WorldWideScience

Sample records for net land carbon

  1. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.

    Science.gov (United States)

    Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C

    2012-08-02

    One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

  2. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  3. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    Science.gov (United States)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  4. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000

    International Nuclear Information System (INIS)

    Houghton, R.A.

    2003-01-01

    Recent analyses of land-use change in the US and China, together with the latest estimates of tropical deforestation and afforestation from the FAO, were used to calculate a portion of the annual flux of carbon between terrestrial ecosystems and the atmosphere. The calculated flux includes only that portion of the flux resulting from direct human activity. In most regions, activities included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel) and the establishment of tree plantations. In the US, woody encroachment and woodland thickening as a result of fire suppression were also included. The calculated flux of carbon does not include increases or decreases in carbon storage as a result of environmental changes (e.g.; increasing concentrations of CO 2 , N deposition, climatic change or pollution). Globally, the long-term (1850-2000) flux of carbon from changes in land use and management released 156 PgC to the atmosphere, about 60% of it from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 PgC/yr, respectively, dominated by releases of carbon from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC/yr during the 1980s to a sink of 0.02 PgC/yr during the 1990s. According to the analyses summarized here, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions. The revisions were as large as 0.3 PgC/yr in individual regions but were largely offsetting, so that the global estimate for the 1980s was changed little from an earlier estimate. Uncertainties and recent improvements in the data used to calculate the flux of carbon from land-use change are reviewed, and the results are compared to other estimates of flux to evaluate the extent to which processes other than land-use change and

  5. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    Science.gov (United States)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  6. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    Science.gov (United States)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  7. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    Science.gov (United States)

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  9. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    Science.gov (United States)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  10. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  11. Carbon emissions from land use and land-cover change

    Directory of Open Access Journals (Sweden)

    R. A. Houghton

    2012-12-01

    Full Text Available The net flux of carbon from land use and land-cover change (LULCC accounted for 12.5% of anthropogenic carbon emissions from 1990 to 2010. This net flux is the most uncertain term in the global carbon budget, not only because of uncertainties in rates of deforestation and forestation, but also because of uncertainties in the carbon density of the lands actually undergoing change. Furthermore, there are differences in approaches used to determine the flux that introduce variability into estimates in ways that are difficult to evaluate, and not all analyses consider the same types of management activities. Thirteen recent estimates of net carbon emissions from LULCC are summarized here. In addition to deforestation, all analyses considered changes in the area of agricultural lands (croplands and pastures. Some considered, also, forest management (wood harvest, shifting cultivation. None included emissions from the degradation of tropical peatlands. Means and standard deviations across the thirteen model estimates of annual emissions for the 1980s and 1990s, respectively, are 1.14 ± 0.23 and 1.12 ± 0.25 Pg C yr−1 (1 Pg = 1015 g carbon. Four studies also considered the period 2000–2009, and the mean and standard deviations across these four for the three decades are 1.14 ± 0.39, 1.17 ± 0.32, and 1.10 ± 0.11 Pg C yr−1. For the period 1990–2009 the mean global emissions from LULCC are 1.14 ± 0.18 Pg C yr−1. The standard deviations across model means shown here are smaller than previous estimates of uncertainty as they do not account for the errors that result from data uncertainty and from an incomplete understanding of all the processes affecting the net flux of carbon from LULCC. Although these errors have not been systematically evaluated, based on partial analyses available in the literature and expert opinion, they are estimated to be on the order of ± 0.5 Pg C yr−1.

  12. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  13. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  14. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  15. Trends and regional distributions of land and ocean carbon sinks

    Directory of Open Access Journals (Sweden)

    J. L. Sarmiento

    2010-08-01

    Full Text Available We show here an updated estimate of the net land carbon sink (NLS as a function of time from 1960 to 2007 calculated from the difference between fossil fuel emissions, the observed atmospheric growth rate, and the ocean uptake obtained by recent ocean model simulations forced with reanalysis wind stress and heat and water fluxes. Except for interannual variability, the net land carbon sink appears to have been relatively constant at a mean value of −0.27 Pg C yr−1 between 1960 and 1988, at which time it increased abruptly by −0.88 (−0.77 to −1.04 Pg C yr−1 to a new relatively constant mean of −1.15 Pg C yr−1 between 1989 and 2003/7 (the sign convention is negative out of the atmosphere. This result is detectable at the 99% level using a t-test. The land use source (LU is relatively constant over this entire time interval. While the LU estimate is highly uncertain, this does imply that most of the change in the net land carbon sink must be due to an abrupt increase in the land sink, LS = NLS – LU, in response to some as yet unknown combination of biogeochemical and climate forcing. A regional synthesis and assessment of the land carbon sources and sinks over the post 1988/1989 period reveals broad agreement that the Northern Hemisphere land is a major sink of atmospheric CO2, but there remain major discrepancies with regard to the sign and magnitude of the net flux to and from tropical land.

  16. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  17. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  18. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    Science.gov (United States)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  19. Squaroglitter: A 3,4-Connected Carbon Net

    KAUST Repository

    Prasad, Dasari L. V. K.

    2013-08-13

    Theoretical calculations are presented on a new hypothetical 3,4-connected carbon net (called squaroglitter) incorporating 1,4 cyclohexadiene units. The structure has tetragonal space group P4/mmm (No. 123) symmetry. The optimized geometry shows normal distances, except for some elongated bonds in the cyclobutane ring substructures in the network. Squaroglitter has an indirect bandgap of about 1.0 eV. The hypothetical lattice, whose density is close to graphite, is more stable than other 3,4-connected carbon nets. A relationship to a (4,4)nanotube is explored, as is a potential threading of the lattice with metal needles. © 2013 American Chemical Society.

  20. Net Biome Productivity of different land use at the sites of the Tharandt cluster

    Science.gov (United States)

    Grünwald, T.; Prescher, A.-K.; Bernhofer, Ch.

    2009-04-01

    Within the Tharandt cluster there are 5 flux monitoring sites including 3 CARBOEUROPE main sites. The CARBOEUROPE sites cover typical land use of the region (spruce [monitored since 1996], grassland [since 2003], cropland [since 2004]). For all sites estimates of the Net Biome Productivity (NBP) and its uncertainty have been derived using Net Ecosystem Productivity (NEP) based on the EC measurements and C exports and imports on an annual basis. The crop site is a small C sink (NEP of 30-110gCm-2a-1) only. The annual NEP values are dependent on the cultivated crop species (winter or summer crop). Including C export (harvest) and C import (manure spreading) lead to a considerable C source of 270-540gCm-2a-1. Organic fertilisation (C import) has a strong impact on NBP values expressed in a reduced annual net carbon source. Also, the largest interannual differences of NBP values are found at this site - mainly induced by the existence and the amount of a carbon import due to organic fertilisation. Management practices affect the NBP in a sensitive way at this crop site. Each crop shows a higher C export due to harvest than the annual NEP. To validate the calculated C equivalent using harvested grain biomass modelled NPP values are available. Uncertainty ranges of C export, C import and NBP as well as the grassland and spruce NBP (for comparison) are also stated. In general, land use and management strongly affect the annual NBP of non-forested ecosystems especially. So, this is the second main driver of the C budget besides the interannual variability in meteorological conditions and water availability with its influence on NEP, GPP and TER.

  1. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  2. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  3. Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010

    Science.gov (United States)

    Xu, Xibao; Yang, Guishan; Tan, Yan; Tang, Xuguang; Jiang, Hong; Sun, Xiaoxiang; Zhuang, Qianlai; Li, Hengpeng

    2017-03-01

    Land use changes play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified Global biome model-biogeochemical cycle model to examine the changes in the spatiotemporal pattern of net ecosystem production (NEP) in the Taihu Lake Basin of China during 1985-2010 and the extent to which land use change impacted NEP. The model is calibrated with observed NEP at three flux sites for three dominant land use types in the basin including cropland, evergreen needleleaf forest, and mixed forest. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. The study estimates that NEP in the basin decreased by 9.8% (1.57 Tg C) from 1985 to 2010, showing an overall downward trend. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changes during 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.

  4. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Energy Technology Data Exchange (ETDEWEB)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  5. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function; FINAL

    International Nuclear Information System (INIS)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration conts are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change

  6. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  7. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    Science.gov (United States)

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  8. Proposal methodology for Land Carbon Accounting across Europe

    Science.gov (United States)

    Simon, A.; Ivanov, E.; Anaya-Romero, M.; Weber, J.-L.

    2012-04-01

    The need to account natural resources as capital, in the same way as we account economic and financial resources, is getting an important awareness-raising channel for governments, producers, and consumers in order to manage the environment capital. Besides that, the forthcoming Part II of the revised System of Integrated Environmental and Economic Accounting will enclose a framework for experimental ecosystem accounts. This conceptual framework is an initiative led by the European Environment Agency and the World Bank WAVES global partnership for which robust data and indicators are needed. In this context, the aim of this work is to demonstrate a preliminary methodology for land carbon account across Europe. The study area covers EU+38. The territorial unit used was the Socio-Ecological Landscape Units based on the Land Cover Functional Units and other geographical dimensions such as relief, belonging to a river basin, or proximity to the sea. Finally, the grid size used for accounting was 1km x 1km. The characteristic indicator considered for ecosystem capital carbon accounts is the carbon content which is derived from the Net Primary Production (NPP) and its removal by agriculture, forestry. Accordingly, the output data obtained were the stocks of carbon recorded in tons of carbon. The current approach is based on the combination of CORINE Land cover, traditional remote sensing (RS) indicators like NDVI - Normalised Difference Vegetation Index and the modern advances on RS techniques where new indicators like GPP (Gross Primary Productivity) and NPP. Other additional attributes were temperature, precipitation and vegetation type or Land cover. Different national and European data sources were used for the analysis as well as downscales procedures. In the present work soil carbon content were assumed to be a fixed fraction. Nevertheless further research will also take into account soil carbon data considering scenarios of land use change.

  9. A global assessment of gross and net land change dynamics for current conditions and future scenarios

    Science.gov (United States)

    Fuchs, Richard; Prestele, Reinhard; Verburg, Peter H.

    2018-05-01

    The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth system models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30-100 m) remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5° grid cells was substantially larger than net changes in all parts of the world. As 0.5° grid cells are a standard resolution of Earth system models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as an empirical database for

  10. Divertor plate concept with carbon based armour for NET

    International Nuclear Information System (INIS)

    Moons, F.; Howard, R.; Kneringer, G.; Stickler, R.

    1989-01-01

    A series of tests has been performed on simulated divertor elements for NET at the JET neutral beam injector test bed. The test section consisted of a water cooled main structure, the surface of which was protected with a carbon based armour in the form of tiles. The scope of these was to study the thermal behaviour of mechanically attached tiles with the use of an intermediate soft carbon layer to improve the thermal contact under divertor relevant conditions. (author). 4 refs.; 4 figs.; 1 tab

  11. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    Science.gov (United States)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  12. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  13. Temporal Land Cover Analysis for Net Ecosystem Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.

    2013-04-09

    We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysis period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.

  14. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  15. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    Science.gov (United States)

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  16. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Science.gov (United States)

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  17. Land, carbon and water footprints in Taiwan

    International Nuclear Information System (INIS)

    Lee, Yung-Jaan

    2015-01-01

    The consumer responsibility approach uses footprints as indicators of the total direct and indirect effects of a product or consumption activity. This study used a time-series analysis of three environmental pressures to quantify the total environmental pressures caused by consumption in Taiwan: land footprint, carbon footprint, and water footprint. Land footprint is the pressure from appropriation of biologically productive land and water area. Carbon footprint is the pressure from greenhouse gas emissions. Water footprint is the pressure from freshwater consumption. Conventional carbon footprint is the total CO 2 emitted by a certain activity or the CO 2 accumulation during a product life cycle. This definition cannot be used to convert CO 2 emissions into land units. This study responds to the needs of “CO 2 land” in the footprint family by applying the carbon footprint concept used by GFN. The analytical results showed that consumption by the average Taiwan citizen in 2000 required appropriation of 5.39 gha (hectares of land with global-average biological productivity) and 3.63 gha in 2011 in terms of land footprint. The average Taiwan citizen had a carbon footprint of 3.95 gha in 2000 and 5.94 gha in 2011. These results indicate that separately analyzing the land and carbon footprints enables their trends to be compared and appropriate policies and strategies for different sectors to be proposed accordingly. The average Taiwan citizen had a blue water footprint of 801 m 3 in 2000 and 784 m 3 in 2011. By comparison, their respective global averages were 1.23 gha, 2.36 gha and 163 m 3 blue water in 2011, respectively. Overall, Taiwan revealed higher environmental pressures compared to the rest of the world, demonstrating that Taiwan has become a high footprint state and has appropriated environmental resources from other countries. That is, through its imports of products with embodied pressures and its exports, Taiwan has transferred the environmental

  18. Land, carbon and water footprints in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung-Jaan, E-mail: yungjaanlee@gmail.com

    2015-09-15

    The consumer responsibility approach uses footprints as indicators of the total direct and indirect effects of a product or consumption activity. This study used a time-series analysis of three environmental pressures to quantify the total environmental pressures caused by consumption in Taiwan: land footprint, carbon footprint, and water footprint. Land footprint is the pressure from appropriation of biologically productive land and water area. Carbon footprint is the pressure from greenhouse gas emissions. Water footprint is the pressure from freshwater consumption. Conventional carbon footprint is the total CO{sub 2} emitted by a certain activity or the CO{sub 2} accumulation during a product life cycle. This definition cannot be used to convert CO{sub 2} emissions into land units. This study responds to the needs of “CO{sub 2} land” in the footprint family by applying the carbon footprint concept used by GFN. The analytical results showed that consumption by the average Taiwan citizen in 2000 required appropriation of 5.39 gha (hectares of land with global-average biological productivity) and 3.63 gha in 2011 in terms of land footprint. The average Taiwan citizen had a carbon footprint of 3.95 gha in 2000 and 5.94 gha in 2011. These results indicate that separately analyzing the land and carbon footprints enables their trends to be compared and appropriate policies and strategies for different sectors to be proposed accordingly. The average Taiwan citizen had a blue water footprint of 801 m{sup 3} in 2000 and 784 m{sup 3} in 2011. By comparison, their respective global averages were 1.23 gha, 2.36 gha and 163 m{sup 3} blue water in 2011, respectively. Overall, Taiwan revealed higher environmental pressures compared to the rest of the world, demonstrating that Taiwan has become a high footprint state and has appropriated environmental resources from other countries. That is, through its imports of products with embodied pressures and its exports, Taiwan has

  19. Estimating Trends and Variation of Net Biome Productivity in India for 1980-2012 Using a Land Surface Model

    Science.gov (United States)

    Gahlot, Shilpa; Shu, Shijie; Jain, Atul K.; Baidya Roy, Somnath

    2017-11-01

    In this paper we explore the trend in net biome productivity (NBP) over India for the period 1980-2012 and quantify the impact of different environmental factors, including atmospheric CO2 concentrations ([CO2]), land use and land cover change, climate, and nitrogen deposition on carbon fluxes using a land surface model, Integrated Science Assessment Model. Results show that terrestrial ecosystems of India have been a carbon sink for this period. Driven by a strong CO2 fertilization effect, magnitude of NBP increased from 27.17 TgC/yr in the 1980s to 34.39 TgC/yr in the 1990s but decreased to 23.70 TgC/yr in the 2000s due to change in climate. Adoption of forest conservation, management, and reforestation policies in the past decade has promoted carbon sequestration in the ecosystems, but this effect has been offset by loss of carbon from ecosystems due to rising temperatures and decrease in precipitation.

  20. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    Science.gov (United States)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  1. Accelerating Net Terrestrial Carbon Uptake During the Warming Hiatus Due to Reduced Respiration

    Science.gov (United States)

    Ballantyne, Ashley; Smith, William; Anderegg, William; Kauppi, Pekka; Sarmiento, Jorge; Tans, Pieter; Shevliakova, Elena; Pan, Yude; Poulter, Benjamin; Anav, Alessandro; hide

    2017-01-01

    The recent warming hiatus presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly accelerated from - 0.007 +/- 0.065 PgC yr(exp -2) over the warming period (1982 to 1998) to 0.119 +/- 0.071 PgC yr(exp -2) over the warming hiatus (19982012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that is correlated (r = 0.58; P = 0.0007) and sensitive ( y = 4.05 to 9.40 PgC yr(exp -1) per C) to land temperatures. Global land models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including soil temperature and moisture observations better captures the reduced respiration.

  2. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    Science.gov (United States)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  3. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  4. A Working Framework for Quantifying Carbon Sequestration in Disturbed Land Mosaics

    Science.gov (United States)

    Jiquan Chen; Kimberley Brosofske; Asko Noormets; Thomas R. Crow; Mary K. Bresee; James M. Le Moine; Eug& #233; nie Euskirchen; Steve V. Mather; Daolan Zheng; Daolan Zheng

    2003-01-01

    We propose a working framework for future studies of net carbon exchange (NCE) in disturbed landscapes at broad spatial scales based on the central idea that landscape-level NCE is determined by the land mosaic, including its age structure. Within this framework, we argue that the area-of-edge-influence (AEI), which is prevalent in many disturbed, fragmented landscapes...

  5. Impact of land use change on the land atmosphere carbon flux of South and South East Asia: A Synthesis of Dynamic Vegetation Model Results

    Science.gov (United States)

    Cervarich, M.; Shu, S.; Jain, A. K.; Poulter, B.; Stocker, B.; Arneth, A.; Viovy, N.; Kato, E.; Wiltshire, A.; Koven, C.; Sitch, S.; Zeng, N.; Friedlingstein, P.

    2015-12-01

    Understanding our present day carbon cycle and possible solutions to recent increases in atmospheric carbon dioxide is dependent upon quantifying the terrestrial carbon budget. Currently, global land cover and land use change is estimated to emit 0.9 PgC yr-1 compared to emissions due to fossil fuel combustion and cement production of 8.4 PgC yr-1. South and Southeast Asia (India, Nepal, Bhutan, Bangladesh, Burma, Thailand, Laos, Vietnam, Cambodia, Malaysia, Philippines, Indonesia, Pakistan, Myanmar, and Singapore) is a region of rapid land cover and land use change due to the continuous development of agriculture, deforestation, reforestation, afforestation, and the increased demand of land for people to live. In this study, we synthesize outputs of nine models participated in Global Carbon Budget Project to identify the carbon budget of South and southeast Asia, diagnose the contribution of land cover and land use change to carbon emissions and assess areas of uncertainty in the suite of models. Uncertainty is determined using the standard deviation and the coefficient of variation of net ecosystem exchange and its component parts. Results show the region's terrestrial biosphere was a source of carbon emissions from the 1980 to the early 1990s. During the same time period, land cover and land use change increasingly contributed to carbon emission. In the most recent two decades, the region became a carbon sink since emission due to land cover land use changes. Spatially, the greatest total emissions occurred in the tropical forest of Southeast Asia. Additionally, this is the subregion with the greatest uncertainty and greatest biomass. Model uncertainty is shown to be proportional to total biomass. The atmospheric impacts of ENSO are shown to suppress the net biosphere productivity in South and Southeast Asia leading to years of increased carbon emissions.

  6. Carbon balances during land conversion in early bioenergy systems

    Science.gov (United States)

    Zenone, T.; Chen, J.; Gelfand, I.; Robertson, G. P.; Hamilton, S. K.

    2012-12-01

    In this study, we established a field experiment and deployed seven eddy-covariance towers to quantify the roles of land use change and the subsequent carbon (C) balances of three different bioenergy systems (corn, switchgrass, and mixed prairie species) that were developed from two historical land use types: monocultural grasslands dominated by smooth brome (Bromus inermis Leyss) and lands in the Conservation Reserve Program (CRP). Three CRP fields and three cropland fields were converted to soybean in 2009 (conversion year) before establishing the cellulosic biofuel cropping systems in 2010 (establishment year). A CRP perennial grassland site was kept undisturbed as a reference. Conversion of CRP to soybean induced net C emissions during the conversion year (134 -262 g C m-2 yr-1), while in the same year the net C balance at the CRP grassland reference was -35 g C m-2 yr-1 (i.e., net C sequestration). The establishment of switchgrass and mixed prairie induced a cumulative C balance of -113 g C m-2 (switchgrass from CRP), 250 g C m-2 (switchgrass from cropland), 706 g C m-2 (mixed prairie from CRP), and 59 g C m-2 (mixed prairie from cropland) over the three-year study period. The cumulative three-year C balance of corn converted from CRP and from cropland was -151 g C m-2 and -183 g C m-2, respectively. Eddy flux measurements during cellulosic biofuel crop establishment reveal annual changes in C balance that cannot be detected using conventional mass balance approaches. When end-use of harvested biomass was considered, the C balances for all studied systems, except the reference site, exhibited large C emissions ranging from 150 to 990 g C m-2 over the three-year conversion phase.

  7. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  8. Impacts of Land Use Change on Net Ecosystem Production in China's Taihu Lake Basin in 1985-2010

    Science.gov (United States)

    Xu, X.; Yang, G.

    2017-12-01

    Land use change play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified BIOME-BGC model to examine the changes in the spatio-temporal pattern of net ecosystem production (NEP) in China's Taihu Lake Basin in 1985-2010 and the extent to which land use change impacted NEP. The BIOME-BGC model was calibrated with observed NEP at three open-path eddy covariance flux sites for three dominant land-use types in the Basin including cropland, evergreen needleleaf forest, and mixed forest. Land use data were interpreted from Landsat TM images in 1985, 2000, 2005 and 2010 at the scale of 1:100,000 based on a decision tree method. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. S1 deals with the actual outcomes of NEP under the interactions between land use change and increasing atmospheric concentration of CO2 and N deposition. S2 assumes that atmospheric CO2 concentration and N deposition remain unchanged at their 1985 levels: 338.32 ppm and 0.0005 kg m-2, respectively. The study estimates that NEP in the Basin showed an overall downward trend, decreasing by 9.8% (1.57 TgC) and 3.21 TgC (or 20.9%) from 1985 to 2010 under situation S1 and S2, respectively. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changesin 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.

  9. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Increasing demand for food and bioenergy has altered the global landscape dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. In this study, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture National Agricultural Statistics Services. The simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon and net carbon flux into ecosystems (3.7 Tg·year−1 less of net biome productivity, but also lessened water consumption through evapotranspiration (1.04 × 1010 m3·year−1 less over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.

  10. Global Land Carbon Uptake from Trait Distributions

    Science.gov (United States)

    Butler, E. E.; Datta, A.; Flores-Moreno, H.; Fazayeli, F.; Chen, M.; Wythers, K. R.; Banerjee, A.; Atkin, O. K.; Kattge, J.; Reich, P. B.

    2016-12-01

    Historically, functional diversity in land surface models has been represented through a range of plant functional types (PFTs), each of which has a single value for all of its functional traits. Here we expand the diversity of the land surface by using a distribution of trait values for each PFT. The data for these trait distributions is from a sub-set of the global database of plant traits, TRY, and this analysis uses three leaf traits: mass based nitrogen and phosphorus content and specific leaf area, which influence both photosynthesis and respiration. The data are extrapolated into continuous surfaces through two methodologies. The first, a categorical method, classifies the species observed in TRY into satellite estimates of their plant functional type abundances - analogous to how traits are currently assigned to PFTs in land surface models. Second, a Bayesian spatial method which additionally estimates how the distribution of a trait changes in accord with both climate and soil covariates. These two methods produce distinct patterns of diversity which are incorporated into a land surface model to estimate how the range of trait values affects the global land carbon budget.

  11. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  12. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  13. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  14. Effects of land use change on soil carbon cycling in the conterminous United States from 1900 to 2050

    Science.gov (United States)

    Peter B. Woodbury; Linda S. Heath; James E. Smith

    2007-01-01

    We developed matrices representing historical area transitions between forest and other land uses. We projected future transitions on the basis of historical transitions and econometric model results. These matrices were used to drive a model of changes in soil and forest floor carbon stocks. Our model predicted net carbon emission from 1900 until 1982, then...

  15. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  16. Partitioning of net carbon dioxide flux measured by automatic transparent chamber

    Science.gov (United States)

    Dyukarev, EA

    2018-03-01

    Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.

  17. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  18. Unraveling net carbon exchange into its component processes of photosynthesis and respiration

    Science.gov (United States)

    Ballantyne, A.

    2017-12-01

    The recent `warming hiatus' presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Herewe combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantlyaccelerated from 0.007+/-0.065 PgC yr-2 over the warming period (1982 to 1998) to 0.119+/-0.071 PgC yr-2 over thewarminghiatus (1998-2012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration thatis correlated (r2 0.58; P = 0.0007) and sensitive ( gamma= 4.05 to 9.40 PgC yr-1 per deg C) to land temperatures. Global landmodels do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model includingsoil temperature and moisture observations seems to better captures the reduced respiration.

  19. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    Science.gov (United States)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  20. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  1. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    Science.gov (United States)

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  2. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  3. Emissions of carbon from land use change in sub-Saharan Africa

    Science.gov (United States)

    Houghton, R. A.; Hackler, J. L.

    2006-06-01

    Previous estimates of the flux of carbon from land use change in sub-Saharan Africa have been based on highly aggregated data and have ignored important categories of land use. To improve these estimates, we divided the region into four subregions (east, west, central, and southern Africa), each with six types of natural vegetation and five types of land use (permanent crops, pastures, shifting cultivation, industrial wood harvest, and tree plantations). We reconstructed rates of land use change and rates of wood harvest from country-level statistics reported by the Food and Agriculture Organization (FAO) (1961-2000) and extrapolated the rates from 1961 to 1850 on the basis of qualitative histories of demography, economy, and land use. We used a bookkeeping model to calculate the annual flux of carbon associated with these changes in land use. Country-level estimates of average forest biomass from the FAO, together with changes in biomass calculated from the reconstructed rates of land use change, constrained the average biomass of forests in 1850. Comparison of potential (predisturbance) forest areas with the areas present in 1850 and 2000 suggests that 60% of Africa's forests were lost before 1850 and an additional 10% lost in the last 150 years. The annual net flux of carbon from changes in land use was probably small and variable before the early 1900s but increased to a source of 0.3 ± 0.2 PgC/yr by the end of the century. In the 1990s the source was equivalent to about 15% of the global net flux of carbon from land use change.

  4. Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle

    Science.gov (United States)

    Quesada, Benjamin; Arneth, Almut; Robertson, Eddy; de Noblet-Ducoudré, Nathalie

    2018-06-01

    Anthropogenic land-use and land cover changes (LULCC) affect global climate and global terrestrial carbon (C) cycle. However, relatively few studies have quantified the impacts of future LULCC on terrestrial carbon cycle. Here, using Earth system model simulations performed with and without future LULCC, under the RCP8.5 scenario, we find that in response to future LULCC, the carbon cycle is substantially weakened: browning, lower ecosystem C stocks, higher C loss by disturbances and higher C turnover rates are simulated. Projected global greening and land C storage are dampened, in all models, by 22% and 24% on average and projected C loss by disturbances enhanced by ~49% when LULCC are taken into account. By contrast, global net primary productivity is found to be only slightly affected by LULCC (robust +4% relative enhancement compared to all forcings, on average). LULCC is projected to be a predominant driver of future C changes in regions like South America and the southern part of Africa. LULCC even cause some regional reversals of projected increased C sinks and greening, particularly at the edges of the Amazon and African rainforests. Finally, in most carbon cycle responses, direct removal of C dominates over the indirect CO2 fertilization due to LULCC. In consequence, projections of land C sequestration potential and Earth’s greening could be substantially overestimated just because of not fully accounting for LULCC.

  5. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.

    2018-01-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  6. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.

    2018-04-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  7. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    Science.gov (United States)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  8. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  9. Relevance of methodological choices for accounting of land use change carbon fluxes

    Science.gov (United States)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  10. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000

    Science.gov (United States)

    Liu, Jinxun; Vogelmann, James E.; Zhu, Zhiliang; Key, Carl H.; Sleeter, Benjamin M.; Price, D.T.; Chen, Jing M.; Cochrane, Mark A.; Eidenshink, Jeffery C.; Howard, Stephen M.; Bliss, Norman B.; Jiang, Hong

    2011-01-01

    Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951–2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of –27.3 Tg C) because NBP in the 1980s was very low (–5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951–2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire

  11. A global assessment of gross and net land change dynamics for current conditions and future scenarios

    Directory of Open Access Journals (Sweden)

    R. Fuchs

    2018-05-01

    Full Text Available The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country, plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth system models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30–100 m remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5° grid cells was substantially larger than net changes in all parts of the world. As 0.5° grid cells are a standard resolution of Earth system models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems. Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as

  12. Nitrogen and phosphorous limitation reduces the effects of land use change on land carbon uptake or emission

    International Nuclear Information System (INIS)

    Wang, Ying-Ping; Zhang, Qian; Dai, Yongjiu; Pitman, Andrew J

    2015-01-01

    We used an Earth System Model that includes both nitrogen (N) and phosphorus (P) cycling to simulate the impacts of land-use and land-cover change (LULCC) for two representative concentration pathways (RCPs): a reforestation scenario (RCP4.5) and a deforestation scenario (RCP8.5). For each RCP, we performed simulations with and without LULCC using the carbon (C only) mode or including the full C, N and P cycles (CNP). We show, for the first time, that inclusion of N and P cycling reduces both the carbon uptake from reforestation in RCP4.5 and the carbon emission from deforestation in RCP8.5. Specifically, carbon-nutrient interaction reduces carbon uptake in RCP4.5 from 55 Pg C (C only) to 21 Pg C (CNP), or the emissions in RCP8.5 from 72 Pg C (C only) to 56 Pg C (CNP). Most of those reductions result from much weaker responses of net primary production to CO 2 fertilization and climate change when carbon-nutrient interaction is taken into account, as compared to C only simulations. Our results highlight the importance of including nutrient-carbon interaction in estimating the carbon benefit from reforestation and carbon loss from deforestation in a future world with higher CO 2 and a warmer climate. Because of the stronger nutrient limitation, carbon gain from reforestation in the temperate and boreal regions is much less than the carbon loss from deforestation in the subtropical and tropical regions from 2006 to 2100 for the two RCPs. Therefore protecting the existing subtropical and tropical forests is about twice as effective as planting new forests in the temperate and boreal regions for climate mitigation. (letter)

  13. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  14. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.

    2018-03-01

    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  15. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  16. Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India.

    Science.gov (United States)

    Pathak, Karabi; Malhi, Yadvinder; Sileshi, G W; Das, Ashesh Kumar; Nath, Arun Jyoti

    2018-09-01

    There have been few comprehensive descriptions of how fire management and harvesting affect the carbon dynamics of grasslands. Grasslands dominated by the invasive weed Imperata cylindrica are considered as environmental threats causing low land productivity throughout the moist tropical regions in Asia. Imperata grasslands in North East India are unique in that they are traditionally managed and culturally important in the rural landscapes. Given the importance of fire in the management of Imperata grassland, we aimed to assess (i) the seasonal pattern of biomass production, (ii) the eventual pathways for the produced biomass, partitioned between in situ decomposition, harvesting and combustion, and (iii) the effect of customary fire management on the ecosystem carbon cycle. Comparatively high biomass production was recorded during pre-monsoon (154 g m -2  month -1 ) and monsoon (214 g m -2  month -1 ) compared to the post-monsoon (91 g m -2  month -1 ) season, and this is attributed to nutrient return into the soil immediately after fire in February. Post fire effects might have killed roots and rhizomes leading to high belowground litter production 30-35 g m -2 during March to August. High autotrophic respiration was recorded during March-July, which was related to high belowground biomass production (35-70 g m -2 ) during that time. Burning removed all the surface litter in March and this appeared to hinder surface decomposition and result in low heterotrophic respiration. Annual total biomass carbon production was estimated at 886 g C m -2 . Annual harvest of biomass (estimated at 577 g C m -2 ) was the major pathway for carbon fluxes from the system. Net ecosystem production (NEP) of Imperata grassland was estimated at 91 g C m -2  yr -1 indicating that these grasslands are a net sink of CO 2 , although this is greatly influenced by weather and fire management. Crown Copyright © 2018. Published by Elsevier B

  17. Managing forest and marginal agricultural land for multiple tradeoffs : compromising on economic, carbon and structural biodiversity objectives

    NARCIS (Netherlands)

    Krcmar, E.; Kooten, van G.C.; Vertinsky, I.

    2005-01-01

    In this paper, we use compromise programming to solve a multiple-objective land use and forest management planning model. Long- and short- (`fast¿) term carbon uptake, maintenance of structural diversity, and economic (net returns to forestry and agriculture) objectives are simultaneously achieved

  18. Estimating ecosystem carbon change in the Conterminous United States based on 40 years of land-use change and disturbance

    Science.gov (United States)

    Sleeter, B. M.; Rayfield, B.; Liu, J.; Sherba, J.; Daniel, C.; Frid, L.; Wilson, T. S.; Zhu, Z.

    2016-12-01

    Since 1970, the combined changes in land use, land management, climate, and natural disturbances have dramatically altered land cover in the United States, resulting in the potential for significant changes in terrestrial carbon storage and flux between ecosystems and the atmosphere. Processes including urbanization, agricultural expansion and contraction, and forest management have had impacts - both positive and negative - on the amount of natural vegetation, the age structure of forests, and the amount of impervious cover. Anthropogenic change coupled with climate-driven changes in natural disturbance regimes, particularly the frequency and severity of wildfire, together determine the spatio-temporal patterns of land change and contribute to changing ecosystem carbon dynamics. Quantifying this effect and its associated uncertainties is fundamental to developing a rigorous and transparent carbon monitoring and assessment programs. However, large-scale systematic inventories of historical land change and their associated uncertainties are sparse. To address this need, we present a newly developed modeling framework, the Land Use and Carbon Scenario Simulator (LUCAS). The LUCAS model integrates readily available high quality, empirical land-change data into a stochastic space-time simulation model representing land change feedbacks on carbon cycling in terrestrial ecosystems. We applied the LUCAS model to estimate regional scale changes in carbon storage, atmospheric flux, and net biome production in 84 ecological regions of the conterminous United States for the period 1970-2015. The model was parameterized using a newly available set of high resolution (30 m) land-change data, compiled from Landsat remote sensing imagery, including estimates of uncertainty. Carbon flux parameters for each ecological region were derived from the IBIS dynamic global vegetation model with full carbon cycle accounting. This paper presents our initial findings describing regional and

  19. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land

    Science.gov (United States)

    Halem, M.; Radov, A.; Singh, D.

    2017-12-01

    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  20. Comparing the effects of different land management strategies across several land types on California's landscape carbon and associated greenhouse gas budgets

    Science.gov (United States)

    Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.

    2017-12-01

    Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly

  1. Accountable Accounting: Carbon-Based Management on Marginal Lands

    Directory of Open Access Journals (Sweden)

    Tara L. DiRocco

    2014-04-01

    Full Text Available Substantial discussion exists concerning the best land use options for mitigating greenhouse gas (GHG emissions on marginal land. Emissions-mitigating land use options include displacement of fossil fuels via biofuel production and afforestation. Comparing C recovery dynamics under these different options is crucial to assessing the efficacy of offset programs. In this paper, we focus on forest recovery on marginal land, and show that there is substantial inaccuracy and discrepancy in the literature concerning carbon accumulation. We find that uncertainty in carbon accumulation occurs in estimations of carbon stocks and models of carbon dynamics over time. We suggest that analyses to date have been largely unsuccessful at determining reliable trends in site recovery due to broad land use categories, a failure to consider the effect of current and post-restoration management, and problems with meta-analysis. Understanding of C recovery could be greatly improved with increased data collection on pre-restoration site quality, prior land use history, and management practices as well as increased methodological standardization. Finally, given the current and likely future uncertainty in C dynamics, we recommend carbon mitigation potential should not be the only environmental service driving land use decisions on marginal lands.

  2. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  3. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    Science.gov (United States)

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  4. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia.

    Science.gov (United States)

    Carlson, Kimberly M; Curran, Lisa M; Ratnasari, Dessy; Pittman, Alice M; Soares-Filho, Britaldo S; Asner, Gregory P; Trigg, Simon N; Gaveau, David A; Lawrence, Deborah; Rodrigues, Hermann O

    2012-05-08

    Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994-2001), shifting to 69% peatlands (2008-2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings.

  5. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  6. Land use strategies to mitigate climate change in carbon dense temperate forests.

    Science.gov (United States)

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  7. Land use strategies to mitigate climate change in carbon dense temperate forests

    Science.gov (United States)

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  8. Historical and future perspectives of global soil carbon response to climate and land-use changes

    Science.gov (United States)

    Eglin, T.; Ciais, P.; Piao, S. L.; Barre, P.; Bellassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Koven, C.; Reichstein, M.; Smith, P.

    2010-11-01

    ABSTRACT In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901-2000 and the period 2000-2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere. In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

  9. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2018-01-01

    Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ ∑ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ ∑ NEE ˜ 4.0-13.5 g C

  10. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  11. Carbon Sequestration on Surface Mine Lands

    Energy Technology Data Exchange (ETDEWEB)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and

  12. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    Science.gov (United States)

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Assessing double counting of carbon emissions between forest land cover change and forest wildfires: a case study in the United States, 1992-2006

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; Brad. Quayle

    2013-01-01

    The relative contributions of double counting of carbon emissions between forest-to-nonforest cover change (FNCC) and forest wildfires are an unknown in estimating net forest carbon exchanges at large scales. This study employed land-cover change maps and forest fire data in the four representative states (Arkansas, California, Minnesota, and Washington) of the US for...

  14. Net carbon dioxide emissions from alternative firewood-production systems in Australia

    International Nuclear Information System (INIS)

    Paul, K.I.; Booth, T.H.; Jovanovic, T.; Polglase, P.J.; Elliott, A.; Kirschbaum, M.U.F.

    2006-01-01

    The use of firewood for domestic heating has the potential to reduce fossil-fuel use and associated CO 2 emissions. The level of possible reductions depends upon the extent to which firewood off-sets the use of fossil fuels, the efficiency with which wood is burnt, and use of fossil fuels for collection and transport of firewood. Plantations grown for firewood also have a cost of emissions associated with their establishment. Applying the FullCAM model and additional calculations, these factors were examined for various management scenarios under three contrasting firewood production systems (native woodland, sustainably managed native forest, and newly established plantations) in low-medium rainfall (600-800mm) regions of south-eastern Australia. Estimates of carbon dioxide emissions per unit of heat energy produced for all scenarios were lower than for non-renewable energy sources (which generally emit about 0.3-1.0kgCO 2 kWh -1 ). Amongst the scenarios, emissions were greatest when wood was periodically collected from dead wood in woodlands (0.11kgCO 2 kWh -1 ), and was much lower when obtained from harvest residues and dead wood in native forests ( 2 kWh -1 ). When wood was obtained from plantations established on previously cleared agricultural land, use of firewood led to carbon sequestration equivalent to -0.06kgCO 2 kWh -1 for firewood obtained from a coppiced plantation, and -0.17kgCO 2 kWh -1 for firewood collected from thinnings, slash and other residue in a plantation grown for sawlog production. An uncertainty analysis, where inputs and assumptions were varied in relation to a plausible range of management practices, identified the most important influencing factors and an expected range in predicted net amount of CO 2 emitted per unit of heat energy produced from burning firewood. (author)

  15. An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California

    Directory of Open Access Journals (Sweden)

    Benjamin M. Sleeter

    2015-06-01

    Full Text Available Increased land-use intensity (e.g. clearing of forests for cultivation, urbanization, often results in the loss of ecosystem carbon storage, while changes in productivity resulting from climate change may either help offset or exacerbate losses. However, there are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this we developed the Land Use and Carbon Scenario Simulator (LUCAS to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux within a scenario-based framework. We have combined a state-and-transition simulation model (STSM of land change with a stock and flow model of carbon dynamics. Land-change projections downscaled from the Intergovernmental Panel on Climate Change’s (IPCC Special Report on Emission Scenarios (SRES were used to drive changes within the STSM, while the Integrated Biosphere Simulator (IBIS ecosystem model was used to derive input parameters for the carbon stock and flow model. The model was applied to the Sierra Nevada Mountains ecoregion in California, USA, a region prone to large wildfires and a forestry sector projected to intensify over the next century. Three scenario simulations were conducted, including a calibration scenario, a climate-change scenario, and an integrated climate- and land-change scenario. Based on results from the calibration scenario, the LUCAS age-structured carbon accounting model was able to accurately reproduce results obtained from the process-based biogeochemical model. Under the climate-only scenario, the ecoregion was projected to be a reliable net sink of carbon, however, when land use and disturbance were introduced, the ecoregion switched to become a net source. This research demonstrates how an integrated approach to carbon accounting can be used to evaluate various drivers of ecosystem carbon change in a robust, yet transparent

  16. An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Frid, Leonardo; Zhu, Zhiliang

    2015-01-01

    Increased land-use intensity (e.g. clearing of forests for cultivation, urbanization), often results in the loss of ecosystem carbon storage, while changes in productivity resulting from climate change may either help offset or exacerbate losses. However, there are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this we developed the Land Use and Carbon Scenario Simulator (LUCAS) to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux within a scenario-based framework. We have combined a state-and-transition simulation model (STSM) of land change with a stock and flow model of carbon dynamics. Land-change projections downscaled from the Intergovernmental Panel on Climate Change’s (IPCC) Special Report on Emission Scenarios (SRES) were used to drive changes within the STSM, while the Integrated Biosphere Simulator (IBIS) ecosystem model was used to derive input parameters for the carbon stock and flow model. The model was applied to the Sierra Nevada Mountains ecoregion in California, USA, a region prone to large wildfires and a forestry sector projected to intensify over the next century. Three scenario simulations were conducted, including a calibration scenario, a climate-change scenario, and an integrated climate- and land-change scenario. Based on results from the calibration scenario, the LUCAS age-structured carbon accounting model was able to accurately reproduce results obtained from the process-based biogeochemical model. Under the climate-only scenario, the ecoregion was projected to be a reliable net sink of carbon, however, when land use and disturbance were introduced, the ecoregion switched to become a net source. This research demonstrates how an integrated approach to carbon accounting can be used to evaluate various drivers of ecosystem carbon change in a robust, yet transparent modeling

  17. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    Science.gov (United States)

    Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  18. Whole Watershed Quantification of Net Carbon Fluxes by Erosion and Deposition within the Christina River Basin Critical Zone Observatory

    Science.gov (United States)

    Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.

    2013-12-01

    to organic carbon and nitrogen content with stable isotope (13C, 15N) and radiocarbon (14C) abundance to quantify OC/SA and organic carbon sources and mean age. We then use multivariate mixing model analysis to quantify the fractional contribution of each source end-member to each sample of suspended or deposited sediments. Last, we calculate a predicted OC/SA based on source end-member mixing and compare to the measured OC/SA to quantify net change in mineral complexed carbon. Aufdenkampe, A.K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers Ecol. Environ. 9, 53-60 (2011). Walling, D. E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 34, 159-184 (2005).

  19. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  20. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  1. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre

    2013-06-09

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr -1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ∼0.1 Pg C yr -1 to the open ocean. According to our analysis, terrestrial ecosystems store ∼0.9 Pg C yr -1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr -1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  2. Climate change - Storing carbon on land

    CSIR Research Space (South Africa)

    Scholes, RJ

    2001-11-02

    Full Text Available undertaken measures to promote land sinks, provided that steps to reduce emissions from fossil fuel combustion are not compromised and deforestation is avoided. Even if used to the maximum, however, these sinks will make only a minor difference to the final...

  3. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    Science.gov (United States)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  4. Convergent evolution towards high net carbon gain efficiency contributes to the shade tolerance of palms (Arecaceae)

    NARCIS (Netherlands)

    Ma, Ren Yi; Zhang, Jiao Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, J.S.; Cao, Kun Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn),

  5. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    International Nuclear Information System (INIS)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D.; Jones, Edward O.; Hatano, Ryusuke

    2016-01-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha"−"1 yr"−"1 in 1959–0.26 Mg C ha"−"1 yr"−"1 in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate conditions. • NBP

  6. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xi, E-mail: icy124@hotmail.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Toma, Yo [Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Ehime (Japan); Yeluripati, Jagadeesh [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Iwasaki, Shinya [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Bellingrath-Kimura, Sonoko D. [Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems (Germany); Jones, Edward O. [Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London (United Kingdom); Hatano, Ryusuke [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan)

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha{sup −1} yr{sup −1} in 1959–0.26 Mg C ha{sup −1} yr{sup −1} in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate

  7. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  8. Reforestation Effects on Carbon Stocks in the Northeast USA: Interactions among Earthworms, Land-Use History and Soil Properties

    Science.gov (United States)

    Ross, D. S.; Görres, J. H.; Knowles, M.; Cogbill, C. V.

    2017-12-01

    Reforestation has occurred in many areas of the northeastern USA that were cleared for agriculture in the 1700s and 1800s. Net gains in carbon have occurred but these gains may be affected by earthworm invasions. All earthworm species common to New England were introduced from either Europe or, more recently, Asia. We have been monitoring 18 managed forest stands in Vermont to be able to determine long-term changes in carbon stores. In addition to measuring carbon with depth into the C horizon, we have documented land use history dating back to colonial times, determined earthworm species and density, measured tree species and site metrics, and measured a suite of soil chemical parameters. We also determined carbon distribution in soil microaggregates in a subset of sites. Prior land use in the 18 monitored plots included cultivation, pasture, farm woodlot and possibly iron mining. Higher earthworm species diversity correlated with reduced forest floor depth, higher mineral soil carbon, and greater stability (microaggregate-protected) of that carbon. Sites with the highest worm density and species richness had a history of more intense agricultural land use (although not all former agricultural sites had earthworms). There were also positive interactions between exchangeable calcium pools and earthworm density, and between elevation and carbon in the forest floor. With only 18 sites, it is difficult to establish statistically robust relationships. The effect of reforestation on present-day carbon stores appears to be a complex interaction of land-use history, site location, earthworm history and soil chemistry.

  9. Spatiotemporal Variability of Carbon Flux from Different Land Use and Land Cover Changes: A Case Study in Hubei Province, China

    Directory of Open Access Journals (Sweden)

    Li Gao

    2014-04-01

    Full Text Available Carbon sources and sinks as a result of land use and land cover changes (LUCC are significant for global climate change. This paper aims to identify and analyze the temporal and spatial changes of land use-based carbon emission in the Hubei Province in China. We use a carbon emission coefficient to calculate carbon emissions in different land use patterns in Hubei Province from 1998 to 2009. The results indicate that regional land use is facing tremendous pressure from rapid carbon emission growth. Source:sink ratios and average carbon emission intensity values of urban land are increasing, while slow-growing carbon sinks fail to offset the rapidly expanding carbon sources. Overall, urban land carbon emissions have a strong correlation with the total carbon emissions, and will continue to increase in the future mainly due to the surge of industrialization and urbanization. Furthermore, carbon emission in regions with more developed industrial structures is much higher than in regions with less advanced industrial structures. Lastly, carbon emission per unit of GDP has declined since 2004, indicating that a series of reform measures i.e., economic growth mode transformation and land-use structure optimization, has initiated the process of carbon emission reduction.

  10. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity.

    Science.gov (United States)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D; Jones, Edward O; Hatano, Ryusuke

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959-2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from -1.26MgCha(-1)yr(-1) in 1959-0.26 Mg Cha(-1)yr(-1) in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959-2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PV water pumping for carbon sequestration in dry land agriculture

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2015-01-01

    Highlights: • A novel model for carbon sequestration in dry land agriculture is developed. • We consider the water-food-energy-climate nexus to assess carbon sequestration. • Using water for carbon sequestration should be assessed critically. • Co-benefits of carbon sequestration should be included in the assessment. • Moisture feedback is part of the nexus model. - Abstract: This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished

  12. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    International Nuclear Information System (INIS)

    Pugh, T A M; Arneth, A; Bayer, A D; Olin, S; Lindeskog, M; Schurgers, G; Ahlström, A; Klein Goldewijk, K

    2015-01-01

    It is over three decades since a large terrestrial carbon sink (S T ) was first reported. The magnitude of the net sink is now relatively well known, and its importance for dampening atmospheric CO 2 accumulation, and hence climate change, widely recognised. But the contributions of underlying processes are not well defined, particularly the role of emissions from land-use change (E LUC ) versus the biospheric carbon uptake (S L ; S T  = S L  − E LUC ). One key aspect of the interplay of E LUC and S L is the role of agricultural processes in land-use change emissions, which has not yet been clearly quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative E LUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present-day S T , or an underestimation of S L , of up to 1.0 Pg C a −1 . Management processes influencing crop productivity per se are important for food supply, but were found to have little influence on E LUC . (letter)

  13. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    Science.gov (United States)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  14. Biodiverse planting for carbon and biodiversity on indigenous land.

    Science.gov (United States)

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  15. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    International Nuclear Information System (INIS)

    Failey, Elisabeth L; Dilling, Lisa

    2010-01-01

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'-that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  16. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  17. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  18. Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland

    Science.gov (United States)

    Nugent, Kelly; Strachan, Ian; Strack, Maria

    2017-04-01

    Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady

  19. Derived crop management data for the LandCarbon Project

    Science.gov (United States)

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  20. Wind Erosion Caused by Land Use Changes Significantly Reduces Ecosystem Carbon Storage and Carbon Sequestration Potentials in Grassland

    Science.gov (United States)

    Li, P.; Chi, Y. G.; Wang, J.; Liu, L.

    2017-12-01

    Wind erosion exerts a fundamental influence on the biotic and abiotic processes associated with ecosystem carbon (C) cycle. However, how wind erosion under different land use scenarios will affect ecosystem C balance and its capacity for future C sequestration are poorly quantified. Here, we established an experiment in a temperate steppe in Inner Mongolia, and simulated different intensity of land uses: control, 50% of aboveground vegetation removal (50R), 100% vegetation removal (100R) and tillage (TI). We monitored lateral and vertical carbon flux components and soil characteristics from 2013 to 2016. Our study reveals three key findings relating to the driving factors, the magnitude and consequence of wind erosion on ecosystem C balance: (1) Frequency of heavy wind exerts a fundamental control over the severity of soil erosion, and its interaction with precipitation and vegetation characteristics explained 69% variation in erosion intensity. (2) With increases in land use intensity, the lateral C flux induced by wind erosion increased rapidly, equivalent to 33%, 86%, 111% and 183% of the net ecosystem exchange of the control site under control, 50R, 100R and TI sites, respectively. (3) After three years' treatment, erosion induced decrease in fine fractions led to 31%, 43%, 85% of permanent loss of C sequestration potential in the surface 5cm soil for 50R, 100R and TI sites. Overall, our study demonstrates that lateral C flux associated with wind erosion is too large to be ignored. The loss of C-enriched fine particles not only reduces current ecosystem C content, but also results in irreversible loss of future soil C sequestration potential. The dynamic soil characteristics need be considered when projecting future ecosystem C balance in aeolian landscape. We also propose that to maintain the sustainability of grassland ecosystems, land managers should focus on implementing appropriate land use rather than rely on subsequent managements on degraded soils.

  1. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-02-25

    The October-December Quarter was dedicated to analyzing the first two years tree planting activities and evaluation of the results. This included the analyses of the species success at each of the sites and quantifying the data for future year determination of research levels. Additional detailed studies have been planned to further quantify total carbon storage accumulation on the research areas. At least 124 acres of new plantings will be established in 2005 to bring the total to 500 acres or more in the study area across the state of Kentucky. During the first 2 years of activities, 172,000 tree seedlings were planted on 257 acres in eastern Kentucky and 77,520 seedlings were planted on 119 acres in western Kentucky. The quantities of each species was discussed in the first Annual Report. A monitoring program was implemented to measure treatment effects on above and below ground C and nitrogen (N) pools and fluxes. A sampling strategy was devised that will allow for statistical comparisons of the various species within planting conditions and sites. Seedling heights and diameters are measured for initial status and re-measured on an annual basis. Leaves were harvested and leaf area measurements were performed. They were then dried and weighed and analyzed for C and N. Whole trees were removed to determine biomass levels and to evaluate C and N levels in all components of the trees. Clip plots were taken to determine herbaceous production and litter was collected in baskets and gathered each month to quantify C & N levels. Soil samples were collected to determine the chemical and mineralogical characterization of each area. The physical attributes of the soils are also being determined to provide information on the relative level of compaction. Hydrology and water quality monitoring is being conducted on all areas. Weather data is also being recorded that measures precipitation values, temperature, relative humidity wind speed and direction and solar radiation

  2. Impacts of historic and projected land-cover, land-use, and land-management change on carbon and water fluxes: The Land Use Model Intercomparison Project (LUMIP)

    Science.gov (United States)

    Lawrence, D. M.; Lombardozzi, D. L.; Lawrence, P.; Hurtt, G. C.

    2017-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to intensify to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the broad question of impacts of land-use and land-cover change (LULCC) as well as more detailed science questions to get at process-level attribution, uncertainty, and data requirements in more depth and sophistication than possible in a multi-model context to date. LUMIP is multi-faceted and aims to advance our understanding of land-use change from several perspectives. In particular, LUMIP includes a factorial set of land-only simulations that differ from each other with respect to the specific treatment of land use or land management (e.g., irrigation active or not, crop fertilization active or not, wood harvest on or not), or in terms of prescribed climate. This factorial series of experiments serves several purposes and is designed to provide a detailed assessment of how the specification of land-cover change and land management affects the carbon, water, and energy cycle response to land-use change. The potential analyses that are possible through this set of experiments are vast. For example, comparing a control experiment with all land management active to an experiment with no irrigation allows a multi-model assessment of whether or not the increasing use of irrigation during the 20th century is likely to have significantly altered trends of regional water and energy fluxes (and therefore climate) and/or crop yield and carbon fluxes in agricultural regions. Here, we will present preliminary results from the factorial set of experiments utilizing the Community Land Model (CLM5). The analyses presented here will help guide multi-model analyses once the full set of LUMIP simulations are available.

  3. Scientific arguments for net carbon increase in soil organic matter in Dutch forests

    NARCIS (Netherlands)

    Mol, J.P.; Wyngaert, van den I.J.J.; Vries, de W.

    2012-01-01

    If reporting of emissions associated with Forest Management becomes obligatory in the next commitment period, the Netherlands will try to apply the 'not-a-source' principle to carbon emissions from litter and soil in land under Forest Management. To give a scientific basis for the principle of

  4. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  5. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  6. A Preliminary Study of the Carbon Emissions Reduction Effects of Land Use Control.

    Science.gov (United States)

    Chuai, Xiaowei; Huang, Xianjin; Qi, Xinxian; Li, Jiasheng; Zuo, Tianhui; Lu, Qinli; Li, Jianbao; Wu, Changyan; Zhao, Rongqin

    2016-11-15

    Land use change not only directly influences carbon storage in terrestrial ecosystems but can also cause energy-related carbon emissions. This study examined spatiotemporal land use change across Jiangsu Province, China; calculated vegetation carbon storage loss caused by land use change and energy-related carbon emissions; analysed the relationship among land use change, carbon emissions and social-economic development; and optimized land use structure to maximize carbon storage. Our study found that 13.61% of the province's land area underwent a change in type of land use between 1995 and 2010, mainly presented as built-up land expansion and cropland shrinkage, especially in southern Jiangsu. Land use change caused a 353.99 × 10 4 t loss of vegetation carbon storage loss. Energy-related carbon emissions increased 2.5 times from 1995 to 2013; the energy consumption structure has been improved to some extent while still relying on coal. The selected social-economic driving forces have strong relationships with carbon emissions and land use changes, while there are also other determinants driving land use change, such as land use policy. The optimized land use structure will slow the rate of decline in vegetation carbon storage compared with the period between 1995 and 2010 and will also reduce energy-related carbon emissions by 12%.

  7. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. [Michigan State University, East Lansing, MI 48824 (United States)

    2010-07-15

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m{sup -2} y{sup -1}, respectively, compared to 52 g m{sup -2} y{sup -1} for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation. (author)

  8. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    International Nuclear Information System (INIS)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P.

    2010-01-01

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m -2 y -1 , respectively, compared to 52 g m -2 y -1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation.

  9. Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions

    International Nuclear Information System (INIS)

    Simmons, C T; Matthews, H D

    2016-01-01

    Recent research has shown evidence of a linear climate response to cumulative CO 2 emissions, which implies that the source, timing, and amount of emissions does not significantly influence the climate response per unit emission. Furthermore, these analyses have generally assumed that the climate response to land-use CO 2 emissions is equivalent to that of fossil fuels under the assumption that, once in the atmosphere, the radiative forcing induced by CO 2 is not sensitive to the emissions source. However, land-cover change also affects surface albedo and the strength of terrestrial carbon sinks, both of which have an additional climate effect. In this study, we use a coupled climate-carbon cycle model to assess the climate response to historical and future cumulative land-use CO 2 emissions, in order to compare it to the response to fossil fuel CO 2 . We find that when we isolate the CO 2 -induced (biogeochemical) temperature changes associated with land-use change, then the climate response to cumulative land-use emissions is equivalent to that of fossil fuel CO 2 . We show further that the globally-averaged albedo-induced biophysical cooling from land-use change is non-negligible and may be of comparable magnitude to the biogeochemical warming, with the result that the net climate response to land-use change is substantially different from a linear response to cumulative emissions. However, our new simulations suggest that the biophysical cooling from land-use change follows its own independent (negative) linear response to cumulative net land-use CO 2 emissions, which may provide a useful scaling factor for certain applications when evaluating the full transient climate response to emissions. (letter)

  10. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  11. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  12. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990-2100

    International Nuclear Information System (INIS)

    Zaehle, S.; Bondeau, A.; Cramer, W.; Erhard, M.; Sitch, S.; Smith, P.C.; Zaehle, S.; Smith, P.C.; Carter, T.R.; Erhard, M.; Prentice, C.; Prentice, C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; Sykes, M

    2007-01-01

    Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES story-lines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES story-line. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17-38 Tg C/year between 1990 and 2100, corresponding to 1.9-2.9% of the EU*s CO 2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO 2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4-10.1 Pg C between 1990 and 2100. (authors)

  13. Net Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover

    Directory of Open Access Journals (Sweden)

    Heather N. Page

    2017-05-01

    Full Text Available Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA. Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution, but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0–100%, and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40% and high (80% coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 and 20% coral cover and then less so between 20 and 100%. Consequently, diel variability in seawater carbonate chemistry increased with increasing coral cover, but absolute values of pH, Ωa, and pCO2 were not significantly different during daytime. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2 at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study

  14. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    Warnecke, Carsten; Wartmann, Sina; Höhne, Niklas; Blok, Kornelis

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  15. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  16. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000)

    International Nuclear Information System (INIS)

    Fisk, J P; Hurtt, G C; Dolan, K A; Chambers, J Q; Zeng, H; Negrón-Juárez, R I

    2013-01-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851–2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr −1 , an amount equivalent to 17%–36% of the US forest carbon sink. (letter)

  17. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    Science.gov (United States)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Heimann, M.; Jones, C.

    2010-09-01

    European ecosystems are thought to take up large amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more that 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C yr-1. The extents of forest and grasslands have increased with the respective rates of 5800 km2 yr-1 and 1100 km2 yr-1 as agricultural land has been abandoned at a rate of 7000 km2 yr-1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. The models suggest that European ecosystems sequester carbon at a rate of 56 TgC yr-1 (mean of four models for 1951-2000) with strong interannual variability (±88 TgC yr-1, average across models) and substantial inter-model uncertainty (±39 TgC yr-1). Decadal budgets suggest that there has been a continuous increase in the mean net carbon storage of ecosystems from 85 TgC yr-1 in 1980s to 108 TgC yr-1 in 1990s, and to 114 TgC yr-1 in 2000-2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are suggested as an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with land use changes are needed to further improve the quantitative understanding of the driving forces of the European land carbon balance.

  18. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    Directory of Open Access Journals (Sweden)

    G. Churkina

    2010-09-01

    Full Text Available European ecosystems are thought to take up large amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more that 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C yr−1. The extents of forest and grasslands have increased with the respective rates of 5800 km2 yr−1 and 1100 km2 yr−1 as agricultural land has been abandoned at a rate of 7000 km2 yr−1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. The models suggest that European ecosystems sequester carbon at a rate of 56 TgC yr−1 (mean of four models for 1951–2000 with strong interannual variability (±88 TgC yr−1, average across models and substantial inter-model uncertainty (±39 TgC yr−1. Decadal budgets suggest that there has been a continuous increase in the mean net carbon storage of ecosystems from 85 TgC yr−1 in 1980s to 108 TgC yr−1 in 1990s, and to 114 TgC yr−1 in 2000–2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are suggested as an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with

  19. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  20. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    Science.gov (United States)

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  2. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    Science.gov (United States)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  3. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  4. Net ecosystem carbon dioxide exchange in tropical rainforests - sensitivity to environmental drivers and flux measurement methodology

    Science.gov (United States)

    Fu, Z.; Stoy, P. C.

    2017-12-01

    Tropical rainforests play a central role in the Earth system services of carbon metabolism, climate regulation, biodiversity maintenance, and more. They are under threat by direct anthropogenic effects including deforestation and indirect anthropogenic effects including climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) across multiple time scales in different tropical rainforests has not been undertaken to date. Here, we study NEE and its components, gross primary productivity (GPP) and ecosystem respiration (RE), across thirteen tropical rainforest research sites with 63 total site-years of eddy covariance data. Results reveal that the five ecosystems that have greater carbon uptakes (with the magnitude of GPP greater than 3000 g C m-2 y-1) sequester less carbon - or even lose it - on an annual basis at the ecosystem scale. This counterintuitive result is because high GPP is compensated by similar magnitudes of RE. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GPP and RE and consequently lower NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in tropical rainforests. Vapor pressure deficit (VPD) constrained GPP at all sites, but to differing degrees. Many environmental variables are significantly related to NEE at time scales greater than one year, and NEE at a rainforest in Malaysia is significantly related to soil moisture variability at seasonal time scales. Climate projections from 13 general circulation models (CMIP5) under representative concentration pathway (RCP) 8.5 suggest that many current tropical rainforest sites on the cooler end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, and warmer sites will reach a climate space not currently experienced. Results demonstrate the need to quantify if mature tropical trees acclimate to heat and

  5. Implication of Land-Use and Land-Cover Change into Carbon Dioxide Emissions in Karang Gading and Langkat Timur Wildlife Reserve, North Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Mohammad Basyuni

    2015-06-01

    Full Text Available Mangrove forest in the context of climate change is important sector to be included in the inventory of greenhouse gas (GHG emissions. The present study describes land-use and land-cover change during 2006–2012 of a mangrove forest conservation area, Karang Gading and Langkat Timur Laut Wildlife Reserve (KGLTLWR in North Sumatra, Indonesia and their implications to carbon dioxide emissions. A land-use change matrix showed that the decrease of mangrove forest due to increases of other land-use such as aquaculture (50.00% and oil palm plantation (28.83%. Furthermore, the net cumulative of carbon emissions in KGLTLWR for 2006 was 3804.70 t CO2-eq year-1, whereas predicting future emissions in 2030 was 11,318.74 t CO2-eq year-1 or an increase of 33.61% for 12 years. Source of historical emissions mainly from changes of secondary mangrove forests into aquaculture and oil palm plantation were 3223.9 t CO2-eq year-1 (84.73% and 959.00 t CO2-eq year-1 (25.21%, respectively, indicating that the KGLTLWR is still a GHG emitter. Mitigation scenario with no conversion in secondary mangrove forest reduced 16.21% and 25.8% carbon emissions in 2024 and 2030, respectively. This study suggested that aquaculture and oil palm plantation are drivers of deforestation as well as the largest of GHG emission source in this area. Keywords: carbon emission, climate change, deforestation, forest degradation, mangrove conservation

  6. Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region

    Science.gov (United States)

    Li, Zhengpeng; Liu, Shuguang; Zhang, Xuesong; West, Tristram O.; Ogle, Stephen M.; Zhou, Naijun

    2016-01-01

    Quantifying spatial and temporal patterns of carbon sources and sinks and their uncertainties across agriculture-dominated areas remains challenging for understanding regional carbon cycles. Characteristics of local land cover inputs could impact the regional carbon estimates but the effect has not been fully evaluated in the past. Within the North American Carbon Program Mid-Continent Intensive (MCI) Campaign, three models were developed to estimate carbon fluxes on croplands: an inventory-based model, the Environmental Policy Integrated Climate (EPIC) model, and the General Ensemble biogeochemical Modeling System (GEMS) model. They all provided estimates of three major carbon fluxes on cropland: net primary production (NPP), net ecosystem production (NEP), and soil organic carbon (SOC) change. Using data mining and spatial statistics, we studied the spatial distribution of the carbon fluxes uncertainties and the relationships between the uncertainties and the land cover characteristics. Results indicated that uncertainties for all three carbon fluxes were not randomly distributed, but instead formed multiple clusters within the MCI region. We investigated the impacts of three land cover characteristics on the fluxes uncertainties: cropland percentage, cropland richness and cropland diversity. The results indicated that cropland percentage significantly influenced the uncertainties of NPP and NEP, but not on the uncertainties of SOC change. Greater uncertainties of NPP and NEP were found in counties with small cropland percentage than the counties with large cropland percentage. Cropland species richness and diversity also showed negative correlations with the model uncertainties. Our study demonstrated that the land cover characteristics contributed to the uncertainties of regional carbon fluxes estimates. The approaches we used in this study can be applied to other ecosystem models to identify the areas with high uncertainties and where models can be improved to

  7. Net farm income and land use under a U.S. greenhouse gas cap and trade

    Science.gov (United States)

    Justin S. Baker; Bruce A. McCarl; Brian C. Murray; Steven K. Rose; Ralph J. Alig; Darius Adams; Greg Latta; Robert Beach; Adam. Daigneault

    2010-01-01

    During recent years, the U.S. agricultural sector has experienced high prices for energy related inputs and commodities, and a rapidly developing bioenergy market. Greenhouse gas (GHG) emissions mitigation would further alter agricultural markets and increase land competition in forestry and agriculture by shifting input costs, creating an agricultural GHG abatement...

  8. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    International Nuclear Information System (INIS)

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-01-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (feAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-A VHRR / 2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid. (NEE). Complex ecosystem models with a highly predictive value for a specific ecosystem are generally not suitable for global or regional applications, since they require a substantial set of ancillary data becoming increasingly larger with increasing complexity of the model. The ideal model for our purpose is one that is simple enough to be used in global scale modeling, and which can be adapted for different ecosystems or vegetation types. The fraction of absorbed photosynthetically active radiation (fPAR) during the growing season determines in part net photosynthesis and phytomass production (Ruimy, 1995). Remotely measured red and near-infrared spectral reflectances can be used to estimate fPAR. Therefore, a possible approach is to estimate net photosynthesis, phytomass, and NEE from a combination of satellite data and an ecosystem model that includes carbon dynamics. It has to be stated that some parts of the work presented in this

  9. Importance of soil thermal dynamics on land carbon sequestration in Northern Eurasia during the 21st century

    Science.gov (United States)

    Kicklighter, David; Monier, Erwan; Sokolov, Andrei; Zhuang, Qianlai; Melillo, Jerry

    2015-04-01

    Recent modeling studies have suggested that carbon sinks in pan-arctic ecosystems may be weakening partially as a result of warming-induced increases in soil organic matter (SOM) decomposition and the exposure of previously frozen SOM to decomposition. This weakening of carbon sinks is likely to continue in the future as vast amount of carbon in permafrost soils is vulnerable to thaw. Here, we examine the importance of considering soil thermal dynamics when determining the effects of climate change and land-use change on carbon dynamics in Northern Eurasia during the 21st century. This importance is assessed by comparing results for a "business as usual" scenario between a version of the Terrestrial Ecosystem Model that does not consider soil thermal dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In this scenario, which is similar to the IPCC Representative Concentration Pathways (RCP) 8.5 scenario, the net area covered by food crops and pastures in Northern Eurasia is assumed to remain relatively constant over the 21st century, but the area covered by secondary forests is projected to double as a result of timber harvest and the abandonment of land associated with displacement of agricultural land. Enhanced decomposition from the newly exposed SOM from permafrost thaw also increases nitrogen availability for plant production so that the loss of carbon from the enhanced decomposition is partially compensated by enhanced uptake and storage of atmospheric carbon dioxide in vegetation. Our results indicate that consideration of soil thermal dynamics have a large influence on how simulated terrestrial carbon dynamics in Northern Eurasia respond to changes in climate, atmospheric chemistry (e.g., carbon dioxide fertilization, ozone pollution, nitrogen deposition) and disturbances.

  10. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  11. The missing biology in land carbon models (Invited)

    Science.gov (United States)

    Prentice, I. C.; Cornwell, W.; Dong, N.; Maire, V.; Wang, H.; Wright, I.

    2013-12-01

    Models of terrestrial carbon cycling give divergent results, and recent developments - notably the inclusion of nitrogen-carbon cycle coupling - have apparently made matters worse. More extensive benchmarking of models would be highly desirable, but is not a panacea. Problems with current models include overparameterization (assigning separate sets of parameter values for each plant functional type can easily obscure more fundamental model limitations), and the widespread persistence of incorrect paradigms to describe plant responses to environment. Next-generation models require a more sound basis in observations and theory. A possible way forward will be outlined. It will be shown how the principle of optimization by natural selection can yield testable, general hypotheses about plant function. A specific optimality hypothesis about the control of CO2 drawdown versus water loss by leaves will be shown to yield global and quantitatively verifable predictions of plant behaviour as demonstrated in field gas-exchange measurements across species from different environments, and in the global pattern of stable carbon isotope discrimination by plants. Combined with the co-limitation hypothesis for the control of photosynthetic capacity and an economic approach to the costs of nutrient acquisition, this hypothesis provides a potential foundation for a comprehensive predictive understanding of the controls of primary production on land.

  12. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Q. Zhao

    2009-08-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.

  13. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal....... The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions...... caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions...

  14. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  15. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2012-09-01

    Full Text Available Terrestrial carbon (C cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N and phosphorus (P, nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg, which already includes representations of coupled C and N cycles.

    The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes and 16% (particularly at low latitudes lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation

  16. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past three decades

    Science.gov (United States)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-08-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven with hourly meteorology from WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of LAI at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. In contrast, driven with alternative meteorology from MERRA (Modern Era-Retrospective Analysis), the model predicts significant increases of 59 Tg C a-2 in the land sink due to strengthened uptake in the Amazon. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases

  17. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  18. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  19. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  20. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    J. R. Melton

    2014-02-01

    Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same

  1. Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics

    Science.gov (United States)

    Weindl, Isabelle; Popp, Alexander; Bodirsky, Benjamin Leon; Rolinski, Susanne; Lotze-Campen, Hermann; Biewald, Anne; Humpenöder, Florian; Dietrich, Jan Philipp; Stevanović, Miodrag

    2017-12-01

    Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.

  2. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change?

    Science.gov (United States)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.

    2017-12-01

    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  3. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  4. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  5. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae.

    Directory of Open Access Journals (Sweden)

    Ren-Yi Ma

    Full Text Available Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn, which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  6. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  7. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Shilong [Chinese Academy of Sciences (CAS), Beijing (China); Peking Univ., Beijing (China); Liu, Zhuo [Peking Univ., Beijing (China); Wang, Tao [Chinese Academy of Sciences (CAS), Beijing (China); Peng, Shushi [Peking Univ., Beijing (China); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Huang, Mengtian [Peking Univ., Beijing (China); Ahlstrom, Anders [Stanford Univ., CA (United States); Burkhart, John F. [Univ. of Oslo (Norway); Chevallier, Frédéric [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Janssens, Ivan A. [Univ. of Antwerp, Wilrijk (Belgium); Jeong, Su-Jong [South Univ. of Science and Technology of China, Shenzhen (China); Lin, Xin [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, John [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States); Mohammat, Anwar [Chinese Academy of Sciences (CAS), Beijing (China); Myneni, Ranga B. [Boston Univ., MA (United States); Peñuelas, Josep [Centre for Ecological Research and Forestry Applications (CREAF), Barcelona (Spain); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stohl, Andreas [Norwegian Institute for Air Research (NILU), Kjeller (Norway); Yao, Yitong [Peking Univ., Beijing (China); Zhu, Zaichun [Peking Univ., Beijing (China); Tans, Pieter P. [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States)

    2017-04-24

    Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. We use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. Here, we use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. These results thus challenge the ‘warmer spring–bigger sink’ mechanism.

  8. Evaluation and inversion of a net ecosystem carbon exchange model for grasslands and croplands

    Science.gov (United States)

    Herbst, M.; Klosterhalfen, A.; Weihermueller, L.; Graf, A.; Schmidt, M.; Huisman, J. A.; Vereecken, H.

    2017-12-01

    A one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) was coupled to predict the net ecosystem exchange (NEE) of carbon. This model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was acceptable with a model efficiency >0.78 for NEE. In a second step, AgroC was optimized with the eddy covariance NEE measurements to examine the effect of various objective functions, constraints, and data-transformations on estimated NEE, which showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. Both, day and nighttime fluxes, were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting annual NEE differed substantially. We conclude that data-transformation, definition of objective functions, and data sources have to be considered cautiously when using a terrestrial ecosystem model to determine carbon balances by means of eddy covariance measurements.

  9. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  10. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

    Science.gov (United States)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-10-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use

  11. Simulating the effect of land use and climate change on upland soil carbon stock of Wales using ECOSSE

    Science.gov (United States)

    Rani Nayak, Dali; Gottschalk, Pia; Evans, Chris; Smith, Pete; Smith, Jo

    2010-05-01

    Within Wales soils hold between 400-500 MtC, over half of this carbon is stored in organic and organo-mineral soil which cover less than 20% of the land area of Wales. It has been predicted that climate change will increasingly have an impact on the C stock of soils in Wales. Higher temperatures will increase the rate of decomposition of organic matter, leading to increased C losses. However increased net primary production (NPP), leading to increased inputs of organic matter, may offset this. Land use plays a major role in determining the level of soil C and the direction of change in status (soil as a source or sink). We present here an assessment of the effect of land use change and climate change on the upland soil carbon stock of Wales in 3 different catchments i.e. Migneint, Plynlimon and Pontbren using a process-based model of soil carbon and nitrogen dynamics, ECOSSE. The uncertainties introduced in the simulations by using only the data available at national scale are determined. The ECOSSE model (1,2) has been developed to simulate greenhouse gas emissions from both organic and mineral soils. ECOSSE was derived from RothC (3) and SUNDIAL (4,5) and predicts the impacts of changes in land use and climate on emissions and soil carbon stock. Simulated changes in soil C are dependent on the type of land use change, the soil type where the land use change is occurring, and the C content of soil under the initial and final land uses. At Migneint and Plynlimon, the major part of the losses occurs due to the conversion of semi-natural land to grassland. Reducing the land use change from semi-natural to grassland is the main measure needed to mitigate losses of soil C. At Pontbren, the model predicts a net gain in soil C with the predicted land use change, so there is no need to mitigate. Simulations of future changes in soil C to 2050 showed very small changes in soil C due to climate compared to changes due to land use change. At the selected catchments, changes

  12. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity.

    Science.gov (United States)

    Janisch, J E; Harmon, M E

    2002-02-01

    If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere.

  13. Net emissions of carbon dioxide to the atmosphere when using forest residues for production of heat and electricity

    International Nuclear Information System (INIS)

    Zetterberg, L.; Hansen, O.

    1998-05-01

    This study estimates net emissions of carbon dioxide to the atmosphere from the use of forest residues for production of heat and electricity. In the report, the use of forest residues for energy production is called residue-usage. Our results show that for a turnover period of 80 years, the net emission of CO 2 to the atmosphere is 15.8 kg CO 2 -C/MWh (3.1-31.6 kg CO 2 -C/MWh), which represents 16% of the total carbon content in the wood fuel (3%-32%). Fossil fuel consumption is responsible for 3.1 kg CO 2 -C/MWh of this. Residue-usage may produce indirect emissions or uptake of carbon dioxide, e.g. through changes in production conditions, changes in the turnover of carbon in the humus layer or through a reduction of the amount of forest fires. Due to uncertainties in data it is hard to quantify these indirect effects. In some cases it is hard even to determine their signs. As a consequence of this, we have chosen not to include the indirect effects in our estimates of net emissions from residue-usage. Instead we discuss these effects in a qualitative manner. It may seem surprising that the biogenic part of the residue-usage produces a net emission of carbon dioxide considering that carbon has originated from the atmosphere. The explanation is that the residue-usage systematically leads to earlier emissions than would be the case if the residues were left on the ground. If forest residues are left to decay, in the long run a pool of carbon might be created in the ground. This does not happen with residue-usage 33 refs, 4 figs, 12 tabs

  14. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  15. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  16. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  17. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes

    Science.gov (United States)

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengieter, Ronald; Acevedo, William

    2012-01-01

    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  18. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  19. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Winkler, J. Barbro; Löw, Markus; Nunn, Angela J.; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M.; Matyssek, Rainer

    2012-01-01

    The hypothesis was tested that O 3 -induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O 3 regime, as prevailing at the forest site (control), or under an experimental twice-ambient O 3 regime (elevated O 3 ), as released through a free-air canopy O 3 fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O 3 . As this outcome only partly accounts for the decline in stem growth, O 3 -induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. - Highlights: ► We model O 3 -induced changes in the photosynthetic carbon gain of adult beech trees. ► Elevated O 3 decreases gross carbon gain but increases respiratory carbon loss. ► Reduction in net carbon gain only partly accounts for the decline in stem growth. ► O 3 effects on the whole-tree allocation is crucial in addition to carbon gains. - Reduction in net carbon gain at the canopy level only partly accounts for the decline in stem growth under elevated ozone.

  20. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  1. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-01-01

    Full Text Available This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.

  2. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Science.gov (United States)

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  3. Distributions of carbon in calcareous soils under different land uses in western Iran

    Directory of Open Access Journals (Sweden)

    H. Sepahvand

    2016-10-01

    Full Text Available Concentrations of Natural stable and unstable carbon in ecosystems have been used extensively to help to understand a wide range of soil processes and functions. This study was conducted to explore the effects of land use changes on different carbon fractions (F1, F2, F3 and F4, permanganate oxidizable carbon (POXC, soil organic carbon (SOC and total organic carbon (TOC associated with soils in calcareous soils of western Iran. Four popular land uses in the selected site including natural forest, range land, dryland farming and irrigated farming systems were employed as the basis of soil sampling. The results showed a strong relationship between land use conversion and SOC stocks changes. The greatest mean values for carbon content and the least mean values of CaCO3 in bulk topsoil (0–15 cm in the forest land were observed. Dryland farming had the least both active and passive pools of C in comparison with the other land uses. The positive and significant correlations was observed between SOC, Total C and POXC contents and different C fractions. Taking C and POXC pools into account, a more definitive picture of the soil C is obtained than when only total C is measured. The influence of land use changes on overall soil carbon stocks could be helpful for making management decision for farmers and policy makers in the future, for enhancing the potential of C sequestration in western Iran.

  4. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    Science.gov (United States)

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  5. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Kristal, E-mail: kristal.dubois@gmail.com [Ottawa-Carleton Geoscience Center, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Carignan, Richard [Departement des Sciences Biologiques, Universite de Montreal C.P. 6128, succ. Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada); Veizer, Jan [Ottawa-Carleton Geoscience Center, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2009-05-15

    Lakes worldwide are commonly oversaturated with CO{sub 2}, however the source of this CO{sub 2} oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O{sub 2} and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO{sub 2} over the sampling period, on average 221 {+-} 25%. However, little evidence was found to conclude that this CO{sub 2} oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO{sub 2} flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO{sub 2} flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m{sup -2} d{sup -1} while the average annual flux of CO{sub 2} to the atmosphere was 34 mg C m{sup -2} d{sup -1}. In Lac a l'Ours average annual NPP was -9.1 mg C m{sup -2} d{sup -1} while the average annual flux of CO{sub 2} to the atmosphere was 55 mg C m{sup -2} d{sup -1}. In all of the lakes sampled, O{sub 2} saturation averaged 104.0 {+-} 1.7% during the ice-free season and the isotopic composition of dissolved O{sub 2} ({delta}{sup 18}O{sub DO}) was 22.9 {+-} 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO{sub 2} in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO{sub 2} oversaturation. The isotopic composition of dissolved inorganic C ({delta}{sup 13}C{sub DIC}) indicates that the CO{sub 2} oversaturation cannot be attributed to in situ aerobic respiration. {delta}{sup 13}C{sub DIC} reveals a source of excess

  6. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    International Nuclear Information System (INIS)

    Dubois, Kristal; Carignan, Richard; Veizer, Jan

    2009-01-01

    Lakes worldwide are commonly oversaturated with CO 2 , however the source of this CO 2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O 2 and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO 2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO 2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO 2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO 2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 34 mg C m -2 d -1 . In Lac a l'Ours average annual NPP was -9.1 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 55 mg C m -2 d -1 . In all of the lakes sampled, O 2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O 2 (δ 18 O DO ) was 22.9 ± 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO 2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO 2 oversaturation. The isotopic composition of dissolved inorganic C (δ 13 C DIC ) indicates that the CO 2 oversaturation cannot be attributed to in situ aerobic respiration. δ 13 C DIC reveals a source of excess C enriched in 13 C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing

  7. Taking climate, land use, and social economy into estimation of carbon budget in the Guanzhong-Tianshui Economic Region of China.

    Science.gov (United States)

    Li, Ting; Li, Jing; Zhou, Zixiang; Wang, Yanze; Yang, Xiaonan; Qin, Keyu; Liu, Jingya

    2017-04-01

    Carbon sequestration is an indispensable ecosystem service provided by soil and vegetation, so mapping and valuing the carbon budget by considering both ecological and social factors is an important trend in evaluating ecosystem services. In this work, we established multiple scenarios to evaluate the impacts of land use change, population growth, carbon emission per capita, and carbon markets on carbon budget. We quantified carbon sinks (aboveground and belowground) under different scenarios, using the Carnegie-Ames-Stanford Approach (CASA) model and an improved carbon cycle process model, and studied carbon sources caused by human activities by analyzing the spatial distribution of human population and carbon emission per capita. We also assessed the net present value (NPV) for carbon budgets under different carbon price and discount rate scenarios using NPV model. Our results indicate that the carbon budget of Guanzhong-Tianshui Economic Region is surplus: Carbon sinks range from 1.50 × 10 10 to 1.54 × 10 10  t, while carbon sources caused by human activities range from 2.76 × 10 5 to 7.60 × 10 5  t. And the NPV for carbon deficits range from 3.20 × 10 11 RMB to 1.52 × 10 12 RMB. From the perspective of ecological management, deforestation, urban sprawl, population growth, and excessive carbon consumption are considered as the main challenges in balancing carbon sources and sinks. Levying carbon tax would be a considerable option when decision maker develops carbon emission reduction policies. Our results provide a scientific and credible reference for harmonious and sustainable development in the Guanzhong-Tianshui Economic Region of China.

  8. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  9. Dynamics Analysis Of Land-Based Carbon Stock In The Region Of Samarinda East Kalimantan Province

    Directory of Open Access Journals (Sweden)

    Zikri Azham

    2017-10-01

    Full Text Available This study aims to determine the potential dynamics of carbon stocks in various land cover classes in the city of Samarinda in the calculation of carbon stocks land cover only devided into three 3 Class Land Cover CLC is a secondary forest CLC CLC thickets and CLC shrubs. Research results show that the above ground carbon AGC stocks on Secondary Forest Land Cover Class average of 71.93 tonnesha the land cover classes thickets of 32.34 tonnes hectares and shrubs land cover classes of 19.66 tonnes hectare. The carbon stocks in 2009 amounted to 2589929 tonnes in 2012 there were 2347477 tons and in 2015 there were 2201005 tonnes. Estimated decrease in land-based stock carbon in the city of Samarinda during the period 2009-2015 amounted to 388943 tonnes or an average of 70170 tonnes per year or approximately 2.73year or the emissions in the field of land amounting to 254538 tonnes of CO2 equivalent.

  10. Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004

    International Nuclear Information System (INIS)

    Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M; Kicklighter, David W; David McGuire, A; Prinn, Ronald G

    2015-01-01

    Estimates of the seasonal and interannual exchanges of carbon dioxide (CO 2 ) and methane (CH 4 ) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH 4 yr −1 , which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH 4 yr −1 ). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO 2 sink of −1.28 ± 0.03 Pg C yr −1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr −1 and a upland sink from −0.82 to −0.98 Pg C yr −1 . Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO 2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH 4 emissions, but lower summer CO 2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further

  11. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.

    Science.gov (United States)

    Steen-Olsen, Kjartan; Weinzettel, Jan; Cranston, Gemma; Ercin, A Ertug; Hertwich, Edgar G

    2012-10-16

    A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater).

  12. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland.

    Science.gov (United States)

    Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret

    2016-06-01

    Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea shelf

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2010-05-01

    Full Text Available In order to assess the current state of net community production (NCP in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmoles kg−1 over the inner shelf to ~2400 μmoles kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt, terrestrial inputs, and primary production. Concentrations were found to be as low ~1800 μmoles kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmoles kg−1 in the upper 30 m of the water column due to primary production and calcium carbonate formation between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of NCP on the inner, middle, and outer shelf averaged 28 ± 9 mmoles C m−2 d−1. However, higher rates of NCP (40–47 mmoles C m−2 d−1 were observed in the "Green Belt" where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total NCP across the shelf was on the order of ~96 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.

  14. Modeling of Carbon Sequestration on Eucalyptus Plantation in Brazililian Cerrado Region for Better Characterization of Net Primary Productivity

    Science.gov (United States)

    Echeverri, J. D.; Siqueira, M. B.

    2013-05-01

    Managed Forests have important roles in climate change due to their contribution to CO2 sequestration stored in their biomass, soils and products therefrom. Terrestrial net primary production (NPP, kgC/m2), equal to gross primary production minus autotrophic respiration, represents the carbon available for plant allocation to leaves, stems, roots, defensive compounds, and reproduction and is the basic measure of biological productivity. Tree growth, food production, fossil fuel production, and atmospheric CO2 levels are all strongly controlled by NPP. Accurate quantification of NPP at local to global scales is therefore central topic for carbon cycle researchers, foresters, land and resource managers, and politicians. For recent or current NPP estimates, satellite remote sensing can be used but for future climate scenarios, simulation models are required. There is an increasing trend to displace natural Brazilian Cerrado to Eucalyptus for paper mills and energy conversion from biomass. The objective of this research exercise is to characterize NPP from managed Eucalyptus plantation in the Brazilian Cerrado. The models selected for this study were the 3-PG and Biome-BGC. The selection of these models aims to cover a range of complexity that allow the evaluation of the processes modeled as to its relevance to a best estimate of productivity in eucalyptus forests. 3-PG model is the simplest of the models chosen for this exercise. Its main purpose is to estimate productivity of forests in timber production. The model uses the relationship of quantum efficiency in the transformation of light energy into biomass for vegetative growth calculations in steps in time of one month. Adverse weather conditions are treated with reduction factors applied in the top efficiency. The second model is the Biome-BGC that uses biology and geochemistry principles to estimate leaf-level photosynthesis based on limiting factors such as availability of light and nutrient constraints. The

  15. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Heltai, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; StröM, J.; Haszpra, L.; Meijer, H. A J; van Der Laan, S.; Neubert, R. E M; Jordan, A.; Rodó, X.; Morguí, J. A.; Vermeulen, A. T.; Popa, Maria Elena; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (∼70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  16. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M.C.; Werf, van der G.R.; Houweling, S.; Jones, C.D.; Hughes, J.; Schaefer, K.; Masarie, K.A.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001–2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (~70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  17. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Helta, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; Strom, J.; Haszpra, L.; Meijer, H. A. J.; van der Laan, S.; Neubert, R. E. M.; Jordan, A.; Rodo, X.; Morgui, J. -A.; Vermeulen, A. T.; Popa, E.; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P. P.; Heltai, D.; Ström, J.

    We present an estimate of net ecosystem exchange (NEE) of CO(2) in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO(2) mole fraction observations (similar to 70 000) to guide relatively simple descriptions of terrestrial and oceanic net

  18. The Nature, Origin, and Importance of Carbonate-Bearing Samples at the Final Three Candidate Mars 2020 Landing Sites

    Science.gov (United States)

    Horgan, B.; Anderson, R. B.; Ruff, S. W.

    2018-04-01

    All three candidate Mars 2020 landing sites contain similar regional olivine/carbonate units, and a carbonate unit of possible lacustrine origin is also present at Jezero. Carbonates are critical for Mars Sample Return as records of climate and biosignatures.

  19. Economic Impact of Net Carbon Payments and Bioenergy Production in Fertilized and Non-Fertilized Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Prativa Shrestha

    2015-08-01

    Full Text Available Sequestering carbon in forest stands and using woody bioenergy are two potential ways to utilize forests in mitigating emissions of greenhouse gases (GHGs. Such forestry related strategies are, however, greatly influenced by carbon and bioenergy markets. This study investigates the impact of both carbon and woody bioenergy markets on land expectation value (LEV and rotation age of loblolly pine (Pinus taeda L. forests in the southeastern United States for two scenarios—one with thinning and no fertilization and the other with thinning and fertilization. Economic analysis was conducted using a modified Hartman model. The amount of carbon dioxide (CO2 emitted during various activities such as management of stands, harvesting, and product decay was included in the model. Sensitivity analysis was conducted with a range of carbon offset, wood for bioenergy, and forest product prices. The results showed that LEV increased in both management scenarios as the price of carbon and wood for bioenergy increased. However, the results indicated that the management scenario without fertilizer was optimal at low carbon prices and the management scenario with fertilizer was optimal at higher carbon prices for medium and low forest product prices. Carbon payments had a greater impact on LEV than prices for wood utilized for bioenergy. Also, increase in the carbon price increased the optimal rotation age, whereas, wood prices for bioenergy had little impact. The management scenario without fertilizer was found to have longer optimal rotation ages.

  20. Effects of land use and fine-scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David P.; Guzy, Michael; Lefsky, Michael A.; Tuyl, Steve van; Sun, Osbert; Law, Beverly E. [Oregon State Univ. Corvallis, OR (United States). Dept. of Forest Science; Daly, Chris [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences

    2003-04-01

    In temperate coniferous forests, spatial variation in net ecosystem production (NEP) is often associated with variation in stand age and heterogeneity in environmental factors such as soil depth. However, coarse spatial resolution analyses used to evaluate the terrestrial contribution to global NEP do not generally incorporate these effects. In this study, a fine-scale (25 m grid) analysis of NEP over a 164-km{sup 2} area of productive coniferous forests in the Pacific Northwest region of the United States was made to evaluate the effects of including fine scale information in landscape-scale NEP assessments. The Enhanced Thematic Mapper (ETM+) sensor resolved five cover classes in the study area and further differentiated between young, mature and old-growth conifer stands. ETM+ was also used to map current leaf area index (LAI) based on an empirical relationship of observed LAI to spectral vegetation indices. A daily time step climatology, based on 18 years of meteorological observations, was distributed (1 km resolution) over the mountainous terrain of the study area using the DAYMET model. Estimates of carbon pools and flux associated with soil, litter, coarse woody debris and live trees were then generated by running a carbon cycle model (Biome-BGC) to a state that reflected the current successional status and LAI of each grid cell, as indicated by the remote sensing observations. Estimated annual NEP for 1997 over the complete study area averaged 230 g C m{sup 2}, with most of the area acting as a carbon sink. The area-wide NEP is strongly positive because of reduced harvesting in the last decade and the recovery of areas harvested between 1940 and 1990. The average value was greater than would be indicated if the entire area was assumed to be a mature conifer stand, as in a coarse-scale analysis. The mean NEP varied interannually by over a factor of two. This variation was 38% less than the interannual variation for a single point. The integration of process

  1. Effects of land use and fine-scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape

    International Nuclear Information System (INIS)

    Turner, David P.; Guzy, Michael; Lefsky, Michael A.; Tuyl, Steve van; Sun, Osbert; Law, Beverly E.; Daly, Chris

    2003-01-01

    In temperate coniferous forests, spatial variation in net ecosystem production (NEP) is often associated with variation in stand age and heterogeneity in environmental factors such as soil depth. However, coarse spatial resolution analyses used to evaluate the terrestrial contribution to global NEP do not generally incorporate these effects. In this study, a fine-scale (25 m grid) analysis of NEP over a 164-km 2 area of productive coniferous forests in the Pacific Northwest region of the United States was made to evaluate the effects of including fine scale information in landscape-scale NEP assessments. The Enhanced Thematic Mapper (ETM+) sensor resolved five cover classes in the study area and further differentiated between young, mature and old-growth conifer stands. ETM+ was also used to map current leaf area index (LAI) based on an empirical relationship of observed LAI to spectral vegetation indices. A daily time step climatology, based on 18 years of meteorological observations, was distributed (1 km resolution) over the mountainous terrain of the study area using the DAYMET model. Estimates of carbon pools and flux associated with soil, litter, coarse woody debris and live trees were then generated by running a carbon cycle model (Biome-BGC) to a state that reflected the current successional status and LAI of each grid cell, as indicated by the remote sensing observations. Estimated annual NEP for 1997 over the complete study area averaged 230 g C m 2 , with most of the area acting as a carbon sink. The area-wide NEP is strongly positive because of reduced harvesting in the last decade and the recovery of areas harvested between 1940 and 1990. The average value was greater than would be indicated if the entire area was assumed to be a mature conifer stand, as in a coarse-scale analysis. The mean NEP varied interannually by over a factor of two. This variation was 38% less than the interannual variation for a single point. The integration of process models

  2. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  3. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries

    DEFF Research Database (Denmark)

    Gingrich, Simone; Niedertscheider, Maria; Kastner, Thomas

    2015-01-01

    Profound changes in land use occurred during the last century in Europe, driven by growing population, changes in affluence, and technological innovation. To capture and understand these changes, we compiled a consistent dataset on the distribution of land-use types and biomass extraction for nine...... primary production" (HANPP) framework for the nine countries and for the sum of all countries on a yearly basis from 1902 to 2003. We find that cropland and grazing land contracted in all countries except Albania in the observed period, while forestland increased. Crop yields increased in all countries......, most strongly during the second half of the 20th century. In some countries, biomass extraction on grazing lands increased to a similar extent. Overall, HANPP was high but declined slightly from 63% of the net primary production of potential vegetation in 1902 to 55% in 2003. This is the result...

  4. Implications of land-use change on forest carbon stocks in the eastern United States

    Science.gov (United States)

    Joshua Puhlick; Christopher Woodall; Aaron Weiskittel

    2017-01-01

    Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest...

  5. Altered belowground carbon cycling following land use change to perennial bioenergy crops

    Science.gov (United States)

    Belowground carbon (C) dynamics of terrestrial ecosystems play an important role in the global C cycle and thereby in climate regulation, yet remain poorly understood. Globally, land use change is a major driver of changes in belowground C storage; in general, land clearing and tillage for agricult...

  6. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture

    NARCIS (Netherlands)

    Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S.

    2010-01-01

    This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the

  7. Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

    2012-12-15

    The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

  8. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    Science.gov (United States)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  9. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    Science.gov (United States)

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  10. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; Mackenzie, Fred T.; Gruber, Nicolas; Janssens, Ivan A.; Laruelle, Goulven G.; Lauerwald, Ronny; Luyssaert, Sebastiaan; Andersson, Andreas J.; Arndt, Sandra; Arnosti, Carol; Borges, Alberto V.; Dale, Andrew W.; Gallego-Sala, Angela; Goddé ris, Yves; Goossens, Nicolas; Hartmann, Jens; Heinze, Christoph; Ilyina, Tatiana; Joos, Fortunat; LaRowe, Douglas E.; Leifeld, Jens; Meysman, Filip J. R.; Munhoven, Guy; Raymond, Peter A.; Spahni, Renato; Suntharalingam, Parvadha; Thullner, Martin

    2013-01-01

    to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies

  11. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    Science.gov (United States)

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John

  12. Research Needs for Carbon Management in Agriculture, Forestry and Other Land Uses

    Science.gov (United States)

    Negra, C.; Lovejoy, T.; Ojima, D. S.; Ashton, R.; Havemann, T.; Eaton, J.

    2009-12-01

    Improved management of terrestrial carbon in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved management of some forms of terrestrial carbon, including maintaining existing terrestrial carbon (e.g., avoiding deforestation) and creating new terrestrial carbon (e.g., afforestation, soil management). To translate incentives into changes in land management and terrestrial carbon stocks, a robust technical and scientific information base is required. All terrestrial carbon pools (and other greenhouse gases from the terrestrial system) that interact with the atmosphere at timescales less than centuries, and all land uses, have documented mitigation potential, however, most activity has focused on above-ground forest biomass. Despite research advances in understanding emissions reduction and sequestration associated with different land management techniques, there has not yet been broad-scale implementation of land-based mitigation activity in croplands, peatlands, grasslands and other land uses. To maximize long-term global terrestrial carbon volumes, further development of relevant data, methodologies and technologies are needed to complement policy and financial incentives. The Terrestrial Carbon Group, in partnership with UN-REDD agencies, the World Bank and CGIAR institutions, is reviewing literature, convening leading experts and surveying key research institutions to develop a Roadmap for Terrestrial Carbon: Research Needs for Implementation of Carbon Management in Agriculture, Forestry and Other Land Uses. This work will summarize the existing knowledge base for emissions reductions and sequestration through land management as well as the current availability of tools and methods for measurement and monitoring of terrestrial carbon. Preliminary findings indicate a number of areas for future work. Enhanced information

  13. Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii on permafrost

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    2004-01-01

    Full Text Available Observations of the net ecosystem exchange of water and CO2 were made during two seasons in 2000 and 2001 above a Larch forest in Far East Siberia (Yakutsk. The measurements were obtained by eddy correlation. There is a very sharply pronounced growing season of 100 days when the forest is leaved. Maximum half hourly uptake rates are 18 µmol m-2 s-1; maximum respiration rates are 5 µmol m-2 s-1. Net annual sequestration of carbon was estimated at 160 gCm-2 in 2001. Applying no correction for low friction velocities added 60 g C m-2. The net carbon exchange of the forest was extremely sensitive to small changes in weather that may switch the forest easily from a sink to a source, even in summer. June was the month with highest uptake in 2001. The average evaporation rate of the forest approached 1.46 mm day-1 during the growing season, with peak values of 3 mm day-1 with an estimated annual evaporation of 213 mm, closely approaching the average annual rainfall amount. 2001 was a drier year than 2000 and this is reflected in lower evaporation rates in 2001 than in 2000. The surface conductance of the forest shows a marked response to increasing atmospheric humidity deficits. This affects the CO2 uptake and evaporation in a different manner, with the CO2 uptake being more affected. There appears to be no change in the relation between surface conductance and net ecosystem uptake normalized by the atmospheric humidity deficit at the monthly time scale. The response to atmospheric humidity deficit is an efficient mechanism to prevent severe water loss during the short intense growing season. The associated cost to the sequestration of carbon may be another explanation for the slow growth of these forests in this environment.

  14. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  15. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  16. Net carbon flux of dead wood in forests of the Eastern US

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; S. Fraver; G.M. Domke

    2015-01-01

    Downed dead wood (DDW) in forest ecosystems is a C pool whose net flux is governed by a complex of natural and anthropogenic processes and is critical to the management of the entire forest C pool. As empirical examination of DDW C net flux has rarely been conducted across large scales, the goal of this study was to use a remeasured inventory of DDW C and ancillary...

  17. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    Science.gov (United States)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  18. Land use change effects on forest carbon cycling throughout the southern United States

    Science.gov (United States)

    Peter B. Woodbury; Linda S. Heath; James E. Smith

    2006-01-01

    We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each...

  19. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  20. Atmospheric CO2 Observations Reveal Strong Correlation Between Regional Net Biospheric Carbon Uptake and Solar-Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Shiga, Yoichi P.; Tadić, Jovan M.; Qiu, Xuemei; Yadav, Vineet; Andrews, Arlyn E.; Berry, Joseph A.; Michalak, Anna M.

    2018-01-01

    Recent studies have shown the promise of remotely sensed solar-induced chlorophyll fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot level ( 1 km2) or hemispheric/global ( 108 km2) scales due to the lack of a direct measure of carbon exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find that SIF explains space-time NEE patterns at regional ( 100 km2) scales better than a variety of other vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and spaceborne carbon cycle observations.

  1. Assessment of Land and Water Resource Implications of the UK 2050 Carbon Plan

    Science.gov (United States)

    Konadu, D. D.; Sobral Mourao, Z.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK Carbon Plan presents four low-carbon energy system pathways that achieves 80% GHG emission targets by 2050, stipulated in the UK Climate Change Act (2008). However, some of the energy technologies prescribed under these pathways are land and water intensive; but would the increase demand for land and water under these pathways lead to increased competition and stress on agricultural land, and water resources in the UK? To answer the above question, this study uses an integrated modelling approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for the pathways, based on scenarios of power plant location, and the energy crop yield projections. The outcome is compared with sustainable limits of resource appropriation to assess potential stresses and competition for water and land by other sectors of the economy. The results show the Carbon Plan pathways have low overall impacts on UK water resources, but agricultural land use and food production could be significantly impacted. The impact on agricultural land use is shown to be mainly driven by projections for transport decarbonisation via indigenously sourced biofuels. On the other hand, the impact on water resources is mainly associated with increased inland thermal electricity generation capacity, which would compete with other industrial and public water demands. The results highlight the need for a critical appraisal of UK's long term low-carbon energy system planning, in particular bioenergy sourcing strategy, and the siting of thermal power generation in order to avert potential resource stress and competition.

  2. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat and carbon fluxes in semi-arid basin

    Science.gov (United States)

    Xie, Zhenghui; Zeng, Yujin

    2017-04-01

    Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.

  3. THE POTENTIAL OF RECLAIMED LANDS TO SEQUESTER CARBON AND MITIGATE THE GREENHOUSE EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Song Jin

    2006-05-01

    Reclaimed mine lands have the potential to sequester carbon. The use of amendments to increase fertility and overall soil quality is encouraging. Waste amendments such as sewage sludge and clarifier sludge, as well as commercial compost were tested to determine their effects on carbon sequestration and humic acid formation in reclaimed mine lands. Sewage sludge and clarifier sludge have the potential to work as reclaimed mine lands amendments. C:N ratios need to be understood to determine probability of nutrient leaching and water contamination. Microbial activity on the humic acid fraction of sludge is directed toward the readily degradable constituents containing single chain functional groups. This finding indicate that amendments with lower molecular constituents such as aliphatic compounds are more amenable to microbial degradation, therefore serves as better nutrient sources to enhance the formation of vegetation in mine lands and leads to more efficient carbon sequestration.

  4. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    Science.gov (United States)

    Ralph J. Alig; Brett J. Butler

    2004-01-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest...

  5. Nitrogen deposition, land cover conversion, and contemporary carbon balance of Europe

    Science.gov (United States)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Jung, M.; Chen, Y.; Heimann, M.; Roedenbeck, C.; Jones, C.

    2009-04-01

    In Europe, atmospheric nitrogen deposition has more than doubled, forest cover was steadily increasing, and agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, land cover conversion and climate. We use results from four ecosystem process models such as BIOME-BGC, JULES, ORCHIDEE, and ORCHIDEE-CN to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been most effected by anthropogenic changes.

  6. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach

    Science.gov (United States)

    Herrmann, Maria; Najjar, Raymond G.; Kemp, W. Michael; Alexander, Richard B.; Boyer, Elizabeth W.; Cai, Wei-Jun; Griffith, Peter C.; Kroeger, Kevin D.; McCallister, S. Leigh; Smith, Richard A.

    2015-01-01

    Net ecosystem production (NEP) and the overall organic carbon budget for the estuaries along the East Coast of the United States are estimated. We focus on the open estuarine waters, excluding the fringing wetlands. We developed empirical models relating NEP to loading ratios of dissolved inorganic nitrogen to total organic carbon, and carbon burial in the sediment to estuarine water residence time and total nitrogen input across the landward boundary. Output from a data-constrained water quality model was used to estimate inputs of total nitrogen and organic carbon to the estuaries across the landward boundary, including fluvial and tidal-wetland sources. Organic carbon export from the estuaries to the continental shelf was computed by difference, assuming steady state. Uncertainties in the budget were estimated by allowing uncertainties in the supporting model relations. Collectively, U.S. East Coast estuaries are net heterotrophic, with the area-integrated NEP of −1.5 (−2.8, −1.0) Tg C yr−1 (best estimate and 95% confidence interval) and area-normalized NEP of −3.2 (−6.1, −2.3) mol C m−2 yr−1. East Coast estuaries serve as a source of organic carbon to the shelf, exporting 3.4 (2.0, 4.3) Tg C yr−1 or 7.6 (4.4, 9.5) mol C m−2 yr−1. Organic carbon inputs from fluvial and tidal-wetland sources for the region are estimated at 5.4 (4.6, 6.5) Tg C yr−1 or 12 (10, 14) mol C m−2 yr−1 and carbon burial in the open estuarine waters at 0.50 (0.33, 0.78) Tg C yr−1 or 1.1 (0.73, 1.7) mol C m−2 yr−1. Our results highlight the importance of estuarine systems in the overall coastal budget of organic carbon, suggesting that in the aggregate, U.S. East Coast estuaries assimilate (via respiration and burial) ~40% of organic carbon inputs from fluvial and tidal-wetland sources and allow ~60% to be exported to the shelf.

  7. Land Cover Land Use Change and Soil Organic Carbon under Climate Variability in the Semi-Arid West African Sahel (1960-2050)

    Science.gov (United States)

    Dieye, Amadou M.

    2016-01-01

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project…

  8. Quantifying gross vs. net agricultural land use change in Great Britain using the Integrated Administration and Control System

    OpenAIRE

    Tomlinson, Samuel J.; Dragosits, Ulrike; Levy, Peter E.; Thomson, Amanda M.; Moxley, Janet

    2018-01-01

    Land use change has impacts upon many natural processes, and is one of the key measures of anthropogenic disturbance on ecosystems. Agricultural land covers 70% of Great Britain's (GB) land surface and annually undergoes disturbance and change through farming practices such as crop rotation, ploughing and the planting and subsequent logging of forestry. It is important to quantify how much of GB's agricultural land undergoes such changes and what those changes are at an annual temporal resolu...

  9. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...

  10. Ten years of multiple data stream assimilation with the ORCHIDEE land surface model to improve regional to global simulated carbon budgets: synthesis and perspectives on directions for the future

    Science.gov (United States)

    Peylin, P. P.; Bacour, C.; MacBean, N.; Maignan, F.; Bastrikov, V.; Chevallier, F.

    2017-12-01

    Predicting the fate of carbon stocks and their sensitivity to climate change and land use/management strongly relies on our ability to accurately model net and gross carbon fluxes. However, simulated carbon and water fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Over the past ten years, the carbon cycle data assimilation system at the Laboratoire des Sciences du Climat et de l'Environnement has investigated the benefit of assimilating multiple carbon cycle data streams into the ORCHIDEE LSM, the land surface component of the Institut Pierre Simon Laplace Earth System Model. These datasets have included FLUXNET eddy covariance data (net CO2 flux and latent heat flux) to constrain hourly to seasonal time-scale carbon cycle processes, remote sensing of the vegetation activity (MODIS NDVI) to constrain the leaf phenology, biomass data to constrain "slow" (yearly to decadal) processes of carbon allocation, and atmospheric CO2 concentrations to provide overall large scale constraints on the land carbon sink. Furthermore, we have investigated technical issues related to multiple data stream assimilation and choice of optimization algorithm. This has provided a wide-ranging perspective on the challenges we face in constraining model parameters and thus better quantifying, and reducing, model uncertainty in projections of the future global carbon sink. We review our past studies in terms of the impact of the optimization on key characteristics of the carbon cycle, e.g. the partition of the northern latitudes vs tropical land carbon sink, and compare to the classic atmospheric flux inversion approach. Throughout, we discuss our work in context of the abovementioned challenges, and propose solutions for the community going forward, including the potential of new observations such as atmospheric COS concentrations and satellite-derived Solar Induced Fluorescence to constrain the gross carbon fluxes of the ORCHIDEE

  11. Land-Use Influences Carbon Fluxes in Northern Kazakhstan

    Science.gov (United States)

    An understanding of carbon cycling is important to maintain sustainable rangeland ecosystems. Rangelands in the western U.S. are similar to those in Central Asia. We used a combination of meteorological and computer modeling techniques to quantitatively assess carbon loss and gain for four major l...

  12. Identifying key factors for mobilising under-utilised low carbon land resources : A case study on Kalimantan

    NARCIS (Netherlands)

    Goh, Chun Sheng; Junginger, Martin; Potter, Lesley; Faaij, André; Wicke, Birka

    2018-01-01

    Mobilising under-utilised low carbon (ULC) land for future agricultural expansion helps minimising further carbon stock loss. This study examined the regency cases in Kalimantan, a carbon loss hotspot, to understand the key factors for mobilising ULC land via narrative interviews with a range of

  13. Tracing trade-related telecouplings in the global land-system using the embodied human appropriation of net primary production framework

    Science.gov (United States)

    Haberl, H.; Kastner, T.; Schaffartzik, A.; Erb, K. H.

    2015-12-01

    Global land-system change is influenced by a complex set of drivers that transcend spatial, institutional and temporal scales. The notion of "telecouplings" is gaining importance in Land System Science as a framework to address that complexity of drivers. One of them is the trade in land-based products, which forges connections between different geographic regions. Trade in land-based products is growing rapidly, thereby creating an increasing spatial disconnect between the locations where primary products (e.g. crops, fodder or timber) are grown and harvested and where the related environmental pressures occur, and the locations where final products (e.g. food, fiber or bioenergy) are consumed. Governing land-related sustainability issues such as GHG emissions or pressures on biodiversity and ecosystems related with land-use changes requires information on trade-related telecouplings, e.g. in order to avoid leakage effects. However, tracing land use (change) related with flows of traded products is challenging, among others due to (a) the lack of easily implementable metrics to account for differences in land quality and land-use intensity, and (b) the lack of satisfactory methods to allocate land to products that are traded and consumed. Drawing from a database derived from FAO statistics that allows tracing bilateral trade flows between ~200 countries at a resolution of ~500 products for the time period 1986-2006, this presentation will discuss how the framework of embodied human appropriation of net primary production (eHANPP) can help tackling these difficult issues. The HANPP framework allows to consistently represent important aspects of land quality and land-use intensity, e.g. natural productivity potential or land-use efficiency. In terms of allocation of land to products, eHANPP is a factor-based approach, and the presentation will discuss differences to alternative methods such as environmentally extended input-output analysis. We will use the available

  14. Carbon Assessment of Hawaii Land Cover Map (CAH_LandCover)

    Data.gov (United States)

    Department of the Interior — While there have been many maps produced that depict vegetation for the state of Hawai‘i only a few of these display land cover for all of the main Hawaiian Islands,...

  15. Carbon emission reductions by substitution of improved cookstoves and cattle mosquito nets in a forest-dependent community

    Directory of Open Access Journals (Sweden)

    Somanta Chan

    2015-07-01

    Substitution of conventional cookstoves with improved cookstoves and the use of mosquito nets instead of fuelwood burning could result in using less fuelwood for the same amount of energy needed and thereby result in reduction of carbon emissions and deforestation. To realize this substitution, approximately US$ 15–25 MgCO2−1 is needed depending on discount rates and amounts of emission reduction. Substitution of cookstoves will have direct impacts on the livelihoods of forest-dependent communities and on forest protection. Financial incentives under voluntary and mandatory schemes are needed to materialize this substitution.

  16. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications

    International Nuclear Information System (INIS)

    Wise, Marshall; Hodson, Elke L.; Mignone, Bryan K.; Clarke, Leon; Waldhoff, Stephanie; Luckow, Patrick

    2015-01-01

    Accurately characterizing the emissions implications of bioenergy is increasingly important to the design of regional and global greenhouse gas mitigation policies. Market-based policies, in particular, often use information about carbon intensity to adjust relative deployment incentives for different energy sources. However, the carbon intensity of bioenergy is difficult to quantify because carbon emissions can occur when land use changes to expand production of bioenergy crops rather than simply when the fuel is consumed as for fossil fuels. Using a long-term, integrated assessment model, this paper develops an approach for computing the carbon intensity of bioenergy production that isolates the marginal impact of increasing production of a specific bioenergy crop in a specific region, taking into account economic competition among land uses. We explore several factors that affect emissions intensity and explain these results in the context of previous studies that use different approaches. Among the factors explored, our results suggest that the carbon intensity of bioenergy production from land use change (LUC) differs by a factor of two depending on the region in which the bioenergy crop is grown in the United States. Assumptions about international land use policies (such as those related to forest protection) and crop yields also significantly impact carbon intensity. Finally, we develop and demonstrate a generalized method for considering the varying time profile of LUC emissions from bioenergy production, taking into account the time path of future carbon prices, the discount rate and the time horizon. When evaluated in the context of power sector applications, we found electricity from bioenergy crops to be less carbon-intensive than conventional coal-fired electricity generation and often less carbon-intensive than natural-gas fired generation. - Highlights: • Modeling methodology for assessing land use change emissions from bioenergy • Use GCAM

  17. Impacts of forest and land management on biodiversity and carbon

    Science.gov (United States)

    Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet

    2012-01-01

    Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...

  18. Bioenergy and the importance of land use policy in a carbon-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

    2010-06-01

    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Institute’s Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

  19. Attributing land-use change carbon emissions to exported biomass

    International Nuclear Information System (INIS)

    Saikku, Laura; Soimakallio, Sampo; Pingoud, Kim

    2012-01-01

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: ► CO 2 emissions from land use changes are highly important. ► Attribution of land use changes for products is difficult. ► Simple and robust method is developed to attribute land use change emissions.

  20. Attributing land-use change carbon emissions to exported biomass

    Energy Technology Data Exchange (ETDEWEB)

    Saikku, Laura, E-mail: laura.saikku@helsinki.fi [University of Helsinki, P.O Box 65, 00014 University of Helsinki (Finland); Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland); Pingoud, Kim, E-mail: kim.pingoud@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland)

    2012-11-15

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

  1. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    of pCO sub(2) (up to 6000 mu atm) and CO sub(2) effluxes (up to 274 mmolC m sup(-2) d sup(-1)) especially during monsoon. A first-order estimate of the carbon mass balance shows that net production of dissolved inorganic carbon is an order of magnitude...

  2. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  3. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  4. The Inter-Annual Variability Analysis of Carbon Exchange in Low Artic Fen Uncovers The Climate Sensitivity And The Uncertainties Around Net Ecosystem Exchange Partitioning

    Science.gov (United States)

    Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.

    2015-12-01

    An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.

  5. Ecosystem function and the net benefit of services provided by three land-use types under variable management in northwestern Virginia

    Science.gov (United States)

    Huelsman, K. S.; Epstein, H. E.

    2017-12-01

    The concept of Ecosystem Services (ES) has become more interdisciplinary and influential in policy decision-making, but there are two major shortcomings in recent ES conversations: the resource inputs required by highly managed systems in order to provide material goods are not widely considered, and the distinction between ecosystem function and service is not always made. Supporting and regulating ES were examined for three land-use types with variable human management within the same mesoclimate: farmland, native prairie, and non-native early successional field. In situ soil moisture readings and soil nitrogen (N) transformation incubations, biodiversity surveys, vegetation harvesting, and soil sampling in each land-use type were used to determine the following ES: habitat, productivity, soil fertility, nutrient cycling, and water retention. If the provision of a particular ES required human inputs or interference, its overall value was reduced by the environmental cost of management. Non-native early successional field is not valued for the provision of any particular ES, as native prairie and farmland are, but it provides supporting and regulating ES without the requirement of human intervention, making it valuable in different ways. Likewise, any ecosystem functions with negative ecological side effects were considered ecosystem disservices and reduced the overall value of ES provided by the system. For example, the function of net nitrogen mineralization, generally defined as a service, is a disservice under N-saturated conditions, as additional N could be lost via leaching or gaseous forms. This research is valuable in the context of the current trend of increasing farmland abandonment and land use conversions. By considering the cost of human management for the provision of certain ES, as well as potential disservices associated with function, the overall net benefits of these three land-use types can be compared to improve land-use decision-making.

  6. Managing Carbon on Federal Public Lands: Opportunities and Challenges in Southwestern Colorado

    Science.gov (United States)

    Dilling, Lisa; Kelsey, Katharine C.; Fernandez, Daniel P.; Huang, Yin D.; Milford, Jana B.; Neff, Jason C.

    2016-08-01

    Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407, 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.

  7. Soil Carbon Mapping in Low Relief Areas with Combined Land Use Types and Percentages

    Science.gov (United States)

    Liu, Y. L.; Wu, Z. H.; Chen, Y. Y.; Wang, B. Z.

    2018-05-01

    Accurate mapping of soil carbon in low relief areas is of great challenge because of the defect of conventional "soil-landscape" model. Efforts have been made to integrate the land use information in the modelling and mapping of soil organic carbon (SOC), in which the spatial context was ignored. With 256 topsoil samples collected from Jianghan Plain, we aim to (i) explore the land-use dependency of SOC via one-way ANOVA; (ii) investigate the "spillover effect" of land use on SOC content; (iii) examine the feasibility of land use types and percentages (obtained with a 200-meter buffer) for soil mapping via regression Kriging (RK) models. Results showed that the SOC of paddy fields was higher than that of woodlands and irrigated lands. The land use type could explain 20.5 % variation of the SOC, and the value increased to 24.7 % when the land use percentages were considered. SOC was positively correlated with the percentage of water area and irrigation canals. Further research indicated that SOC of irrigated lands was significantly correlated with the percentage of water area and irrigation canals, while paddy fields and woodlands did not show similar trends. RK model that combined land use types and percentages outperformed the other models with the lowest values of RMSEC (5.644 g/kg) and RMSEP (6.229 g/kg), and the highest R2C (0.193) and R2P (0.197). In conclusions, land use types and percentages serve as efficient indicators for the SOC mapping in plain areas. Additionally, irrigation facilities contributed to the farmland SOC sequestration especially in irrigated lands.

  8. Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia

    International Nuclear Information System (INIS)

    Kicklighter, D W; Melillo, J M; Lu, X; Cai, Y; Paltsev, S; Sokolov, A P; Reilly, J M; Zhuang, Q; Parfenova, E I; Tchebakova, N M

    2014-01-01

    Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region’s landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a ‘business-as-usual’ scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6–8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies. (paper)

  9. Carbon, Nitrogen, and Water Response to Land Use and Management Decisions under a Changing Climate in Pennsylvania during the 21st Century

    Science.gov (United States)

    Felzer, B. S.; Kicklighter, D. W.

    2011-12-01

    The effects of future climate change and increases in atmospheric CO2 levels in Pennsylvania must be considered in the context of land use and management decisions. While Pennsylvania was originally completely forested at the outset of the colonial period, 19th century land clearing and subsequent regrowth has changed the forest cover of Pennsylvania from 32% to 64% of the land area. Recent trends from 1992-2005 show that developed land has increased by 131% at the expense of agricultural land and forests. Future climate projections indicate that Pennsylvania will get significantly warmer and wetter due to continued increases in greenhouse gases. Using the Terrestrial Ecosystem Model version Hydro (TEM-Hydro), this study explores the role of land use and management in carbon and water dynamics during the 20th century and for four land use scenarios in the 21st century including: 1) a potential vegetation land cover of 100% forest; 2) a current land cover comprising mature forests, crops, pasture, and developed area; 3) a current land cover with younger forests; and 4) a future land cover scenario based on expanding development at the rate of 639,284 acres per decade adjacent to existing developed lands. Common assumptions are made about land use management, but we also explore the effect of crop tilling. TEM-Hydro runs are forced by 20th century climate from the PRISM model and 21st century climate from the NCAR CCSM3.0 IPCC A2 and B1 scenarios downscaled and bias corrected to 1/8o resolution. Regrowing forests are the only ecosystem with positive Net Carbon Exchange (NCE, Net Ecosystem Productivity minus carbon losses from the conversion of natural vegetation to cultivation and decomposition of agricultural and wood products, where positive indicates ecosystem sink), and sequester about 11,000 g C m-2 over the 20th century. The highest rates of leaching of dissolved inorganic nitrogen (DIN) occur in those areas that are fertilized, which include urban turf lawns

  10. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    Energy Technology Data Exchange (ETDEWEB)

    Rowntree, R.A. [Northeastern Forest Experiment Station, Berkeley, CA (United States)

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  11. Integrating Ecosystem Carbon Dynamics into State-and-Transition Simulation Models of Land Use/Land Cover Change

    Science.gov (United States)

    Sleeter, B. M.; Daniel, C.; Frid, L.; Fortin, M. J.

    2016-12-01

    State-and-transition simulation models (STSMs) provide a general approach for incorporating uncertainty into forecasts of landscape change. Using a Monte Carlo approach, STSMs generate spatially-explicit projections of the state of a landscape based upon probabilistic transitions defined between states. While STSMs are based on the basic principles of Markov chains, they have additional properties that make them applicable to a wide range of questions and types of landscapes. A current limitation of STSMs is that they are only able to track the fate of discrete state variables, such as land use/land cover (LULC) classes. There are some landscape modelling questions, however, for which continuous state variables - for example carbon biomass - are also required. Here we present a new approach for integrating continuous state variables into spatially-explicit STSMs. Specifically we allow any number of continuous state variables to be defined for each spatial cell in our simulations; the value of each continuous variable is then simulated forward in discrete time as a stochastic process based upon defined rates of change between variables. These rates can be defined as a function of the realized states and transitions of each cell in the STSM, thus providing a connection between the continuous variables and the dynamics of the landscape. We demonstrate this new approach by (1) developing a simple IPCC Tier 3 compliant model of ecosystem carbon biomass, where the continuous state variables are defined as terrestrial carbon biomass pools and the rates of change as carbon fluxes between pools, and (2) integrating this carbon model with an existing LULC change model for the state of Hawaii, USA.

  12. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    Science.gov (United States)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  13. Land use and carbon dynamics in the southeastern United States from 1992 to 2050

    International Nuclear Information System (INIS)

    Zhao, Shuqing; Liu, Shuguang; Sohl, Terry; Werner, Jeremy; Young, Claudia

    2013-01-01

    Land use and land cover change (LUCC) plays an important role in determining the spatial distribution, magnitude, and temporal change of terrestrial carbon sources and sinks. However, the impacts of LUCC are not well understood and quantified over large areas. The goal of this study was to quantify the spatial and temporal patterns of carbon dynamics in various terrestrial ecosystems in the southeastern United States from 1992 to 2050 using a process-based modeling system and then to investigate the impacts of LUCC. Spatial LUCC information was reconstructed and projected using the FOREcasting SCEnarios of future land cover (FORE-SCE) model according to information derived from Landsat observations and other sources. Results indicated that urban expansion (from 3.7% in 1992 to 9.2% in 2050) was expected to be the primary driver for other land cover changes in the region, leading to various declines in forest, cropland, and hay/pasture. The region was projected to be a carbon sink of 60.4 gC m −2  yr −1 on average during the study period, primarily due to the legacy impacts of large-scale conversion of cropland to forest that happened since the 1950s. Nevertheless, the regional carbon sequestration rate was expected to decline because of the slowing down of carbon accumulation in aging forests and the decline of forest area. (letter)

  14. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    Science.gov (United States)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  15. The computation of carbon emissions due to the net payload on a truck

    DEFF Research Database (Denmark)

    Turkensteen, Marcel

    Many green logistics studies try to minimize the carbon emissions and in the process alter the load on the vehicle. Then, there is often a trade‐off between the distance driven and the load on the vehicle and in order to determine which decisions lead to the most substantial emission savings......, it is necessary to compute the carbon emissions of these decisions. Current studies are only able to determine this for very specific conditions, such as a given vehicle under given driving conditions, and they may require many input parameters. Therefore, this paper presents a simple and broadly applicable...... emission computation tool. We determine the share of the carbon emissions of fully loaded vehicles due to the weight of the load on the vehicle, i.e. the load‐based emission percentage (LBEP). We conduct a review study on papers that report on carbon emissions or fuel consumption for different load factors...

  16. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  17. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2

  18. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  19. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were

  20. Net carbon flux of dead wood in forests of the Eastern US.

    Science.gov (United States)

    Woodall, C W; Russell, M B; Walters, B F; D'Amato, A W; Fraver, S; Domke, G M

    2015-03-01

    Downed dead wood (DDW) in forest ecosystems is a C pool whose net flux is governed by a complex of natural and anthropogenic processes and is critical to the management of the entire forest C pool. As empirical examination of DDW C net flux has rarely been conducted across large scales, the goal of this study was to use a remeasured inventory of DDW C and ancillary forest attributes to assess C net flux across forests of the Eastern US. Stocks associated with large fine woody debris (diameter 2.6-7.6 cm) decreased over time (-0.11 Mg ha(-1) year(-1)), while stocks of larger-sized coarse DDW increased (0.02 Mg ha(-1) year(-1)). Stocks of total DDW C decreased (-0.14 Mg ha(-1) year(-1)), while standing dead and live tree stocks both increased, 0.01 and 0.44 Mg ha(-1) year(-1), respectively. The spatial distribution of DDW C stock change was highly heterogeneous with random forests model results indicating that management history, live tree stocking, natural disturbance, and growing degree days only partially explain stock change. Natural disturbances drove substantial C transfers from the live tree pool (≈-4 Mg ha(-1) year(-1)) to the standing dead tree pool (≈3 Mg ha(-1) year(-1)) with only a minimal increase in DDW C stocks (≈1 Mg ha(-1) year(-1)) in lower decay classes, suggesting a delayed transfer of C to the DDW pool. The assessment and management of DDW C flux is complicated by the diversity of natural and anthropogenic forces that drive their dynamics with the scale and timing of flux among forest C pools remaining a large knowledge gap.

  1. Indirect land-use changes can overcome carbon savings from biofuels in Brazil

    Science.gov (United States)

    Lapola, David M.; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A.

    2010-01-01

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 109 liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km2 by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil’s biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil. PMID:20142492

  2. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  3. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation

    International Nuclear Information System (INIS)

    Van Deusen, P.

    2010-01-01

    A 40 year projection of potential carbon sequestration is based on USDA Forest Service Forest Inventory and Analysis (FIA) data from the state of Georgia. The objective is to compare carbon sequestration under a sustainable management strategy versus a preservation strategy. FIA plots are projected ahead in time with hotdeck matching. This matches each subject plot with another plot from the database that represents the subject plot at a future time. The matched plot sequences are used to provide input data to a harvest scheduling program to generate a management strategy for the state. The sequestration from the management strategy is compared with a preservation strategy that involves no harvesting. Harvested wood is assumed to go into products with various half life decay rates. Carbon sequestration is increased as increasing proportions go into wood for energy, which is treated like a product with an infinite half life. Therefore, the harvested carbon does not return immediately to the atmosphere. Public land and land close to cities is assumed to be unavailable, and all other private land is assumed to be accessible. The results are presented as gigatonnes of CO 2 equivalent to make them directly comparable to US annual carbon emissions. The conclusion is that forest management will sequester more above-ground carbon than preservation over a 40 year period if the wood is used for products with an average half life greater than 5 years.

  4. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas?

    Science.gov (United States)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro

    2016-04-01

    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  5. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn

    DEFF Research Database (Denmark)

    Wu, Chaoyang; Chen, Xi Jing; Black, T. Andrew

    2013-01-01

    To investigate the importance of autumn phenology in controlling interannual variability of forest net ecosystem productivity (NEP) and to derive new phenological metrics to explain the interannual variability of NEP. North America and Europe. Flux data from nine deciduous broadleaf forests (DBF......, soil water content and precipitation, were also used to explain the phenological variations. We found that interannual variability of NEP can be largely explained by autumn phenology, i.e. the autumn lag. While variation in neither annual gross primary productivity (GPP) nor in annual ecosystem...

  6. Management of carbon across sectors and scales: Insights from land use decision making

    Science.gov (United States)

    Dilling, L.; Failey, E. L.

    2008-12-01

    Carbon management is increasingly becoming a topic of interest among policy circles and business entrepreneurs alike. In the United States, while no binding regulatory framework exists, carbon management is nonetheless being pursued both by voluntary actions at a variety of levels, from the individual to the national level, and through mandatory policies at state and local levels. Controlling the amount of carbon dioxide in the atmosphere for climate purposes will ultimately require a form of governance that will ensure that the actions taken and being rewarded financially are indeed effective with respect to the global atmosphere on long time scales. Moreover, this new system of governance will need to interface with existing governance structures and decision criteria that have been established to arbitrate among various societal values and priorities. These existing institutions and expressed values will need to be examined against those proposed for effective carbon governance, such as the permanence of carbon storage, the additionality of credited activities, and the prevention of leakage, or displacement of prohibited activities to another region outside the governance boundary. The latter issue suggests that interactions among scales of decision making and governance will be extremely important in determining the ultimate success of any future system of carbon governance. The goal of our study is to understand the current context of land use decision making in different sectors and examine the potential for future carbon policy to be effective given this context. This study examined land use decision making in the U.S. state of Colorado from a variety of ownership perspectives, including US Federal land managers, individual private owners, and policy makers involved in land use at a number of different scales. This paper will report on the results of interviews with land managers and provide insight into the policy context for carbon management through land

  7. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    Science.gov (United States)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust

  8. Effect of land use and land cover changes on carbon sequestration in vegetation and soils between 1956 and 2007 (southern Spain)

    Science.gov (United States)

    Muñoz-Rojas, M.; Jordán, A.; Zavala, L. M.; de la Rosa, D.; Abd-Elmabod, S. K.; Anaya-Romero, M.

    2012-04-01

    Land use has significantly changed during the last decades at global and local scale, while the importance of ecosystems as sources/sinks of C has been highlighted, emphasizing the global impact of land use changes. The aim of this research was to improve and test methodologies to assess land use and land cover change dynamics and temporal and spatial variability in C stored in soils and vegetation at a wide scale. A Mediterranean region (Andalusia, Southern Spain) was selected for this pilot study in the period 1956-2007. Land use changes were detected by comparison of data layers, and soil information was gathered from available spatial databases. Data from land use and land cover change were reclassified according to CORINE Land Cover legend, according to land cover flows reported in Europe. Carbon vegetation stocks for 1956 and 2007 were calculated by multiplying C density for each land cover class and area. Soil carbon stocks were determined for each combination of soil and land use type at different standard depths (0-25, 25-50 and 50-75 cm). Total current carbon stocks (2007) are 156.1 Tg in vegetation and 415 Tg in soils (in the first 75 cm). Southern Spain has supported intense land cover changes affecting more than one third of the study area, with significant consequences for C stocks. Vegetation carbon increased 17.24 Mt since 1956 after afforestation practices and intensification of agriculture. Soil C stock decreased mainly in Cambisols and Regosols (above 80%) after forest areas were transformed into agricultural areas. The methodologies and information generated in this project constitute a basis for modelling of C sequestration and analysis of potential scenarios, as a new component of MicroLEIS DSS. This study highlights the importance of land cover changes for C sequestration in Mediterranean areas, highlighting possible trends for management policies in Europe in order to mitigate climate change.

  9. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang [The Ecosystems Center, Marine Biological Laboratory, Woods Hole MA USA; Zhou, Yuyu [Departments of Geological and Atmospheric Sciences, Iowa State University, Ames IA USA; Liu, Yaling [Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park MD USA; Le Page, Yannick [Department Tapada da Ajuda, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon Portugal

    2017-08-08

    Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non-PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large-scale disturbances that would release large amounts of carbon in PAs.

  10. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    International Nuclear Information System (INIS)

    Halinska, A.; Frenkel, C.

    1991-01-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-[U- 14 C]malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification

  12. Drivers of land use change and carbon mapping in the savannah area of Ghana

    Directory of Open Access Journals (Sweden)

    Koranteng Addo

    2017-12-01

    Full Text Available Land-use and land-cover change in both forest reserves and off-reserves is a critical issue in sub Saharan Africa. Deforestation and conversion of forest land to agricultural land continue to be one of the major environmental problems in Africa, and for that matter, Ghana cannot be exceptional; and its resultant effect is the loss in the ecological integrity and the quality of forests, resulting in carbon loss and the resultant climate change effects (FAO 2016. The study area covers the Community Resource Management Areas (CREMA of the Mole National Park in Ghana, and this study reveals that the area is well endowed with a diverse composition and structure of woodland including dense, open and riverine stretches, which – under the national definition of forest – qualifies as forest. The results reveal that there had been an annual deforestation rate of 0.11% over the period of review. It was concluded from the study that woodland had high carbon stocks with an average carbon of 80 tC/ha, the highest being 194 tC/ha and the lowest being 7 tC/ha, which was recorded in the dense woodland and grassland respectively. The fluxes within the land sector in the study area are moderate and the potential of the area to qualify for as REDD+ is very high. However, the drivers of deforestation, especially bush fires and illegal timber harvesting, are challenges that need to be addressed.

  13. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois at Chicago, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  14. South African carbon observations: CO2 measurements for land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2017-11-01

    Full Text Available , Mudau AE, Monteiro PMS. South African carbon observations: CO2 measurements for land, atmosphere and ocean. S Afr J Sci. 2017;113(11/12), Art. #a0237, 4 pages. http://dx.doi. org/10.17159/sajs.2017/a0237 Carbon dioxide plays a central role in earth... References 1. Houghton RA. Balancing the global carbon budget. Annu Rev Earth Planet Sci. 2007;35:313–347. https://doi.org/10.1146/annurev. earth.35.031306.140057 2. Denman KL. Climate change, ocean processes and ocean iron fertilization. Mar Ecol Prog Ser...

  15. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Science.gov (United States)

    Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e...

  16. Spatial and temporal variations in net carbon flux during HAPEX-Sahel.

    NARCIS (Netherlands)

    Moncrieff, J.B.; Monteny, B.; Verhoef, A.; Friborg, Th.; Elbers, J.; Kabat, P.; DeBruin, H.; Soegaard, H.; Jarvis, P.G.; Taupin, J.D.

    1997-01-01

    Micrometeorological measurements of the surface flux of carbon dioxide were made at a number of spatially separate sites within the HAPEX-Sahel experimental area. Differences in the timing of plant development caused by differences in rainfall (both quantity and frequency) over the experimental area

  17. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland

    Science.gov (United States)

    H. Guo; A. Noormets; B. Zhao; J. Chen; G. Sun; Y. Gu; B. Li; J. Chen

    2009-01-01

    One year of continuous data from two eddy-flux towers established along an elevation gradient incoastal Shanghai was analyzed to evaluate the tidal effect on carbon flux (Fc) over an estuarine wetland.The measured wavelet spectra and cospectra of Fc and other environmental factors demonstrated thatthe...

  18. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  19. Net heterotrophy in small Danish lakes: A widespread feature over gradients in trophic status and land cover

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Stæhr, Peter Anton

    2009-01-01

    Nineteen small lakes located in open landscapes or deciduous forests in nutrient-rich calcareous moraines in North Zealand, Denmark, were all net heterotrophic having negative net ecosystem production and predominant CO2 supersaturation and O2 undersaturation of lake waters. Forest lakes were...... poorer in nutrients, phytoplankton, and primary production, but richer in dissolved organic matter and CO2 than open lakes with more light available. The modeled annual balance between gross primary production and community respiration (GPP/R COM) averaged 0.60 in forest lakes and 0.76 in open lakes...... and the ratio increased significantly with phosphorus concentration and phytoplankton biomass but decreased with colored dissolved organic matter. The negative daily rates of ecosystem production resembled estimates of oxygen uptake from the atmosphere to the lakes, whereas estimates of CO2 emission were 7...

  20. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Science.gov (United States)

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. © 2015 John Wiley & Sons Ltd.

  1. Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle

    Directory of Open Access Journals (Sweden)

    Schellnhuber Hans-Joachim

    2006-08-01

    Full Text Available Abstract Background The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC. Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO2(urbanized territories produce ca. 96–98% of it, we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized". Results In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, „green" (parks, etc. and informal settlements (favelas fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution. Conclusion There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting

  2. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States.

    Science.gov (United States)

    Selhorst, Adam; Lal, Rattan

    2013-01-01

    Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha(-1) year(-1) to 5.4 Mg C ha(-1) year(-1). Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0-96.3 ± 6.0 Mg C ha(-1). Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha(-1) year(-1) and 45.8 ± 3.5 Mg C ha(-1), respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha(-1) year(-1)) and fertilizer use (63.6 kg Ce ha(-1) year(-1)) for all sites totaled 254.3 kg Ce ha(-1) year(-1). Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year(-1) under low management regimes and 7551.4 Gg Ce year(-1) under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.

  3. A preliminary investigation of forest carbon changes associated with land-use change in northern New England

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2009-01-01

    Maine (ME), New Hampshire (NH), and Vermont (VT) are three of the four most heavily forested states in the United States. In these states, we examined how land-use change, at the Anderson Level I classification, affected regional forest carbon using the 30-m Multi-Resolution Land Characteristics Consortium 1992/2001 Retrofit Land Cover Change product coupled with...

  4. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms

    DEFF Research Database (Denmark)

    Niu, Shuli; Luo, Yiqi; Fei, Shenfeng

    2012-01-01

    distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem‐level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. We found that the temperature response of NEE followed a peak curve......, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum...... ecosystem–climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models....

  5. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  6. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  7. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  8. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Jørgensen, Uffe; Petersen, Bjørn Molt

    2012-01-01

    This paper addresses the conversion of Danish agricultural land from food/feed crops to energy crops. To this end, a life cycle inventory, which relates the input and output flows from and to the environment of 528 different crop systems, is built and described. This includes seven crops (annuals...... and perennials), two soil types (sandy loam and sand), two climate types (wet and dry), three initial soil carbon level (high, average, low), two time horizons for soil carbon changes (20 and 100 years), two residues management practices (removal and incorporation into soil) as well as three soil carbon turnover...... rate reductions in response to the absence of tillage for some perennial crops (0%, 25%, 50%). For all crop systems, nutrient balances, balances between above- and below-ground residues, soil carbon changes, biogenic carbon dioxide flows, emissions of nitrogen compounds and losses of macro...

  9. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    Science.gov (United States)

    Canuel, Elizabeth A.; Cammer, Sarah S.; McIntosh, Hadley A.; Pondell, Christina R.

    2012-05-01

    Estuaries are among the most altered and vulnerable marine ecosystems. These ecosystems will likely continue to deteriorate owing to increased population growth in coastal regions, expected temperature and precipitation changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer, transformation, and burial of carbon and other biogenic elements exchanged between the land and ocean systems. Climate change has the potential to influence the carbon cycle through anticipated changes to organic matter production in estuaries and through the alteration of carbon transformation and export processes. This review discusses the effects of climate change on processes influencing the cycling of organic carbon in estuaries, including examples from three temperate estuaries in North America. Our goal is to evaluate the impact of climate change on the connectivity of terrestrial, estuarine, and coastal ocean carbon cycles.

  10. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example.

    Science.gov (United States)

    Xu, Qian; Dong, Yu-Xiang; Yang, Ren

    2018-04-13

    Land urbanization can affect carbon sequestration. In this study, the relationships between land urbanization and carbon sequestration of urban vegetation were studied for Guangzhou, China. The methodology was based on land use data from Thematic Mapper (TM) imagery, MODIS13Q1 data, and climate data, and the improved Carnegie-Ames-Stanford approach (CASA) model and linear system models were employed. Characteristics such as the amount of expansion, spatial agglomeration, spatial expansion intensity, and spatial growth of built-up land were analyzed, and the influence of land urbanization (built-up land expansion) on carbon sequestration of urban vegetation was elucidated by a temporal sequential cooperativity analysis. The main results were as follows. (1) Land urbanization had a clear influence on carbon sequestration of urban vegetation in Guangzhou, and the proportion and spatial agglomeration of built-up land showed significant negative correlations with this carbon sequestration; the correlation coefficients were -0.443 and -0.537, respectively, in 2014. (2) The spatial expansion intensity and spatial growth of built-up land showed small correlations with carbon sequestration, and the correlations from 2000 to 2005 were relatively larger than those at other times; this was because the built-up land expansion speed was the fastest during this period. (3) The temporal sequential cooperativity analysis revealed that carbon was lost as natural surfaces were transformed to artificial surfaces, and land urbanization effects on carbon sequestration showed no significant temporal lag. Carbon sequestration of urban vegetation in the city could be improved by adding urban green spaces; however, this would likely take some time as the system recovers. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Carbon stock projection in North Sumatera using multi objective land allocation approach

    Science.gov (United States)

    Ichwani, S. N.; Wulandari, R.; Ramachandra, A.

    2018-05-01

    Nowadays, GHG emission is a critical issue for environmental management due to the large scale of land cover change, especially forest cover. This study provides a protection development strategy for North Sumatera as one way to manage the area. By using Multi Objective Land Allocation (MOLA), we evaluated two GHG emission scenarios, including a Business As Usual (BAU) scenario and Protection scenario. The result shows that the province will lose the carbon stock up to 24 million tons in the year of 2035 by using a BAU scenario. On the other hand, by implementing the Protection scenario, total carbon stock that is lost in the same period is about 5 millions tons solely. It proves that protection scenario is a good scenario and effective to reduce the carbon loss. Furthermore, this scenario can be an alternative for North Sumatera spatial plan.

  12. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  13. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations

    Directory of Open Access Journals (Sweden)

    W. Li

    2017-11-01

    Full Text Available The use of dynamic global vegetation models (DGVMs to estimate CO2 emissions from land-use and land-cover change (LULCC offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273 PgC during 1901–2012. After constraining by current biomass observations, we derive a best estimate of 155 ± 50 PgC (1σ Gaussian error. The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.

  14. Land

    NARCIS (Netherlands)

    C.A. Hunsberger (Carol); Tom P. Evans

    2012-01-01

    textabstractPressure on land resources has increased during recent years despite international goals to improve their management. The fourth Global Environment Outlook (UNEP 2007) highlighted the unprecedented land-use changes created by a burgeoning population, economic development and

  15. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  16. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  17. Implications of land use change on the national terrestrial carbon budget of Georgia

    Directory of Open Access Journals (Sweden)

    Olofsson Pontus

    2010-09-01

    Full Text Available Abstract Background Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. Results The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. Conclusions We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.

  18. Implications of land use change on the national terrestrial carbon budget of Georgia.

    Science.gov (United States)

    Olofsson, Pontus; Torchinava, Paata; Woodcock, Curtis E; Baccini, Alessandro; Houghton, Richard A; Ozdogan, Mutlu; Zhao, Feng; Yang, Xiaoyuan

    2010-09-13

    Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.

  19. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    Science.gov (United States)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes

  20. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry.

    Science.gov (United States)

    Chuai, Xiaowei; Huang, Xianjin; Lu, Qinli; Zhang, Mei; Zhao, Rongqin; Lu, Junyu

    2015-11-03

    China is undergoing rapid urbanization, enlarging the construction industry, greatly expanding built-up land, and generating substantial carbon emissions. We calculated both the direct and indirect carbon emissions from energy consumption (anthropogenic emissions) in the construction sector and analyzed built-up land expansion and carbon storage losses from the terrestrial ecosystem. According to our study, the total anthropogenic carbon emissions from the construction sector increased from 3,905×10(4) to 103,721.17×10(4) t from 1995 to 2010, representing 27.87%-34.31% of the total carbon emissions from energy consumption in China. Indirect carbon emissions from other industrial sectors induced by the construction sector represented approximately 97% of the total anthropogenic carbon emissions of the sector. These emissions were mainly concentrated in seven upstream industry sectors. Based on our assumptions, built-up land expansion caused 3704.84×10(4) t of carbon storage loss from vegetation between 1995 and 2010. Cropland was the main built-up land expansion type across all regions. The study shows great regional differences. Coastal regions showed dramatic built-up land expansion, greater carbon storage losses from vegetation, and greater anthropogenic carbon emissions. These regional differences were the most obvious in East China followed by Midsouth China. These regions are under pressure for strong carbon emissions reduction.

  1. Land-cover effects on soil organic carbon stocks in a European city.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2014-02-15

    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. Copyright

  2. The land use patterns for soil organic carbon conservation at Endanga watershed Southeast Sulawesi Indonesia

    Science.gov (United States)

    Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin

    2018-02-01

    The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation

  3. Emissions from land use change and forestry

    International Nuclear Information System (INIS)

    Ochanda, N.

    1998-01-01

    This inventory focuses on net input of carbon dioxide into the atmosphere as a result of land use change and forestry. The report shows the importance of dynamics of the afforestation and defforestation processes in determining the presence of carbon dioxide in the air

  4. Carbon implications of Virgin Lands Campaign cropland expansion and post-Soviet agricultural land abandonment in Russia and Kazakhstan

    Science.gov (United States)

    Prishchepov, A. V.; Kurganova, I.; Schierhorn, F.; Lopes de Gerenyu, V.; Müller, D.; Kuzyakov, Y.

    2015-12-01

    Political economy and institutional changes regarding land use play crucial role in shaping land cover worldwide. Among such events was the Soviet Virgin Lands Campaign, when 45.2 million ha of virgin steppes were ploughed up from 1954 to 1963 in northern Eurasia. We took opportunity to evaluate carbon (C) costs of this Campaign, particularly with the account of massive cropland abandonment in the former Campaign area after demise of the Soviet Union in 1991. Within cropland mask produced with remotely sensed data, we spatially disaggregated historical annual sown area statistics at the provincial level for Russia and Kazakhstan based on cropland suitability assessment. We also adjusted our cropland allocation model with the use of 1:3,000,000 map depicting cropland expansion in Northern Kazakhstan. We used C bookkeeping approach to assess C dynamics based on soil stratification and C field measurements. The Campaign resulted in huge C losses from soils, which accounted for 611±47 Mt C in Russia and 241±11 Mt C in Kazakhstan for upper 0-50 cm soil layer during the first 20 years of cultivation. Such C losses could be compared with C losses due to plowing up the prairies in the mid-1930s in USA. Despite the huge C losses from soils during the Campaign, the total C budget in soils of both countries at national level was positive after 1991 due to sequestered C on abandoned lands, albeit the patterns of C loss during the Campaign and C sink in post-Soviet period differed. The C sink from 1991 to 2010 on abandoned croplands in Russia (45.5Mha) comprised 976±108Mt C and Kazakhstan (12.9Mha) comprised 240±34Mt C. However, already ongoing recultivation of abandoned cropland in Kazakhstan and already planned such activities in Russia, can release stored C on abandoned lands. Our study highlights the importance of environmental evaluation of such governmental programs and their alternatives, particularly, since such programs are not rare events in modern land

  5. Impact of land use change on soil carbon loss of the Sikkim Himalayan piedmont

    Science.gov (United States)

    Prokop, Pawel; Ploskonka, Dominik

    2014-05-01

    Natural and human causes of change in land use on soil carbon were studied at the outlet of the Tista River from the Sikkim Himalayas over the last 150 years. Analysis of topographic maps and satellite images indicates that the land reforms related to location of tea gardens in the piedmont caused rapid deforestation of terraces in the late 19th century. Continuous population growth after 1930 initiated the replacement of floodplain forest by rice cultivation. Both processes changed soil carbon content and intensified fluvial activity expressed through terrace erosion. The replacement of natural forest by tea cultivation reduced the soil carbon content within terraces from 1.95 kg to 1.77 kg (in 1 m of topsoil) respectively. The replacement of natural forest by rice reduced the soil carbon content within floodplains from 0.42 kg to 0.23 kg (in 1 m topsoil) respectively. Much more dangerous, was terrace erosion leading to permanent removal of sediment including soil. The total loss of soil carbon in a 1 m thick soil layer due to conversion of 5 km2 forest to tea cultivation was about 900 t between 1930 and 2010. While the total soil carbon removed due to 1.8 km2 terrace erosion reached 3510 t in the same period. Result is the outcome of research project 2012/05/B/ST10/00309 of the National Science Centre (Poland).

  6. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  7. Multicentury changes in ocean and land contributions to the climate-carbon feedback

    Science.gov (United States)

    Randerson, J. T.; Lindsay, K.; Munoz, E.; Fu, W.; Moore, J. K.; Hoffman, F. M.; Mahowald, N. M.; Doney, S. C.

    2015-06-01

    Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.

  8. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  9. A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state

    Directory of Open Access Journals (Sweden)

    J. Y. Xia

    2012-10-01

    Full Text Available The spin-up of land models to steady state of coupled carbon–nitrogen processes is computationally so costly that it becomes a bottleneck issue for global analysis. In this study, we introduced a semi-analytical solution (SAS for the spin-up issue. SAS is fundamentally based on the analytic solution to a set of equations that describe carbon transfers within ecosystems over time. SAS is implemented by three steps: (1 having an initial spin-up with prior pool-size values until net primary productivity (NPP reaches stabilization, (2 calculating quasi-steady-state pool sizes by letting fluxes of the equations equal zero, and (3 having a final spin-up to meet the criterion of steady state. Step 2 is enabled by averaged time-varying variables over one period of repeated driving forcings. SAS was applied to both site-level and global scale spin-up of the Australian Community Atmosphere Biosphere Land Exchange (CABLE model. For the carbon-cycle-only simulations, SAS saved 95.7% and 92.4% of computational time for site-level and global spin-up, respectively, in comparison with the traditional method (a long-term iterative simulation to achieve the steady states of variables. For the carbon–nitrogen coupled simulations, SAS reduced computational cost by 84.5% and 86.6% for site-level and global spin-up, respectively. The estimated steady-state pool sizes represent the ecosystem carbon storage capacity, which was 12.1 kg C m−2 with the coupled carbon–nitrogen global model, 14.6% lower than that with the carbon-only model. The nitrogen down-regulation in modeled carbon storage is partly due to the 4.6% decrease in carbon influx (i.e., net primary productivity and partly due to the 10.5% reduction in residence times. This steady-state analysis accelerated by the SAS method can facilitate comparative studies of structural differences in determining the ecosystem carbon storage capacity among biogeochemical models. Overall, the

  10. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States.

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L; Wu, Yiping; Young, Claudia J

    2015-10-13

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands' contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency's land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  11. Dynamics of soil carbon stocks due to large-scale land use changes across the former Soviet Union during the 20th century

    Science.gov (United States)

    Kurganova, Irina; Prishchepov, Alexander V.; Schierhorn, Florian; Lopes de Gerenyu, Valentin; Müller, Daniel; Kuzyakov, Yakov

    2016-04-01

    Land use change is a major driver of land-atmosphere carbon (C) fluxes. The largest net C fluxes caused by LUC are attributed to the conversion of native unmanaged ecosystems to croplands and vice versa. Here, we present the changes of soil organic carbon (SOC) stocks in response to large-scale land use changes in the former Soviet Union from 1953-2012. Widespread and rapid conversion of native ecosystems to croplands occurred in the course of the Virgin Lands Campaign (VLC) between 1954 to 1963 in the Soviet Union, when more than 45 million hectares (Mha) were ploughed in south-eastern Russia and northern Kazakhstan in order to expand domestic food production. After 1991, the collapse of the Soviet Union triggered the abandonment of around 75 Mha across the post-Soviet states. To assess SOC dynamics, we generated a static cropland mask for 2009 based on three global cropland maps. We used the cropland mask to spatially disaggregate annual sown area statistics at province level based on the suitability of each plot for crop production, which yielded land use maps for each year from 1954 to 2012 for all post-Soviet states. To estimate the SOC-dynamics due to the VLC and post-Soviet croplands abandonment, we used available experimental data, own field measurements, and soil maps. A bookkeeping approach was applied to assess the total changes in SOC-stocks in response to large-scale land use changes in the former Soviet Union. The massive croplands expansion during VLC resulted in a substantial loss of SOC - 611±47 Mt C and 241±11 Mt C for the upper 0-50 cm soil layer during the first 20 years of cultivation for Russia and Kazakhstan, respectively. These magnitudes are similar to C losses due to the plowing up of the prairies in USA in the mid-1930s. The total SOC sequestration due to post-Soviet croplands abandonment was estimated at 72.2±6.0 Mt C per year from 1991 to 2010. This amount of carbon equals about 40% of the current fossil fuel emission for this

  12. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-07-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  13. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  14. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States.

    Science.gov (United States)

    Emery, Isaac; Mueller, Steffen; Qin, Zhangcai; Dunn, Jennifer B

    2017-01-03

    Land availability for growing feedstocks at scale is a crucial concern for the bioenergy industry. Feedstock production on land not well-suited to growing conventional crops, or marginal land, is often promoted as ideal, although there is a poor understanding of the qualities, quantity, and distribution of marginal lands in the United States. We examine the spatial distribution of land complying with several key marginal land definitions at the United States county, agro-ecological zone, and national scales, and compare the ability of both marginal land and land cover data sets to identify regions for feedstock production. We conclude that very few land parcels comply with multiple definitions of marginal land. Furthermore, to examine possible carbon-flow implications of feedstock production on land that could be considered marginal per multiple definitions, we model soil carbon changes upon transitions from marginal cropland, grassland, and cropland-pastureland to switchgrass production for three marginal land-rich counties. Our findings suggest that total soil organic carbon changes per county are small, and generally positive, and can influence life-cycle greenhouse gas emissions of switchgrass ethanol.

  15. Forest sector carbon analyses support land management planning and projects: Assessing the influence of anthropogenic and natural factors

    Science.gov (United States)

    Alexa J. Dugan; Richard Birdsey; Sean P. Healey; Yude Pan; Fangmin Zhang; Gang Mo; Jing Chen; Christopher W. Woodall; Alexander J. Hernandez; Kevin McCullough; James B. McCarter; Crystal L. Raymond; Karen. Dante-Wood

    2017-01-01

    Management of forest carbon stocks on public lands is critical to maintaining or enhancing carbon dioxide removal from the atmosphere. Acknowledging this, an array of federal regulations and policies have emerged that requires US National Forests to report baseline carbon stocks and changes due to disturbance and management and assess how management activities and...

  16. Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species

    Science.gov (United States)

    Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta

    2011-01-01

    Brazil’s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...

  17. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (- 308 mmolC m sup(-2) d sup(-1) approx. equal to - 3...

  18. Evolvement rules of basin flood risk under low-carbon mode. Part I: response of soil organic carbon to land use change and its influence on land use planning in the Haihe basin.

    Science.gov (United States)

    Li, Fawen; Wang, Liping; Zhao, Yong

    2017-08-01

    Soil organic carbon (SOC) plays an important role in the global carbon cycle. The aim of this study was to evaluate the response of SOC to land use change and its influence on land use planning in the Haihe basin, and provide planning land use pattern for basin flood risk assessment. Firstly, the areas of different land use types in 1980, 2008, and the planning year (2020) were counted by area statistics function of ArcGIS. Then, the transfer matrixes of land use were produced by spatial overlay analysis function. Lastly, based on the land use maps, soil type map and soil profile database, SOC storage of different land use types in three different periods were calculated. The results showed the patterns of land use have changed a lot from 1980 to 2008, among the 19,835 km 2 of grassland was transformed into forestland, which was the largest conversion landscape. And land use conversion brought the SOC storage changes. Total carbon source was 88.83 Tg, and total carbon sink was 85.49 Tg. So, the Haihe basin presented as a carbon source from 1980 to 2008. From 2008 to 2020, the changes of forestland and grassland are the biggest in Haihe basin, which cause the SOC pool change from a carbon source to a carbon sink. SOC storage will increase from 2420.5 Tg in 2008 to 2495.5 Tg in 2020. The changing trend is conducive to reducing atmospheric concentrations. Therefore, land use planning in Haihe basin is reasonable and can provide the underlying surface condition for flood risk assessment.

  19. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Carl P.J. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada)], E-mail: mitchellc@si.edu; Branfireun, Brian A. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada); Kolka, Randall K. [Northern Research Station, US Department of Agriculture Forest Service, 1831 Highway 169 East, Grand Rapids, MN 55744 (United States)

    2008-03-15

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO{sub 4} (as an electron acceptor) because SO{sub 4}-reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO{sub 4} and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO{sub 4} addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO{sub 4} input alone ({approx}200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO{sub 4} and some organic C sources resulted in considerably more MeHg production ({approx}500 pg/L/day) than did the addition of SO{sub 4} alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO{sub 4} and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO{sub 4} and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent

  20. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    International Nuclear Information System (INIS)

    Mitchell, Carl P.J.; Branfireun, Brian A.; Kolka, Randall K.

    2008-01-01

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO 4 (as an electron acceptor) because SO 4 -reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO 4 and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO 4 addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO 4 input alone (∼200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO 4 and some organic C sources resulted in considerably more MeHg production (∼500 pg/L/day) than did the addition of SO 4 alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO 4 and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO 4 and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent inputs of SO 4 and organic C in runoff from the adjacent upland hillslopes

  1. Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes

    Science.gov (United States)

    Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.

    2007-12-01

    Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the

  2. Incorporating land-use requirements and environmental constraints in low-carbon electricity planning for California.

    Science.gov (United States)

    Wu, Grace C; Torn, Margaret S; Williams, James H

    2015-02-17

    The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning.

  3. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Elberling, Bo; Balstrøm, Thomas

    2009-01-01

    . A comparison of the organic matter content in these mound cores and the plough layer in modern farmland offers an opportunity to compare the soil organic carbon (SOC) stocks in ancient and modern land use systems and to evaluate the long-term trends in carbon (C) sequestration in relation to modern farmland......During the South Scandinavian Early Bronze Age about 3300 years ago, thousands of burial mounds were constructed of sods from fallow ground used for grazing in Denmark and northern Germany. In some of these mounds a wet, anaerobic core developed, preventing the decomposition of organic matter...... with varying inputs of manure and inorganic fertilizers. In the present paper we compare SOC stocks based on integrated horizon-specific densities and SOC contents in three 3300-year-old buried farmland soils, representing the land use system at that time, with results from soil surveys representing modern...

  4. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    Science.gov (United States)

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  5. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under

  6. Land Use Strategies for Optimizing Carbon Sequestration within the Head of the Lower Mississippi Watershed

    Science.gov (United States)

    Weaver, L.

    2015-12-01

    The world is currently in a stage of extreme growth, characterized by increasing demands for food and increasing greenhouse gas emissions. The population for 2050 is forecasted to grow by 2.3 billion people, resulting in close to a 40% increase in food demand (Alexandratos, Bruinsma 2012). This will severely increase pressure on the earth and on crop harvesting processes to incorporate carbon emissions reduction strategies. Optimal land use analysis and innovation can provide feasible solutions for these problems. A key environmental feature around which land use systems should be carefully planned and maintained is the Mississippi River, the largest watershed system in the United States. Along head of the Lower Mississippi Watershed lie several farming communities including Cairo, Illinois. The primary land use for the area inhabited by these communities consists of soybeans, corn, and pasture. These crops have varying carbon storage capacities, economic and social benefits, and environmental consequences. In order to maximize social, economic, and environmental benefits and sustainability, these crops were analyzed over time, spatial correlation, and crop size area. When considering risks of carbon emissions, economic decline, landscape erosion and harmful runoff, a localized switchgrass buffer remains a feasible solution. Its strengths as a native, reliable plant with high carbon sequestration and biomass harvest potential yield it to be more prevalently implemented at the head of the Lower Mississippi Watershed. However, there are multiple factors that must be considered before implementing broad agricultural policies and practices. Thorough analyses should be performed frequently to assess the effects of major land use change and can be used to identify the optimized applications for farmers and communities.

  7. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States). Energy Resources Center; Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois at Urbana Champaign, Urbana, IL (United States). Dept. of Natural Resources; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-09-01

    The $\\underline{C}$arbon $\\underline{C}$alculator for $\\underline{L}$and $\\underline{U}$se Change from $\\underline{B}$iofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  8. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  9. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    Science.gov (United States)

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  10. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  11. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  12. lands

    Directory of Open Access Journals (Sweden)

    A.T. O'Geen

    2015-04-01

    Full Text Available Groundwater pumping chronically exceeds natural recharge in many agricultural regions in California. A common method of recharging groundwater — when surface water is available — is to deliberately flood an open area, allowing water to percolate into an aquifer. However, open land suitable for this type of recharge is scarce. Flooding agricultural land during fallow or dormant periods has the potential to increase groundwater recharge substantially, but this approach has not been well studied. Using data on soils, topography and crop type, we developed a spatially explicit index of the suitability for groundwater recharge of land in all agricultural regions in California. We identified 3.6 million acres of agricultural land statewide as having Excellent or Good potential for groundwater recharge. The index provides preliminary guidance about the locations where groundwater recharge on agricultural land is likely to be feasible. A variety of institutional, infrastructure and other issues must also be addressed before this practice can be implemented widely.

  13. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. I. Using remotely sensed data and ecological observations of net primary production

    International Nuclear Information System (INIS)

    Ying Ping Wang; Barrett, Damian J.

    2003-01-01

    We have developed a modelling framework that synthesizes various types of field measurements at different spatial and temporal scales. We used this modelling framework to estimate monthly means and their standard deviations of gross photosynthesis, total ecosystem production, net primary production (NPP) and net ecosystem production (NEP) for eight regions of the Australian continent between 1990 and 1998. Annual mean NPP of the Australian continent varied between 800 and 1100 Mt C/yr between 1990 and 1998, with a coefficient of variation that is defined as the ratio of standard deviation and mean between 0.24 and 0.34. The seasonal variation of NPP for the whole continent varied between 50 and 110 Mt C/month with two maxima, one in the autumn and another in the spring. NEP was most negative in the winter (a carbon sink) and was most positive (a carbon source) in the summer. However, the coefficient of variation of monthly mean NEP was very large (> 4), and consequently confidence in the predicted net carbon fluxes for any month in the period 1990-1998 for the whole continent was very low. A companion paper will apply atmospheric inverse technique to measurements of CO 2 concentration to further constrain the continental carbon cycle and reduce uncertainty in estimated mean monthly carbon fluxes

  14. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China.

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua

    2014-11-01

    Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.

  15. Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing

    Science.gov (United States)

    Yu, Q.; Li, J.; Tian, Y. Q.

    2017-12-01

    Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.

  16. Carbon Storage Potential of Forest Land: A Comparative Study of Cases in Finland and Croatia

    Directory of Open Access Journals (Sweden)

    Martina Tijardović

    2013-06-01

    Full Text Available Background and Purpose: The concentrations of greenhouse gases in the atmosphere have been increasing over the last hundred years in relation to the Fourth IPCC assessment report that highlighted human activities as a direct influence on climate changes. Since Croatia and Finland signed the Kyoto Protocol, they are both committed to fulfil international obligations of lowering GHG’s emissions, enhancing the storage, as well as protecting and enhancing the current pools where the forestry sector has a prominent role. These obligations created a need for a review on carbon storage potentials for both countries with the aim of setting further scientific and management guidelines as the basic purpose of this research. Materials and Methods: Data collection was conducted within the scope of the Sort Term Scientific Mission (STSM in the period from May 2 – July 22, 2009 in the Finnish Forest Research Institute in Joensuu. The research encompassed an overview of literature, personal contacts with scientists and experts from both countries (research institutes, ministries, the EFI branch office in Joensuu and a field inspection which altogether provided an insight into the applied silvicultural and utilization activities. A significant data source were official documents and published project results on the carbon storage potential. Results and Discussion: Mitigation activities within the framework of the LULUCF project reduced the total emissions for 33.4 millions tons of CO2 equivalents in Finland in 2006 (this data has varied from 18 to 33.4 millions tons CO2 equivalents in the last fifteen years while for Croatia the availability of such data is limited. Finland has some former agricultural land which may be afforested but not in the substantial share, while in Croatia such areas amount to around 1 million ha. According to the climate change scenario for Finland (FINADAPT, predicting the largest climate changes, the total forest growth

  17. Investigating the climate and carbon cycle impacts of CMIP6 Land Use and Land Cover Change in the Community Earth System Model (CESM2)

    Science.gov (United States)

    Lawrence, P.; Lawrence, D. M.; O'Neill, B. C.; Hurtt, G. C.

    2017-12-01

    For the next round of CMIP6 climate simulations there are new historical and SSP - RCP land use and land cover change (LULCC) data sets that have been compiled through the Land Use Model Intercomparison Project (LUMIP). The new time series data include new functionality following lessons learned through CMIP5 project and include new developments in the Community Land Model (CLM5) that will be used in all the CESM2 simulations of CMIP6. These changes include representing explicit crop modeling and better forest representation through the extended to 12 land units of the Global Land Model (GLM). To include this new information in CESM2 and CLM5 simulations new transient land surface data sets have been generated for the historical period 1850 - 2015 and for preliminary SSP - RCP paired future scenarios. The new data sets use updated MODIS Land Cover, Vegetation Continuous Fields, Leaf Area Index and Albedo to describe Primary and Secondary, Forested and Non Forested land units, as well as Rangelands and Pasture. Current day crop distributions are taken from the MIRCA2000 crop data set as done with the CLM 4.5 crop model and used to guide historical and future crop distributions. Preliminary "land only" simulations with CLM5 have been performed for the historical period and for the SSP1-RCP2.6 and SSP3-RCP7 land use and land cover change time series data. Equivalent no land use and land cover change simulations have been run for these periods under the same meteorological forcing data. The "land only" simulations use GSWP3 historical atmospheric forcing data from 1850 to 2010 and then time increasing RCP 8.5 atmospheric CO2 and climate anomalies on top of the current day GSWP3 atmospheric forcing data from 2011 to 2100. The offline simulations provide a basis to evaluate the surface climate, carbon cycle and crop production impacts of changing land use and land cover for each of these periods. To further evaluate the impacts of the new CLM5 model and the CMIP6 land

  18. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Integrated Assessment of Climate Change, Land-Use Changes, and Regional Carbon Dynamics in United States

    Science.gov (United States)

    Mu, J. E.; Sleeter, B. M.; Abatzoglou, J. T.

    2015-12-01

    The fact that climate change is likely to accelerate throughout this century means that climate-sensitive sectors such as agriculture will need to adapt increasingly to climate change. This fact also means that understanding the potential for agricultural adaptation, and how it could come about, is important for ongoing technology investments in the public and private sectors, for infrastructure investments, and for the various policies that address agriculture directly or indirectly. This paper is an interdisciplinary study by collaborating with climate scientist, agronomists, economists, and ecologists. We first use statistical models to estimate impacts of climate change on major crop yields (wheat, corn, soybeans, sorghum, and cotton) and predict changes in crop yields under future climate condition using downscaled climate projections from CMIP5. Then, we feed the predicted yield changes to a partial equilibrium economic model (FASOM-GHG) to evaluate economic and environmental outcomes including changes in land uses (i.e., cropland, pastureland, forest land, urban land and land for conservation) in United States. Finally, we use outputs from FASOM-GHG as inputs for the ST-SIM ecological model to simulate future carbon dynamics through changes in land use under future climate conditions and discuss the rate of adaptation through land-use changes. Findings in this paper have several merits compared to previous findings in the literature. First, we add economic components to the carbon calculation. It is important to include socio-economic conditions when calculating carbon emission and/or carbon sequestration because human activities are the major contribution to atmosphere GHG emissions. Second, we use the most recent downscaled climate projections from CMIP5 to capture uncertainties from climate model projections. Instead of using all GCMs, we select five GCMs to represent the ensemble. Third, we use a bottom-up approach because we start from micro-level data

  20. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  1. Driving to destruction. The impacts of Europe's biofuel plans on carbon emissions and land

    International Nuclear Information System (INIS)

    Novis, J.

    2010-11-01

    A new study analyses the likely impacts on land use and greenhouse gas (GHG) emissions of biofuel use by 2020, as projected in recently published National Renewable Energy Action Plans (NREAPs) in 23 EU member states. The analysis includes evidence on size and impacts of 'indirect land use change' (ILUC) resulting from biofuel use. It is the most comprehensive study to date to quantify these effects. Previous attempts were not based on projections from NREAPs and in most cases excluded the effects of indirect land use change. The assessment comes at a key time for EU biofuel policy, with the European Commission due to report on how to address and minimise these emissions by the end of this year. The study reveals that the EU's plans for biofuels will result in the conversion of up to 69,000 square kilometres of land to agricultural use due to ILUC. This will potentially put forests, other natural ecosystems, and poor communities at risk. Land conversion on such a scale will lead to the release of carbon emissions from vegetation and soil, making biofuels more damaging to the climate than the fossil fuels they are designed to replace.

  2. Effects of endogenous factors on regional land-use carbon emissions based on the Grossman decomposition model: a case study of Zhejiang Province, China.

    Science.gov (United States)

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15%. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86%. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  3. Effects of Endogenous Factors on Regional Land-Use Carbon Emissions Based on the Grossman Decomposition Model: A Case Study of Zhejiang Province, China

    Science.gov (United States)

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  4. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems

    Science.gov (United States)

    Rachel A. Loehman; Elizabeth Reinhardt; Karin L. Riley

    2014-01-01

    Wildfires are an important component of the terrestrial carbon cycle and one of the main pathways for movement of carbon from the land surface to the atmosphere. Fires have received much attention in recent years as potential catalysts for shifting landscapes from carbon sinks to carbon sources. Unless structural or functional ecosystem shifts occur, net carbon balance...

  5. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  6. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  7. Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems

    NARCIS (Netherlands)

    Ibidhi, R.; Hoekstra, Arjen Ysbert; Gerbens-Leenes, Winnie; Chouchane, Hatem

    2017-01-01

    Meat production puts larger demands on water and land and results in larger greenhouse gas emissions than alternative forms of food. This study uses footprint indicators, the water, land and carbon footprint, to assess natural resources use and greenhouse gas emissions for sheep and chicken meat

  8. Federal land management, carbon sequestration, and climate change in the Southeastern U.S.: a case study with fort benning

    Science.gov (United States)

    Zhao, S.; Liu, S.; Li, Z.; Sohl, Terry L.

    2010-01-01

    Land use activities can have a major impact on the temporal trendsandspatialpatternsofregionalland-atmosphereexchange of carbon. Federal lands generally have substantially different land management strategies from surrounding areas, and the carbon consequences have rarely been quantified and assessed. Using the Fort Benning Installation as a case study, we used the General Ensemble biogeochemical Modeling System (GEMS) to simulate and compare ecosystem carbon sequestration between the U.S. Army's Fort Benning and surrounding areas from 1992 to 2050. Our results indicate that the military installation sequestered more carbon than surrounding areas from 1992 to 2007 (76.7 vs 18.5 g C m-2 yr-1), and is projected to continue sequestering more carbon from 2008 to 2050 (75.7 vs 25.6 g C m-2 yr-1), mostly because of the proactive management approaches adopted on military training lands. Our results suggest that federal lands might play a positive and important role in sequestering and conserving atmospheric carbon because some anthropogenic disturbances (e.g., urbanization, forest harvesting, and agriculture) can be minimized or prevented on federal lands

  9. Sustainable Carbon Dioxide Sequestration as Soil Carbon to Achieve Carbon Neutral Status for DoD Lands

    Science.gov (United States)

    2017-10-01

    26 4.6.3 Fertilizer ...5 Figure 3. Soil organic carbon sensitivity to...Industries Association ERDC TR-17-13 ix SOC Soil Organic Carbon SSURGO Soil Survey Geographic Database USACE U.S. Army Corps of Engineers USDA

  10. Closing the Knowledge Gap: Effects of Land Use Conversion on Belowground Carbon near the 100th Meridian

    Science.gov (United States)

    Waldron, S. E.; Phillips, R. L.; Dell, R.; Suddick, E. C.

    2012-12-01

    Native prairie of the northern Great Plains near the 100th meridian is currently under land use conversion pressure due to high commodity prices. From 2002 to 2007, approximately 303,515 hectares of prairie were converted to crop production in the Prairie Pothole Region (PPR) from Montana to the Dakotas. The spatiotemporal effects of land-use conversion on soil organic matter are still unclear for the PPR. Effects will vary with management, soil properties and time, making regional experiments and simulation modeling necessary. Grassland conservationists are interested in soil carbon data and soil carbon simulation models to inform potential voluntary carbon credit programs. These programs require quantification of changes in soil carbon associated with land-use conversion and management. We addressed this issue by 1) designing a regional-scale experiment, 2) collecting and analyzing soil data, and 3) interviewing producers about land management practices, as required for regional, process-based biogeochemical models. We selected farms at random within a 29,000 km2 area of interest and measured soil properties at multiple depths for native prairie and adjacent annual crop fields. The cores were processed at six different depths (between 0 and 100 cm) for bulk density, pH, texture, total carbon, inorganic carbon, and total nitrogen. We found that the largest difference in soil organic carbon occurred at the 0-10 cm depth, but the magnitude of the effect of land use varied with soil properties and land management. Results from this project, coupled with regional model simulations (Denitrification-Decomposition, DNDC) represent the baseline data needed for future voluntary carbon credit programs and long-term carbon monitoring networks. Enrollment in such programs could help ranchers and farmers realize a new income stream from maintaining their native prairie and the carbon stored beneath it.

  11. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    DEFF Research Database (Denmark)

    Pugh, T. A. M.; Arneth, A.; Olin, S.

    2015-01-01

    quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative E LUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed...... processes are not well defined, particularly the role of emissions from land-use change (E LUC) versus the biospheric carbon uptake (S L; S T = S L − E LUC). One key aspect of the interplay of E LUC and S L is the role of agricultural processes in land-use change emissions, which has not yet been clearly...... the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present...

  12. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    Science.gov (United States)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application

  13. Factors controlling carbon isotopic composition of land snail shells estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, Naizhong; Yamada, Keita; Yoshida, Naohiro

    2014-05-01

    Carbon isotopic composition (δ13C) of land snail shell carbonate is widely applied in reconstructing the C3/C4 vegetation distribution of paleo-environment, which is considered to reflect variations of some environmental parameters [1][2][3]. Land snail shell carbon has three potential sources: diet, atmospheric CO2 and ingested carbonate (limestone) [4]. However, their relative contributions to shell carbonate have not been understood well yet [4][5][6][7][8]. More researches are necessary before we could apply this tool in paleo-environment reconstruction, especially inter-lab culturing experiment. A kind of land snail species, Acusta despecta sieboldiana, was collected at Yokohama, Japan and cultured under suitable environment to lay eggs. The second generations were growing up from eggs to adults around 6-12 months at the temperature of 20°, 25° and 30°, respectively. All of the snails at 25° and 30° and most of those at 20° were fed by cabbage (C3 plant) during their life span while others were fed by corn (C4 plant). To investigate the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. δ13C of shells were analyzed by an Isotope Ratio Mass Spectrometry (Thermo Finnigan MAT 253); δ13C of food and snail tissue were measured by a Cavity Ring-Down Spectroscopy (Picarro G1121-i). At the same time, δ13C of eggshell and new born snails were analyzed by a Continuous Flow Isotope Ratio Mass Spectrometry (GasBench II). We confirmed that diet, atmospheric CO2 and ingested limestone could be important sources controlling shell δ13C values. And the temperature could affect shell carbonate δ13C values, too. A simple but credible frame was raised to discuss the mechanism of how each possible source and environmental parameter could affect shell carbonate δ13C values based on previous works [4][6][8] and this study. According to this frame and some reasonable assumptions, we have estimated the

  14. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    Directory of Open Access Journals (Sweden)

    Wenquan Zhu

    Full Text Available Carbon Flux Phenology (CFP can affect the interannual variation in Net Ecosystem Exchange (NEE of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands, using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU by more than 70% and End of Carbon Uptake (ECU by more than 60%. The Root Mean Square Error (RMSE of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  15. Synthetic Constraint of Ecosystem C Models Using Radiocarbon and Net Primary Production (NPP) in New Zealand Grazing Land

    Science.gov (United States)

    Baisden, W. T.

    2011-12-01

    land, these estimates can be derived primarily from measured aboveground NPP and calculated belowground NPP. Results suggest that only 19-36% of heterotrophic soil respiration is derived from the soil C with rapid turnover times. A final logical step in synthesis is the analysis of temporal variation in NPP, primarily due to climate, as driver of changes in plant inputs and resulting in dynamic changes in rapid and decadal soil C pools. In sites with good time series samples from 1959-1975, we examine the apparent impacts of measured or modelled (Biome-BGC) NPP on soil Δ14C. Ultimately, these approaches have the ability to empirically constrain, and provide limited verification, of the soil C cycle as commonly depicted ecosystem biogeochemistry models.

  16. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  17. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis

    Science.gov (United States)

    Keeling, Ralph F.; Graven, Heather D.; Welp, Lisa R.; Resplandy, Laure; Bi, Jian; Piper, Stephen C.; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A. J.

    2017-09-01

    A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

  18. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  19. Initializing carbon cycle predictions from the Community Land Model by assimilating global biomass observations

    Science.gov (United States)

    Fox, A. M.; Hoar, T. J.; Smith, W. K.; Moore, D. J.

    2017-12-01

    The locations and longevity of terrestrial carbon sinks remain uncertain, however it is clear that in order to predict long-term climate changes the role of the biosphere in surface energy and carbon balance must be understood and incorporated into earth system models (ESMs). Aboveground biomass, the amount of carbon stored in vegetation, is a key component of the terrestrial carbon cycle, representing the balance of uptake through gross primary productivity (GPP), losses from respiration, senescence and mortality over hundreds of years. The best predictions of current and future land-atmosphere fluxes are likely from the integration of process-based knowledge contained in models and information from observations of changes in carbon stocks using data assimilation (DA). By exploiting long times series, it is possible to accurately detect variability and change in carbon cycle dynamics through monitoring ecosystem states, for example biomass derived from vegetation optical depth (VOD), and use this information to initialize models before making predictions. To make maximum use of information about the current state of global ecosystems when using models we have developed a system that combines the Community Land Model (CLM) with the Data Assimilation Research Testbed (DART), a community tool for ensemble DA. This DA system is highly innovative in its complexity, completeness and capabilities. Here we described a series of activities, using both Observation System Simulation Experiments (OSSEs) and real observations, that have allowed us to quantify the potential impact of assimilating VOD data into CLM-DART on future land-atmosphere fluxes. VOD data are particularly suitable to use in this activity due to their long temporal coverage and appropriate scale when combined with CLM, but their absolute values rely on many assumptions. Therefore, we have had to assess the implications of the VOD retrieval algorithms, with an emphasis on detecting uncertainty due to

  20. Impact of Idealized Stratospheric Aerosol Injection on the Future Ocean and Land Carbon Cycles

    Science.gov (United States)

    Tjiputra, J.; Lauvset, S.

    2017-12-01

    Using a state-of-the-art Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In one of the scenarios, the model able to project future warming below 2 degree toward 2100, despite greatier warming persists in the high latitudes. When SAI is terminated in 2100, a rapid global warming of 0.35 K yr-1 (as compared to 0.05 K yr-1 under RCP8.5) is simulated in the subsequent 10 years, and the global mean temperature rapidly returns to levels close to the reference state. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. Despite inducing little impact on surface acidification, in the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area. Since the deep ocean provides vital ecosystem function and services, e.g., fish stocks, this accelerated changes

  1. Monitoring the bio-economy : Assessing local and global biomass flows, land-use change, carbon impacts and future land resources

    NARCIS (Netherlands)

    Goh, C.S.

    2017-01-01

    As one of the common goals of developing the ‘bio-economy (BE)’ is to reduce GHG emissions from fossil feedstocks, it is crucial to monitor the associated carbon stock change from land-use change (CSC-LUC). This thesis addressed the key knowledge gaps related to (i) tracking the biomass flows for

  2. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration.

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso

    2017-01-15

    Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO 2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha -1 on average, ranging from 5.4MgCha -1 to 26.7MgCha -1 in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO 2 emission as a whole was reduced by 887,745Mg CO 2 . Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Land

    CSIR Research Space (South Africa)

    Audouin, M

    2007-01-01

    Full Text Available the factors contributing to desertification and practical measures necessary to combat desertification and mitigate the effect of drought. The priority issues reported on in this chapter are soil and veld degradation, and the loss of land for agricultural use....

  4. Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel

    DEFF Research Database (Denmark)

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2014-01-01

    to oil palm, in a life cycle perspective.LCA methodology is applied to existing land use change data. The assessment includes the issue of temporary carbon storage in the plantations. Through quantification of emissions from state forest reserve and rubber plantation conversions, the average Malaysian...... palm oil-related land use changes are calculated.The results show that there are high emissions associated with the conversion of Malaysian state forest reserve to oil palm, whereas the conversion of rubber leaves a less significant carbon debt when indirect land use change is not included. Looking...... at the average Malaysian land use changes associated with oil palm shows that land use change emissions are responsible for approximately half of the total conventional biodiesel production emissions. The sensitivity analysis shows that the results could be significantly influenced by data variations in indirect...

  5. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    International Nuclear Information System (INIS)

    Ter Maat, H.W.; Hutjes, R.W.A.; Miglietta, F.; Gioli, B.; Bosveld, F.C.; Vermeulen, A.T.; Fritsch, H.

    2010-08-01

    This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

  6. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    Science.gov (United States)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  7. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    Science.gov (United States)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC

  8. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in

  9. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  10. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Science.gov (United States)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  11. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Directory of Open Access Journals (Sweden)

    K. Engström

    2017-09-01

    Full Text Available Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate–economy model, a socio-economic land use model and an ecosystem model. We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs. Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road. For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  12. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia.

    Science.gov (United States)

    Khalifa, Muhammad; Elagib, Nadir Ahmed; Ribbe, Lars; Schneider, Karl

    2018-05-15

    The impact of climate variability on the Net Primary Productivity (NPP) of different land cover types and the reaction of NPP to drought conditions are still unclear, especially in Sub-Saharan Africa. This research utilizes public-domain data for the period 2000 through 2013 to analyze these aspects for several land cover types in Sudan and Ethiopia, as examples of data-scarce countries. Spatio-temporal variation in NPP, water use efficiency (WUE) and carbon use efficiency (CUE) for several land covers were correlated with variations in precipitation, temperature and drought at different time scales, i.e. 1, 3, 6 and 12months using Standardized Precipitation Evapotranspiration Index (SPEI) datasets. WUE and CUE were estimated as the ratios of NPP to actual evapotranspiration and NPP to Gross Primary Productivity (GPP), respectively. Results of this study revealed that NPP, WUE and CUE of the different land cover types in Ethiopia have higher magnitudes than their counterparts in Sudan. Moreover, they exhibit higher sensitivity to drought and variation in precipitation. Whereas savannah represents the most sensitive land cover to drought, croplands and permanent wetlands are the least sensitive ones. The inter-annual variation in NPP, WUE and CUE in Ethiopia is likely to be driven by a drought of time scale of three months. No statistically significant correlation was found for Sudan between the inter-annual variations in these indicators with drought at any of the time scales considered in the study. Our findings are useful from the view point of both food security for a growing population and mitigation to climate change as discussed in the present study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration

    Science.gov (United States)

    McNulty, S.; Treasure, E.

    2017-12-01

    The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).

  14. An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the conterminous United States

    Science.gov (United States)

    Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie

    2010-01-01

    Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by

  15. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands.

    Science.gov (United States)

    Silva, Lucas C R; Doane, Timothy A; Corrêa, Rodrigo S; Valverde, Vinicius; Pereira, Engil I P; Horwath, William R

    2015-07-01

    unsuccessful attempts to restore mined areas through nutrient application alone, iron-mediated stabilization of vegetation inputs favored the regeneration of a barren stable state that had persisted for over five decades since disturbance. The effectiveness of coupled organic matter and iron "fertilization," combined with management of invasive species, has the possibility to enhance terrestrial carbon sequestration and accelerate the restoration of degraded lands, while addressing important challenges associated with urban waste disposal.

  16. The influence of land-use and land-management on Soil Organic Carbon concentrations: Limitations of making predictions using only soil order data

    Science.gov (United States)

    Bell, M. J.; Worrall, F.

    2009-04-01

    In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of atmospheric carbon, there is increasing demand for regions to estimate their current soil organic carbon (SOC) stocks with the greatest possible accuracy. Several previous attempts at calculating SOC baselines at global, national or regional scale have used mean values for soil orders and multiplied these values by the mapped areas of the soils they represent. Other methods have approached the task from a land cover point of view, making estimates using only land-use, or soil order/land-use combinations and others have included variables such as altitude, climate and soil texture. This study aimed to assess the major controls on SOC concentrations (%SOC) at the National Trust Wallington estate in Northumberland, NE England (area = 55km2) where an extensive soil sampling campaign was used to test what level of accuracy could be achieved in modelling the %SOC values on the Estate. Mapped %SOC values were compared to the values predicted from The National Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey database. The results of this study can be summarised as follows: When only soil series or land-use were used as predictors only 48% and 44% of the variation in the dataset were explained. When soil series/land-use combinations were used explanatory power increased to 57% both altitude and soil pH are major controls on %SOC and including these variables gave an improvement to 59% A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm tenancy was included indicates that differences in land-management practices between farm tenancies explained more of the variation than either soil series or land-use in %SOC. Further work will involve a

  17. [Influence of land use change on dissolved organic carbon export in Naoli River watershed. Northeast China].

    Science.gov (United States)

    Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan

    2015-12-01

    The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.

  18. Dissolved black carbon along the land to ocean continuum of Paraiba do Sul River, Brazil

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Dittmar, Thorsten; Niggemann, Jutta; Gomes de Almeida, Marcelo; de Rezende, Carlos Eduardo

    2016-04-01

    Rivers annually carry 25-28 Tg of pyrogenic dissolved organic matter (or dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire land-ocean flux of dissolved organic carbon (Jaffé et al., Science 340, 345-347). Objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As model system we chose the land to ocean continuum of Paraíba do Sul River (Brazil), the only river system for which long-term DBC flux data exist (Dittmar, Rezende et al., Nature Geoscience 5, 618-622). The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment. Water samples were collected at 24 sites along the main channel of the river, at 14 sites of the main tributaries and at 21 sites along the salinity gradient in the estuary and up to 35 km offshore. Sampling was performed in the wet seasons of 2013 and 2014, and the dry season of 2013. DBC was determined on a molecular level as benzenepolycarboxylic acids after nitric acid oxidation (Dittmar, Limnology and Oceanography: Methods 6, 230-235). Stable carbon isotopes (δ13C) were determined in solid phase extractable dissolved organic carbon (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations in the wet season and lowest in the dry season. This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. A significant correlation between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originates from C3 plants, i.e. from the historic burning event of the Atlantic rain

  19. Land Cover Land Use change and soil organic carbon under climate variability in the semi-arid West African Sahel (1960-2050)

    Science.gov (United States)

    Dieye, Amadou M.

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project LCLU change is of considerable interest for mitigation and adaptation measures in response to climate change. A combination of remote sensing analyses, qualitative social survey techniques, and biogeochemical modeling was used to study the relationships between climate change, LCLU change and soil organic carbon in the semi-arid rural zone of Senegal between 1960 and 2050. For this purpose, four research hypotheses were addressed. This research aims to contribute to an understanding of future land cover land use change in the semi-arid West African Sahel with respect to climate variability and human activities. Its findings may provide insights to enable policy makers at local to national levels to formulate environmentally and economically adapted policy decisions. This dissertation research has to date resulted in two published and one submitted paper.

  20. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    Science.gov (United States)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  1. Quantitative Estimation of Soil Carbon Sequestration in Three Land Use Types (Orchard, Paddy Rice and Forest in a Part of Ramsar Lands, Northern Iran

    Directory of Open Access Journals (Sweden)

    zakieh pahlavan yali

    2017-02-01

    Full Text Available Introduction: The increasing Greenhouse Gases in atmosphere is the main cause of climate and ecosystems changes. The most important greenhouse gas is CO2 that causes global warming or the greenhouse effect. One of the known solutions that reduces atmospheric carbon and helps to improve the situation, is carbon sequestration in vegetation cover and soil. Carbon sequestration refers to the change in atmospheric CO2 into organic carbon compounds by plants and capture it for a certain time . However, the ecosystems with different vegetation have Impressive Influence on soil carbon sequestration (SCS. Soil as the main component of these ecosystems is a world-wide indicator which has been known to play an important role in global balance of carbon sequestration. Furthermore, carbon sequestration can be a standard world trade and becomes guaranteed. Costs of transfer of CO2 (carbon transfer From the atmosphere into the soil based on the negative effects of increased CO2 on Weather is always increasing, This issue can be faced by developing countries to create a new industry, especially when conservation and restoration of rangeland to follow. This research was regarded due to estimation of SCS in three land use types (orchard, paddy rice and forest in a Part of Ramsar Lands, Northern Iran. Materials and Methods: Ramsar city with an area of about 729/7 km2 is located in the western part of Mazandaran province. Its height above sea level is 20 meters. Ramsar city is situated in a temperate and humid climate. Land area covered by forest, orchard and paddy rice. After field inspection of the area, detailed topographic maps of the specified zone on the study were also tested. In each of the three land types, 500 hectares in the every growing and totally 1,500 hectares as study area were selected .For evaluation the sequestration of carbon in different vegetation systems,15 soil profile selected and sampling from depth of 0 to 100 centimetres of each profile

  2. Effects of land use change on soil organic carbon: a pan-tropic study

    Science.gov (United States)

    van Straaten, O.; Veldkamp, E.; Wolf, K.; Corre, M. D.

    2012-04-01

    Tropical forest deforestation is recognized as one of the major contributors to anthropogenic greenhouse gas emissions. In contrast to aboveground carbon stocks, comparatively little is known on deforestation's effect on the magnitude and the factors affecting soil organic carbon (SOC). In this regional scale study, we focused on tropical sites with deeply weathered, low-activity clays soils in three countries: Indonesia, Cameroon and Peru. Using a clustered sampling design we compared soil carbon stocks in the top 3 m of soil in undisturbed forests (the reference) with converted land uses that had been deforested. The most predominant land use trajectories relevant for each region were investigated. These included (a) conversions from forest to cash-crop plantations (rubber, oil palm, cacoa), (b) conversions from forest to cattle grazing pastures and (c) conversion from forest to shifting cultivation. Preliminary results from the Indonesian case study, found that the conversion of forests to oil palm plantation caused a loss of 20.1 ± 4.4 Mg C ha-1 within 20 years from the top 3 m of soil, while deforestation followed by the establishment of rubber plantations caused a release of 7.2 ± 4.2 Mg C ha-1 for the same time period and depth. SOC losses were most pronounced in the top 30 cm, and less so below. Additionally, regional scale constraints such as soil physical and chemical characteristics (texture, CEC, pH) and climate (precipitation, temperature) effect on SOC emissions have been identified using multivariate statistical methods. The results from the Cameroon and Peru case studies are expected imminently.

  3. Carbon Impacts of Fire- and Bark Beetle-Caused Tree Mortality across the Western US using the Community Land Model (Invited)

    Science.gov (United States)

    Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.

    2013-12-01

    Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions

  4. Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

    Directory of Open Access Journals (Sweden)

    C. Yue

    2017-11-01

    Full Text Available Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing season in northern latitudes. On the other hand, interannual variations in land carbon uptake are strongly influenced by El Niño–Southern Oscillation (ENSO climate variations. Marked reductions in land uptake and strong positive anomalies in the atmospheric CO2 growth rates occur during El Niño events. Here we use the year 2015 as a natural experiment to examine the possible response of land ecosystems to a combination of vegetation greening and an El Niño event. The year 2015 was the greenest year since 2000 according to satellite observations, but a record atmospheric CO2 growth rate also occurred due to a weaker than usual land carbon sink. Two atmospheric inversions indicate that the year 2015 had a higher than usual northern land carbon uptake in boreal spring and summer, consistent with the positive greening anomaly and strong warming. This strong uptake was, however, followed by a larger source of CO2 in the autumn. For the year 2015, enhanced autumn carbon release clearly offset the extra uptake associated with greening during the summer. This finding leads us to speculate that a long-term greening trend may foster more uptakes during the growing season, but no large increase in annual carbon sequestration. For the tropics and Southern Hemisphere, a strong transition towards a large carbon source for the last 3 months of 2015 is discovered, concomitant with El Niño development. This transition of terrestrial tropical CO2 fluxes between two consecutive seasons is the largest ever found in the inversion records. The strong transition to a

  5. Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

    Science.gov (United States)

    Yue, Chao; Ciais, Philippe; Bastos, Ana; Chevallier, Frederic; Yin, Yi; Rödenbeck, Christian; Park, Taejin

    2017-11-01

    Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing season in northern latitudes. On the other hand, interannual variations in land carbon uptake are strongly influenced by El Niño-Southern Oscillation (ENSO) climate variations. Marked reductions in land uptake and strong positive anomalies in the atmospheric CO2 growth rates occur during El Niño events. Here we use the year 2015 as a natural experiment to examine the possible response of land ecosystems to a combination of vegetation greening and an El Niño event. The year 2015 was the greenest year since 2000 according to satellite observations, but a record atmospheric CO2 growth rate also occurred due to a weaker than usual land carbon sink. Two atmospheric inversions indicate that the year 2015 had a higher than usual northern land carbon uptake in boreal spring and summer, consistent with the positive greening anomaly and strong warming. This strong uptake was, however, followed by a larger source of CO2 in the autumn. For the year 2015, enhanced autumn carbon release clearly offset the extra uptake associated with greening during the summer. This finding leads us to speculate that a long-term greening trend may foster more uptakes during the growing season, but no large increase in annual carbon sequestration. For the tropics and Southern Hemisphere, a strong transition towards a large carbon source for the last 3 months of 2015 is discovered, concomitant with El Niño development. This transition of terrestrial tropical CO2 fluxes between two consecutive seasons is the largest ever found in the inversion records. The strong transition to a carbon source in the

  6. Carbon isotope geothermometry of graphite-bearing marbles from Central Dronning Maud Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Muehle, K.

    1988-01-01

    In order to estimate the peak metamorphic temperatures in high-grade regional metamorphic marbles from central Dronning Maud Land (East Antarctica), 13 C/ 12 C isotope ratios have been measured for coexisting carbonate and graphite pairs. The δ 13 C values of carbonates (calcite ± dolomite) and graphite vary from -0.1 to +4.6 permill (PDB) and from -3.3 to +1.7 permill, respectively. The isotopic fractionation between carbonate and graphite ranges from 2.9 to 4.0 permill and is similar to the Δ 13 C (carb-gr) values observed in other East Antarctic and non-Antarctic granulite-facies marbles. The metamorphic temperatures calculated using the equation of VALLEY and O'NEIL (1981) for calcite-graphite pairs are predominantly in the range 700 0 - 800 0 C (x n=5 ± s = 730 0 ± 30 0 C) and agree well with metamorphic temperatures derived from mineral chemical studies in this East Antarctic region. (author)

  7. Pioneering in Marginal Fields: Jatropha for Carbon Credits and Restoring Degraded Land in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Loes Willemijn van Rooijen

    2014-04-01

    Full Text Available This paper highlights the role of a national Non-Governmental Organization (NGO in Indonesia as “pioneer” actor in the jatropha global production network, linking solutions for local problems with narratives concerning global concerns. Analysis of previous activities of the NGO positions their jatropha project as one period in a sequence of donor-funded appropriate technology programs. On the island of Flores in Eastern Indonesia the NGO aimed to establish community based jatropha cultivation exclusively on “degraded land”, avoiding threats to food cultivation, and responding to local problems of land degradation and water resources depletion. In contrast with investors interested in jatropha based biofuel production for export, the NGO aimed at developing biofuel for local needs, including jatropha based electricity generation in the regional state-owned power plant. Anticipating progress in international and national regulations concerning the Clean Development Mechanism (CDM the 2008 project’s design included carbon credit income as a main source of future project financing. Using methods of socio-legal studies and political ecology, this study indicates that when the economic feasibility of a project is based on the future financial value of a legally constructed commodity like carbon credits, the sustainability of the project outcome can be questionable. The author recommends precaution when it comes to including anticipated income from carbon credits in calculating the economic viability of a project, as price developments can fluctuate when political support and regulations change.

  8. Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2012-06-01

    Full Text Available Bioenergy is currently regarded as a renewable energy source with a high growth potential. Forest-based biodiesel, with the significant advantage of not competing with grain production on cultivated land, has been considered as a promising substitute for diesel fuel by many countries, including China. Consequently, extracting biodiesel from Jatropha curcas has become a growing industry. However, many key issues related to the development of this industry are still not fully resolved and the prospects for this industry are complicated. The aim of this paper is to evaluate the net energy, CO2 emission, and cost efficiency of Jatropha biodiesel as a substitute fuel in China to help resolve some of the key issues by studying data from this region of China that is well suited to growing Jatropha. Our results show that: (1 Jatropha biodiesel is preferable for global warming mitigation over diesel fuel in terms of the carbon sink during Jatropha tree growth. (2 The net energy yield of Jatropha biodiesel is much lower than that of fossil fuel, induced by the high energy consumption during Jatropha plantation establishment and the conversion from seed oil to diesel fuel step. Therefore, the energy efficiencies of the production of Jatropha and its conversion to biodiesel need to be improved. (3 Due to current low profit and high risk in the study area, farmers have little incentive to continue or increase Jatropha production. (4 It is necessary to provide more subsidies and preferential policies for Jatropha plantations if this industry is to grow. It is also necessary for local government to set realistic objectives and make rational plans to choose proper sites for Jatropha biodiesel development and the work reported here should assist that effort. Future research focused on breading high-yield varieties, development of efficient field

  9. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations

    Science.gov (United States)

    Wei Li; Philippe Ciais; Shushi Peng; Chao Yue; Yilong Wang; Martin Thurner; Sassan S. Saatchi; Almut Arneth; Valerio Avitabile; Nuno Carvalhais; Anna B. Harper; Etsushi Kato; Charles Koven; Yi Y. Liu; Julia E. M. S. Nabel; Yude Pan; Julia Pongratz; Benjamin Poulter; Thomas A. M. Pugh; Maurizio Santoro; Stephen Sitch; Benjamin D. Stocker; Nicolas Viovy; Andy Wiltshire; Rasoul Yousefpour; Sönke Zaehle

    2017-01-01

    The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we...

  10. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  11. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  12. Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach

    DEFF Research Database (Denmark)

    Poeplau, Christopher; Don, Axel; Vesterdal, Lars

    2011-01-01

    Land-use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites...... approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC....

  13. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5 on carbon fluxes, pools, and turnover in temperate forests

    Directory of Open Access Journals (Sweden)

    F. Montané

    2017-09-01

    Full Text Available How carbon (C is allocated to different plant tissues (leaves, stem, and roots determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI measurements to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM, the Community Land Model (CLM4.5. We ran CLM4.5 for nine temperate (including evergreen and deciduous forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5" with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP; ii. an alternative dynamic C allocation scheme (named "D-Litton", where, similar to (i, C allocation is a dynamic function of annual NPP, but unlike (i includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen" and the other of observations in deciduous forests (named "F-Deciduous". D-CLM4.5 generally overestimated gross primary production (GPP and ecosystem respiration, and underestimated net ecosystem exchange (NEE. In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m−2 for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011 was highly underestimated (between 1222 and 7557 g C m−2 for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the

  14. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    Science.gov (United States)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C

  15. Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal

    Science.gov (United States)

    Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.

    2012-01-01

    Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.

  16. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  17. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    Science.gov (United States)

    Canuel, E. A.; Cammer, S. S.; McIntosh, H.; Pondell, C. R.

    2012-12-01

    Humans have modified estuaries across the globe by altering the delivery of water, sediments and elements such as carbon and nitrogen that play important roles in biogeochemical processes. These activities have caused declines in the health and quality of estuarine ecosystems globally and this trend will likely continue due to increasing population growth in coastal regions, expected changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer and transformation of carbon and biogenic elements between land and ocean systems. The anticipated effects of climate change on biogeochemical processes in estuaries are likely to be both numerous and complex but are poorly understood. Climate change has the potential to influence the carbon cycle in estuaries through anticipated changes to organic matter production, transformation, burial and export. Estuarine biogeochemical processes will likely be altered by: 1) sea level rise and increased storm intensity which will amplify the erosion and transfer of terrigenous materials, 2) increases in water temperatures which will enhance the rates of biological and biogeochemical processes (e.g., enzyme kinetics, decomposition rates, and remineralization), while simultaneously decreasing the concentration of dissolved oxygen, 3) changes in particle (or sediment) loadings in response to altered patterns of precipitation and river runoff, and 4) altered inputs of nutrients and dissolved organic materials to coastal waters, also resulting from changing precipitation and runoff. In this presentation, we review the effects of climate change on the carbon cycle in estuaries, with a focus on the temperate estuaries of North America.

  18. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    Science.gov (United States)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  19. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

    2012-06-07

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  20. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  1. Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO2 and satellite-based vegetation activity observations

    Directory of Open Access Journals (Sweden)

    D. Dalmonech

    2013-06-01

    Full Text Available Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular the net land–atmosphere carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to better understand the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely sensed vegetation activity to provide a novel set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits specifically considers the robustness of information given that the uncertainty of both data and evaluation methodology is largely unknown or difficult to quantify. Based on these considerations, we introduce a baseline benchmark – a minimum test that any model has to pass – to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI Earth System Model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite-based vegetation activity data allows pinpointing of specific model deficiencies that would not be possible by the sole use of atmospheric CO2 observations.

  2. Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change

    Science.gov (United States)

    Nyawira, S. S.; Nabel, J. E. M. S.; Brovkin, V.; Pongratz, J.

    2017-08-01

    Historical changes in soil carbon associated with land-use change (LUC) result mainly from the changes in the quantity of litter inputs to the soil and the turnover of carbon in soils. We use a factor separation technique to assess how the input-driven and turnover-driven controls, as well as their synergies, have contributed to historical changes in soil carbon associated with LUC. We apply this approach to equilibrium simulations of present-day and pre-industrial land use performed using the dynamic global vegetation model JSBACH. Our results show that both the input-driven and turnover-driven changes generally contribute to a gain in soil carbon in afforested regions and a loss in deforested regions. However, in regions where grasslands have been converted to croplands, we find an input-driven loss that is partly offset by a turnover-driven gain, which stems from a decrease in the fire-related carbon losses. Omitting land management through crop and wood harvest substantially reduces the global losses through the input-driven changes. Our study thus suggests that the dominating control of soil carbon losses is via the input-driven changes, which are more directly accessible to human management than the turnover-driven ones.

  3. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  4. Soil carbon stocks along an altitudinal gradient in different land-use categories in Lesser Himalayan foothills of Kashmir

    Science.gov (United States)

    Shaheen, H.; Saeed, Y.; Abbasi, M. K.; Khaliq, A.

    2017-04-01

    The carbon sequestration potential of soils plays an important role in mitigating the effect of climate change, because soils serve as sinks for atmospheric carbon. The present study was conducted to estimate the carbon stocks and their variation with altitudinal gradient in the Lesser Himalayan foothills of Kashmir. The carbon stocks were estimated in different land use categories, namely: closed canopy forests, open forests, disturbed forests, and agricultural lands within the altitudinal range from 900 to 2500 m. The soil carbon content was determined by the Walkley-Black titration method. The average soil carbon stock was found to be 2.59 kg m-2. The average soil carbon stocks in closed canopy forests, open forests, and disturbed forests were 3.39, 2.06, and 2.86 kg m-2, respectively. The average soil carbon stock in the agricultural soils was 2.03 kg m-2. The carbon stocks showed a significant decreasing trend with the altitudinal gradient with maximum values of 4.13 kg m-2 at 900-1200 m a.s.l. and minimum value of 1.55 kg m-2 at 2100-2400 m a.s.l. The agricultural soil showed the least carbon content values indicating negative impacts of soil plowing, overgrazing, and soil degradation. Lower carbon values at higher altitudes attest to the immature character of forest stands, as well as to degradation due to immense fuel wood extraction, timber extraction, and harsh climatic conditions. The study indicates that immediate attention is required for the conservation of rapidly declining carbon stocks in agricultural soils, as well as in the soils of higher altitudes.

  5. Historical and simulated ecosystem carbon dynamics in Ghana: land use, management, and climate

    Science.gov (United States)

    Tan, Z.; Tieszen, L. L.; Tachie-Obeng, E.; Liu, S.; Dieye, A. M.

    2009-01-01

    We used the General Ensemble biogeochemical Modeling System (GEMS) to simulate responses of natural and managed ecosystems to changes in land use and land cover, management, and climate for a forest/savanna transitional zone in central Ghana. Model results show that deforestation for crop production during the 20th century resulted in a substantial reduction in ecosystem carbon (C) stock from 135.4 Mg C ha-1 in 1900 to 77.0 Mg C ha-1 in 2000, and in soil organic C stock within the top 20 cm of soil from 26.6 Mg C ha-1 to 21.2 Mg C ha-1. If no land use change takes place from 2000 through 2100, low and high climate change scenarios (increase in temperature and decrease in precipitation over time) will result in losses of soil organic C stock by 16% and 20%, respectively. A low nitrogen (N) fertilization rate is the principal constraint on current crop production. An increase in N fertilization under the low climate change scenario would lead to an increase in the average crop yield by 21% with 30 kg N ha-1 and by 42% with 60 kg N ha-1 (varying with crop species), accordingly, the average soil C stock would decrease by 2% and increase by 17%, in all cropping systems by 2100. The results suggest that a reasonable N fertilization rate is critical to achieve food security and agricultural sustainability in the study area through the 21st century. Adaptation strategies for climate change in this study area require national plans to support policies and practices that provide adequate N fertilizers to sustain soil C and crop yields and to consider high temperature tolerant crop species if these temperature projections are exceeded.

  6. Above‐ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy‐covariance sites

    DEFF Research Database (Denmark)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario

    2014-01-01

    Attempts to combine biometric and eddy‐covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. We assessed above‐ground biomass changes at five long‐term EC forest stations based on tree‐ring width...... and wood density measurements, together with multiple allometric models. Measurements were validated with site‐specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible...

  7. A landscape-scale study of land use and parent material effects on soil organic carbon and total nitrogen in the Konya Basin, Turkey

    Science.gov (United States)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Erdogan, M. A.

    2011-12-01

    In ecosystems where intensive farming and grazing have been occurring for millennia, there is poor understanding of how present-day soil biogeochemical properties relate to factors associated with soil parent materials (e.g. texture, mineralogy), and the net effects of long-term land use practices. Soil organic carbon (SOC) and total soil nitrogen (TN) are important for their roles in maintaining soil structure, moisture, fertility and contributing to carbon sequestration. Our research used a state factor approach (Jenny 1981) to study effects of soil parent materials and land use practices on SOC, TN, and other properties across thirty-five sites in the Konya Basin, an arid region in south-central Turkey farmed and grazed for over 8,000 years. This project is one of the first to study land use impacts on soils at a landscape scale (500 km2) in south-central Turkey, and incorporate geospatial data (e.g. a satellite imagery-derived land cover map we developed) to aid selection of field sites. Focusing on the plough layer (0-25cm) in two depth intervals, we compared effects of agriculture, orchard cultivation and grazing land use practices and clay-loam alluvial, sandy-loam volcanic and lacustrine clay soils on soil properties using standard least squares regression analyses. SOC and TN depended strongly on parent materials, but not on land use. Averaged across both depth intervals, alluvial soil SOC and TN concentrations (19.4 ± 1.32 Mg/ha SOC, 2.86 ± 1.23 Mg/ha TN) were higher and significantly different than lacustrine (9.72 ± 3.01 Mg/ha SOC, 1.57 ± 0.69 Mg/ha TN) and volcanic soil concentrations (7.40 ± 1.72 Mg/ha SOC, 1.02 ± 0.35 Mg/ha TN). Land use significantly affected SOC and TN on alluvial soils, but not on volcanic or lacustrine soils. Our results demonstrate the potential for land use to have different effects on different soils in this region. Our data on SOC, TN and other soil properties illustrate patterns in regional SOC and TN variability not

  8. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).

    Science.gov (United States)

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa

    2017-12-01

    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Science.gov (United States)

    Chun-Tai. Lai; G. Katul; J. Butnor; M. Siqueira; D. Ellsworth; C. Maier; Kurt Johnsen; S. Mickeand; R. Oren

    2002-01-01

    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas...

  10. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Science.gov (United States)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Carbon Turnover during Effluent Application to the Land: A Potential Role for Vegetation?

    Directory of Open Access Journals (Sweden)

    Vasileios A. Tzanakakis

    2015-01-01

    Full Text Available This work investigates the effect of plant species (Eucalyptus camaldulensis vs. Arundo donax on carbon (C turnover during wastewater application to the land. The study was carried out in 40-liter pots under field conditions and plant species were treated either with pre-treated municipal wastewater or freshwater. Plant species had a strong effect on soil organic matter with pots planted with E. camaldulensis showing greater values than pots planted with A. donax. In accordance, greater respiration rates were measured in E. camaldulensis pots compared to those planted with A. donax. The respiration rate followed a decreasing trend with the progress of the season for both species. These findings suggest differences in soil microbial community composition and/or activity in the rhizosphere of plant species. Minor effects of plant species or effluent were observed in dissolved organic carbon, protein, and hexoses content. In conclusion, the results of the present study reveal an important role of plant species on C cycling in terrestrial environments with potential implications on the sequestration of C and release of nutrients and pollutants.

  12. Exploring the geochemical distribution of organic carbon in early land plants: a novel approach.

    Science.gov (United States)

    Abbott, Geoffrey D; Fletcher, Ian W; Tardio, Sabrina; Hack, Ethan

    2018-02-05

    Terrestrialization depended on the evolution of biosynthetic pathways for biopolymers including lignin, cutin and suberin, which were concentrated in specific tissues, layers or organs such as the xylem, cuticle and roots on the submillimetre scale. However, it is often difficult, or even impossible especially for individual cells, to resolve the biomolecular composition of the different components of fossil plants on such a scale using the well-established coupled techniques of gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Here, we report the application of techniques for surface analysis to investigate the composition of Rhynia gwynne-vaughanii X-ray photoelectron spectroscopy of two different spots (both 300 µm × 600 µm) confirmed the presence of carbon. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed 'chemical maps' (imaging mode with 300 nm resolution) of aliphatic and aromatic carbon in the intact fossil that correlate with the vascular structures observed in high-resolution optical images. This study shows that imaging ToF-SIMS has value for determining the location of the molecular components of fossil embryophytes while retaining structural information that will help elucidate how terrestrialization shaped the early evolution of land plant cell wall biochemistry.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Author(s).

  13. Woodland carbon code: building an evidence base for the "4 per mil" initiative in land converted to forestry.

    Science.gov (United States)

    Hannam, Jacqueline; Vanguelova, Elena; West, Vicky

    2017-04-01

    The Woodland Carbon Code is a voluntary standard for woodland creation projects in the UK. Carbon sequestration resulting from certified projects will contribute directly to the UK's national targets for reducing emissions of greenhouse gases (GHG). Whilst this is concerned primarily with above ground capture there is little empirical evidence of the longer term carbon sequestration potential of soils under this land use change in the UK. We present preliminary results from a resurvey of 20 sites originally sampled as part of the soil survey of England and Wales. It includes soil carbon stocks assessed within the soil profile (up to 1m depth) where sites have been converted to forestry in the last 40 years. The small number of sites (n=20) and high variability in soil type, forest type and original land use prevented detailed analysis between these different factors, but overall there was an increase in carbon concentration in the whole profile, driven primarily by an increase the surface organic layers. For all sites combined there was no significant difference in the C stocks between the two survey periods. The increase in carbon stock in the surface organic horizons tended to be offset by a decrease in the mineral subsoils (specifically in Brown Earth soils) primarily as a result of bulk density changes. There are presently insufficient measured data from a range of UK climate, land-use and soil type conditions to quantify with confidence soil C changes during afforestation. This is partly because of the difficulties of detecting relatively slow changes in spatially heterogeneous soils and also obtaining good examples of sites that have undergone documented land use change. Reviewing results from all ongoing afforestation projects in the UK will provide better quantification of the C sequestration potential of forest soils to be accounted for in the Woodland Carbon Code's overall GHG mitigation potential.

  14. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  15. Carbon dioxide baited trap catches do not correlate with human landing collections of Anopheles aquasalis in Suriname

    NARCIS (Netherlands)

    Hiwat-van Laar, H.; Andriessen, R.; Rijk, de M.; Koenraadt, C.J.M.; Takken, W.

    2011-01-01

    Three types of carbon dioxide-baited traps, i.e., the Centers for Disease Control Miniature Light Trap without light, the BioGents (BG) Sentinel Mosquito Trap (BG-Sentinel) and the Mosquito Magnet® Liberty Plus were compared with human landing collections in their efficiency in collecting Anopheles

  16. Vegetation and land carbon feedbacks in the high-resolution transient Holocene simulations using the MPI Earth system model

    Science.gov (United States)

    Brovkin, Victor; Lorenz, Stephan; Raddatz, Thomas

    2017-04-01

    Plants influence climate through changes in the land surface biophysics (albedo, transpiration) and concentrations of the atmospheric greenhouse gases. One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon due to productivity decrease. This decadal- scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies. Members of the Hamburg Holocene Team: Jürgen Bader1, Sebastian Bathiany2, Victor Brovkin1, Martin Claussen1,3, Traute Cr

  17. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Sallustio, L. [Dipartimento di Bioscienze e Territorio (DiBT), Università del Molise, C. da Fonte Lappone, I-86090 Isernia (Italy); Quatrini, V. [Dipartimento per l' Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, v. San Camillo de Lellis, I-01100 Viterbo (Italy); Geneletti, D., E-mail: davide.geneletti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Corona, P., E-mail: piermaria.corona@entecra.it [Consiglio per la ricerca in agricoltura e l' analisi dell' economia agraria, Forestry Research Centre (CRA-SEL), Viale S. Margherita 80, 52100 Arezzo (Italy); Marchetti, M. [Dipartimento di Bioscienze e Territorio (DiBT), Università del Molise, C. da Fonte Lappone, I-86090 Isernia (Italy)

    2015-09-15

    Highlights: • We tested a new methodology for monitoring land take and its effects on C storage. • The ecological impact of urban growth derives from the previous land use. • C loss increases with the naturalness of the territory. • Different urban assets may imply different forms of land take containment. Land take due to urbanization triggers a series of negative environmental impacts with direct effects on quality of life for people living in cities. Changes in ecosystem services are associated with land take, among which is the immediate C loss due to land use conversion. Land use change monitoring represents the first step in quantifying land take and its drivers and impacts. To this end, we propose an innovative methodology for monitoring land take and its effects on ecosystem services (in particular, C loss) under multi-scale contexts. The devised approach was tested in two areas with similar sizes, but different land take levels during the time-span 1990–2008 in Central Italy (the Province of Rome and the Molise Region). The estimates of total coverage of built up areas were calculated using point sampling. The area of the urban patches including each sampling point classified as built up areas in the year 1990 and/or in the year 2008 is used to estimate total abundance and average area of built up areas. Biophysical and economic values for carbon loss associated with land take were calculated using InVEST. Although land take was 7–8 times higher in the Province of Rome (from 15.1% in 1990 to 20.4% in 2008) than in Molise region, our findings show that its relative impact on C storage is higher in the latter, where the urban growth consistently affects not only croplands but also semi-natural land uses such as grasslands and other wooded lands. The total C loss due to land take has been estimated in 1.6 million Mg C, corresponding to almost 355 million €. Finally, the paper discusses the main characteristics of urban growth and their

  18. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy

    International Nuclear Information System (INIS)

    Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M.

    2015-01-01

    Highlights: • We tested a new methodology for monitoring land take and its effects on C storage. • The ecological impact of urban growth derives from the previous land use. • C loss increases with the naturalness of the territory. • Different urban assets may imply different forms of land take containment. Land take due to urbanization triggers a series of negative environmental impacts with direct effects on quality of life for people living in cities. Changes in ecosystem services are associated with land take, among which is the immediate C loss due to land use conversion. Land use change monitoring represents the first step in quantifying land take and its drivers and impacts. To this end, we propose an innovative methodology for monitoring land take and its effects on ecosystem services (in particular, C loss) under multi-scale contexts. The devised approach was tested in two areas with similar sizes, but different land take levels during the time-span 1990–2008 in Central Italy (the Province of Rome and the Molise Region). The estimates of total coverage of built up areas were calculated using point sampling. The area of the urban patches including each sampling point classified as built up areas in the year 1990 and/or in the year 2008 is used to estimate total abundance and average area of built up areas. Biophysical and economic values for carbon loss associated with land take were calculated using InVEST. Although land take was 7–8 times higher in the Province of Rome (from 15.1% in 1990 to 20.4% in 2008) than in Molise region, our findings show that its relative impact on C storage is higher in the latter, where the urban growth consistently affects no