phytotoxicity of both fungicides was evaluated by measuring variations of leaf photosynthetic parameters and correlated expression of photosynthesis-related genes. Results demonstrated that similar decrease in photosynthesis was caused by fdx and fhd applications. Moreover, the mechanism leading to photosynthesis alteration seems to be the same for both fungicides. Stomatal limitation to photosynthetic gas exchange did not change following treatments indicating that inhibition of photosynthesis was mostly attributed to non-stomatal factors. Nevertheless, fungicides-induced depression of photosynthesis was related neither to a decrease in Rubisco carboxylation efficiency and in the capacity for regeneration of ribulose 1,5-bisphosphate nor to loss in PSII activity. However, fdx and fhd treatments generated repression of genes encoding proteins involved in the photosynthetic process. Indeed, decreased photosynthesis was coupled with repression of PsbP subunit of photosystem II (psbP1), chlorophyll a/b binding protein of photosystem I (cab) and Rubisco small subunit (rbcS) genes. A repression of these genes may participate in the photosynthesis alteration. To our knowledge, this is the first study of photosynthesis-related gene expression following fungicide stress. In the meantime, defense responses were followed by measuring chitinase activity and expression of varied defense-related genes encoding proteins involved in phenylpropanoid synthesis (PAL) or octadecanoid synthesis (LOX), as well as pathogenesis-related protein (Chi4C). No induction of defense was observed in botryticides-treated leaves. To conclude, the photosynthesis is affected without any triggering of plant defense responses.

  19. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  20. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD

    2003-01-01

    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  1. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  2. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  3. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev

    2013-09-01

    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  4. Running Head: Control and Adjustment of the Rate of Photosynthesis Above Present CO{sub 2} Levels

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J. Timothy

    1996-12-01

    The adjustment of photosynthesis to different environmental conditions and especially to elevated CO{sub 2} is often characterized in terms of changes in the processes that establish (limit) the net CO{sub 2} assimilation rate. At slightly above present ambient pCO{sub 2} light-saturated photosynthetic responses to CO{sub 2} depart limitation by the catalytic capacity of tissue rubisco content. An hypothesis attributing this departure to limited thylakoid reaction/electron transport capacity is widely accepted, although we find no experimental evidence in the literature supporting this proposition.. The results of several tests point to the conclusion that the capacity of the thyiakoid reactions cannot be generally responsible for the deviation from rubisco limitation. This conclusion leaves a significant gap in the interpretation of gas exchange responses to CO{sub 2}. Since the inputs to the photosynthetic carbon reduction cycle (CO{sub 2} and photon-capture/electron-transport products) do not limit photosynthesis on the shoulder of the A=f(c{sub i}) curve, the control of photosynthesis can be characterized as: due to feedback. Several characteristics of gas exchange and fluorescence that occur when steady-states in this region are perturbed by changes in CO{sub 2} or O{sub 2} suggest significant regulation by conditions other than directly by substrate RuBP levels. A strong candidate to explain these responses is the triose-phosphate flux/ inorganic phosphate regulatory sequence, although not all of the gas exchange characteristics expected with ''TPU-limitation'' are present (e.g. oxygen-insensitive photosynthesis). Interest in nitrogen allocation between rubisco and light capture/electron transport as the basis for photosynthetic adjustment to elevated CO{sub 2} may need to be reconsidered as a result of these findings. Contributors to the feedback regulation of photosynthesis (which may include sucrose phosphate synthase and fructose

  5. Acclimation of rice photosynthesis to irradiance under field conditions.

    Science.gov (United States)

    Murchie, Erik H; Hubbart, Stella; Chen, Yizhu; Peng, Shaobing; Horton, Peter

    2002-12-01

    Acclimation to irradiance was measured in terms of light-saturated photosynthetic carbon assimilation rates (P(max)), Rubisco, and pigment content in mature field-grown rice (Oryza sativa) plants in tropical conditions. Measurements were made at different positions within the canopy alongside irradiance and daylight spectra. These data were compared with a second experiment in which acclimation to irradiance was assessed in uppermost leaves within whole-plant shading regimes (10% low light [LL], 40% medium light [ML], and 100% high light [HL] of full natural sunlight). Two varieties, japonica (tropical; new plant type [NPT]) and indica (IR72) were compared. Values for Rubisco amount, chlorophyll a/b, and P(max) all declined from the top to the base of the canopy. In the artificial shading experiment, acclimation of P(max) (measured at 350 microL L(-1) CO(2)) occurred between LL and ML for IR72 with no difference observed between ML and HL. The Rubisco amount increased between ML and HL in IR72. A different pattern was seen for NPT with higher P(max) (measured at 350 microL L(-1) CO(2)) at LL than IR72 and some acclimation of this parameter between ML and HL. Rubisco levels were higher in NPT than IR72 contrasting with P(max). Comparison of data from both experiments suggests a leaf aging effect between the uppermost two leaf positions, which was not a result of irradiance acclimation. Results are discussed in terms of: (a) acclimation of photosynthesis and radiation use efficiency at high irradiance in rice, and (b) factors controlling photosynthetic rates of leaves within the canopy.

  6. Shedding new light on viral photosynthesis.

    Science.gov (United States)

    Puxty, Richard J; Millard, Andrew D; Evans, David J; Scanlan, David J

    2015-10-01

    Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.

  7. Solar fuels production by artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel W., E-mail: JWAger@lbl.gov [Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Lee, Min-Hyung [Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Department of Applied Chemistry, Kyung Hee University (Korea, Republic of); Javey, Ali [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720 (United States)

    2013-12-10

    A practical method to use sunlight to generate storable chemical energy could dramatically change the landscape of global energy generation. One of the fundamental requirements of such an “artificial photosynthesis” scheme is a light capture and conversion approach capable of generating the required chemical potentials (e.g. >1.23 V for splitting water into H{sub 2} and O{sub 2}). An approach based on inorganic light absorbers coupled directly to oxidation and reduction catalysts is being developed in the Joint Center for Artificial Photosynthesis (JCAP). P-type III-V semiconductors with a high surface area can be used as high current density photocathodes. The longevity under operation of these photocathodes can be improved by the use of conformal metal oxides deposited by atomic layer deposition.

  8. Functional quantum biology in photosynthesis and magnetoreception

    CERN Document Server

    Lambert, Neill; Cheng, Yuan-Chung; Li, Che-Ming; Chen, Guang-Yin; Nori, Franco

    2012-01-01

    Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

  9. Does coherence enhance transport in photosynthesis?

    CERN Document Server

    Kassal, Ivan; Rahimi-Keshari, Saleh

    2012-01-01

    Recent observations of coherence in photosynthetic complexes have led to the question of whether quantum effects can occur in vivo, not under femtosecond laser pulses but in incoherent sunlight and at steady state, and, if so, whether the coherence explains the high exciton transfer efficiency. We distinguish several types of coherence and show that although some photosynthetic pathways are partially coherent processes, photosynthesis in nature proceeds through stationary states. This distinction allows us to rule out several mechanisms of transport enhancement in sunlight. In particular, although they are crucial for understanding exciton transport, neither wavelike motion nor microscopic coherence, on their own, enhance the efficiency. By contrast, two partially coherent mechanisms---ENAQT and supertransfer---can enhance transport even in sunlight and thus constitute motifs for the optimisation of artificial sunlight harvesting. Finally, we clarify the importance of ultrafast spectroscopy in understanding i...

  10. ENERGY RECEPTION AND TRANSFER IN PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1958-09-23

    The basic information about the path of carbon in photosynthesis is reviewed together with the methods that were used to discover it. This has led to the knowledge of what is required of the photochemical reaction in the form of chemical species. Attention is then directed to the structure of the photochemical apparatus itself insofar as it is viewable by electron microscopy, and some principoles of ordered structure are devised for the types of molecules to be found in the chloroplasts. From the combination of these, a structure for the grana lamella is suggested and a mode of function proposed. Experimental test for this mode of function is underway; one method is to examine photoproduced unpaired electrons. This is discussed.

  11. A shadow detector for photosynthesis efficiency.

    Science.gov (United States)

    Liao, Kang-Ling; Jones, Roger D; McCarter, Patrick; Tunc-Ozdemir, Meral; Draper, James A; Elston, Timothy C; Kramer, David; Jones, Alan M

    2017-02-07

    Plants tolerate large variations in the intensity of the light environment by controlling the efficiency of solar to chemical energy conversion. To do this, plants have a mechanism to detect the intensity, duration, and change in light as they experience moving shadows, flickering light, and cloud cover. Sugars are the primary products of CO2 fixation, a metabolic pathway that is rate limited by this solar energy conversion. We propose that sugar is a signal encoding information about the intensity, duration and change in the light environment. We previously showed that the Arabidopsis heterotrimeric G protein complex including its receptor-like Regulator of G signaling protein, AtRGS1, detects both the concentration and the exposure time of sugars (Fu et al., 2014. Cell 156: 1084-1095). This unique property, designated dose-duration reciprocity, is a behavior that emerges from the system architecture / system motif. Here, we show that another property of the signaling system is to detect large changes in light while at the same time, filtering types of fluctuation in light that do not affect photosynthesis efficiency. When AtRGS1 is genetically ablated, photosynthesis efficiency is reduced in a changing- but not a constant-light environment. Mathematical modeling revealed that information about changes in the light environment is encoded in the amount of free AtRGS1 that becomes compartmentalized following stimulation. We propose that this property determines when to adjust photosynthetic efficiency in an environment where light intensity changes abruptly caused by moving shadows on top of a background of light changing gradually from sun rise to sun set and fluctuating light such as that caused by fluttering leaves. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Net ecosystem calcification and net primary production in two Hawaii back-reef systems

    Science.gov (United States)

    Kiili, S.; Colbert, S.; Hart, K.

    2016-02-01

    Back-reef systems have complex carbon cycling, driven by dominant benthic communities that change with environmental conditions and display characteristic patterns of net primary production (NP) and net ecosystem calcification (G). The G/NP ratio provides a fundamental community-level assessment to compare systems spatially and to evaluate temporal changes in carbon cycling. Carbon dynamics were examined at leeward Hōnaunau and windward Waíōpae, Hawaíi Island. Both locations discharge brackish groundwater, including geothermal water at Waíōpae. The change in total CO2 (TCO2) and total alkalinity (TA) between morning and afternoon was measured to calculate the G/NP ratio along a salinity gradient. At both sites, aragonite saturation (ΩAr) was lower than open ocean conditions, and increased with salinity. Between the morning and afternoon, ΩAr increased by at least 1 as photosynthesis consumed CO2. At Waíōpae, water was corrosive to aragonite due to the input of acidic groundwater, but not at Honaunau, demonstrating the importance of local watershed characteristics on ΩAr. Across the salinity gradient, TA and TCO2 decreased between morning and afternoon. At Hōnaunau, G/NP increased from 0.11 to 0.31 with salinity, consistent with an offshore increase in coral cover. But at Waíōpae, G/NP decreased from 0.49 to 0.0 with salinity, despite an increase in coral cover with salinity. Low G may be caused by benthic processes, including coral bleaching or high rates of carbonate dissolution in interstitial waters between tide pools. Broader environmental conditions than just salinity, including pH of fresh groundwater inputs, shape the carbon cycling in the back-reef system. Examining the G/NP ratio of a back-reef system allows for a simple method to establish community level activity, and possibly indicate changes in a dynamic system.

  13. Far-red light is needed for efficient photochemistry and photosynthesis.

    Science.gov (United States)

    Zhen, Shuyang; van Iersel, Marc W

    2017-02-01

    The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (ΦPSII) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in ΦPSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on ΦPSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in ΦPSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in ΦPSII by far-red light was associated with an increase in net photosynthesis (Pn). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability.

    Science.gov (United States)

    Vieira, Sónia; Cartaxana, Paulo; Máguas, Cristina; Marques da Silva, Jorge

    2016-04-01

    The effects of dissolved inorganic carbon (DIC) availability on photosynthesis were studied in two estuarine intertidal microphytobenthos (MPB) communities and in the model diatom species Phaeodactylum tricornutum. Kinetics of DIC acquisition, measured with a liquid-phase oxygen electrode, showed higher K(1/2)(DIC) (0.31 mM) and Vm (7.78 nmol min(-1) µg (Chl a)(-1)) for MPB suspensions than for P. tricornutum (K(1/2)(DIC) = 0.23 mM; Vm = 4.64 nmol min(-1) µg (Chl a)(-1)), suggesting the predominance of species with lower affinity for DIC and higher photosynthetic capacity in the MPB. The net photosynthetic rate of the MPB suspensions reached saturation at a DIC concentration of 1-1.5 mM. This range was lower than the concentrations found in the interstitial water of the top 5-mm sediment layer, suggesting no limitation of photosynthesis by DIC in the MPB communities. Accordingly, carbon isotope discrimination revealed a moderate activity of CO2-concentrating mechanisms in the MPB. However, addition of NaHCO3 to intact MPB biofilms caused a significant increase in the relative maximum photosynthetic electron transport rate (rETR max) measured by imaging pulse-amplitude modulated chlorophyll a fluorescence. These results suggest local depletion of DIC at the photic layer of the sediment (the first few hundred µm), where MPB cells accumulate during diurnal low tides. This work provides the first direct experimental evidence of DIC limitation of photosynthesis in highly productive intertidal MPB communities.

  15. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment.

    Science.gov (United States)

    Warren, Jeffrey M; Jensen, Anna M; Medlyn, Belinda E; Norby, Richard J; Tissue, David T

    2014-11-17

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species. However, there is evidence that A may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free-air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following 2 years of ∼40 % enhancement of CO2. A was re-assessed a decade later to determine if the initial enhancement of photosynthesis by eCO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system. Photosynthetic CO2 response curves (A versus the CO2 concentration in the intercellular air space (Ci); or A-Ci curves) were contrasted with earlier measurements using leaf photosynthesis model equations. Relationships between light-saturated photosynthesis (Asat), maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax), chlorophyll content and foliar nitrogen (N) were assessed. In 1999, Asat for eCO2 treatments was 15.4 ± 0.8 μmol m(-2) s(-1), 22 % higher than aCO2 treatments (P < 0.01). By 2009, Asat declined to <50 % of 1999 values, and there was no longer a significant effect of eCO2 (Asat = 6.9 or 5.7 ± 0.7 μmol m(-2) s(-1) for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17 % less than that in aCO2 foliage. Photosynthetic N-use efficiency (Asat : N) was greater in eCO2 in 1999 resulting in greater Asat despite similar N content, but the enhanced efficiency in eCO2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between Jmax or Vcmax with declining N, or in the ratio of Jmax : Vcmax through time. Results suggest that the initial enhancement of photosynthesis to elevated CO2

  16. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  17. Age-related decline in forest production: modelling the effects of growth limitation, neighbourhood competition and self-thinning

    NARCIS (Netherlands)

    Berger, U.; Hildenbrandt, H.; Grimm, V.

    2004-01-01

    1 In growing forest stands, above-ground net primary production peaks early in stand development and then declines. The causes for this decline are not yet well understood, but hypotheses include physiological and ecophysiological effects, as well as changes in stand structure due to local

  18. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  19. Effects of Lead Stress on Photosynthesis and Physiological and Biochemical Characteristics of Amorpha fruticosa

    Directory of Open Access Journals (Sweden)

    ZHOU Mei-li

    2017-05-01

    Full Text Available The seedlings of Amorpha fruticosa were cultured at lead concentration of 0(control, 100, 300, 600 mg·kg-1 respectively, under pot experiment to observe and analyze the response of physiological indicators such as malonaldehyde(MDA content, activities of antioxidant enzymes (SOD, POD, CAT, photosynthesis and chlorophyll fluorescence parameters in leaves of Amorpha fruticosa to Pb stress. The results showed that with the increase of Pb concentration, the contents of MDA and activities of SOD and POD in leaves of Amorpha fruticosa increased. The net photosynthetic rate(Pn was significantly higher than that of the control at 100 mg·kg-1 Pb stress treatment. When the Pb concentration reached 300 mg·kg-1, the activity of antioxidant enzymes and relative content of chlorophyll(SPAD of Amorpha fruticosa increased significantly. The activities of catalases(CAT began to decrease, the decrease of photosynthesis was mainly affected by nonstomatal limitation, and the chlorophyll fluorescence characteristics of Amorpha fruticosa were not seriously damaged when Amorpha fruticosa was under Pb stress of 600 mg·kg-1. It indicated that Amorpha fruticosa could resist Pb pollution (600 mg·kg-1in the environment.

  20. [Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters].

    Science.gov (United States)

    Hao, Xing-yu; Han, Xue; Li, Ping; Yang, Hong-bin; Lin, Er-da

    2011-10-01

    By using free air CO2 enrichment (FACE) system, a pot experiment under field condition was conducted to study the effects of elevated CO2 concentration (550 +/- 60 micromol mol(-1)) on the leaf photosynthesis and chlorophyll fluorescence parameters of mung bean. Comparing with the control (CO2 concentration averagely 389 +/- 40 micromol mol(-1)), elevated CO2 concentration increased the leaf intercellular CO2 concentration (Ci) and net photosynthesis rate (P(n)) at flowering and pod growth stage by 9.8% and 11.7%, decreased the stomatic conductance (G(s)) and transpiration rate (T(r)) by 32.0% and 24.6%, respectively, and increased the water use efficiency (WUE) by 83.5%. Elevated CO2 concentration had lesser effects on the minimal fluorescence (F0), maximal fluorescence (F(m)), variable fluorescence (F(v)), ratio of variable fluorescence to minimal fluorescence (F(v)/F0), and ratio of variable fluorescence to maximal fluorescence (F(v)/F(m)) at bud stage, but increased the F0 at pod filling stage by 19.1% and decreased the Fm, F(v), F(v)/F0, and F(v)/F(m) by 9.0%, 14.3%, 25.8% , and 6.2%, respectively. These results suggested that elevated CO2 concentration could damage the structure of leaf photosystem II and consequently decrease the leaf photosynthetic capacity in the late growth phase of mung bean.

  1. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  2. [Effects of soil compactness stress on root activity and leaf photosynthesis of cucumber].

    Science.gov (United States)

    Sun, Yan; Wang, Yi-Quan; Yang, Mei; Xu, Lei

    2005-10-01

    Responses of root activity and leaf photosynthesis to soil compactness stress were studied in cucumber plants grown in pots. Soil compaction was expressed by soil bulk density. There were three compactness treatments with soil bulk densities, 1.2, 1.4 and 1.6 g/cm(3). The results showed that when the soil compactness increased, the dry weight and activity of roots reduced (Fig. 1); the relative electrical conductivity and malondialdehyde (MDA) content of cucumber leaf (Fig. 2) increased; the soluble protein content decreased (Fig. 3); the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased (Fig. 4); net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E) and specific leaf weight (SLW) decreased, but intercellular CO(2) concentration (Ci) increased (Fig. 5). These results mean that high soil compaction brings stress to cucumber plants.

  3. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  4. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  5. Wild Manihot Species Do Not Possess C4 Photosynthesis

    Science.gov (United States)

    CALATAYUD, P.‐A.; BARÓN, C. H.; VELÁSQUEZ, H.; ARROYAVE, J. A.; LAMAZE, T.

    2002-01-01

    Cultivated cassava (Manihot esculenta) has a higher rate of photosynthesis than is usual for C3 plants and photosynthesis is not light saturated. For these reasons it has been suggested that cultivated cassava could be derived from wild species possessing C4 photosynthesis. The natural abundance of 13C and activities of phosphoenolpyruvate carboxylase and phosphoglycolate phosphatase were measured in leaves of 20 wild cassava species to test this hypothesis. All the species studied, including M. flabellifolia the potential wild progenitor of cultivated cassava, clearly exhibited C3 not C4 characteristics. PMID:12096814

  6. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

    Science.gov (United States)

    Guo, Ling; Ding, Yanqiang; Xu, Yaliang; Li, Zhidan; Jin, Yanling; He, Kaize; Fang, Yang; Zhao, Hai

    2017-09-01

    Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co2+ and Ni2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co2+ and Ni2+ (≤0.5mgL-1) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL-1), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co2+ and Ni2+. In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co2+ and Ni2+ contents (2012.9±18.8 and 1997.7±29.2mgkg-1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co2+- and Ni2+-polluted water and high-quality biomass production. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state

    NARCIS (Netherlands)

    Kaiser, Elias; Zhou, Dianfan; Heuvelink, Ep; Harbinson, Jeremy; Morales Sierra, A.; Marcelis, Leo F.M.

    2017-01-01

    Leaves are often exposed to fluctuating irradiance, which limits assimilation. Elevated CO2 enhances dynamic photosynthesis (i.e. photosynthesis in fluctuating irradiance) beyond its effects on steady-state photosynthesis rates. Studying the role of CO2 in dynamic photosynthesis is important for

  8. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits

    1987-01-01

    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  9. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  10. PolicyNet Publication System

    Data.gov (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  11. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  12. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A

    2006-01-01

    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  13. Relationships between leaf nitrogen and limitations of photosynthesis in canopies of Solidago altissima

    Science.gov (United States)

    Egli, Philipp; Schmid, Bernhard

    1999-09-01

    Vertical distribution patterns of light, leaf nitrogen, and leaf gas exchange through canopies of the clonal perennial Solidago altissima were studied in response to mowing and fertilizer application in a field experiment. Consistent with the distribution of light, average leaf nitrogen content followed a `smooth' exponential decline along the fertilized stands both in control and mown plots. The nitrogen profile along the unfertilized stands in mown plots, however, was `disrupted' by high-nitrogen leaves at the top of shorter ramets that only reached intermediate strata of the canopies. Hence, in these stands leaf nitrogen was significantly increased in short ramets compared with tall ramets for a given light environment, suggesting suboptimal stand structure but not necessarily suboptimal single-ramet architecture. However, at least under the climatic conditions observed during measurements, such disrupture had no substantial effect on stand productivity: model calculations showed that vertical distribution patterns of leaf nitrogen along ramets only marginally influenced the photosynthetic performance of ramets and stands. This is explained by the observed photosynthesis-nitrogen relationship: the rate of photosynthesis per unit amount of leaf nitrogen did not increase with leaf nitrogen content even under saturating light levels indicating that leaf photosynthesis was not nitrogen limited during the measurement periods. Nevertheless, our study indicates that consideration of how architecture(s) of adjacent individual plants interact could be essential for a better understanding of the trade-offs between individual and canopy characteristics for maximizing carbon gain. Such trade-offs may end up in a suboptimal canopy structure, which could not be predicted and understood by classical canopy optimization models.

  14. Increase of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age.

    Science.gov (United States)

    Katny, María Angélica Casanova; Hoffmann-Thoma, Gudrun; Schrier, Anton Arij; Fangmeier, Andreas; Jäger, Hans-Jürgen; van Bel, Aart J E

    2005-04-01

    Potato plants (Solanum tuberosum cv. Bintje) were grown in open top chambers under ambient (400 microL L(-1)) and elevated CO2 (720 microL L(-1)). After 50 days one half of each group was transferred to the other CO2 concentration and the effects were studied in relation to leaf age (old, middle-aged and young leaves) in each of the four groups. Under long-term exposure to elevated CO2, photosynthesis increased between 10% and 40% compared to ambient CO2. A subsequent shift of the same plants to ambient CO2 caused a 20-40% decline in photosynthetic rate, which was most pronounced in young leaves. After shifting from long-term ambient to elevated CO2, photosynthesis also increased most strongly in young leaves (90%); these experiments show that photosynthesis was downregulated in the upper young fully expanded leaves of potato growing long-term under elevated CO2. Soluble sugar content in all leaf classes under long-term exposure was stable irrespective of the CO2 treatment, however under elevated CO2 young leaves showed a strongly increased starch accumulation (up to 400%). In all leaf classes starch levels dropped in response to the shift from 720 to 400 microL L(-1) approaching ambient CO2 levels. After the shift to 720 microL L(-1), sucrose and starch levels increased, principally in young Leaves. There is clear evidence that leaves of different age vary in their responses to changes in atmospheric CO2 concentration.

  15. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  16. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn

    2001-01-01

    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  17. The Economics of Net Neutrality

    OpenAIRE

    Hahn, Robert W.; Wallsten, Scott

    2006-01-01

    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  18. French Wines on the Decline?:

    DEFF Research Database (Denmark)

    Steiner, Bodo

    2004-01-01

    French wines, differentiated by geographic origin, served for many decades as a basis for the French success in the British wine market. However in the early 1990s, market share began to decline. This article explores the values that market participants placed on labelling information on French...... wines in Britain in 1994. Results from a parametric hedonic approach indicate that both the lack of a consistently positive valuation of varietal wines and the low valuation of wines with geographical appellation help to explain the overall decline of France's role in the British wine market...

  19. Oxygenic photosynthesis: translation to solar fuel technologies

    Directory of Open Access Journals (Sweden)

    Julian David Janna Olmos

    2014-12-01

    Full Text Available Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar

  20. New fluorescence parameters for monitoring photosynthesis in plants

    NARCIS (Netherlands)

    Force, L.; Critchley, Ch.; Rensen, van J.J.S.

    2003-01-01

    Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most

  1. Box photosynthesis modeling results for WRF/CMAQ LSM

    Data.gov (United States)

    U.S. Environmental Protection Agency — Box Photosynthesis model simulations for latent heat and ozone at 6 different FLUXNET sites. This dataset is associated with the following publication: Ran, L., J....

  2. Influence of soil drought stress on photosynthesis, carbohydrates ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    grown 1-year-old potted. M.9EMLA apple trees (Malus domestica Borkh.) (after growing for 6 weeks) were subjected to drought stress by withholding water for an additional six-week period. The photosynthesis, carbohydrates ...

  3. Evaluation of the biophysical limitations on photosynthesis of four varietals of Brassica rapa

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B.; Weinig, C.

    2014-12-01

    Evaluating performance of agricultural varietals can support the identification of genotypes that will increase yield and can inform management practices. The biophysical limitations of photosynthesis are amongst the key factors that necessitate evaluation. This study evaluated how four biophysical limitations on photosynthesis, stomatal response to vapor pressure deficit, maximum carboxylation rate by Rubisco (Ac), rate of photosynthetic electron transport (Aj) and triose phosphate use (At) vary between four Brassica rapa genotypes. Leaf gas exchange data was used in an ecophysiological process model to conduct this evaluation. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) integrates the carbon uptake and utilization rate limiting factors for plant growth. A Bayesian framework integrated in TREES here used net A as the target to estimate the four limiting factors for each genotype. As a first step the Bayesian framework was used for outlier detection, with data points outside the 95% confidence interval of model estimation eliminated. Next parameter estimation facilitated the evaluation of how the limiting factors on A different between genotypes. Parameters evaluated included maximum carboxylation rate (Vcmax), quantum yield (ϕJ), the ratio between Vc-max and electron transport rate (J), and trios phosphate utilization (TPU). Finally, as trios phosphate utilization has been shown to not play major role in the limiting A in many plants, the inclusion of At in models was evaluated using deviance information criteria (DIC). The outlier detection resulted in a narrowing in the estimated parameter distributions allowing for greater differentiation of genotypes. Results show genotypes vary in the how limitations shape assimilation. The range in Vc-max , a key parameter in Ac, was 203.2 - 223.9 umol m-2 s-1 while the range in ϕJ, a key parameter in AJ, was 0.463 - 0.497 umol m-2 s-1. The added complexity of the TPU limitation did not improve model

  4. Net community production in the bottom of first-year sea ice over the Arctic spring bloom

    Science.gov (United States)

    Campbell, K.; Mundy, C. J.; Gosselin, M.; Landy, J. C.; Delaforge, A.; Rysgaard, S.

    2017-09-01

    The balance of photosynthesis and respiration by organisms like algae and bacteria determines whether sea ice is net heterotrophic or autotrophic. In turn this clarifies the influence of microbes on atmosphere-ice-ocean gas fluxes and their contribution to the trophic system. In this study we define two phases of the spring bloom based on bottom ice net community production and algal growth. Phase I was characterized by limited algal accumulation and low productivity, which at times resulted in net heterotrophy. Greater productivity in Phase II drove rapid algal accumulation that consistently produced net autotrophic conditions. The different phases were associated with seasonal shifts in light availability and species dominance. Results from this study demonstrate the importance of community respiration on spring productivity, as respiration rates can maintain a heterotrophic state independent of algal growth. This challenges previous assumptions of a fully autotrophic sea ice community during the ice-covered spring.

  5. Spectral signatures of photosynthesis I: Review of Earth organisms

    OpenAIRE

    Kiang, Nancy Y.; Siefert, Janet; Govindjee; Blankenship, Robert E.

    2007-01-01

    Why do plants reflect in the green and have a 'red edge' in the red, and should extrasolar photosynthesis be the same? We provide: 1) a brief review of how photosynthesis works; 2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges; 3) a synthesis of photosynthetic surface spectral signatures; 4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary li...

  6. From molecules to materials pathways to artificial photosynthesis

    CERN Document Server

    Rozhkova, Elena A

    2015-01-01

    This interdisciplinary book focuses on the various aspects transformation of the energy from sunlight into the chemical bonds of a fuel, known as the artificial photosynthesis, and addresses the emergent challenges connected with growing societal demands for clean and sustainable energy technologies. The editors assemble the research of world-recognized experts in the field of both molecular and materials artificial systems for energy production. Contributors cover the full scope of research on photosynthesis and related energy processes.

  7. An integrated artificial photosynthesis system based on peptide nanotubes.

    Science.gov (United States)

    Xue, Bin; Li, Ying; Yang, Fan; Zhang, Chunfeng; Qin, Meng; Cao, Yi; Wang, Wei

    2014-07-21

    A peptide nanotube platform that integrates both light-harvesting and catalytic units was successfully engineered for artificial photosynthesis. Peptide nanotubes not only serve as a hub for physically combining both units, but also work as mediators that transfer the energy from photo-excited chromophores to catalytic centers. The direct conversion of NAD(+) to NADH upon light illumination was demonstrated. This represents a promising step towards efficient and fully integrated artificial photosynthesis systems.

  8. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    Science.gov (United States)

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  10. 29 CFR 4204.13 - Net income and net tangible assets tests.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  11. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    conditions and when the temperature was raised again. Therefore, this genotype could be useful for breeding new varieties with an improved cold tolerance vis-a-vis Hornum, and be valuable in broadening the genetic diversity of miscanthus for more widespread cultivation in temperate climates.......Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...

  12. Dynamics and mechanisms of oscillatory photosynthesis.

    Science.gov (United States)

    Roussel, Marc R; Igamberdiev, Abir U

    2011-02-01

    We classify mathematical models that can be used to describe photosynthetic oscillations using ideas from nonlinear dynamics, and discuss potential mechanisms for photosynthetic oscillations in the context of this classification. We then turn our attention to recent experiments with leaves transferred to a low CO₂ atmosphere which revealed stochastic oscillations with a period of a few seconds. Rubisco is the enzyme that takes both CO₂ and O₂ as substrates correspondingly for photosynthetic assimilation and for photorespiration. Photosynthesis depletes CO₂ and produces O₂ while respiration and photorespiration work in the opposite direction, so the product of one process becomes the reactant of the other coupled process. We examine the possibility of oscillations of CO₂ and O₂ in the leaf in relation to photorespiration. We suggest that in the cell, oscillations with a period of a few seconds, corresponding to the time between photosynthetic CO₂ fixation and photorespiratory CO₂ release, underlie the dynamics of metabolism in C₃ plants. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Photosynthesis and the Origin of Life

    Science.gov (United States)

    Hartman, Hyman

    1998-10-01

    The origin and evolution of photosynthesis is considered to be the key to the origin of life. This eliminates the need for a soup as the synthesis of the bioorganics are to come from the fixation of carbon dioxide and nitrogen. No soup then no RNA world or Protein world. Cyanobacteria have been formed by the horizontal transfer of green sulfur bacterial photoreaction center genes by means of a plasmid into a purple photosynthetic bacterium. The fixation of carbon dioxide is considered to have evolved from a reductive dicarboxylic acid cycle (Chloroflexus) which was then followed by a reductive tricarboxylic acid cycle (Chlorobium) and finally by the reductive pentose phosphate cycle (Calvin cycle). The origin of life is considered to have occurred in a hot spring on the outgassing early earth. The first organisms were self-replicating iron-rich clays which fixed carbon dioxide into oxalic and other dicarboxylic acids. This system of replicating clays and their metabolic phenotype then evolved into the sulfide rich region of the hotspring acquiring the ability to fix nitrogen. Finally phosphate was incorporated into the evolving system which allowed the synthesis of nucleotides and phospholipids. If biosynthesis recapitulates biopoesis, then the synthesis of amino acids preceded the synthesis of the purine and pyrimidine bases. Furthermore the polymerization of the amino acid thioesters into polypeptides preceded the directed polymerization of amino acid esters by polynucleotides. Thus the origin and evolution of the genetic code is a late development and records the takeover of the clay by RNA.

  14. Origin and early evolution of photosynthesis

    Science.gov (United States)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  15. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda

    2017-09-01

    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  16. Oxygenic photosynthesis and the distribution of chloroplasts.

    Science.gov (United States)

    Gantt, Elisabeth

    2011-01-01

    The integrated functioning of two photosystems (I and II) whether in cyanobacteria or in chloroplasts is the outstanding sign of a common ancestral origin. Many variations on the basic theme are currently evident in oxygenic photosynthetic organisms whether they are prokaryotes, unicellular, or multicellular. By conservative estimates, oxygenic photosynthesis has been around for at least ca. 2.2-2.7 billions years, consistent with cyanobacteria-type microfossils, biomarkers, and an atmospheric rise in oxygen to less than 1.0% of the present concentration. The presumptions of chloroplast formation by the cyanobacterial uptake into a eukaryote prior to 1.6 BYa ago are confounded by assumptions of host type(s) and potential tolerance of oxygen toxicity. The attempted dating and interrelationships of particular chloroplasts in various plant or animal lineages has relied heavily on phylogenomic analysis and evaluations that have been difficult to confirm separately. Many variations occur in algal groups, involving the type and number of accessory pigments, and the number(s) of membranes (2-4) enclosing a chloroplast, which can both help and complicate inferences made about early or late origins of chloroplasts. Integration of updated phylogenomics with physiological and cytological observations remains a special challenge, but could lead to more accurate assumptions of initial and extant endosymbiotic event(s) leading toward stable chloroplast associations.

  17. Flux decline in ultrafiltration processes

    NARCIS (Netherlands)

    van den Berg, G.B.; Smolders, C.A.

    1990-01-01

    When a membrane filtration process such as ultrafiltration is used a flux- and yield-decline can be observed. The causes are i) concentration polarization (i.e. accumulation of retained solutes, reversibly and immediately occurring) and ii) fouling phenomena such as adsorption, pore-blocking and

  18. Recent Honey Bee Colony Declines

    Science.gov (United States)

    2007-06-20

    thrips; ants; butterflies; moths; bats ; and hummingbirds and other birds. 2 Berenbaum, M.R., University of Illinois, Statement before the... vampire mite (Varroa destructor) and the tracheal mite (Acarapis woodi), and also colony declines due to the pathogen Paenibacillus larvae.12 Other reasons

  19. Declining Efficiency in the Economy

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1995-01-01

    The paper discusses the concept of resource efficiency in the economy as a whole. This implies some unfoldings of the simple definition of efficiency as human satisfaction over throughput of resources. It is suggested, that the efficiency of the economic systems is declining in the countries...

  20. Strong families and declining fertility

    NARCIS (Netherlands)

    Hilevych, Yuliya

    2016-01-01

    This dissertation focuses on the role of family and social relationships in individuals’ reproductive careers during the fertility decline in Soviet Ukraine from around 1950 to 1975. These three decades after the Second World War signified the end of the First Demographic Transition in Ukraine

  1. Applications of Satellite Fluorescence to Constrain Global Photosynthesis

    Science.gov (United States)

    Parazoo, Nicholas

    2016-07-01

    Terrestrial gross primary production (GPP) by plant photosynthesis is the largest flux component of the global carbon budget and primary conduit for biological sequestration of atmospheric carbon dioxide. While much is known about the functioning of photosynthesis at the leave-level, gross photosynthetic fluxes are still only loosely constrained at ecosystem, regional, and global scales. Uncertainty in the response of photosynthesis to the environment at these scales is a major source of uncertainty in prediction of biosphere-atmosphere feedbacks under climate change, and thus novel methods are needed to push the boundaries of carbon cycle science beyond leaf-level. Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. It was recently discovered that solar induced fluorescence (SIF) can be accurately retrieved from space using high spectral resolution radiances, providing a new way to study photosynthesis at scales ranging from the ecosystem to the globe. Over the last 5-10 years, satellite based measurements of SIF have provided key new insights into the global distribution and functioning of plant photosynthesis, providing new ways to quantify global GPP, detect regional-scale changes in plant productivity in relation to light use efficiency and environmental controls, disentangle biological contributions to atmospheric carbon dioxide mole fractions, and refine process understanding in terrestrial biosphere models. Here, we highlight some of the key research advances emerging from satellite SIF.

  2. Chinese culture and fertility decline.

    Science.gov (United States)

    Wu, C; Jia, S

    1992-01-01

    Coale has suggested that cultural factors exert a significant influence on fertility reduction; countries in the "Chinese cultural circle" would be the first to show fertility decline. In China, the view was that traditional Chinese culture contributed to increased population. This paper examines the nature of the relationship between Chinese culture and fertility. Attention was directed to a comparison of fertility rates of developing countries with strong Chinese cultural influence and of fertility within different regions of China. Discussion was followed by an explanation of the theoretical impact of Chinese culture on fertility and direct and indirect beliefs and practices that might either enhance or hinder fertility decline. Emigration to neighboring countries occurred after the Qing dynasty. Fertility after the 1950s declined markedly in Japan, Singapore, Hong Kong, South Korea, Taiwan, and mainland China: all countries within the Chinese cultural circle. Other countries within the Chinese circle which have higher fertility, yet lower fertility than other non-Chinese cultural countries, are Malaysia, Thailand, and Indonesia. Within China, regions with similar fertility patterns are identified as coastal regions, central plains, and mountainous and plateau regions. The Han ethnic group has lower fertility than that of ethnic minorities; regions with large Han populations have lower fertility. Overseas Chinese in East Asian countries also tend to have lower fertility than their host populations. Chinese culture consisted of the assimilation of other cultures over 5000 years. Fertility decline was dependent on the population's desire to limit reproduction, favorable social mechanisms, and availability of contraception: all factors related to economic development. Chinese culture affects fertility reduction by affecting reproductive views and social mechanisms directly, and indirectly through economics. Confucianism emphasizes collectivism, self

  3. A framework to quantify the determinants of canopy photosynthesis and carbon uptake using time series of chlorophyll fluorescence

    Science.gov (United States)

    Kellner, J. R.; Cushman, K. C.; Kendrick, J. A.; Silva, C. E.; Wiseman, S. M.; Yang, X.

    2015-12-01

    Uncertainty over the sign and magnitude of environmental forcing agents on fluxes of tropical forest carbon could be reduced with measurements of canopy photosynthesis. But no existing method can quantify photosynthesis within individual plants at scales larger than a few cm. Portable leaf chambers can determine leaf-level gas exchange, and eddy-covariance instruments infer the net ecosystem-atmosphere carbon flux. These endpoints represent an axis of granularity and extent. Single leaf measurements are finely grained, but necessarily limited in extent, and gas exchange for whole landscapes cannot resolve the performance or contributions of individual plants. This limits the ability of scientists to test mechanistic demographic and physiological hypotheses about the drivers of photosynthesis in ecosystems, and therefore to understand the determinants of carbon fluxes between tropical ecosystems and the atmosphere. Here I describe a framework to overcome these challenges using a program of drone-enabled remote sensing measurements of solar-induced fluorescence (SIF) coupled with ground-based physiological studies to understand the determinants of photosynthesis within leaves, individual organisms and large landscapes. The Brown Platform for Autonomous Remote Sensing (BPAR) is a suite of sensors carried by a gas-powered helicopter drone. By conducting frequent, low-altitude flights BPAR can produce VNIR imaging spectroscopy time series with measurements separated by minutes to hours at ground sample distances of 1 cm. The talk will focus on how measurements of SIF at these spatial and temporal scales can be coupled with models to infer the rate of electron transport and carbon assimilation.

  4. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?

    Science.gov (United States)

    Wangpraseurt, Daniel; Holm, Jacob B; Larkum, Anthony W D; Pernice, Mathieu; Ralph, Peter J; Suggett, David J; Kühl, Michael

    2017-01-01

    Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.

  5. Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.).

    Science.gov (United States)

    Campbell, Catherine D; Sage, Rowan E

    2006-05-01

    Phosphorus (P) is a major factor limiting the response of carbon acquisition of plants and ecosystems to increasing atmospheric CO2 content. An important consideration, however, is the effect of P deficiency at the low atmospheric CO2 content common in recent geological history, because plants adapted to these conditions may also be limited in their ability to respond to further increases in CO2 content. To ascertain the effects of low P on various components of photosynthesis, white lupin (Lupinus albus L.) was grown hydroponically at 200, 400 and 750 micromol mol(-1) CO2, under sufficient and deficient P supply (250 and 0.69 microM P, respectively). Increasing growth CO2 content increased photosynthesis only under sufficient growth P. Ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) content and activation state were not reduced to the same degree as the net CO2 assimilation rate (A), and the in vivo rate of electron transport was sufficient to support photosynthesis in all cases. The rate of triose phosphate use did not appear limiting either, because all the treatments continued to respond positively to a drop in oxygen levels. We conclude that, at ambient and elevated CO2 content, photosynthesis in low-P plants appears limited by the rate of ribulose biphosphate (RuBP) regeneration, probably through inhibition of the Calvin cycle. This failure of P-deficient plants to respond to rising CO2 content above 200 micromol mol(-1) indicates that P status already imposes a widespread restriction in plant responses to increases in CO2 content from the pre-industrial level to current values.

  6. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration.

    Science.gov (United States)

    Way, Danielle A; Yamori, Wataru

    2014-02-01

    While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.

  7. OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions.

    Science.gov (United States)

    Udomchalothorn, Thanikarn; Plaimas, Kitiporn; Sripinyowanich, Siriporn; Boonchai, Chutamas; Kojonna, Thammaporn; Chutimanukul, Panita; Comai, Luca; Buaboocha, Teerapong; Chadchawan, Supachitra

    2017-04-01

    OsNUC1 encodes rice nucleolin, which has been shown to be involved in salt stress responses. Expression of the full-length OsNUC1 gene in Arabidopsis resulted in hypersensitivity to ABA during germination. Transcriptome analysis of the transgenic lines, in comparison with the wild type, revealed that the RNA abundance of >1,900 genes was significantly changed under normal growth conditions, while under salt stress conditions the RNAs of 999 genes were found to be significantly regulated. Gene enrichment analysis showed that under normal conditions OsNUC1 resulted in repression of genes involved in photosynthesis, while in salt stress conditions OsNUC1 increased expression of the genes involved in the light-harvesting complex. Correspondingly, the net rate of photosynthesis of the transgenic lines was increased under salt stress. Transgenic rice lines with overexpression of the OsNUC1-L gene were generated and tested for photosynthetic performance under salt stress conditions. The transgenic rice lines treated with salt stress at the booting stage had a higher photosynthetic rate and stomatal conductance in flag leaves and second leaves than the wild type. Moreover, higher contents of Chl a and carotenoids were found in flag leaves of the transgenic rice. These results suggest a role for OsNUC1 in the modification of the transcriptome, especially the gene transcripts responsible for photosynthesis, leading to stabilization of photosynthesis under salt stress conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Declining resilience of ecosystem functions under biodiversity loss.

    Science.gov (United States)

    Oliver, Tom H; Isaac, Nick J B; August, Tom A; Woodcock, Ben A; Roy, David B; Bullock, James M

    2015-12-08

    The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

  9. Evidence that Tropical Forest Photosynthesis is Not Directly Limited by High Temperatures

    Science.gov (United States)

    Smith, M.; Taylor, T.; Van Haren, J. L. M.; Rosolem, R.; Restrepo-Coupe, N.; Wu, J.; Oliveira Junior, R. C.; Silva, R. D.; De Araujo, A. C.; Camargo, P. B. D.; Huxman, T. E.; Saleska, S. R.

    2016-12-01

    Loss of tropical forest biomass under rising temperatures could result in significant feedbacks to global climate. The vulnerability of tropical trees to climate warming depends on the specific physiological mechanisms controlling photosynthetic decline at temperatures above the thermal optimum. High temperatures may negatively impact photosynthetic metabolism (direct effects) (Doughty and Goulden 2008), or leaves may respond to the concomitant increase in vapor pressure deficit (VPD) by closing stomata (indirect effects) (Lloyd and Farquhar 2008). The difference is important because the former reveals a vulnerability of photosynthetic infrastructure to higher temperatures, while the latter is an expected physiological response of healthy leaves. We investigated these contrasting hypotheses in a climate controlled, 0.2 ha artificial tropical forest (the Biosphere 2 tropical forest biome, B2-TF). Typically coupled in nature, VPD and temperature can be varied independently in the controlled environment of the B2-TF, and their effects on photosynthesis distinguished. We found that in the B2-TF, gross ecosystem productivity (GEP) was strongly reduced by increasing VPD, but responded little to temperature. Whereas eddy flux-derived GEP of three natural tropical forest sites in the Amazon of Brazil declined at temperatures above 27°C, GEP in the B2-TF remained stable up to 33°C under both low and high VPD regimes. While either mechanism results in reduced photosynthesis, the impact of VPD is short-lived and may be mitigated by enhanced water use efficiency under elevated atmospheric CO2 concentrations, allowing tropical forests to be more resilient to climate warming.

  10. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the eastern United States

    Science.gov (United States)

    Keppel-Aleks, G.; Washenfelder, R. A.

    2016-12-01

    Aerosol optical depth (AOD) has been shown to influence ecosystem carbon uptake by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Several modeling studies have hypothesized that this effect may be a significant driver of the historical terrestrial carbon sink, and may therefore be an important climate feedback associated with changing air quality. In this study, we quantify the impact of anthropogenic aerosols on gross primary production (GPP) in the eastern United States. We focus on the eastern U.S. because 1) rapid decreases in SO2 emissions over the past two decades create an opportunity to examine the effects of reduced SO4 mass and aerosol optical depth; 2) SO2 emissions in the United States have been well quantified; 3) carbon fluxes within temperate ecosystems in the eastern United States have been well observed. We use accurate SO2 emission data for 1995-2013 in the Community Earth System Model (CESM) to determine trends in AOD, surface radiation, and photosynthesis. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% y-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% y-1, leading to declines GPP of 0.07% y-1. Integrated over the analysis period and domain, this represents 0.5 PgC of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.

  11. The acclimation of photosynthesis and respiration to temperature in the C3 -C4 intermediate Salsola divaricata: induction of high respiratory CO2 release under low temperature.

    Science.gov (United States)

    Gandin, Anthony; Koteyeva, Nuria K; Voznesenskaya, Elena V; Edwards, Gerald E; Cousins, Asaph B

    2014-11-01

    Photosynthesis in C(3) -C(4) intermediates reduces carbon loss by photorespiration through refixing photorespired CO(2) within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C(3) -C(4) plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C(3) -C(4) Salsola divaricata was tested to determine whether it reverts to C(3) photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C(3) -C(4) features acclimate to these growth conditions. The CO(2) compensation point and net rates of CO(2) assimilation in cold-grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C(3) -C(4) intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non-phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold-grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain. © 2014 John Wiley & Sons Ltd.

  12. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein

    2015-12-01

    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  13. Path of Carbon in Photosynthesis III.

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  14. Oxomanganese complexes for natural and artificial photosynthesis.

    Science.gov (United States)

    Rivalta, Ivan; Brudvig, Gary W; Batista, Victor S

    2012-04-01

    The oxygen-evolving complex (OEC) of Photosystem II (PSII) is an oxomanganese complex that catalyzes water-splitting into O2, protons and electrons. Recent breakthroughs in X-ray crystallography have resolved the cuboidal OEC structure at 1.9 Å resolution, stimulating significant interest in studies of structure/function relations. This article summarizes recent advances on studies of the OEC along with studies of synthetic oxomanganese complexes for artificial photosynthesis. Quantum mechanics/molecular mechanics hybrid methods have enabled modeling the S1 state of the OEC, including the ligation proposed by the most recent X-ray data where D170 is bridging Ca and the Mn center outside the CaMn3 core. Molecular dynamics and Monte Carlo simulations have explored the structural/functional roles of chloride, suggesting that it regulates the electrostatic interactions between D61 and K317 that might be critical for proton abstraction. Furthermore, structural studies of synthetic oxomanganese complexes, including the [H2O(terpy)MnIII(μ-O)2MnIV(terpy)OH2]3+ (1, terpy=2,2':6',2″-terpyridine) complex, provided valuable insights on the mechanistic influence of carboxylate moieties in close contact with the Mn catalyst during oxygen evolution. Covalent attachment of 1 to TiO2 has been achieved via direct deposition and by using organic chromophoric linkers. The (III,IV) oxidation state of 1 attached to TiO2 can be advanced to (IV,IV) by visible-light photoexcitation, leading to photoinduced interfacial electron transfer. These studies are particularly relevant to the development of artificial photosynthetic devices based on inexpensive materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cardiovascular Prevention of Cognitive Decline

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Monsuez

    2011-01-01

    Full Text Available Midlife cardiovascular risk factors, including diabetes, hypertension, dyslipemia, and an unhealthy lifestyle, have been linked to subsequent incidence, delay of onset, and progression rate of Alzheimer disease and vascular dementia. Conversely, optimal treatment of cardiovascular risk factors prevents and slows down age-related cognitive disorders. The impact of antihypertensive therapy on cognitive outcome in patients with hypertension was assessed in large trials which demonstrated a reduction in progression of MRI white matter hyperintensities, in cognitive decline and in incidence of dementia. Large-scale database correlated statin use and reduction in the incidence of dementia, mainly in patients with documented atherosclerosis, but clinical trials failed to reach similar conclusions. Whether a multitargeted intervention would substantially improve protection, quality of life, and reduce medical cost expenditures in patients with lower risk profile has not been ascertained. This would require appropriately designed trials targeting large populations and focusing on cognitive decline as a primary outcome endpoint.

  16. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius

    2014-01-01

    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  17. Net4Care PHMR Library

    DEFF Research Database (Denmark)

    2014-01-01

    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  18. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur

    2011-01-01

    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  19. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.

    1991-01-01

    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  20. The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae).

    Science.gov (United States)

    Leisner, Courtney P; Cousins, Asaph B; Offermann, Sascha; Okita, Thomas W; Edwards, Gerald E

    2010-12-01

    Recent research on the photosynthetic mechanisms of plant species in the Chenopodiaceae family revealed that three species, including Bienertia sinuspersici, can carry out C(4) photosynthesis within individual photosynthetic cells, through the development of two cytoplasmic domains having dimorphic chloroplasts. These unusual single-cell C(4) species grow in semi-arid saline conditions and have semi-terete succulent leaves. The effects of salinity on growth and photosynthesis of B. sinuspersici were studied. The results show that NaCl is not required for development of the single-cell C(4) system. There is a large enhancement of growth in culture with 50-200 mM NaCl, while there is severe inhibition at 400 mM NaCl. With increasing salinity, the carbon isotope values (δ(13)C) of leaves increased from -17.3(o)/(oo) (C(4)-like) without NaCl to -14.6(o)/(oo) (C(4)) with 200 mM NaCl, possibly due to increased capture of CO(2) from the C(4) cycle by Rubisco and reduced leakiness. Compared to growth without NaCl, leaves of plants grown under saline conditions were much larger (~2 fold) and more succulent, and the leaf solute levels increased up to ~2000 mmol kg solvent(-1). Photosynthesis on an incident leaf area basis (CO(2) saturated rates, and carboxylation efficiency under limiting CO(2)) and stomatal conductance declined with increasing salinity. On a leaf area basis, there was some decline in Rubisco content with increasing salinity up to 200 mM NaCl, but there was a marked increase in the levels of pyruvate, Pi dikinase, and phosphoenolpyruvate carboxylase (possibly in response to sensitivity of these enzymes and C(4) cycle function to increasing salinity). The decline in photosynthesis on a leaf area basis was compensated for on a per leaf basis, up to 200 mM NaCl, by the increase in leaf size. The influence of salinity on plant development and the C(4) system in Bienertia is discussed.

  1. Photosynthesis 2008 Gordon Research Conferences - June 22-27, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Willem Vermaas

    2009-08-28

    Photosynthesis is the most prevalent, natural way to convert solar energy to chemical energy in living systems, and is a major mechanism to ameliorate rising CO2 levels in the atmosphere and to contribute to sustainable biofuels production. Photosynthesis is a particularly interdisciplinary field of research, with contributions from plant and microbial physiology, biochemistry, spectroscopy, etc. The Photosynthesis GRC is a venue by which scientists with expertise in complementary approaches such as solar energy conversion, molecular mechanisms of electron transfer, and 'systems biology' (molecular physiology) of photosynthetic organisms come together to exchange data and ideas and to forge new collaborations. The 2008 Photosynthesis GRC will focus on important new findings related to, for example: (1) function, structure, assembly, degradation, motility and regulation of photosynthetic complexes; (2) energy and electron transfer in photosynthetic systems; regulation and rate limitations; (3) synthesis, degradation and regulation of cofactors (pigments, etc.); (4) functional, structural and regulatory interactions between photosynthesis and the physiology of the organism; (5) organisms with unusual photosynthetic properties, and insights from metagenomics and evolution; and (6) bioenergy strategies involving solar energy conversion, and practical applications for photosynthetic organisms.

  2. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  3. Hydrogen peroxide and the evolution of oxygenic photosynthesis

    Science.gov (United States)

    McKay, C. P.; Hartman, H.

    1991-05-01

    The early atmosphere of the Earth is considered to have been reducing (H2 rich) or neutral (CO2-N2). The present atmosphere by contrast is highly oxidizing (20% O2). The source of this oxygen is generally agreed to have been oxygenic photosynthesis, whereby organisms use water as the electron donor in the production of organic matter, liberating oxygen into the atmosphere. A major question in the evolution of life is how oxygenic photosynthesis could have evolved under anoxic conditions — and also when this capability evolved. It seems unlikely that water would be employed as the electron donor in anoxic environments that were rich in reducing agents such as ferrous or sulfide ions which could play that role. The abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water as the electron donor. We suggest that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis because as peroxide increased in a local environment, organisms would not only be faced with a loss of reductant, but they would also be pressed to develop the biochemical apparatus (e.g., catalase) that would ultimately be needed to protect against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis while global conditions were still anaerobic.

  4. The recurrent assembly of C4 photosynthesis, an evolutionary tale.

    Science.gov (United States)

    Christin, Pascal-Antoine; Osborne, Colin P

    2013-11-01

    Today, plants using C4 photosynthesis are widespread and important components of major tropical and subtropical biomes, but the events that led to their evolution and success started billions of years ago (bya). A CO2-fixing enzyme evolved in the early Earth atmosphere with a tendency to confuse CO2 and O2 molecules. The descendants of early photosynthetic organisms coped with this property in the geological eras that followed through successive fixes, the latest of which is the addition of complex CO2-concentrating mechanisms such as C4 photosynthesis. This trait was assembled from bricks available in C3 ancestors, which were altered to fulfill their new role in C4 photosynthesis. The existence of C4-suitable bricks probably determined the lineages of plants that could make the transition to C4 photosynthesis, highlighting the power of contingency in evolution. Based on the latest findings in C4 research, we present the evolutionary tale of C4 photosynthesis, with a focus on the general evolutionary phenomena that it so wonderfully exemplifies.

  5. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)

    lremy

    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  6. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs

    2012-01-01

    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  7. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.

    2014-01-01

    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  8. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  9. Simple simulation of the annual variation of the specific photosynthesis rate in Jiaozhou Bay

    Science.gov (United States)

    Ren, Ling; Zhang, Man-Ping; Lu, Xian-Kun; Feng, Shi-Zuo; Brockmann, Uwe H.

    2001-03-01

    A simple diagnostic simulation of the annual cycling of the surface specific photosynthesis rate (SPR) in Jiaozhou Bay is described in this paper. Light intensity, temperature and nutrients (nitrate+ammonia, phosphate) were considered as main factors controlling photosynthesis of phytoplankton and were introduced into the model by different function equations. The simulated variation of specific photosynthesis rate coincided with the measured data. Analysis of the effect of every factor on photosynthesis indicated that the variation of photosynthesis rate was controlled by all these three factors, while temperature showed good correlation with SPR as measurement showed. This diagnostic simulation yielded the values of some parameter relating with the photosynthesis in Jiaozhou Bay.

  10. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.

    Science.gov (United States)

    Kim, Wooyul; Edri, Eran; Frei, Heinz

    2016-09-20

    Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO2 reduction and H2O oxidation. Among the most important requirements for a complete integrated system are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO2 conversion by H2O to CO and O2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under

  11. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.

    Science.gov (United States)

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong; Zou, Yuqin; Liu, Huijun

    2016-09-01

    The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).

  12. Root system in declining forests

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.H.

    1987-07-11

    Trees with obligate ectomycorrhiza are more sensitive to environmental stress than those without ectomycorrhiza or with facultative ectomycorrhiza. With spruce seedlings growing in humus material from a declining spruce forest an experimental proof was given, that reduction of the mineral nitrogen content by adding sawdust to the rooting substrate increases the share of root tips converted to ectomycorrhizas. A close correlation has been found between the mycorrhiza frequency and the number of root tips. This means, that the ramification of a root system is the more intense the better the conditions for mycorrhizal development are.

  13. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  14. Photophysical processes in models of reaction centers of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Solov`yov, K.N.; Losev, A.P.; Kuz`mitskii, V.A. [Academy of Sciences of Belarus (Russian Federation)] [and others

    1995-11-01

    Simulation modeling of photosynthesis remains an urgent problem for two reasons. First, the cognitive value of this approach has not been exhausted yet. Second, this should lead to practical use of solar energy with the yield of oxygen, organic products, and nitrogen compounds. At present it has been found that photochemical stages of photosynthesis occur in reaction centers. A greater part of chlorophyll or bacteriochlorophyll molecules function as a light-harvesting antenna. The energy of an absorbed quantum migrates over the antenna and reaches the reaction centers, where the charge is separated and a chemical potential is generated. These are followed by dark stages of photosynthesis. The authors have investigated the photophysical properties of chlorophyll-like molecules and have approached the problem of intramolecular photoinduced electron transfer (PET) in studies of nitroporphyrins.

  15. Opinion: prospects for improving photosynthesis by altering leaf anatomy.

    Science.gov (United States)

    Tholen, Danny; Boom, Carolina; Zhu, Xin-Guang

    2012-12-01

    Engineering higher photosynthetic efficiency for greater crop yields has gained significant attention among plant biologists and breeders. To achieve this goal, manipulation of metabolic targets and canopy architectural features has been heavily emphasized. Given the substantial variations in leaf anatomical features among and within plant species, there is large potential to engineer leaf anatomy for improved photosynthetic efficiency. Here we review how different leaf anatomical features influence internal light distribution, delivery of CO(2) to Rubisco and water relations, and accordingly recommend features to engineer for increased leaf photosynthesis under different environments. More research is needed on (a) elucidating the genetic mechanisms controlling leaf anatomy, and (b) the development of a three dimensional biochemical and biophysical model of leaf photosynthesis, which can help pinpoint anatomical features required to gain a higher photosynthesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  17. Mechanism of carbon acquisition for endosymbiont photosynthesis in Anthozoa

    Energy Technology Data Exchange (ETDEWEB)

    Allermand, D.; Firla, P.; Benazet-Tambutte, S. [Centre Scientifique de Monaco, Monte Carlo (Monaco)

    1998-06-01

    Endosymbiontic dinoflagellates of the genus Symbiodinium must absorb their inorganic carbon from the cytoplasm of their host anthozoan cell rather than from seawater. This paper reviews the current state of knowledge on the source of dissolved inorganic carbon supply for endosymbiont photosynthesis and the transport mechanisms involved. Studies have shown that neither the internal medium nor paracellular diffusion could supply enough dissolved inorganic carbon for endosymbiont photosynthesis. The presence of a trans-epithelial mechanism is considered essential to maintaining photosynthesis. A vectorial transport mechanism is postulated which generates a pH gradient across the epithelium. The presence in an animal cell of a carbon concentration mechanism (CCM) suggests that some genetic transfer between the dinoflagellate and the animal host occurred during the evolution of anthozoan symbiosis. Details of the role of the pH gradient are discussed, along with the physiological adaptation of Symbiodinium spp. to symbiotic life. 166 refs., 2 tabs., 4 figs.

  18. Artificial photosynthesis for sustainable fuel and chemical production.

    Science.gov (United States)

    Kim, Dohyung; Sakimoto, Kelsey K; Hong, Dachao; Yang, Peidong

    2015-03-09

    The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photosynthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction. Advances in catalysis, concerning the use of renewable hydrogen as a feedstock for major chemical production, are outlined to shed light on the ultimate role of artificial photosynthesis in achieving sustainable chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Can we learn from heterosis and epigenetics to improve photosynthesis?

    Science.gov (United States)

    Offermann, Sascha; Peterhansel, Christoph

    2014-06-01

    Heterosis is the increase in fitness and yield of F1 hybrids derived from a cross between distantly related genotypes. The use of heterosis is one of the most successful crop breeding strategies, but the underlying molecular mechanisms are still poorly defined. There is ample evidence that heterosis is associated with increased rates of photosynthesis and recent analyses have shed light on the underlying biochemical principles. In parallel, the importance of epigenetic chromatin modifications in heterosis has now been established. The first direct links between epigenetic changes and improved photosynthesis have also been demonstrated. As epigenetic engineering is now possible, we discuss the feasibility of altering the epigenetic code to enhance photosynthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis.

    Science.gov (United States)

    Zhu, Xin-Guang; Wang, Yu; Ort, Donald R; Long, Stephen P

    2013-09-01

    Photosynthesis is arguably the most researched of all plant processes. A dynamic model of leaf photosynthesis that includes each discrete process from light capture to carbohydrate synthesis, e-photosynthesis, is described. It was developed by linking and extending our previous models of photosystem II (PSII) energy transfer and photosynthetic C3 carbon metabolism to include electron transfer processes around photosystem I (PSI), ion transfer between the lumen and stroma, ATP synthesis and NADP reduction to provide a complete representation. Different regulatory processes linking the light and dark reactions are also included: Rubisco activation via Rubisco activase, pH and xanthophyll cycle-dependent non-photochemical quenching mechanisms, as well as the regulation of enzyme activities via the ferredoxin-theoredoxin system. Although many further feedback and feedforward controls undoubtedly exist, it is shown that e-photosynthesis effectively mimics the typical kinetics of leaf CO₂ uptake, O₂ evolution, chlorophyll fluorescence emission, lumen and stromal pH, and membrane potential following perturbations in light, [CO₂] and [O₂] observed in intact C3 leaves. The model provides a framework for guiding engineering of improved photosynthetic efficiency, for evaluating multiple non-invasive measures used in emerging phenomics facilities, and for quantitative assessment of strengths and weaknesses within the understanding of photosynthesis as an integrated process. © 2012 John Wiley & Sons Ltd.

  1. Army Net Zero Prove Out. Army Net Zero Training Report

    Science.gov (United States)

    2014-11-20

    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  2. Army Net Zero Prove Out. Net Zero Waste Best Practices

    Science.gov (United States)

    2014-11-20

    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , the...technology and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  3. Thermal Acclimation and Adaptation of Net Ecosystem Carbon Exchange (Invited)

    Science.gov (United States)

    Luo, Y.; Niu, S.; Fei, S.; Yuan, W.; Zhang, Z.; Schimel, D.; Fluxnet Pis, .

    2010-12-01

    Ecosystem responses to temperature change are collectively determined by its constituents, which are plants, animals, microbes, and their interactions. It has been long documented that all plant, animals, and microbial carbon metabolism (photosynthesis, respiration) can acclimate and respond to changing temperatures, influencing the response of ecosystem carbon fluxes to climate change. Climate change also can induce competition between species with different thermal responses leading to changes in community composition. While a great deal of research has been done on species-level responses to temperature, it is yet to examine thermal acclimation of adaptation of ecosystem carbon processes to temperature change. With the advent of eddy flux measurements, it is possible to directly characterize the ecosystem-scale temperature response of carbon storage. In this study, we quantified the temperature response functions of net ecosystem carbon exchange (NEE), from which the responses of apparent optimal temperatures across broad spatial and temporal scales were examined. While temperature responses are normally parameterized in terms of the physiological variables describing photosynthesis and respiration, we focus on the apparent optimal behavior of NEE. Because the measurement integrated over multiple individuals and species within the footprint of the measurement (100s to 1000s of ha), it is challenging to interpret this measurement in terms of classical physiological variables such as the Q10. Rather we focus on the realized behavior of the ecosystem and its sensitivity to temperature. These empirical response functions can then be used as a benchmark for model evaluation and testing. Our synthesis of 656 site-years of eddy covariance data over the world shows that temperature response curves of NEE are parabolic, with their optima temperature strongly correlated with site growing season temperature across the globe and with annual mean temperature over years at

  4. Electrical signals as mechanism of photosynthesis regulation in plants.

    Science.gov (United States)

    Sukhov, Vladimir

    2016-12-01

    This review summarizes current works concerning the effects of electrical signals (ESs) on photosynthesis, the mechanisms of the effects, and its physiological role in plants. Local irritations of plants induce various photosynthetic responses in intact leaves, including fast and long-term inactivation of photosynthesis, and its activation. Irritation-induced ESs, including action potential, variation potential, and system potential, probably causes the photosynthetic responses in intact leaves. Probable mechanisms of induction of fast inactivation of photosynthesis are associated with Ca(2+)- and (or) H(+)-influxes during ESs generation; long-term inactivation of photosynthesis might be caused by Ca(2+)- and (or) H(+)-influxes, production of abscisic and jasmonic acids, and inactivation of phloem H(+)-sucrose symporters. It is probable that subsequent development of inactivation of photosynthesis is mainly associated with decreased CO2 influx and inactivation of the photosynthetic dark reactions, which induces decreased photochemical quantum yields of photosystems I and II and increased non-photochemical quenching of photosystem II fluorescence and cyclic electron flow around photosystem I. However, other pathways of the ESs influence on the photosynthetic light reactions are also possible. One of them might be associated with ES-connected acidification of chloroplast stroma inducing ferredoxin-NADP(+) reductase accumulation at the thylakoids in Tic62 and TROL complexes. Mechanisms of ES-induced activation of photosynthesis require further investigation. The probable ultimate effect of ES-induced photosynthetic responses in plant life is the increased photosynthetic machinery resistance to stressors, including high and low temperatures, and enhanced whole-plant resistance to environmental factors at least during 1 h after irritation.

  5. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected...... Cd concentrations in shoots and roots could be explained by the regression model Y = K/(1 + exp(a + bX)). Jing 411 was found to be Cd tolerant considering parameters of chlorophyll content, photosynthesis and chlorophyll fluorescence in which less Cd translocation was from roots into shoots. The high...

  6. Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration

    Science.gov (United States)

    Korrensalo, Aino; Alekseychik, Pavel; Hájek, Tomáš; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2017-01-01

    In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements.Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which, in turn, determined the seasonal variation in ecosystem PG. The upscaled growing season PG estimate, 230 g C m-2, agreed well with the GPP estimated by the EC (243 g C m-2).Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity, i.e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.

  7. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-12-01

    Full Text Available This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes, which is a vertical (1-D integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

  8. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    Science.gov (United States)

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  9. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Wang, Wen-Hua; Zheng, Chen-Juan; Lin, Guang-Hui; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-08-01

    Hydrogen sulphide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H(2)S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H(2)S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 μM NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (F(v)/F(m)) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H(2)S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome

  10. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  11. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library

    DONG, SHUCHUANG; HU, FUXIANG; KUMAZAWA, TAISEI; SIODE, DAISUKE; TOKAI, TADASHI

    2016-01-01

      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  12. Comparison of photosynthesis recovery dynamics in floating leaves of Trapa natans after inhibition by manganese or molybdenum: effects on Photosystem II.

    Science.gov (United States)

    Baldisserotto, Costanza; Ferroni, Lorenzo; Pantaleoni, Laura; Pancaldi, Simonetta

    2013-09-01

    The aquatic plant Trapa natans L. is highly resistant to Mn and moderately resistant to Mo, mainly thanks to its ability to sequestrate the metals by chelation in the vacuole. Excess of Mn and Mo causes somewhat aspecific toxicity symptoms in plants, but the main target of their toxicity seems to be the photosynthetic process. In this work, we aimed at understanding how the effect on photosynthesis caused by Mn (130 μM, full recovery) or Mo (50 μM, partial recovery) in T. natans is linked to changes occurring in the photosynthetic apparatus, with emphasis on Photosystem II (PSII), during a 10 day treatment with these metals. The time-course of net photosynthesis, photosynthetic pigment content, amount of PSII and its peripheral antenna LHCII, and room-temperature fluorescence emission ratios F694/F680 and F700/(F685 + F695) showed that the early inhibiting effect of Mo and Mn (one day exposure) was essentially non-specific with respect to the metal, though more marked in Mo- than in Mn-treated plants. During the subsequent recovery phase, Mo still impaired PSII assembly and, consequently, photosynthesis could not reach the control values. Conversely, in Mn-treated plants the amount of PSII was fully re-established, as was photosynthesis, but the metal induced the accumulation of LHCII. The extent of inhibition and the effectiveness of photosynthesis recovery are proposed to reflect the different ability of T. natans to sequestrate safely excess Mn or Mo in vacuoles. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. [Ecological Effects of Algae Blooms Cluster: The Impact on Chlorophyll and Photosynthesis of the Water Hyacinth].

    Science.gov (United States)

    Liu, Guo-feng; He, Jun; Yang, Yi-zhong; Han, Shi-qun

    2015-08-01

    The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO water after the algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious environment caused by the algae blooms together was the main reason of the death of aquatic plants during the summer. So in the practice of ecological restoration, it

  14. [Environmental Effects of Algae Bloom Cluster: Impact on the Floating Plant Water Hyacinth Photosynthesis].

    Science.gov (United States)

    Bao, Xian-ming; Gu, Dong-xiang; Wu, Ting-ting; Shi, Zu-liang; Liu, Guo-feng; Han Shi-qun; Zhou, Shi-qun; Zhou, Qing

    2015-06-01

    It is an efficient and effective ecological restoration method by using the adaptability, large biomass of aquatic plants to purify the polluted water at present. However, there is a lack of systematic research on the impact on the physiological ecology of aquatic plants and its environmental effects of algae blooms cluster in summer. The aim of this paper is to reveal the mechanism of macrophytes demise in a shallow ecosystem by studying the influence on photosynthesis of water hyacinth caused by the cynaobacterial blooms gathered, and also to provide the theoretical basis for full effects of purification function of macrophytes to reduce the negative effects on the aquatic plants after algae blooms gathered during the higher temperature (not lower 25 degrees C) through simulating experiments. Results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed a lack of oxygen (DO water after the algae cell died and the NH4+ -N concentration was 102 times higher than that of the control group root zone. And the macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate were 0.6 times, 0.55 times of the control group, and they reduced to 3.96 micromol x (m2 x s)(-1), 1.38 mmol x (m2 x s)(-1), respectively. At the end of the experiment, they were 22.0 micromol x (m2 x s)(-1) and 7.61 mmol x (m2 x s)(-1) for the control group. Results also showed the algae bloom together had the irreversible damage to the aquatic plants. So in the practice of ecological restoration, it should avoid the harm to the plant after the algae bloom cells gathered and decomposed so as to play the purification function of the plant in the ecological rehabilitation project.

  15. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    Directory of Open Access Journals (Sweden)

    Tony J Popic

    Full Text Available Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  16. Hierarchical Inorganic Assemblies for Artificial Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wooyul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Edri, Eran [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Frei, Heinz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-30

    Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO2 reduction and H2O oxidation. Among the most important requirements for a complete integrated system are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed in this paper a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO2 conversion by H2O to CO and O2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies

  17. Isolated unit tests in .Net

    OpenAIRE

    Haukilehto, Tero

    2013-01-01

    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  18. Investigation of grapevine photosynthesis using hyperspectral techniques and development of hyperspectral band ratio indices sensitive to photosynthesis.

    Science.gov (United States)

    Ozelkan, Emre; Karaman, Muhittin; Candar, Serkan; Coskun, Zafer; Ormeci, Cankut

    2015-01-01

    The photosynthetic rate of 9 different grapevines were analyzed with simultaneous photosynthesis and spectroradiometric measurements on 08.08.2012 (veraison) and 06.09.2012 (harvest). The wavelengths and spectral regions, which most properly express photosynthetic rate, were determined using correlation and regression analysis. In addition, hyperspectral band ratio (BR) indices sensitive to photosynthesis were developed using optimum band ratio (OBRA) method. The relation of BR results with photosynthesis values are presented with the correlation matrix maps created in this study. The examinations were performed for both specific dates (i.e., veraison and harvest) and also in aggregate (i.e., correlation between total spectra and photosynthesis data). For specific dates wavelength based analysis, the photosynthesis were best determined with -0.929 correlation coefficient (r) 609 nm of yellow region at veraison stage, and -0.870 at 641 nm of red region at harvest stage. For wavelength based aggregate analysis, 640 nm of red region was found to be correlated with 0.921 and -0.867 r values respectively and red edge (RE) (695 nm) was found to be correlated with -0.922 and -0.860 r values, respectively. When BR indices results were analyzed with photosynthetic values for specific dates, -0.987 r with R8../R, at veraison stage and -0.911 r with R696/R944 at harvest stage were found most correlated. For aggregate analysis of BR, common BR presenting great correlation with photosynthesis for both measurements was found to be R632/R971 with -0.974, -0.881 r values, respectively and other R610/R760 with -0.976, -0.879 r values. The final results of this study indicate that the proportion of RE region to a region with direct or indirect correlation with photosynthetic provides information about rate of photosynthesis. With the indices created in this study, the photosynthesis rate of vineyards can be determined using in-situ hyperspectral remote sensing. The findings of this

  19. Scientific conceptions of photosynthesis among primary school pupils and student teachers of biology

    OpenAIRE

    Darja Skribe Dimec; Jelka Strgar

    2017-01-01

    Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about phot...

  20. Optimization of an experiment showing processes of photosynthesis for science school subjects

    OpenAIRE

    Praprotnik, Luka; Selič, Sendi; Torkar, Gregor

    2016-01-01

    The purpose of this paper is to describe the experiment, which illustrates the process of photosynthesis. Teaching about processes of photosynthesis is one of the most difficult science themes, because of its complexity and abstract nature. Students often have difficulties understanding the processes of photosynthesis, mostly because of incorrect conceptualization and inappropriate simplification of the processes. For successful teaching of photosynthesis teachers are suggested to implement p...

  1. Decline in breast cancer mortality

    DEFF Research Database (Denmark)

    Njor, Sisse Helle; Schwartz, Walter; Blichert-Toft, Mogens

    2015-01-01

    OBJECTIVES: When estimating the decline in breast cancer mortality attributable to screening, the challenge is to provide valid comparison groups and to distinguish the screening effect from other effects. In Funen, Denmark, multidisciplinary breast cancer management teams started before screening...... was introduced; both activities came later in the rest of Denmark. Because Denmark had national protocols for breast cancer treatment, but hardly any opportunistic screening, Funen formed a "natural experiment", providing valid comparison groups and enabling the separation of the effect of screening from other...... factors. METHODS: Using Poisson regression we compared the observed breast cancer mortality rate in Funen after implementation of screening with the expected rate without screening. The latter was estimated from breast cancer mortality in the rest of Denmark controlled for historical differences between...

  2. Physical condition and maintenance of mosquito bed nets in Kwale County, coastal Kenya

    Directory of Open Access Journals (Sweden)

    Mutuku Francis M

    2013-02-01

    Full Text Available Abstract Background Despite the extensive ownership and use of insecticide-treated nets (ITNs over the last decade, the effective lifespan of these nets, especially their physical integrity, under true operational conditions is not well-understood. Usefulness of nets declines primarily due to physical damage or loss of insecticidal activity. Methods A community based cross-sectional survey was used to determine the physical condition and to identify predictors of poor physical condition for bed nets owned by individuals from communities in Kwale County, coastal Kenya. A proportionate hole index (pHI was used as a standard measure, and the cut-offs for an ‘effective net’ (offer substantial protection against mosquito bites and ‘ineffective nets’ (offer little or no protection against mosquito bites were determined (pHI ≤88 (about ≤500 cm2 of holes surface area and pHI of >88 (≥500 cm2 of holes surface area, respectively. Results The vast majority (78% of the surveyed nets had some holes. The median pHI was 92 (range: 1–2,980. Overall, half of the nets were categorized as ‘effective nets’ or ‘serviceable nets’. Physical deterioration of nets was associated with higher use and washing frequency. Young children and older children were found to use ineffective bed nets significantly more often than infants, while the physical integrity of nets owned by pregnant women was similar to those owned by infants. Estuarine environment inhabitants owned nets with the worst physical condition, while nets owned by the coastal slope inhabitants were in fairly good physical condition. The results suggest that bed nets are optimally utilized when they are new and physically intact. Thereafter, bed net utilization decreases gradually with increasing physical deterioration, with most net owners withdrawing physically damaged nets from routine use. This withdrawal commonly happens following 1.5 years of use, making bed net use the most

  3. Novel Method of Production Decline Analysis

    Science.gov (United States)

    Xie, Shan; Lan, Yifei; He, Lei; Jiao, Yang; Wu, Yong

    2018-02-01

    ARPS decline curves is the most commonly used in oil and gas field due to its minimal data requirements and ease application. And prediction of production decline which is based on ARPS analysis rely on known decline type. However, when coefficient index are very approximate under different decline type, it is difficult to directly recognize decline trend of matched curves. Due to difficulties above, based on simulation results of multi-factor response experiments, a new dynamic decline prediction model is introduced with using multiple linear regression of influence factors. First of all, according to study of effect factors of production decline, interaction experimental schemes are designed. Based on simulated results, annual decline rate is predicted by decline model. Moreover, the new method is applied in A gas filed of Ordos Basin as example to illustrate reliability. The result commit that the new model can directly predict decline tendency without needing recognize decline style. From arithmetic aspect, it also take advantage of high veracity. Finally, the new method improves the evaluation method of gas well production decline in low permeability gas reservoir, which also provides technical support for further understanding of tight gas field development laws.

  4. Global Analysis of Population Growth and Decline

    OpenAIRE

    Sneddon, Mark; Pearse, William D.

    2017-01-01

    Species of plants and animals have populations that are declining at a rapid rate and possibly face extinction. To combat this decline, we must first understand where and why species are declining. We compared known species population growth rates in the COMPADRE (7024 different plant populations) and COMADRE (1927 different animal populations) databases to a variety of possible factors and other databases.

  5. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni

    2008-01-01

    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  6. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W

    2003-01-01

    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  7. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  8. Photosynthesis in silico : Simulations of Photosystem II and the Thylakoid Membrane

    NARCIS (Netherlands)

    van Eerden, Floris Jan

    2016-01-01

    Photosynthesis is one of the most fundamental processes on earth. It captures the energy present in light and converts it into chemical bonds. Photosynthesis forms hereby the basis of the energy supply for virtual all organisms on earth. Photosystem II (PSII) is a key player in photosynthesis. This

  9. Overcoming Student Misconceptions about Photosynthesis: A Model- and Inquiry-Based Approach Using Aquatic Plants

    Science.gov (United States)

    Ray, Andrew M.; Beardsley, Paul M.

    2008-01-01

    Even though photosynthesis is an obligatory part of the science curriculum, research has shown that students often have a poor understanding of it. The authors advocate that classroom coverage of the topic of photosynthesis should include not only its biochemical properties but also the role of photosynthesis or photosynthetic organisms in matter…

  10. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    Science.gov (United States)

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  11. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Science.gov (United States)

    Dimec, Darja Skribe; Strgar, Jelka

    2017-01-01

    Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that…

  12. Selective effects of H2O2 on cyanobacterial photosynthesis

    NARCIS (Netherlands)

    Drabkova, M.; Matthijs, H.C.P.; Admiraal, W.; Marsalek, B.

    2007-01-01

    Abstract: The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the

  13. Influence of soil drought stress on photosynthesis, carbohydrates ...

    African Journals Online (AJOL)

    grown 1-year-old potted M.9EMLA apple trees (Malus domestica Borkh.) (after growing for 6 weeks) were subjected to drought stress by withholding water for an additional six-week period. The photosynthesis, carbohydrates and the nitrogen (N), ...

  14. (AIDA method) for the measurement of algal photosynthesis

    African Journals Online (AJOL)

    driniev

    2004-07-03

    Jul 3, 2004 ... Keywords: photosynthesis, titration, pH-stat, activity, toxicity. Introduction. There is a growing interest for the assessment of algal photosynthe- sis for toxicological and for limnological investigations. With respect to toxicity studies, toxicological analyses of industrial wastewater before discharge in water ...

  15. Plotting Rates of Photosynthesis as a Function of Light Quantity.

    Science.gov (United States)

    Dean, Rob L.

    1996-01-01

    Discusses methods for plotting rates of photosynthesis as a function of light quantity. Presents evidence that suggests that empirically derived conversion factors, which are used to convert foot candles to photon fluence rates, should be used with extreme caution. Suggests how rate data are best plotted when any kind of light meter is not…

  16. Songs about Cancer, Gene Expression, and the Biochemistry of Photosynthesis

    Science.gov (United States)

    Heineman, Richard H.

    2018-01-01

    These three biology songs can be used for educational purposes to teach about biochemical concepts. They touch on three different topics: (1) cancer progression and germ cells, (2) gene expression, promoters, and repressors, and (3) electronegativity and the biochemical basis of photosynthesis.

  17. Photosynthesis and photoprotective systems of plants in response to ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... assimilation, as well as some aspects needed to be further studied are also discussed. Key words: Aluminum toxicity, photosynthesis, photochemistry, photoprotective system. INTRODUCTION. Aluminum (Al) is the most abundant metal and the third most abundant element in the earth's crust after oxygen.

  18. Influence of varying light regimes on photosynthesis and related ...

    African Journals Online (AJOL)

    Administrator

    Deforestation of tropical forests is increasing rapidly and this can have both global and local adverse cones- ... Variation in the light environment in tropical forests affects plant germination, photosynthesis, growth, and ..... Functional Ecology, 12: 426-435. Denslow JS (1980). Gap partioning among tropical rainforest trees.

  19. Fluid Mosaic Membranes and the Light Reactions of Photosynthesis.

    Science.gov (United States)

    Hannay, Jack

    1985-01-01

    Discusses: (1) the fluid mosaic membrane structure and light reactions of photosynthesis as exemplified by the Hill and Bendall "Z-scheme"; (2) the arrangement of light-harvesting pigments, electron transport components, and ATP synthesis on chloroplast membranes; and (3) how these topics are treated in A-level textbooks. (JN)

  20. Model for expressing leaf photosynthesis in terms of weather variables

    African Journals Online (AJOL)

    A theoretical mathematical model for describing photosynthesis in individual leaves in terms of weather variables is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of potential photosynthetic rate permitted by the different environmental elements. These parameters are useful ...