Sample records for net interfacial charges

  1. The net charge at interfaces between insulators (United States)

    Bristowe, N. C.; Littlewood, P. B.; Artacho, Emilio


    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO3 over SrTiO3 in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta.

  2. The net charge at interfaces between insulators

    Energy Technology Data Exchange (ETDEWEB)

    Bristowe, N C; Littlewood, P B [Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Artacho, Emilio, E-mail: [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom)


    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO{sub 3} over SrTiO{sub 3} in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta. (viewpoint)

  3. Net charge affects morphology and visual properties of ovalbumin aggregates

    NARCIS (Netherlands)

    Weijers, M.; Broersen, K.; Barneveld, P.A.; Cohen Stuart, M.A.; Hamer, R.J.; Jongh,; Visschers, R.W.


    The effect of ovalbumin net charge on aggregate morphology and visual properties was investigated using chromatography, electrophoresis, electron microscopy, and turbidity measurements. A range of differently charged ovalbumin variants (net charge ranging from -1 to -26 at pH 7) was produced using

  4. Interfacial charging phenomena of aluminum (hydr)oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hiemstra, T.; Yong, H.; Van Riemsdijk, W.H.


    The interfacial charging of Al(OH){sub 3} (gibbsite and bayerite) and Al{sub 2}O{sub 3} has been studied. For Al(OH){sub 3} it can be shown that the very strong variation in charging behavior for different preparations is related to the relative presence of differently reacting crystal planes. The edge faces of the hexagonal gibbsite crystals are proton reactive over the whole pH range, in contrast to the 001 plane, which is mainly uncharged below pH = 10. On this 001 face only doubly coordinated surface groups are found, in contrast to the edges which also have singly coordinated surface groups. The results are fully in agreement with the predictions of the Multi site complexation (MUSIC) model. The proton adsorption, electrolyte ion adsorption, and shift of the IEP of gibbsite and aluminum oxide have been modeled simultaneously. For gibbsite, the ion pair formation of Na is larger than that of Cl, as is evidenced by modeling the experimentally observed upward shift on the IEP and charge reversal at high electrolyte concentrations. All these experimental results can be satisfactorily modeled with the MUSIC model, including the experimental surface potential of aluminum oxide (ISFET).

  5. Interfacial charge separation and trapping in composite photocatalysts (United States)

    Chakarov, Dinko

    We explore the phenomena of interfacial charge separation and trapping in composite metal-semiconductor systems and the interaction (energy and charge exchange) between optically excited nanoparticles and the surrounding medium. Disc-shaped copper nanoparticles (Cu NPs) were fabricated by hole-mask colloidal lithography on bare and thin titania film covered fused silica substrates. The dynamics of Cu oxide formation around the NPs were studied in water by localized surface plasmon resonance (LSPR) spectroscopy. We found that the oxidation rate is strongly enhanced under UV irradiation when the NPs are on the surface of the titania film, in comparison to NPs deposited on an inert fused silica substrate. The reason is sought in the ability of TiO2 to create hydroxyl radicals with strong oxidative potential in water under UV irradiation and the charge transfer at the interface between the Cu NPs and the TiO2. The results demonstrate the potential of using LSPR spectroscopy to monitor the oxidation of Cu NPs in situ and in different environments. The work was financially supported by The Nordic Energy Research Council through Project N-I-S-F-D.

  6. Freeze-out conditions from net-proton and net-charge fluctuations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alba, Paolo; Alberico, Wanda [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Bellwied, Rene [Department of Physics, University of Houston, Houston, TX 77204 (United States); Bluhm, Marcus [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Mantovani Sarti, Valentina [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Nahrgang, Marlene [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Ratti, Claudia [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy)


    We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.

  7. The Mechanism of the Interfacial Charge and Mass Transfer during Intercalation of Alkali Metal Cations. (United States)

    Ventosa, Edgar; Paulitsch, Bianca; Marzak, Philipp; Yun, Jeongsik; Schiegg, Florian; Quast, Thomas; Bandarenka, Aliaksandr S


    Intercalation of alkali metal cations, like Li+ or Na+, follows the same three-stage mechanism of the interfacial charge and mass transfer irrespective of the nature of the electrolyte, electrolyte composition or electrode material.

  8. Fullerenes - how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. (United States)

    Zieleniewska, A; Lodermeyer, F; Roth, A; Guldi, D M


    In this review article, we highlight over 25 years of fullerene research in charge transfer chemistry. The major thrust of this work is to illustrate interfacial interactions between fullerenes and porphyrins in electron donor-acceptor conjugates as well as self-assembled associates and co-crystallites all the way to organic photovoltaics. Hereby, the analysis of the fundamental proceses, namely, energy transfer, charge shift, charge separation as well as charge recombination stand at the forefront. Our examples, illustrate on how fine-tuning the structure leads to substantial alteration of interfacial interactions.

  9. A nanoscale study of charge extraction in organic solar cells: the impact of interfacial molecular configurations. (United States)

    Tang, Fu-Ching; Wu, Fu-Chiao; Yen, Chia-Te; Chang, Jay; Chou, Wei-Yang; Gilbert Chang, Shih-Hui; Cheng, Horng-Long


    In the optimization of organic solar cells (OSCs), a key problem lies in the maximization of charge carriers from the active layer to the electrodes. Hence, this study focused on the interfacial molecular configurations in efficient OSC charge extraction by theoretical investigations and experiments, including small molecule-based bilayer-heterojunction (sm-BLHJ) and polymer-based bulk-heterojunction (p-BHJ) OSCs. We first examined a well-defined sm-BLHJ model system of OSC composed of p-type pentacene, an n-type perylene derivative, and a nanogroove-structured poly(3,4-ethylenedioxythiophene) (NS-PEDOT) hole extraction layer. The OSC with NS-PEDOT shows a 230% increment in the short circuit current density compared with that of the conventional planar PEDOT layer. Our theoretical calculations indicated that small variations in the microscopic intermolecular interaction among these interfacial configurations could induce significant differences in charge extraction efficiency. Experimentally, different interfacial configurations were generated between the photo-active layer and the nanostructured charge extraction layer with periodic nanogroove structures. In addition to pentacene, poly(3-hexylthiophene), the most commonly used electron-donor material system in p-BHJ OSCs was also explored in terms of its possible use as a photo-active layer. Local conductive atomic force microscopy was used to measure the nanoscale charge extraction efficiency at different locations within the nanogroove, thus highlighting the importance of interfacial molecular configurations in efficient charge extraction. This study enriches understanding regarding the optimization of the photovoltaic properties of several types of OSCs by conducting appropriate interfacial engineering based on organic/polymer molecular orientations. The ultimate power conversion efficiency beyond at least 15% is highly expected when the best state-of-the-art p-BHJ OSCs are combined with present arguments.

  10. Maxwell–Wagner Effect in Multi-Layered Dielectrics: Interfacial Charge Measurement and Modelling

    Directory of Open Access Journals (Sweden)

    Thi Thu Nga Vu


    Full Text Available The development of high voltage direct current (HVDC technologies generates new paradigms in research. In particular and contrary to the AC case, investigation of electrical conduction is not only needed for understanding the dielectric breakdown but also to describe the field distribution inside the insulation. Here, we revisit the so-called Maxwell–Wagner effect in multi-layered dielectrics by considering on the one hand a non-linear field dependent model of conductivity and on the other hand by performing space charge measurements giving access to the interfacial charge accumulated between different dielectrics. We show that space charge measurements give access to the amount of interfacial charge built-up by the Maxwell–Wagner effect between two dielectrics of different natures. Measurements also demonstrate that the field distribution undergoes a transition from a capacitive distribution to a resistive one, under long lasting stress.

  11. The effect of interfacial layers on charge transport in organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema, E-mail:


    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  12. Influence of kinematic cuts on the net charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Oliinychenko, Dmytro [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine); Steinheimer, Jan [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)


    The higher moments of the net charge distributions, e.g. the skewness and kurtosis, are studied within an infinite hadronic matter calculation in a transport approach. By dividing the box into several parts, the volume dependence of the fluctuations is investigated. After confirming that the initial distributions follow the expectations from a binomial distribution, the influence of quantum number conservation in this case the net charge in the system on the higher moments is evaluated. For this purpose, the composition of the hadron gas is adjusted and only pions and ρ mesons are simulated to investigate the charge conservation effect. In addition, the effect of imposing kinematic cuts in momentum space is analysed. The role of resonance excitations and decays on the higher moments can also be studied within this model. This work is highly relevant to understand the experimental measurements of higher moments obtained in the RHIC beam energy scan and their comparison to lattice results and other theoretical calculations assuming infinite matter.

  13. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells. (United States)

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C


    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  14. Energy Dependence of Moments of Net-Proton, Net-Kaon, and Net-Charge Multiplicity Distributions at STAR

    CERN Document Server



    One of the main goals of the RHIC Beam Energy Scan (BES) program is to study the QCD phase structure, which includes the search for the QCD critical point, over a wide range of chemical potential. Theoretical calculations predict that fluctuations of conserved quantities, such as baryon number (B), charge (Q), and strangeness (S), are sensitive to the correlation length of the dynamical system. Experimentally, higher moments of multiplicity distributions have been utilized to search for the QCD critical point in heavy-ion collisions. In this paper, we report recent efficiency-corrected cumulants and cumulants ratios of the net- proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV collected in the years 2010, 2011, and 2014 with STAR at RHIC. The centrality and energy dependence of the cumulants up to the fourth order, as well as their ratios, are presented. Furthermore, the comparisons with baseline calculations (Poisson) and non-c...

  15. Interfacial Charge Transfer and Recombination Dynamics in van der Waals Heterojunctions of 2D Semiconductors (United States)

    Wang, Jue; Zhu, Haiming; Gong, Zizhou; Kim, Young Duck; Gustafsson, Martin; Hone, James; Zhu, Xiaoyang

    Heterojunctions of transition metal dichalcogenides (TMDC) are being explored for optoelectronics, photovoltaics and spin-valleytronics at the 2D limit. Using time-resolved microscopic transient reflectance spectroscopy, we measured the interfacial charge transfer and recombination dynamics in two dimensional MoS2/WSe2 heterojunctions as a function of interlayer momentum mismatch. The observed ultrafast (Science Foundation Grant DMR 1608437 and Grant DMR 1420634 (Materials Research Science and Engineering Center).

  16. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. (United States)

    Wu, K; Chen, J; McBride, J R; Lian, T


    Plasmon-induced hot-electron transfer from metal nanostructures is a potential new paradigm for solar energy conversion; however, the reported efficiencies of devices based on this concept are often low because of the loss of hot electrons via ultrafast electron-electron scattering. We propose a pathway, called the plasmon-induced interfacial charge-transfer transition (PICTT), that enables the decay of a plasmon by directly exciting an electron from the metal to a strongly coupled acceptor. We demonstrated this concept in cadmium selenide nanorods with gold tips, in which the gold plasmon was strongly damped by cadmium selenide through interfacial electron transfer. The quantum efficiency of the PICTT process was high (>24%), independent of excitation photon energy over a ~1-electron volt range, and dependent on the excitation polarization. Copyright © 2015, American Association for the Advancement of Science.

  17. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

    KAUST Repository

    Begum, Raihana


    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors. More specifically, we develop an in situ doping approach for colloidal CsPbBr3 perovskite NCs with heterovalent Bi3+ ions by hot injection to precisely tune their band structure and excited-state dynamics. This synthetic method allowed us to map the impact of doping on CT from the NCs to different molecular acceptors. Using time-resolved spectroscopy with broadband capability, we clearly demonstrate that CT at the interface of NCs can be tuned and promoted by metal ion doping. We found that doping increases the energy difference between states of the molecular acceptor and the donor moieties, subsequently facilitating the interfacial CT process. This work highlights the key variable components not only for promoting interfacial CT in perovskites, but also for establishing a higher degree of precision and control over the surface and the interface of perovskite molecular acceptors.

  18. Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation. (United States)

    Xu, Xiaobao; Zhang, Hua; Cao, Kun; Cui, Jin; Lu, Jianfeng; Zeng, Xianwei; Shen, Yan; Wang, Mingkui


    This work reports on an investigation into interfacial charge transfer in CH3NH3PbI3 perovskite solar cells by using anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. The devices show 6.0 and 8.0% power conversion efficiency with and without hole-transport material. Transient photovoltage/photocurrent decay and charge extraction, as well as impedance spectroscopy measurements, reveal that carbon materials are effective counter electrodes in perovskite solar cells. The photogenerated charges are observed to be stored in mesoporous TiO2 film under illumination and in the CH3NH3PbI3 layer in the dark. The use of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-MeOTAD) as a hole-transport material accelerates interfacial charge recombination between the photogenerated electrons and holes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coloration of tyrosine by organic-semiconductor interfacial charge-transfer transitions (United States)

    Fujisawa, Jun-ichi; Kikuchi, Natsumi; Hanaya, Minoru


    L-tyrosine (Tyr) plays a crucial role as a proteinogenic amino acid and also as a precursor to several neurotransmitters and hormones. Here we demonstrate coloration of Tyr based on organic-semiconductor interfacial charge-transfer (ICT) transitions. The ICT transitions from Tyr to TiO2 are induced by the chemisorption of Tyr on TiO2 surfaces via the hydroxy group of the phenol moiety. Because other amino acids possess no chemical group to induce ICT transitions, this coloration method enables to detect Tyr selectively without drastic structural change in contrast to the conventional coloration methods.

  20. Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll


    We present measurements of net charge fluctuations in Au + Au collisions at {radical}s{sub NN} = 19.6, 62.4, 130, and 200 GeV, Cu + Cu collisions at {radical}s{sub NN} = 62.4, 200 GeV, and p + p collisions at {radical}s = 200 GeV using the dynamical net charge fluctuations measure {nu}{sub {+-},dyn}. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N{sub ch} scaling, but display approximate 1/N{sub part} scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  1. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions. (United States)

    Fujisawa, Jun-ichi


    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  2. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. (United States)

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou


    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells (United States)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination

  4. Oscillatory Noncollinear Magnetism Induced by Interfacial Charge Transfer in Superlattices Composed of Metallic Oxides

    Directory of Open Access Journals (Sweden)

    Jason D. Hoffman


    Full Text Available Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La_{2/3}Sr_{1/3}MnO_{3} (LSMO and the correlated metal LaNiO_{3} (LNO. The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni^{2+} states. Our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.

  5. Introduction of Interfacial Charges to Black Phosphorus for a Family of Planar Devices (United States)

    Bao, Lihong; Wang, Guocai; Du, Shixuan; Pantelides, Sokrates; Gao, Hong-Jun

    As a young member in the family of two dimensional materials, black phosphorus (BP) has attracted great attention since its discovery due to its high hole mobility and a sizable and tunable bandgap, which meets the basic requirements for logic circuits applications. Naturally, for realization of complementary logic operation, the challenge lies in how to control the conduction type in BP FETs, i.e., the dominant carrier types, holes (p-type) or electrons (n-type). However, the absence of reliable substitutional doping techniques makes this task a great challenge. Introducing interfacial charges into 2D materials has been proven to be a successfulway to control conduction. In this work, we, for the first time, demonstrate that capping a thin BP layer with a layer of cross-linked PMMA can modify the conductivity type of the BP by a surface charge transfer process, converting a BP layer dominated by hole conduction in the absence of an external electric field (p-type) to one dominated by electron conduction (n-type). Combining BP films capped by cross-linked PMMA with standard BP, a familyof planar devices can be created, including BP gated diodes and bidirectional recitifiers (rectification ratio >102) and BP logic inverter (gain¡«0.75) which are capable of performing current rectification, switching, and signal inversion operations. The device performance demonstrated here suggests a promising route for developing 2D-based electronics.

  6. Efficient Hot Electron Transfer by Plasmon Induced Interfacial Charge Transfer Transition (United States)

    Lian, Tianquan

    Surface plasmon resonance in metal nanostructures has been widely used to enhance the efficiency of semiconductors and/or molecular chromophore based solar energy conversion devices by increasing the absorption or energy transfer rate through the enhanced local field strength. In more recent years, it has been shown that excitation of plasmons in metal nanostructures can lead to the injection of hot electrons into semiconductors and enhanced photochemistry. This novel mechanism suggests that plasmonic nanostructures can potentially function as a new class of widely tunable and robust light harvesting materials for solar energy conversion. However, plasmon-induced hot electron injections from metal to semiconductor or molecules are still inefficient because of the competing ultrafast hot electron relaxation processes within the metallic domain. In this paper we discuss a recent study on the plasmon-exciton interaction mechanisms in colloidal quantum-confined semiconductor-gold nanorod heterostructures. In CdSe NRs with Au tips, the distinct plasmon band of the Au nanoparticles was completely damped due to strong interaction with the CdSe domain. Using transient absorption spectroscopy, we show that optical excitation of plasmons in the Au tip leads to efficient hot electron injection into the semiconductor nanorod. In the presence of sacrificial electron donors, this plasmon induced hot electron transfer process can be utilized to drive photoreduction reactions under continuous illumination. We propose that the strong metal/semiconductor coupling in CdSe/Au hetersostructures leads to a new pathway for this surprising efficient hot electron transfer. In this plasmon induced interfacial charge transfer transition (PICTT) the a plasmon decay by direct excitation of an electron from the metal to semiconductor, bypassing the competition with hot electron transfer in metal. Ongoing studies are examining the generality of this mechanism and exploring possible approaches

  7. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan [Univ. of California, Santa Barbara, CA (United States); Bazan, Guillermo [Univ. of California, Santa Barbara, CA (United States); Nguyen, Thuc-Quyen [Univ. of California, Santa Barbara, CA (United States); Wudl, Fred [Univ. of California, Santa Barbara, CA (United States)


    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  8. Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability

    Directory of Open Access Journals (Sweden)

    Jaehoon Park


    Full Text Available We investigated the electrical stabilities of two types of pentacene-based organic thin-film transistors (OTFTs with two different polymeric dielectrics: polystyrene (PS and poly(4-vinyl phenol (PVP, in terms of the interfacial charge depletion. Under a short-term bias stress condition, the OTFT with the PVP layer showed a substantial increase in the drain current and a positive shift of the threshold voltage, while the PS layer case exhibited no change. Furthermore, a significant increase in the off-state current was observed in the OTFT with the PVP layer which has a hydroxyl group. In the presence of the interfacial hydroxyl group in PVP, the holes are not fully depleted during repetitive operation of the OTFT with the PVP layer and a large positive gate voltage in the off-state regime is needed to effectively refresh the electrical characteristics. It is suggested that the depletion-limited holes at the interface, i.e., interfacial charge depletion, between the PVP layer and the pentacene layer play a critical role on the electrical stability during operation of the OTFT.

  9. Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem


    Full Text Available Surface charge is one of the surface properties of atmospheric aerosols, which has been linked to heterogeneous ice nucleation and hence cloud formation, microphysics, and optical properties. Despite the importance of surface charge for ice nucleation, many questions remain on the molecular-level mechanisms at work. Here, we combine droplet-freezing assay studies with vibrational sum frequency generation (SFG spectroscopy to correlate interfacial water structure to surface nucleation strength. We study immersion freezing of aqueous solutions of various pHs on the atmospherically relevant aluminum oxide α-Al2O3 (0001 surface using an isolated droplet on the surface. The high-pH solutions freeze at temperatures higher than that of the low-pH solution, while the neutral pH has the highest freezing temperature. On the molecular level, the SFG spectrum of the interfacial water changes substantially upon freezing. At all pHs, crystallization leads to a reduction of intensity of the 3400 cm−1 water resonance, while the 3200 cm−1 intensity drops for low pH but increases for neutral and high pHs. We find that charge-induced surface templating suppresses nucleation, irrespective of the sign of the surface charge. Heterogeneous nucleation is most efficient for the nominally neutral surface.

  10. Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001) (United States)

    Abdelmonem, Ahmed; Backus, Ellen H. G.; Hoffmann, Nadine; Sánchez, M. Alejandra; Cyran, Jenée D.; Kiselev, Alexei; Bonn, Mischa


    Surface charge is one of the surface properties of atmospheric aerosols, which has been linked to heterogeneous ice nucleation and hence cloud formation, microphysics, and optical properties. Despite the importance of surface charge for ice nucleation, many questions remain on the molecular-level mechanisms at work. Here, we combine droplet-freezing assay studies with vibrational sum frequency generation (SFG) spectroscopy to correlate interfacial water structure to surface nucleation strength. We study immersion freezing of aqueous solutions of various pHs on the atmospherically relevant aluminum oxide α-Al2O3 (0001) surface using an isolated droplet on the surface. The high-pH solutions freeze at temperatures higher than that of the low-pH solution, while the neutral pH has the highest freezing temperature. On the molecular level, the SFG spectrum of the interfacial water changes substantially upon freezing. At all pHs, crystallization leads to a reduction of intensity of the 3400 cm-1 water resonance, while the 3200 cm-1 intensity drops for low pH but increases for neutral and high pHs. We find that charge-induced surface templating suppresses nucleation, irrespective of the sign of the surface charge. Heterogeneous nucleation is most efficient for the nominally neutral surface.

  11. Controlling the net charge on a nanoparticle optically levitated in vacuum (United States)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas


    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  12. MHC-IIB filament assembly and cellular localization are governed by the rod net charge.

    Directory of Open Access Journals (Sweden)

    Michael Rosenberg

    Full Text Available BACKGROUND: Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we examine mechanisms controlling filament assembly of non-muscle myosin IIB heavy chain (MHC-IIB. We show that in vitro the entire C-terminus region of net positive charge, found in myosin II rods, is important for self-assembly of MHC-IIB fragments. In contrast, no particular sequences in the rod region with net negative charge were identified as important for self-assembly, yet a minimal area from this region is necessary. Proper paracrystal formation by MHC-IIB fragments requires the 196aa charge periodicity along the entire coiled-coil region. In vivo, in contrast to self-assembly in vitro, negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB. CONCLUSIONS/SIGNIFICANCE: A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB.

  13. Charge modulated interfacial conductivity in SrTiO3-based oxide heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Stamate, Eugen; Pryds, Nini


    When depositing amorphous SrTiO3 (STO) films on crystalline STO substrates by pulsed laser deposition, metallic interfaces are observed, though both materials are band-gap insulators. The interfacial conductivity exhibits strong dependence on oxygen pressure during film growth, which is closely...

  14. Impact of volume transition on the net charge of poly-N -isopropyl acrylamide microgels (United States)

    Braibanti, M.; Haro-Pérez, C.; Quesada-Pérez, M.; Rojas-Ochoa, L. F.; Trappe, V.


    We explore the electrostatic properties of poly-N -isopropyl acrylamide microgels in dilute, quasi-de-ionized dispersions and show that the apparent net charge of these thermosensitive microgels is an increasing function of their size, the size being conveniently varied by temperature. Our experimental results obtained in a combination of light scattering, conductivity, and mobility experiments are consistent with those obtained in Poisson-Boltzmann cell model calculations, effectively indicating that upon shrinking the number of counterions entrapped within the microgels increases. Remarkably, this behavior shows that the electrostatic energy per particle remains constant upon swelling or deswelling the microgel, resulting in a square root dependence of the net charge on the particle radius.

  15. Charging of silver bromide aqueous interface: Evaluation of enthalpy and entropy of interfacial reactions from surface potential data. (United States)

    Preočanin, Tajana; Supljika, Filip; Kallay, Nikola


    Dependence of surface potential (electrostatic potential at the inner Helmholtz plane, Ψ(0)) at the silver bromide aqueous electrolyte interface was measured as a function of the activities of Br(-) and Ag(+) by using a single crystal silver bromide electrode (SCr-AgBr). Absolute values of surface potentials were obtained from electrode potentials of SCr-AgBr and isoelectric points. Measurements were performed at different temperatures in the range from 10 to 50°C. Corresponding equilibrium constants of interfacial reactions were obtained using the surface complexation model and interpreted via the van't Hoff equation. As a result of the interpretation for the binding of bromide ions leading to a negative surface charge, the thermodynamic parameters obtained were Δ(n)H(∘)=-33kJmol(-1) and Δ(n)S(∘)=-31Jmol(-1)K(-1); and for the binding of silver ions leading to a positive surface charge, Δ(p)H(∘)=-72kJmol(-1) and Δ(p)S(∘)=-196Jmol(-1)K(-1). Association of counterions (CI) with oppositely charged surface sites partially compensates the surface charge. Assuming approximately the same affinities for anions (NO(3)(-)) and cations (K(+)) thermodynamic parameters for their binding were obtained as Δ(CI)H(∘)≈7kJmol(-1) and Δ(CI)S(∘)≈105Jmol(-1)K(-1). Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Scheduling of Crude Oil Operations in Refinery without Sufficient Charging Tanks Using Petri Nets

    Directory of Open Access Journals (Sweden)

    Yan An


    Full Text Available A short-term schedule for crude oil operations in a refinery should define and sequence the activities in detail. Each activity involves both discrete-event and continuous variables. The combinatorial nature of the scheduling problem makes it difficult to solve. For such a scheduling problem, charging tanks are a type of critical resources. If the number of charging tanks is not sufficient, the scheduling problem is further complicated. This work conducts a study on the scheduling problem of crude oil operations without sufficient charging tanks. In this case, to make a refinery able to operate, a charging tank has to be in simultaneous charging and feeding to a distiller for some time, called simultaneously-charging-and-feeding (SCF mode, leading to disturbance to the oil distillation in distillers. A hybrid Petri net model is developed to describe the behavior of the system. Then, a scheduling method is proposed to find a schedule such that the SCF mode is minimally used. It is computationally efficient. An industrial case study is given to demonstrate the obtained results.

  17. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester


    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  18. Cutaneous and mucosal human papillomaviruses differ in net surface charge, potential impact on tropism

    Directory of Open Access Journals (Sweden)

    Wibom Carl


    Full Text Available Abstract Papillomaviruses can roughly be divided into two tropism groups, those infecting the skin, including the genus beta PVs, and those infecting the mucosa, predominantly genus alpha PVs. The L1 capsid protein determines the phylogenetic separation between beta types and alpha types and the L1 protein is most probably responsible for the first interaction with the cell surface. Virus entry is a known determinant for tissue tropism and to study if interactions of the viral capsid with the cell surface could affect HPV tropism, the net surface charge of the HPV L1 capsid proteins was analyzed and HPV-16 (alpha and HPV-5 (beta with a mucosal and cutaneous tropism respectively were used to study heparin inhibition of uptake. The negatively charged L1 proteins were all found among HPVs with cutaneous tropism from the beta- and gamma-PV genus, while all alpha HPVs were positively charged at pH 7.4. The linear sequence of the HPV-5 L1 capsid protein had a predicted isoelectric point (pI of 6.59 and a charge of -2.74 at pH 7.4, while HPV-16 had a pI of 7.95 with a charge of +2.98, suggesting no interaction between HPV-5 and the highly negative charged heparin. Furthermore, 3D-modelling indicated that HPV-5 L1 exposed more negatively charged amino acids than HPV-16. Uptake of HPV-5 (beta and HPV-16 (alpha was studied in vitro by using a pseudovirus (PsV assay. Uptake of HPV-5 PsV was not inhibited by heparin in C33A cells and only minor inhibition was detected in HaCaT cells. HPV-16 PsV uptake was significantly more inhibited by heparin in both cells and completely blocked in C33A cells.

  19. An Interfacial Complex in ZnO and Its Influence on Charge Transport (United States)

    Carlsson, Johan M.; Domingos, Helder S.; Bristowe, Paul D.; Hellsing, Bo


    The segregation of native defects and Bi impurities to a high-angle grain boundary in ZnO is studied by first-principles calculations. It is found that the presence of BiZn increases the concentration of native defects of acceptor type in the grain boundary. This leads to the formation of a BiZn+VZn+Oi interfacial complex under O-rich conditions and exhibits a localized acceptor state. This state, which is different from that of the isolated impurity, gives the grain boundary p-type character and when embedded between n-type ZnO grains is consistent with the double Schottky barrier model for Bi-doped ZnO varistors.

  20. A derivation of generalized Maxwell's equations for electromagnetism that permit net charge creation

    CERN Document Server

    Hampshire, D P


    Maxwell's four differential equations that describe electromagnetism are amongst the most famous equations in science. Feynman said they provide four of the seven fundamental laws of classical Physics. However, Coulomb's law of electrostatics and the Biot-Savart law of magnetostatics are used to justify two of the equations, an ad hoc addition of Maxwell's displacement current density term is used to complete the third equation, and the fourth is a description of Faraday's experimental data. This mixed approach has provided the standard pedagogical introduction to these equations for more than a century. It leaves uncertain whether Maxwell's equations should be considered axioms. Here we show that all four of Maxwell's equations (including Faraday's Law) can be derived by simultaneously solving Coulomb's law, the Biot-Savart law and the conservation of charge. We also derive generalised Maxwell's equations that in contrast to the standard forms, allow the creation of net charge. We argue that Coulomb's law, a...

  1. Study on high breakdown voltage GaN-based vertical field effect transistor with interfacial charge engineering for power applications (United States)

    Du, Jiangfeng; Liu, Dong; Liu, Yong; Bai, Zhiyuan; Jiang, Zhiguang; Liu, Yang; Yu, Qi


    A high voltage GaN-based vertical field effect transistor with interfacial charge engineering (GaN ICE-VFET) is proposed and its breakdown mechanism is presented. This vertical FET features oxide trenches which show a fixed negative charge at the oxide/GaN interface. In the off-state, firstly, the trench oxide layer acts as a field plate; secondly, the n-GaN buffer layer is inverted along the oxide/GaN interface and thus a vertical hole layer is formed, which acts as a virtual p-pillar and laterally depletes the n-buffer pillar. Both of them modulate electric field distribution in the device and significantly increase the breakdown voltage (BV). Compared with a conventional GaN vertical FET, the BV of GaN ICE-VFET is increased from 1148 V to 4153 V with the same buffer thickness of 20 μm. Furthermore, the proposed device achieves a great improvement in the tradeoff between BV and on-resistance; and its figure of merit even exceeds the GaN one-dimensional limit.

  2. Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer. (United States)

    Wang, Kai; Zhang, Zhan; Liu, Chang; Fu, Qiang; Xu, Wenzhan; Huang, Chongwen; Weiss, R A; Gong, Xiong


    In this paper, we report the highly efficient bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device structure via utilizing an ultrathin layer of lithium sulfonated polystyrene (LiSPS) ionomer to reengineer the surface of the solution-processed zinc oxide (ZnO) electron extraction layer (EEL). The unique lithium-ionic conductive LiSPS contributes to enhanced electrical conductivity of the ZnO/LiSPS EEL, which not only facilitates charge extraction from the BHJ active layer but also minimizes the energy loss within the charge transport processes. In addition, the organic-inorganic LiSPS ionomer well circumvents the coherence issue of the organic BHJ photoactive layer on the ZnO EEL. Consequently, the enhanced charge transport and the lowered internal resistance between the BHJ photoactive layer and the ZnO/LiSPS EEL give rise to a dramatically reduced dark saturation current density and significantly minimized charge carrier recombination. As a result, the inverted BHJ PSCs with the ZnO/LiSPS EEL exhibit an approximatively 25% increase in power conversion efficiency. These results indicate our strategy provides an easy, but effective, approach to reach high performance inverted PSCs.

  3. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. (United States)

    Mao, Albert H; Crick, Scott L; Vitalis, Andreas; Chicoine, Caitlin L; Pappu, Rohit V


    Intrinsically disordered proteins (IDPs) adopt heterogeneous ensembles of conformations under physiological conditions. Understanding the relationship between amino acid sequence and conformational ensembles of IDPs can help clarify the role of disorder in physiological function. Recent studies revealed that polar IDPs favor collapsed ensembles in water despite the absence of hydrophobic groups--a result that holds for polypeptide backbones as well. By studying highly charged polypeptides, a different archetype of IDPs, we assess how charge content modulates the intrinsic preference of polypeptide backbones for collapsed structures. We characterized conformational ensembles for a set of protamines in aqueous milieus using molecular simulations and fluorescence measurements. Protamines are arginine-rich IDPs involved in the condensation of chromatin during spermatogenesis. Simulations based on the ABSINTH implicit solvation model predict the existence of a globule-to-coil transition, with net charge per residue serving as the discriminating order parameter. The transition is supported by quantitative agreement between simulation and experiment. Local conformational preferences partially explain the observed trends of polymeric properties. Our results lead to the proposal of a schematic protein phase diagram that should enable prediction of polymeric attributes for IDP conformational ensembles using easily calculated physicochemical properties of amino acid sequences. Although sequence composition allows the prediction of polymeric properties, interresidue contact preferences of protamines with similar polymeric attributes suggest that certain details of conformational ensembles depend on the sequence. This provides a plausible mechanism for specificity in the functions of IDPs.

  4. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)


    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  5. Forward distributions of identified charged particles and net charge and strangeness distributions in $K^{+}p$ interactions at 70 GeV/c

    CERN Document Server

    Spyropoulou-Stassinaki, M


    Presents preliminary results from 70 GeV/c K^{+}p interactions in BEBC filled with hydrogen, using the External Particle Identifier (EPI) to yield a separation of\\pi^{+} and K^{+} mesons in the forward region. The single charged particle (\\pi^{+},\\pi^{-}, K^{+}) longitudinal distributions are studied and compared to the quark counting rules. The (\\pi^{+}/\\pi^{-}) ratio is given for the K^{+} fragmentation region. From linear combinations of the x /sub F/ distributions, the charged pion fragmentation functions are extracted. A comparison of the net charge and net strangeness distributions of the beam fragments as function of the c.m. rapidity y, gives an estimate of the charge and strangeness correlation lengths.

  6. Interfacial Charge States in Graphene on SiC Studied by Noncontact Scanning Nonlinear Dielectric Potentiometry. (United States)

    Yamasue, Kohei; Fukidome, Hirokazu; Funakubo, Kazutoshi; Suemitsu, Maki; Cho, Yasuo


    We investigate pristine and hydrogen-intercalated graphene synthesized on a 4H-SiC(0001) substrate by using noncontact scanning nonlinear dielectric potentiometry (NC-SNDP). Permanent dipole moments are detected at the pristine graphene-SiC interface. These originate from the covalent bonds of carbon atoms of the so-called buffer layer to the substrate. Hydrogen intercalation at the interface eliminates these covalent bonds and the original quasi-(6×6) corrugation, which indicates the conversion of the buffer layer into a second graphene layer by the termination of Si bonds at the interface. NC-SNDP images suggest that a certain portion of the Si dangling bonds remains even after hydrogen intercalation. These bonds are thought to act as charged impurities reducing the carrier mobility in hydrogen-intercalated graphene on SiC.

  7. Net air emissions from electric vehicles: the effect of carbon price and charging strategies. (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay


    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  8. Charging of silver bromide aqueous interface: evaluation of interfacial equilibrium constants from surface potential data. (United States)

    Preočanin, Tajana; Supljika, Filip; Kallay, Nikola


    A single crystal silver bromide electrode (SCr-AgBr) was used to measure the inner surface potential (Ψ(0)) at the silver bromide aqueous electrolyte interface as a function of the activities of Br(-) and Ag(+). Absolute values of the surface potential were calculated from electrode potentials of SCr-AgBr using the value of point of zero charge (pBr(pzc)=6.9 [H.A. Hoyen, R.M. Cole, J. Colloid Interface Sci. 41 (1972) 93.]) as the value of point of zero potential. Measurements were performed in potassium nitrate aqueous solutions. The Ψ(0)(pBr) function was linear and slightly dependent on the ionic strength. The reduction values of the slope with respect to the Nernst equation, expressed by the α coefficient, were 0.880,0.935, and 0.950 at ionic strengths of 10(-4), 10(-3), and 10(-2) mol dm(-3), respectively. The results were successfully interpreted by employing the surface complexation model, developed originally for metal oxides and adapted for silver halides. The thermodynamic ("intrinsic") equilibrium constants for binding of bromide (K(n)(∘)) and silver (K(p)(∘)) ions on the corresponding sites at the silver bromide surface were evaluated as lgK(n)(∘)=3.98; lgK(p)(∘)=2.48. Symmetrical counterion surface association was assumed and equilibrium constants were obtained as lgK(NO(3)(-))(∘)=lgK(K(+))(∘)=4.30. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. On the interfacial charge transfer between solid and liquid Li(+) electrolytes. (United States)

    Schleutker, Marco; Bahner, Jochen; Tsai, Chih-Long; Stolten, Detlef; Korte, Carsten


    The Li(+) ion transfer between a solid and a liquid Li(+) electrolyte has been investigated by DC polarisation techniques. The current density i is measured as a function of the electrochemical potential drop Δ[small mu, Greek, tilde]Li(+) at the interface, using a liquid electrolyte with different Li(+) concentrations. The subject of this experimental study is the interface between the solid electrolyte Ta-substituted lithium lanthanum zirconate (Li6.6La3Zr1.6Ta0.4O12) and a liquid electrolyte consisting of LiPF6 dissolved in ethylene carbonate/dimethyl carbonate (1 : 1). The functional course of i vs. Δ[small mu, Greek, tilde]Li(+) can be described by a serial connection between a constant ohmic resistance Rslei and a current dependent thermally activated ion transfer process. For the present solid-liquid electrolyte interface the areal resistance Rslei of the surface layer is independent of the Li(+) concentration in the liquid electrolyte. At room temperature a value of about 300 Ω cm(2) is found. The constant ohmic resistance Rslei can be attributed to a surface layer on the solid electrolyte with a (relatively) low conductivity (solid-liquid electrolyte interphase). The low conducting surface layer is formed by degradation reactions with the liquid electrolyte. Rslei is considerably increased if a small amount (ppm) of water is added to the liquid electrolyte. The thermally activated ionic transfer process obeys a Butler-Volmer like behaviour, resulting in an exchange current density i0 depending on the Li(+) concentration in the liquid electrolyte by a power-law. At a Li(+) concentration of 1 mol l(-1) a value of 53.1 μA cm(-2) is found. A charge transfer coefficient α of ∼0.44 is measured. The finding of a superposed constant ohmic resistance due to a solid-liquid electrolyte interphase and a current dependent thermally activated ion transfer process is confirmed by the results of two former experimental studies from the literature, performing AC

  10. Optical properties of poly(3-hexylthiophene) and interfacial charge transfer between poly(3-hexylthiophene) and titanium dioxide in composites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Zhang, Jianling [State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Wang, Weiwei [State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Institut des Matériaux Jean Rouxel, University of Nantes, CNRS, 2 rue de la Houssinière, 44322 Nantes (France); Yang, Haigang [State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Reisdorffer, Frederic [Institut des Matériaux Jean Rouxel, University of Nantes, CNRS, 2 rue de la Houssinière, 44322 Nantes (France); Nguyen, Thien-Phap, E-mail: [Institut des Matériaux Jean Rouxel, University of Nantes, CNRS, 2 rue de la Houssinière, 44322 Nantes (France); Dan, Yi, E-mail: [State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)


    The optical properties of poly(3-hexylthiophene) (P3HT), in pristine form or with added anatase titanium dioxide (TiO{sub 2}) nanoparticles have been investigated, and the interfacial charge transfer between P3HT and TiO{sub 2} have been studied by steady-state luminescence spectroscopy analysis. The photoluminescence results revealed that incorporation of TiO{sub 2} nanoparticles in concentrations up to 0.3 mM significantly enhanced the luminescence intensity of P3HT when exposing to light of energy higher than TiO{sub 2} bandgap. The observed variation suggested an energy transfer from TiO{sub 2} nanoparticles to P3HT. Meanwhile, when P3HT/TiO{sub 2} composites were exposed to light of energy below TiO{sub 2} bandgap, TiO{sub 2} nanoparticles gradually quench the fluorescence of P3HT, demonstrating the injection of excited electrons from lowest unoccupied molecular orbit of P3HT to the conduction band of TiO{sub 2}. - Highlights: • Optical properties of P3HT, in pristine form or with added TiO{sub 2} were investigated. • Excitation above TiO{sub 2} bandgap produces a remarkable increase in P3HT emission. • The enhancement is attributed to transfer of excitation energy from TiO{sub 2} to P3HT. • TiO{sub 2} quenches P3HT emission when composites are excited below TiO{sub 2} bandgap. • The quench is due to the injection of excitons from LUMO of P3HT to CB of TiO{sub 2}.

  11. Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. (United States)

    Salvador, J M; Inesi, G; Rigaud, J L; Mata, A M


    The synaptosomal plasma membrane Ca2+-ATPase (PMCA) purified from pig brain was reconstituted with liposomes prepared by reverse phase evaporation at a lipid to protein ratio of 150/1 (w/w). ATP-dependent Ca2+ uptake and H+ ejection by the reconstituted proteoliposomes were demonstrated by following light absorption and fluorescence changes undergone by arsenazo III and 8-hydroxy-1,3, 6-pyrene trisulfonate, respectively. Ca2+ uptake was increased up to 2-3-fold by the H+ ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, consistent with relief of an inhibitory transmembrane pH gradient (i.e. lumenal alkalinization) generated by H+ countertransport. The stoichiometric ratio of Ca2+/H+ countertransport was 1.0/0.6, and the ATP/Ca2+ coupling stoichiometry was 1/1 at 25 degrees C. The electrogenic character of the Ca2+/H+ countertransport was demonstrated by measuring light absorption changes undergone by oxonol VI. It was shown that a 20 mV steady state potential (positive on the lumenal side) was formed as a consequence of net charge transfer associated with the 1/1 Ca2+/H+ countertransport. Calmodulin stimulated ATPase activity, Ca2+ uptake, and H+ ejection, demonstrating that these parameters are linked by the same mechanism of PMCA regulation.

  12. Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. (United States)

    Dinur-Mills, Maya; Tal, Merav; Pines, Ophry


    In eukaryotic cells, identical proteins can be located in different subcellular compartments (termed dual-targeted proteins). We divided a reference set of mitochondrial proteins (published single gene studies) into two groups: i) Dual targeted mitochondrial proteins and ii) Exclusive mitochondrial proteins. Mitochondrial proteins were considered dual-targeted if they were also found or predicted to be localized to the cytosol, the nucleus, the endoplasmic reticulum (ER) or the peroxisome. We found that dual localized mitochondrial proteins have i) A weaker mitochondrial targeting sequence (MitoProtII score, hydrophobic moment and number of basic residues) and ii) a lower whole-protein net charge, when compared to exclusive mitochondrial proteins. We have also generated an annotation list of dual-targeted proteins within the predicted yeast mitochondrial proteome. This considerably large group of dual-localized proteins comprises approximately one quarter of the predicted mitochondrial proteome. We supported this prediction by experimental verification of a subgroup of the predicted dual targeted proteins. Taken together, these results establish dual targeting as a widely abundant phenomenon that should affect our concepts of gene expression and protein function. Possible relationships between the MTS/mature sequence traits and protein dual targeting are discussed.

  13. Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C60. (United States)

    Shin, Dongguen; Kang, Donghee; Jeong, Junkyeong; Park, Soohyung; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin


    In organolead halide perovskite solar cells (PSCs), interfacial properties between the perovskite and charge transport layers are the critical factors governing charge extraction efficiency. In this study, the effect of interfacial energetics between two-step spin-coated methylammonium lead iodide (MAPbI 3 ) with different methylammonium iodide (MAI) concentrations and C 60 on the charge extraction efficiency is investigated. The electronic structures of perovskite films are significantly varied by the MAI concentrations due to the changes in the residual precursor and MA + defect content. As compared to the optimum PSCs with 25 mg mL -1 MAI, PSCs with other MAI concentrations show significantly lower power conversion efficiencies and severe hysteresis. The energy level alignment at the C 60 /MAPbI 3 interface determined by ultraviolet and inverse photoelectron spectroscopy measurements reveals the origin of distinct differences in device performances. The conduction band offset at the C 60 /MAPbI 3 interface plays a crucial role in efficient charge extraction in PSCs.

  14. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation. (United States)

    Reif, Maria M; Oostenbrink, Chris


    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © The Authors Journal of Computational Chemistry

  15. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge (United States)

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.


    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  16. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand

    Directory of Open Access Journals (Sweden)

    Alex N. Eberle


    Full Text Available A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp with three negative charges at the C-terminal end (overall net charge of the molecule −2 and DOTA-Gly-Tyr(P-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9 with two negative charges in the N-terminal region (net charge −1. The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range

  17. Design of a Software for Calculating Isoelectric Point of a Polypeptide According to Their Net Charge Using the Graphical Programming Language LabVIEW (United States)

    Tovar, Glomen


    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel…

  18. High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination. (United States)

    Zeng, Qingsen; Hu, Lu; Cui, Jian; Feng, Tanglue; Du, Xiaohang; Jin, Gan; Liu, Fangyuan; Ji, Tianjiao; Li, Fenghong; Zhang, Hao; Yang, Bai


    Aqueous-processed nanocrystal solar cells have attracted increasing attention due to the advantage of its environmentally friendly nature, which provides a promising approach for large-scale production. The urgent affair is boosting the power conversion efficiency (PCE) for further commercial applications. The low PCE is mainly attributed to the imperfect device structure, which leads to abundant nonradiative recombination at the interfaces. In this work, an environmentally friendly and efficient method is developed to improve the performance of aqueous-processed CdTe nanocrystal solar cells. Polymer/CdTe planar heterojunction solar cells (PHSCs) with optimized band alignment are constructed, which results in reduced interfacial charge recombination, enhanced carrier collection efficiency and built-in field. Finally, a champion PCE of 5.9%, which is a record for aqueous-processed solar cells based on CdTe nanocrystals, is achieved after optimizing the photovoltaic device.

  19. Control of interfacial charge-transfer interaction of dye and p-CuI in solid-state dye-sensitized solar cells (United States)

    Moribe, Shinya; Kato, Naohiko; Higuchi, Kazuo; Mizumoto, Katsuyoshi; Toyoda, Tatsuo


    We systematically investigated the photovoltaic and absorption characteristics of solid-state dye-sensitized solar cells with CuI to elucidate the impact of the interaction between the dye and CuI. For the ruthenium complex N719, the incident photon-to-current conversion efficiency (IPCE) on the longer-wavelength side decreased owing to the change of the metal-to-ligand charge transfer (CT) of N719 due to the interaction between the thiocyanate groups of N719 and CuI. In contrast, when D149 — which included rhodanine groups — was used, the interaction with CuI and the resultant CT increased the IPCE. The results provide a new strategy for improving the photovoltaic performance by controlling the interfacial CT between the dye and CuI.

  20. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT)

    Energy Technology Data Exchange (ETDEWEB)

    Rtimi, S., E-mail: [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne (Switzerland); UR Catalyse/Matériaux pour l‘Environnement et les Procédés (URCMEP), Faculté des Sciences de Gabès, Université de Gabès, 6072 Gabès (Tunisia); Sanjines, R. [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-IPMC-LNNME, Bat PH, Station 3, CH1015 Lausanne (Switzerland); Pulgarin, C., E-mail: [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne (Switzerland); Houas, A. [UR Catalyse/Matériaux pour l‘Environnement et les Procédés (URCMEP), Faculté des Sciences de Gabès, Université de Gabès, 6072 Gabès (Tunisia); Lavanchy, J.-C. [Université de Lausanne, IMG, Centre d’Analyse Minérale, Bat Anthropole, CH-1015 Lausanne (Switzerland); Kiwi, J. [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LPI, Bat Chimie, Station 6, CH1015 Lausanne (Switzerland)


    Highlights: • Design, preparation, testing and characterization of uniform sputtered films. • Interfacial charge transfer from the Ag{sub 2}O (cb) to the lower laying Ta{sub 2}O{sub 5} (cb). • The optical absorption of TaON and TaON/Ag was proportional to E. coli inactivation. • Self-cleaning of the TaON/Ag polyester enables repetitive E. coli inactivation. -- Abstract: This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N{sub 2} and O{sub 2} led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta{sub 2}O{sub 5} and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag{sub 2}O and Ag{sup 0}, and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag{sub 2}O conduction band (cb) to the lower laying Ta{sub 2}O{sub 5} (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation.

  1. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Munhoz, M G; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Peterson, A; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M


    We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

  2. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays. (United States)

    Wang, Jian; Feng, Bo; Su, Jinzhan; Guo, Liejin


    Charge transport in the bulk and across the semiconductor/electrolyte interface is one of the major issues that limits photoelectrochemical (PEC) performance in hematite photoelectrodes. Efficient charge transport in the entire hematite is of great importance to obtaining high photoelectrochemical properties. Herein, to reach this goal, we employed both TiO2 underlayer and overlayer deposition on hematite nanorod films, followed by a fast annealing treatment. The TiO2 underlayer and overlayer not only serve as dopant sources for carrier density increase but also reduce charge recombination at the fluorine-doped tin oxide (FTO)/hematite interface and accelerate charge transfer across the hematite/electrolyte interface. This synergistic doping and interface modifying effects give rise to an enhanced photoelectrochemical water oxidation performance of hematite nanorod arrays, generating an impressive photocurrent density of 1.49 mA cm(-2) at 1.23 V vs RHE. This is the first report on using both underlayer and overlayer modification with the same material to improve charge transport through the entire electron transport path in hematite, which provides a novel way to manipulate charge transfer across the semiconductor interface for a high-performance photoelectrode.

  3. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics. (United States)

    Chen, Wei; Shen, Jana K


    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  4. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics † (United States)

    Chen, Wei; Shen, Jana K.


    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  5. Enhanced photocatalytic performance of Ag2O/BiOF composite photocatalysts originating from efficient interfacial charge separation (United States)

    Yang, Mei; Yang, Qi; Zhong, Junbo; Huang, Shengtian; Li, Jianzhang; Song, Jiabo; Burda, Clemens


    Previous studies have well established that the photocatalytic performance of BiOF is greatly inhibited by its inherent drawbacks, which are the wide band gap and high recombination of photo-generated charge carriers. Therefore, it is necessary to promote the photocatalytic activity of BiOF. In this work, a series of novel Ag2O/BiOF composites were prepared by a facile precipitation method and characterized by X-ray diffractometry (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), surface photovoltage (SPV) spectroscopy, and electron spin-resonance (ESR) spectroscopy. The photocatalytic characteristics of Rhodamine B (RhB) discoloration under simulated sunlight and visible-light irradiation were studied. The results revealed that the sample with 1.0% molar ratio of Ag/Bi displayed the best photocatalytic performance towards RhB discoloration and all the studied composites in this work displayed a higher photocatalytic activity than the bare BiOF. Based on the results of ;band edge potential; of Ag2O and BiOF, SPV and ESR, charge separation and transportation mechanisms are suggested. Under simulated sunlight illumination, the charge separation and transport mechanism of the photo-induced charge pairs followed a Z-scheme.

  6. Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO. (United States)

    Smieja, Jonathan M; Benson, Eric E; Kumar, Bhupendra; Grice, Kyle A; Seu, Candace S; Miller, Alexander J M; Mayer, James M; Kubiak, Clifford P


    The effective design of an artificial photosynthetic system entails the optimization of several important interactions. Herein we report stopped-flow UV-visible (UV-vis) spectroscopy, X-ray crystallographic, density functional theory (DFT), and electrochemical kinetic studies of the Re(bipy-tBu)(CO)(3)(L) catalyst for the reduction of CO(2) to CO. A remarkable selectivity for CO(2) over H(+) was observed by stopped-flow UV-vis spectroscopy of [Re(bipy-tBu)(CO)(3)](-1). The reaction with CO(2) is about 25 times faster than the reaction with water or methanol at the same concentrations. X-ray crystallography and DFT studies of the doubly reduced anionic species suggest that the highest occupied molecular orbital (HOMO) has mixed metal-ligand character rather than being purely doubly occupied d(z)(2), which is believed to determine selectivity by favoring CO(2) (σ + π) over H(+) (σ only) binding. Electrocatalytic studies performed with the addition of Brönsted acids reveal a primary H/D kinetic isotope effect, indicating that transfer of protons to Re -CO(2) is involved in the rate limiting step. Lastly, the effects of electrode surface modification on interfacial electron transfer between a semiconductor and catalyst were investigated and found to affect the observed current densities for catalysis more than threefold, indicating that the properties of the electrode surface need to be addressed when developing a homogeneous artificial photosynthetic system.

  7. Net-Charge Fluctuations in Pb-Pb collisions at $\\sqrt{s_{NN}}= 2.76$ TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacobs, Peter; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym


    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudo-rapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the ALICE data points are between the theoretically predicted values for a hadron gas and a Quark-Gluon Plasma.

  8. Surface Oxide Net Charge of a Titanium Alloy ; Modulation of Fibronectin-Activated Attachment and Spreading of Osteogenic Cells (United States)

    Rapuano, Bruce E.; MacDonald, Daniel E.


    In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloy's surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy (0.001 and 10 nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, incdicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectin's integrin receptor activity by altering the adsorbed protein's conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials. PMID:20884181

  9. Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. (United States)

    Li, Lu; Zhang, Mingyi; Liu, Ying; Zhang, Xitian


    One-dimensional ternary hierarchical heterostructures based on BiOCl nanosheets and bicrystalline TiO2 nanofiber frameworks that consist of anatase-rutile (AR) mixed phase TiO2 nanoparticles were successfully designed by combining the electrospinning technique and solvothermal method. The BiOCl nanosheets were uniformly grown onto the electrospun TiO2 nanofibers, and the density of the secondary BiOCl nanosheets could be controlled by adjusting the precursor concentration. Photocatalytic tests displayed that the ternary BiOCl/TiO2 (AR) hierarchical heterostructures possessed a much higher degradation rate than the bare bicrystalline TiO2 (AR) nanofibers, BiOCl/TiO2 (A) or BiOCl/TiO2 (R) composite. It is mainly attributed to the photogenerated interfacial charge transfer based on the photosynergistic effect of the heterojunctions, which results in the high separation efficiency of photogenerated electron-hole pairs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bands

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier


    In organic solar cells (OSCs), the energy of the charge-transfer (CT) complexes at the donor-acceptor interface, E , determines the maximum open-circuit voltage (V ). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi-crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V enormously. Yet, the question of how structural heterogeneities alter CT states and the V is seldom addressed systematically. In this work, we combine experimental measurements of vacuum-deposited rubrene/C bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E and V . We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low-lying CT states contribute strongly to V losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E configurations and maximizes V .

  11. Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    CERN Document Server

    Bazavov, A; DeTar, C E; Ding, H -T; Gottlieb, Steven; Gupta, Rajan; Hegde, P; Heller, Urs; Karsch, F; Laermann, E; Levkova, L; Mukherjee, Swagato; Petreczky, P; Schmidt, Christian; Soltz, R A; Soeldner, W; Sugar, R; Vranas, Pavlos M


    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results in the continuum limit are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T < 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At $T \\simeq 160 MeV$ quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These fin...

  12. Characterization of organic electrolyte systems by nuclear magnetic resonance and molecular orbital simulation: equilibrium constant and net charge distribution in solvation state

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Juichi; Nishimura, Katsunori; Muranaka, Yasushi; Ito, Yutaka [Hitachi Ltd., Ibaraki (Japan). Res. Lab.


    Solvation states of single solvent electrolyte systems of ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC) with LiPF{sub 6} were characterized by {sup 13}C-NMR solvation shift and molecular orbital (MO) simulation. Dissociation constants and solvation constants were estimated by parameter fitting to solvation shift using a simple equilibrium model. The solvation shifts {Delta}{delta} were observed not only at a lower field but also at a higher field due to change of net charge {Delta}{rho} in solvent molecules by Li{sup +} attachment. This particular feature of solvation shifts was demonstrated in the molecular orbital simulation as driven by the change of net charge using a 1:1 (Li{sup +}:solvent) solvation model. (orig.)

  13. Characterization of organic electrolyte systems by nuclear magnetic resonance and molecular orbital simulation: Equilibrium constant and net charge distribution in solvation state (United States)

    Arai, Juichi; Nishimura, Katsunori; Muranaka, Yasushi; Ito, Yutaka

    Solvation states of single solvent electrolyte systems of ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ehylmethyl carbonate (EMC) and diethyl carbonate (DEC) with LiPF 6 were characterized by 13C-NMR solvation shift and molecular orbital (MO) simulation. Dissociation constants and solvation constants were estimated by parameter fitting to solvation shift using a simple equilibrium model. The solvation shifts Δδ were observed not only at a lower field but also at a higher field due to change of net charge Δ ρ in solvent molecules by Li + attachment. This particular feature of solvation shifts was demonstrated in the molecular orbital simulation as driven by the change of net charge using a 1:1 (Li +:solvent) solvation model.

  14. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers. (United States)

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing


    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  15. Simultaneous Nanoscale Surface Charge and Topographical Mapping. (United States)

    Perry, David; Al Botros, Rehab; Momotenko, Dmitry; Kinnear, Sophie L; Unwin, Patrick R


    Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.

  16. Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=7.7-200$ GeV

    CERN Document Server

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Alexander, J; Al-Ta'ani, H; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Black, D; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Castera, P; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Cronin, N; Crossette, N; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; Daugherity, M S; David, G; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Do, J H; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gainey, K; Gal, C; Garg, P; Garishvili, A; Garishvili, I; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Gustafsson, H -Å; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Hashimoto, K; Haslum, E; Hayano, R; Hayashi, S; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Isinhue, A; Isobe, T; Issah, M; Isupov, A; Ivanishchev, D; Jacak, B V; Javani, M; Jia, J; Jiang, X; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Key, J A; Khandai, P K; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, H J; Kim, K -B; Kim, S H; Kim, Y -J; Kim, Y K; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Klatsky, J; Kleinjan, D; Kline, P; Kochenda, L; Komatsu, Y; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Krizek, F; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, B; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Leitgab, M; Leitner, E; Lenzi, B; Lewis, B; Li, X; Liebing, P; Lim, S H; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Maruyama, T; Masui, H; Masumoto, S; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Midori, J; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, D K; Mishra, M; Mitchell, J T; Miyachi, Y; Miyasaka, S; Mohanty, A K; Mohapatra, S; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moskowitz, M; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Nederlof, A; Netrakanti, P K; Newby, J; Nguyen, M; Nihashi, M; Niida, T; Nouicer, R; Novitzky, N; Nukariya, A; Nyanin, A S; Obayashi, H; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, J; Park, S; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J -C; Pereira, H; Perepelitsa, D V; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Riveli, N; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Ryu, M S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Sako, H; Samsonov, V; Sano, M; Sano, S; Sarsour, M; Sato, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Sen, A; Seto, R; Sett, P; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skolnik, M; Slunečka, M; Solano, S; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Tennant, E; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Tsuji, T; Vale, C; Valle, H; van Hecke, H W; Vargyas, M; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Voas, B; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; Whitaker, S; White, S N; Winter, D; Wolin, S; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xia, B; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhang, C; Zhou, S; Zolin, L


    We report the measurement of cumulants ($C_n, n=1\\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\\eta|<0.35$) in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \\mu/\\sigma^2$ and $C_3/C_1 = S\\sigma^3/\\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperat...

  17. Design of a software for calculating isoelectric point of a polypeptide according to their net charge using the graphical programming language LabVIEW. (United States)

    Tovar, Glomen


    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the polypeptide chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel (-xls) type file is generated. In this work, the experimental values of the pIs (pI) of different proteins are compared with the values of the pIs (pI) calculated graphically, achieving a correlation coefficient (R) of 0.934746 which represents a good reliability for a p program can constitute an instrument applicable in the laboratory, facilitating the calculation to graduate students and junior researchers. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):39-46, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. Effect of the Net Charge Distribution on the Aqueous Solution Properties of Polyampholytes Effet de la répartition de la charge nette sur les propriétés des solutions aqueuses de polyampholytes

    Directory of Open Access Journals (Sweden)

    Candau F.


    Full Text Available The zwitterion nature of ampholytic polymers provides features that are useful in environmental and industrial applications, e. g. ion-exchange membrane, as flocculants in sewage treatment and in oil recovery processes. In the latter case, the increase in viscosity which is observed in the presence of brine (anti -polyelectrolyte behavior make them ideal candidates for high salinity media. The aqueous solution properties of a series of ampholytic terpolymers based on sodium-2-acrylamido-2- rilethylpropanesulfonate (NaAMPS, Methacryloyloxyethyltrimethylammonium chloride (MADQUAT and acrylamide (AM, prepared in inverse micro emulsions have been investigated by viscometry and light scattering experiments. The distribution of the net charge among the chains was varied by adjusting the initial monomer composition and the degree of conversion. The effect of this distribution on the solubility of the samples and on the chain conformation was studied. It was found that samples with a narrow distribution of net charges were soluble in water even if the average net charge is small. Addition of salt produces a transition from an extended conformation to a more compact one in qualitative agreement with theoretical predictions. A practically alternated NaAMPS- MADQUAT copolymer prepared in homogeneous solution and with a small average net charge shows a behaviour quite similar to that of the terpolymers. La nature zwitterioniquedes polymères ampholytes présente des caractéristiques qui sont utiles dans les applications environnementales et industrielles, comme les membranes d'échange ionique, les floculants dans le traitement des eaux usées et dans les procédés de récupération de pétrole. Dans ce dernier cas, l'augmentation de viscosité qui est observée en présence de saumure (comportement antipolyélectrolyte en fait des candidats idéaux pour des milieux de salinité élevée. Les propriétés de la solution aqueuse d'une série de terpolym

  19. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.; Jongh,


    In this study a set of chemically engineered variants of ovalbumin was produced to study the effects of electrostatic charge on the adsorption kinetics and resulting surface pressure at the air-water interface. The modification itself was based on the coupling of succinic anhydride to lysine

  20. Facile, quick and selective visible-light sensing of phenol-containing drug molecules acetaminophen and biosol by use of interfacial charge-transfer transitions with TiO2 nanoparticles (United States)

    Fujisawa, Jun-ichi; Eda, Takumi; Hanaya, Minoru


    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and organic compounds provide a method for facile and quick visible-light sensing of colorless organic molecules such as biologically important molecules. Here, we demonstrate facile, quick, and selective visible-light sensing of phenol-containing drug molecules 4-acetamidophenol called acetaminophen and 4-isopropyl-3-methylphenol called biosol by use of ICT transitions. The chemical adsorption of these phenol-containing drug molecules on TiO2 nanoparticles via the hydroxy group induces organic-to-TiO2 ICT transitions in the visible region. The ICT band is shifted depending on the substituents in the phenyl derivatives, allow the selective visible-light sensing of them.

  1. Net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV. (United States)

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Carrillo Montoya, C A; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Di Giglio, C; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gonschior, A; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, M; Kim, M; Kim, S H; Kim, D J; Kim, S; Kim, J H; Kim, J S; Kim, B; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lazzeroni, C; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, K S; Lee, G R; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Mohanty, A K; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, S; Sano, M; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymanski, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilk, A; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, F; Zhou, D; Zhou, Y; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M


    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

  2. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. (United States)

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan


    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  3. Effects of the interfacial charge injection properties of silver nanowire transparent conductive electrodes on the performance of organic light-emitting diodes (United States)

    Kim, Jin-Hoon; Triambulo, Ross E.; Park, Jin-Woo


    We investigated the charge injection properties of silver nanowire networks (AgNWs) in a composite-like structure with poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS). The composite films acted as the anodes and hole transport layers (HTLs) in organic light-emitting diodes (OLEDs). The current density (J)-voltage (V)-luminance (L) characteristics and power efficiency (ɛ) of the OLEDs were measured to determine their electrical and optical properties. The charge injection properties of the AgNWs in the OLEDs during operation were characterized via impedance spectroscopy (IS) by determining the variations in the capacitances (C) of the devices with respect to the applied V and the corresponding frequency (f). All measured results were compared with results for OLEDs fabricated on indium tin oxide (ITO) anodes. The OLEDs on AgNWs showed lower L and ɛ values than the OLEDs on ITO. It was also observed that AgNWs exhibit excellent charge injection properties and that the interfaces between the AgNWs and the HTL have very small charge injection barriers, resulting in an absence of charge carrier traps when charges move across these interfaces. However, in the AgNW-based OLED, there was a large mismatch in the number of injected holes and electrons. Furthermore, the highly conductive electrical paths of the AgNWs in the composite-like AgNW and PEDOT:PSS structure allowed a large leakage current of holes that did not participate in radiative recombination with the electrons; consequently, a lower ɛ was observed for the AgNW-based OLEDs than for the ITO-based OLEDs. To match the injection of electrons by the electron transport layer (ETL) in the AgNW-based OLED with that of holes by the AgNW/PEDOT:PSS composite anode, the electron injection barrier of the ETL was decreased by using the low work function polyethylenimine ethoxylated (PEIE) doped with n-type cesium carbonate (Cs2CO3). With the doped-PEIE, the performance of the AgNW-based OLED was

  4. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis. (United States)

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W


    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at

  5. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. (United States)

    Kumar, S Girish; Devi, L Gomathi


    Titania is one of the most widely used benchmark standard photocatalysts in the field of environmental applications. However, the large band gap of titania and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. The former can be overcome by modifying the electronic band structure of titania including various strategies like coupling with a narrow band gap semiconductor, metal ion/nonmetal ion doping, codoping with two or more foreign ions, surface sensitization by organic dyes or metal complexes, and noble metal deposition. The latter can be corrected by changing the surface properties of titania by fluorination or sulfation or by the addition of suitable electron acceptors besides molecular oxygen in the reaction medium. This review encompasses several advancements made in these aspects, and also some of the new physical insights related to the charge transfer events like charge carrier generation, trapping, detrapping, and their transfer to surface are discussed for each strategy of the modified titania to support the conclusions derived. The synergistic effects in the mixed polymorphs of titania and also the theories proposed for their enhanced activity are reported. A recent venture on the synthesis and applications of anatase titania with a large percentage of reactive {001} facets and their band gap extension to the visible region via nonmetal ion doping which is a current hot topic is briefly outlined.

  6. Orientation Control of Interfacial Magnetism at La0.67Sr0.33MnO3/SrTiO3 Interfaces. (United States)

    Guo, Er-Jia; Charlton, Timothy; Ambaye, Haile; Desautels, Ryan D; Lee, Ho Nyung; Fitzsimmons, Michael R


    Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic "dead" layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. Here, the interfacial magnetism was investigated using three identically prepared La0.67Sr0.33MnO3 (LSMO) thin films grown on different oriented SrTiO3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largest across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. The approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.

  7. Surface modification of indium tin oxide anodes by self-assembly monolayers: Effects on interfacial morphology and charge injection in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chong, L.-W. [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Lee, Y.-L. [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)]. E-mail:; Wen, T.-C. [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)


    Three silane derivatives including dodecyltrichlorosilane (DDTS), phenyltriethoxysilane (PTES) and 3-aminopropyl-methyl-diethoxysilane (APMDS) were used to modify the indium tin oxide (ITO) surfaces. The effects of various terminal groups of the self-assembled monolayers (SAMs) on the growth behavior and interfacial morphologies of N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) film deposited on the SAM-modified ITO were studied, as well as their effects on the performance of organic light-emitting diodes (OLED) devices. The results show that the growth behavior of NPB film over-deposited on the SAM-modified ITO is mainly determined by the wettability of the surface. The covering ability and thermal stability of NPB film on the SAM-modified ITO decrease in the order: bare ITO > ITO/PTES > ITO/APMDS > ITO/DDTS. However, the covering characteristic of NPB films on these substrates did not show direct relation to the transport of carriers across the anode/NPB interface as evaluated from the cyclic voltammogram and OLED performance. The turn-on voltages for these SMA-modified OLED devices increase in the order: ITO/PTES < ITO/DDTS {<=} bare ITO < ITO/APMDS. The enhancing effect of PTES on the hole injection is ascribed to the similar structure of PTES to NPB. On the contrary, the inhibition effect of APMDS is caused from the interaction of the lone-pair electrons of amine group to the transport carriers. Since these devices are known to be hole dominant, the luminance efficiency increase in a similar order as that for the turn-on voltage: ITO/PTES < ITO/DDTS {<=} bare ITO < ITO/APMDS.

  8. Charge transfer effect for the La0.7Ca0.3MnO3/NiO heterostructure and novel interfacial ferromagnetism (United States)

    Ning, Xingkun; Chen, Mingjing; Wang, Shufang; Fu, Guangsheng


    We report the formation of new ferromagnetic (FM) states in antiferromagnetic (AFM) NiO at the interface with FM La0.7Ca0.3MnO3 (LCMO). The LCMO/NiO heterostructures exhibit an exchange bias field of 209 Oe that vanishes as the temperature rises above 90 K. A new magnetization temperature at 90 K is observed and can be ascribed to Ni3+-O-Mn3+ superexchange interactions. Mn 3 s and Ni 3p core-level spectra, measured by X-ray photoelectron spectroscopy, show a direct evidence of charge transfer effects of the type Mn4+-Ni2+ → Mn3+-Ni3+ at the interface region. The valence band offset (VBO) at the LCMO/NiO interface can be determined to be ΔEVBO ∼ 0.77 eV. The valence band of LCMO is shifted to higher binding energy compared with NiO. Thus, charge transfer occurred because of the shifting of the valence band edge at the heterostructure interfaces. We speculate that the superexchange interactions of the Ni3+ and Mn3+ at the interface give rise to the novel low-temperature FM order and the magnetic regions that pin the FM LCMO layer as the temperature decreases.

  9. Interfacial Engineering of Molecular Photovoltaics (United States)

    Shelton, Steven Wade

    One of the most worthy pursuits in the field of organic solar cells is that of discovering ways to more effectively harvest charge generated by light absorption. The measure of the efficacy of this process is the external quantum efficiency (EQE). It is determined by the efficiency of incident light absorption, exciton diffusion, exciton splitting and charge transfer, and charge collection. Enhanced EQE can be realized by engineering interfaces between materials in the device to allow for smoother charge transfer throughout the extent of the device, which is usually between 10 and 200 nanometers. Improvements in charge transport are vitally important because the photogenerated excitons in electron donating polymers and small molecules typically only diffuse between 5 and 10 nanometers. These excitons must reach the interface between the electron donor and electron acceptor in order to be split so that the resulting electron and hole can be harvested at the cathode and anode, respectively. The aim of much of this dissertation is to describe a method by which the donor-acceptor interfacial area can be augmented using nanoimprint lithography, first with a single donor and then with multiple donors. Nanoimprint lithography is introduced as a simple embossing technique that can create features in a single component donor with dimensions as small as 20 nm. Solution-processable small molecules are of interest for their ease of synthesis and fabrication. I continue the discussion of nanoimprint lithography by offering candidates for a two-component donor combination. A two-component donor can extend the absorption range across a broader portion of the solar spectrum than just one donor to improve energy harvesting. After considering ways of optimizing the donor-acceptor interface, I describe the use of a charge selective layer for better charge transport and collection. When incorporated into a bilayer solar cell and an inverted solar cell, these two molecules markedly

  10. Fundamental interfacial mechanisms underlying electrofreezing. (United States)

    Acharya, Palash V; Bahadur, Vaibhav


    This article reviews the fundamental interfacial mechanisms underlying electrofreezing (promotion of ice nucleation via the application of an electric field). Electrofreezing has been an active research topic for many decades, with applications in food preservation, cryopreservation, cryogenics and ice formation. There is substantial literature detailing experimental and simulations-based studies, which aim to understand the complex mechanisms underlying accelerated ice nucleation in the presence of electric fields and electrical charge. This work provides a critical review of all such studies. It is noted that application-focused studies of electrofreezing are excluded from this review; such studies have been previously reviewed in literature. This review focuses only on fundamental studies, which analyze the physical mechanisms underlying electrofreezing. Topics reviewed include experimental studies on electrofreezing (DC and AC electric fields), pyroelectricity-based control of freezing, molecular dynamics simulations of electrofreezing, and thermodynamics-based explanations of electrofreezing. Overall, it is seen that electrofreezing can enable disruptive advancements in the control of liquid-to-solid phase change, and that our current understanding of the underlying mechanisms can be significantly improved through further studies of various interfacial effects coming into play. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hydrated interfacial ions and electrons. (United States)

    Abel, Bernd


    Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.

  12. Emulsions for interfacial filtration.

    Energy Technology Data Exchange (ETDEWEB)

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.


    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  13. High resolution printing of charge (United States)

    Rogers, John; Park, Jang-Ung


    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  14. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  15. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej


    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  16. Effect of hydrogen charging on fracture toughness obtained by small specimen of SUS304L : Study on low temperature materials used in WE-NET 19

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, T.; Saito, M.; Yuri, T. [National Institute for Materials Science (Japan). Materials Information Technology Station; Hirayama, Y. [Mitsubishi Heavy Industries Ltd. (Japan); Eguchi, H. [Ishikawajima-Harima Heavy Industries Co. Ltd. (Japan)


    The ductility of austenitic stainless steels even at cryogenic temperatures and a hydrogen environment make it a widely used material in cryogenic applications. The evaluation of mechanical properties of structural materials including weld metals at low temperatures is important, as fracture toughness of cryogenic materials is required for the design of large scale facilities such as clean energy to transport and store liquid hydrogen. The authors used a new testing procedure of J-evaluation on tensile test (JETT) to evaluate local fracture toughness of top, middle, bottom, and heat-affected zone of welds of SUS304L. The tests revealed that a decrease of 9 parts per million hydrogen-charging occurred in fracture toughness in 5 per cent and 10 per cent delta-ferrite welds, and that toughness decreased by only 4 parts per million hydrogen-charging in 10 per cent welds. The authors concluded that less amount of delta-ferrite weld has less influence of hydrogen embrittlement and a critical amount of hydrogen-charging. 7 refs., 1 tab., 5 figs.

  17. RESTful NET

    CERN Document Server

    Flanders, Jon


    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  18. Geometry, charge distribution, and surface speciation of phosphate on goethite.

    NARCIS (Netherlands)

    Rahnemaie, R.; Hiemstra, T.; Riemsdijk, van W.H.


    The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in

  19. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  20. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  1. Effect of nanoscale patterned interfacial roughness on interfacial toughness.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Moody, Neville Reid; Mook, William M. (University of Minnesota, Minneapolis, MN); Kennedy, Marian S. (Clemson University, Clemson, SC); Bahr, David F. (Washington State University, Pullman, WA); Zhou, Xiao Wang; Reedy, Earl David, Jr.


    The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

  2. Impact of Interfacial Layers in Perovskite Solar Cells. (United States)

    Cho, An-Na; Park, Nam-Gyu


    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions (United States)

    Polkehn, M.; Tamura, H.; Burghardt, I.


    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  4. Biconical bob oscillatory interfacial rheometer

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, R.; Chung, S.I.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering


    This paper describes a biconical bob oscillatory interfacial rheometer designed to measure the dynamic viscoelastic response of a liquid-liquid interface subjected to a small amplitude oscillatory shear stress. This instrument is used to examine the rheological behavior of interfaces in the presence of surfactants, especially macromolecular types. Rheological parameters are calculated from a hydrodynamic analysis incorporating a linear viscoelastic interfacial rheological model. The general response of this instrument is compared with the oscillatory deep channel interfacial rheometer which is also capable of similar measurements. Measurements of interfacial viscoelasticity for the same liquid-liquid system with the two rheometers, the biconical bob and the deep channel rheometers, are shown to be comparable. This study demonstrates the intrinsic nature and, therefore, the instrument independent of these dynamic interfacial rheological properties. Accurate measurements of interfacial shear viscoelasticity can be carried out over a wide range of systems by combining measurements with the oscillatory interfacial rheometers. The limitations and regime of usefulness of these instruments are discussed.

  5. Biconical Bob Oscillatory Interfacial Rheometer. (United States)

    Nagarajan; Chung; Wasan


    This paper describes a biconical bob oscillatory interfacial rheometer designed to measure the dynamic viscoelastic response of a liquid-liquid interface subjected to a small amplitude oscillatory shear stress. This instrument is used to examine the rheological behavior of interfaces in the presence of surfactants, especially macromolecular types. Rheological parameters are calculated from a hydrodynamic analysis incorporating a linear viscoelastic interfacial rheological model. The general response of this instrument is compared with the oscillatory deep channel interfacial rheometer which is also capable of similar measurements. Measurements of interfacial viscoelasticity for the same liquid-liquid system with the two rheometers, the biconical bob and the deep channel rheometers, are shown to be comparable. This study demonstrates the intrinsic nature and, therefore, the instrument independence of these dynamic interfacial rheological properties. Accurate measurements of interfacial shear viscoelasticity can be carried out over a wide range of systems by combining measurements with the oscillatory interfacial rheometers. The limitations and regime of usefulness of these instruments are discussed. Copyright 1998 Academic Press.

  6. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J


    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  7. Fundamental insights into interfacial catalysis. (United States)

    Gong, Jinlong; Bao, Xinhe


    Surface and interfacial catalysis plays a vital role in chemical industries, electrochemistry and photochemical reactions. The challenges of modern chemistry are to optimize the chemical reaction processes and understand the detailed mechanism of chemical reactions. Since the early 1960s, the foundation of surface science systems has allowed the study of surface and interfacial phenomena on atomic/molecular level, and thus brought a number of significant developments to fundamental and technological processes, such as catalysis, material science and biochemistry, just to name a few. This themed issue describes the recent advances and developments in the fundamental understanding of surface and interfacial catalysis, encompassing areas of knowledge from metal to metal oxide, carbide, graphene, hexagonal boron nitride, and transition metal dichalcogenides under ultrahigh vacuum conditions, as well as under realistic reaction conditions.

  8. 47 CFR 32.4341 - Net deferred tax liability adjustments. (United States)


    ... income tax charges and credits pertaining to Account 32.4361, Deferred tax regulatory adjustments—net. (b... carryforward net operating losses and carryforward investment tax credits expected to reduce future taxes... carryforward net operating losses and carryforward investment tax credits previously recorded in this account...

  9. Liquid metal actuation by electrical control of interfacial tension (United States)

    Eaker, Collin B.; Dickey, Michael D.


    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  10. Dentin-cement Interfacial Interaction (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.


    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  11. In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. (United States)

    Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; Wang, Feng; Xin, Huolin L; He, Kai; Li, Juchuan; Dudney, Nancy; Meng, Ying Shirley


    Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode-solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. Here, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situ conditions. Using a LiCoO2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO2/LiPON interface is caused by chemical changes rather than space charge effects. Insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.

  12. Interfacial transport processes and rheology

    CERN Document Server

    Brenner, Howard


    This textbook is designed to provide the theory, methods of measurement, and principal applications of the expanding field of interfacial hydrodynamics. It is intended to serve the research needs of both academic and industrial scientists, including chemical or mechanical engineers, material and surface scientists, physical chemists, chemical and biophysicists, rheologists, physiochemical hydrodynamicists, and applied mathematicians (especially those with interests in viscous fluid mechanics and continuum mechanics).As a textbook it provides materials for a one- or two-semester graduate-level

  13. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.


    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  14. The surface charge of trypanosomatids

    Directory of Open Access Journals (Sweden)



    Full Text Available The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.

  15. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science


    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ```` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at} The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  16. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)


    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at} The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  17. Interfacial functionalization and engineering of nanoparticles (United States)

    Song, Yang

    also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus

  18. Polyaniline nanostructures tuning with oxidants in interfacial polymerization system

    Directory of Open Access Journals (Sweden)

    Fanxin Zeng


    Full Text Available Three kinds of nanostructured polyanilines (PANIs were prepared through interfacial polymerization by using ammonium persulfate (APS as a single oxidant, and APS/FeCl3, APS/K2Cr2O7 as composite oxidants, respectively. It is observed that faster formation process and higher yield of nanostructured PANIs could be achieved in the presence of FeCl3 and K2Cr2O7. The as-prepared PANIs were characterized by field emission scanning electron microscopy, ultraviolet–visible absorption spectroscopy, Fourier transform infrared and Raman spectroscopy, X-ray diffraction analysis and electrochemical measurements including cyclic voltammetry and galvanostatic charge/discharge measurement. The influence of composite oxidants on the morphology, microstructure, and electrical and electrochemical properties of PANIs was discussed. Interestingly, when APS/K2Cr2O7 was used as the composite oxidants, PANI exhibited petal-like structure with high yield of 57.35% instead of general nanofibrous morphology formed in interfacial polymerization. Compared with those nanofibrous PANIs obtained by using APS as a single oxidant or APS/FeCl3 as composite oxidants, petal-like PANIs exhibited the largest specific capacitance (692.4 F/g at scan rate of 5 mV/s and highest cycle stability among them. It provides a new insight into the control of PANI nanostructures with high yield and energy storage ability by simply selecting suitable composite oxidants in interfacial polymerization.

  19. Recent advances in interfacial engineering of perovskite solar cells (United States)

    Ye, Meidan; He, Chunfeng; Iocozzia, James; Liu, Xueqin; Cui, Xun; Meng, Xiangtong; Rager, Matthew; Hong, Xiaodan; Liu, Xiangyang; Lin, Zhiqun


    Due to recent developments, organometallic halide perovskite solar cells (PSCs) have attracted even greater interest owing to their impressive photovoltaic properties and simple device manufacturing processes with the potential for commercial applications. The power conversion efficiencies (PCEs) of PSCs have surged from 3.8% for methyl ammonium lead halide-sensitized liquid solar cells, CH3NH3PbX3 (X  =  Cl, Br, I), in 2009, to more than 22% for all-solid-state solar cells in 2016. Over the past few years, significant effort has been dedicated to realizing PSCs with even higher performance. In this review, recent advances in the interfacial engineering of PSCs are addressed. The specific strategies for the interfacial engineering of PSCs fall into two categories: (1) solvent treatment and additives to improve the light-harvesting capabilities of perovskite films, and (2) the incorporation of various functional materials at the interfaces between the active layers (e.g. electron transporting layer, perovskite layer, and hole transporting layer). This review aims to provide a comprehensive overview of strategies for the interfacial engineering of PSCs with potential benefits including enhanced light harvesting, improved charge separation and transport, improved device stability, and elimination of photocurrent hysteresis.

  20. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface. (United States)

    Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang


    The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Net Ecosystem Carbon Flux (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  2. Phase-Transfer Energetics of Small-Molecule Alcohols Across the Water-Hexane Interface: Molecular Dynamics Simulation Using Charge Equilibration Models (United States)

    Bauer, Brad A.; Zhong, Yang; Meninger, David J.; Davis, Joseph E.; Patel, Sandeep


    We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 g/cm3 and 0.6378±0.0001 g/cm3, demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (ε∥) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ε∥ for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13mV and 198.7±0.01mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than

  3. Use of a Spreadsheet to Calculate the Net Charge of Peptides and Proteins as a Function of pH: An Alternative to Using "Canned" Programs to Estimate the Isoelectric Point of These Important Biomolecules (United States)

    Sims, Paul A.


    An approach is presented that utilizes a spreadsheet to allow students to explore different means of calculating and visualizing how the charge on peptides and proteins varies as a function of pH. In particular, the concept of isoelectric point is developed to allow students to compare the results of their spreadsheet calculations with those of…

  4. Protein interfacial structure and nanotoxicology (United States)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, Jhih-Min


    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle "corona" thought to be important for nanoparticle-cell wall penetration.

  5. Sinusoidal Forcing of Interfacial Films (United States)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan


    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  6. Professional Enterprise NET

    CERN Document Server

    Arking, Jon


    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  7. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology. (United States)

    Ghazvini, Saba; Alonso, Ryan; Alhakamy, Nabil; Dhar, Prajnaparamita


    Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P - -N + dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes

  8. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xian Kai


    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  9. WaveNet (United States)


    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  10. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt


    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  11. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael


    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  12. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex


    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  13. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie


    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  14. Characterization of interfacial waves in horizontal core-annular flow (United States)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.


    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  15. X-ray Studies of Interfacial Strontium–Extractant Complexes in a Model Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei; Mihaylov, Miroslav; Amoanu, Daniel; Lin, Binhua; Meron, Mati; Kuzmenko, Ivan; Soderholm, L.; Schlossman, Mark L.


    The interfacial behavior of a model solvent extraction liquidliquid system, consisting of solutions of dihexadecyl phosphate (DHDP) in dodecane and SrCl2 in water, was studied to determine the structure of the interfacial ionextractant complex and its variation with pH. Previous experiments on a similar extraction system with ErCl3 demonstrated that the kinetics of the extraction process could be greatly retarded by cooling through an adsorption transition, thus providing a method to immobilize ionextractant complexes at the interface and further characterize them with X-ray interface-sensitive techniques. Here, we use this same method to study the SrCl2 system. X-ray reflectivity and fluorescence near total reflection measured the molecular-scale interfacial structure above and below the adsorption transition for a range of pH. Below the transition, DHDP molecules form a homogeneous monolayer at the interface with Sr2+ coverage increasing from zero to saturation (one Sr2+ per two DHDP) within a narrow range of pH. Experimental values of Sr2+ interfacial density determined from fluorescence measurements are larger than those from reflectivity measurements. Although both techniques probe Sr2+ bound to DHDP, only the fluorescence provides adequate sensitivity to Sr2+ in the diffuse double layer. A Stern equation determines the Sr2+ binding constant from the reflectivity measurements and the additional Sr2+ measured in the diffuse double layer is accounted for by GouyChapman theory. Above the transition temperature, a dilute concentration of DHDPSr complexes resides at the interface, even for temperatures far above the transition. A comparison is made of the structure of the interfacial ionextractant complex for this divalent metal ion to recent results on trivalent Er3+ metal ions, which provides insight into the role of metal ion charge on the structure of interfacial ionextractant complexes, as well as implications for extraction of these two differently charged

  16. Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells. (United States)

    Xiao, Minyu; Joglekar, Suneel; Zhang, Xiaoxian; Jasensky, Joshua; Ma, Jialiu; Cui, Qingyu; Guo, L Jay; Chen, Zhan


    A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.

  17. Probing charge transfer between molecular semiconductors and graphene. (United States)

    Matković, Aleksandar; Kratzer, Markus; Kaufmann, Benjamin; Vujin, Jasna; Gajić, Radoš; Teichert, Christian


    The unique density of states and exceptionally low electrical noise allow graphene-based field effect devices to be utilized as extremely sensitive potentiometers for probing charge transfer with adsorbed species. On the other hand, molecular level alignment at the interface with electrodes can strongly influence the performance of organic-based devices. For this reason, interfacial band engineering is crucial for potential applications of graphene/organic semiconductor heterostructures. Here, we demonstrate charge transfer between graphene and two molecular semiconductors, parahexaphenyl and buckminsterfullerene C 60 . Through in-situ measurements, we directly probe the charge transfer as the interfacial dipoles are formed. It is found that the adsorbed molecules do not affect electron scattering rates in graphene, indicating that charge transfer is the main mechanism governing the level alignment. From the amount of transferred charge and the molecular coverage of the grown films, the amount of charge transferred per adsorbed molecule is estimated, indicating very weak interaction.

  18. Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. (United States)

    Yao, Tingting; Chen, Ruotian; Li, Junjie; Han, Jingfeng; Qin, Wei; Wang, Hong; Shi, Jingying; Fan, Fengtao; Li, Can


    The photoanodes with heterojunction behavior could enable the development of solar energy conversion, but their performance largely suffers from the poor charge separation and transport process through the multiple interfacial energy levels involved. The question is how to efficiently manipulate these energy levels. Taking the n-Si Schottky photoanode as a prototype, the undesired donor-like interfacial defects and its adverse effects on charge transfer in n-Si/ITO photoanode are well recognized and diminished through the treatment on electronic energy level. The obtained n-Si/TiO x /ITO Schottky junction exhibits a highly efficient charge transport and a barrier height of 0.95 eV, which is close to the theoretical optimum for n-Si/ITO Schottky contact. Then, the holes extraction can be further facilitated through the variation of surface energy level, with the NiOOH coated ITO layer. This is confirmed by a 115% increase in surface photovoltage of the photoanodes. Eventually, an unprecedentedly low onset potential of 0.9 V (vs RHE) is realized for water oxidation among n-Si photoanodes. For the water oxidation reaction, the n-Si/TiO x /ITO/NiOOH photoanode presents a charge separation efficiency up to 100% and an injection efficiency greater than 90% at a wide voltage range. This work identifies the important role of interfacial energetics played in photoelectrochemical conversion.

  19. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M


    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  20. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris


    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  1. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette


    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  2. Recovery of small bioparticles by interfacial partitioning. (United States)

    Jauregi, P; Hoeben, M A; van der Lans, R G J M; Kwant, G; van der Wielen, L A M


    In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology. Copyright 2002 Wiley Periodicals, Inc.

  3. Modeling interfacial fracture in Sierra.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.


    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  4. Interfacial area transport in bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Wu, Q.; Revankar, S.T. [Purdue Univ., West Lafayette, IN (United States)] [and others


    In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.

  5. 47 CFR 69.608 - Carrier Common Line hypothetical net balance. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier Common Line hypothetical net balance... SERVICES (CONTINUED) ACCESS CHARGES Exchange Carrier Association § 69.608 Carrier Common Line hypothetical net balance. The hypothetical net balance shall be equal to a Carrier Common Line revenue requirement...

  6. 47 CFR 32.7210 - Operating investment tax credits-net. (United States)


    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Operating investment tax credits-net. 32.7210....7210 Operating investment tax credits—net. (a) This account shall be charged and Account 4320, Unamortized Operating Investment Tax Credits—Net, shall be credited with investment tax credits generated from...

  7. Molecular dynamics simulation of a charged biological membrane

    NARCIS (Netherlands)

    López Cascales, J.J.; García de la Torre, J.; Marrink, S.J.; Berendsen, H.J.C.


    A molecular dynamics simulation of a membrane with net charge in its liquid-crystalline state was carried out. It was modeled by dipalmitoylphosphatidylserine lipids with net charge, sodium ions as counterions and water molecules. The behavior of this membrane differs from that was shown by other

  8. Interfacial rheological properties of self-assembling biopolymer microcapsules. (United States)

    Xie, Kaili; de Loubens, Clément; Dubreuil, Frédéric; Gunes, Deniz Z; Jaeger, Marc; Léonetti, Marc


    Tuning the mechanical properties of microcapsules through a cost-efficient route of fabrication is still a challenge. The traditional method of layer-by-layer assembly of microcapsules allows building a tailored composite multi-layer membrane but is technically complex as it requires numerous steps. The objective of this article is to characterize the interfacial rheological properties of self-assembling biopolymer microcapsules that were obtained in one single facile step. This thorough study provides new insights into the mechanics of these weakly cohesive membranes. Firstly, suspensions of water-in-oil microcapsules were formed in microfluidic junctions by self-assembly of two oppositely charged polyelectrolytes, namely chitosan (water soluble) and phosphatidic fatty acid (oil soluble). In this way, composite membranes of tunable thickness (between 40 and 900 nm measured by AFM) were formed at water/oil interfaces in a single step by changing the composition. Secondly, microcapsules were mechanically characterized by stretching them up to break-up in an extensional flow chamber which extends the relevance and convenience of the hydrodynamic method to weakly cohesive membranes. Finally, we show that the design of microcapsules can be 'engineered' in an extensive way since they present a wealth of interfacial rheological properties in terms of elasticity, plasticity and yield stress whose magnitudes can be controlled by the composition. These behaviors are explained by the variation of the membrane thickness with the physico-chemical parameters of the process.

  9. Interfacial Symmetry Control of Emergent Ferromagnetism at the Nanoscale. (United States)

    Grutter, A J; Vailionis, A; Borchers, J A; Kirby, B J; Flint, C L; He, C; Arenholz, E; Suzuki, Y


    The emergence of complex new ground states at interfaces has been identified as one of the most promising routes to highly tunable nanoscale materials. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains among the most challenging materials physics problems to date. In particular, generating ferromagnetism localized at the interface of two nonferromagnetic materials is of fundamental and technological interest. Moreover, the ability to turn the ferromagnetism on and off would shed light on the origin of such emergent phenomena and is promising for spintronic applications. We demonstrate that ferromagnetism confined within one unit cell at the interface of CaRuO3 and CaMnO3 can be switched on and off by changing the symmetry of the oxygen octahedra connectivity at the boundary. Interfaces that are symmetry-matched across the boundary exhibit interfacial CaMnO3 ferromagnetism while the ferromagnetism at symmetry-mismatched interfaces is suppressed. We attribute the suppression of ferromagnetic order to a reduction in charge transfer at symmetry-mismatched interfaces, where frustrated bonding weakens the orbital overlap. Thus, interfacial symmetry is a new route to control emergent ferromagnetism in materials such as CaMnO3 that exhibit antiferromagnetism in bulk form.

  10. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D


    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  11. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)


    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  12. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael


    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  13. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Herwig, E-mail:; Kalisch, Holger; Vescan, Andrei [GaN Device Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-Fundamentals of Future Information Technologies, 52425 Jülich (Germany); Pécz, Béla [MTA EK MFA, Konkoly Thege Street 29-33, 1121 Budapest (Hungary); Kovács, András [JARA-Fundamentals of Future Information Technologies, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Forschungszentrum Jülich, Peter Grünberg Institut (PGI-5), 52425 Jülich (Germany); Heuken, Michael [GaN Device Technology, RWTH Aachen University, 52074 Aachen (Germany); AIXTRON SE, 52134 Herzogenrath (Germany)


    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10{sup 13 }cm{sup –2} allowing to considerably shift the threshold voltage to more positive values.

  14. Interfacial phase-change memory. (United States)

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J


    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  15. Interfacial and near interfacial crack growth phenomena in metal bonded alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie Joseph [Univ. of California, Berkeley, CA (United States)


    Metal/ceramic interfaces can be found in many engineering applications including microelectronic packaging, multi-layered films, coatings, joints, and composite materials. In order to design reliable engineering systems that contain metal/ceramic interfaces, a comprehensive understanding of interfacial and near interfacial failure mechanisms is necessary.

  16. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike


    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  17. PhysioNet (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  18. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R


    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  19. TideNet (United States)


    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  20. Building Neural Net Software


    Neto, João Pedro; Costa, José Félix


    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  1. Interaction Nets in Russian


    Salikhmetov, Anton


    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  2. Programming NET 35

    CERN Document Server

    Liberty, Jesse


    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  3. Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy (United States)

    Lam, Royce K.; Smith, Jacob W.; Rizzuto, Anthony M.; Karslıoǧlu, Osman; Bluhm, Hendrik; Saykally, Richard J.


    The fractionation of ions at liquid interfaces and its effects on the interfacial structure are of vital importance in many scientific fields. Of particular interest is the aqueous carbonate system, which governs both the terrestrial carbon cycle and physiological respiration systems. We have investigated the relative fractionation of carbonate, bicarbonate, and carbonic acid at the liquid/vapor interface finding that both carbonate (CO32-) and carbonic acid (H2CO3) are present in higher concentrations than bicarbonate (HCO3-) in the interfacial region. While the interfacial enhancement of a neutral acid relative to a charged ion is expected, the enhancement of doubly charged, strongly hydrated carbonate anion over the singly charged, less strongly hydrated bicarbonate ion is surprising. As vibrational sum frequency generation experiments have concluded that both carbonate and bicarbonate anions are largely excluded from the air/water interface, the present results suggest that there exists a significant accumulation of carbonate below the depletion region outside of the area probed by sum frequency generation.

  4. Interfacial area and interfacial transfer in two-phase systems. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru; Hibiki, T.; Revankar, S.T.; Kim, S.; Le Corre, J.M.


    In the two-fluid model, the field equations are expressed by the six conservation equations consisting of mass, momentum and energy equations for each phase. The existence of the interfacial transfer terms is one of the most important characteristics of the two-fluid model formulation. The interfacial transfer terms are strongly related to the interfacial area concentration and to the local transfer mechanisms such as the degree of turbulence near interfaces. This study focuses on the development of a closure relation for the interfacial area concentration. A brief summary of several problems of the current closure relation for the interfacial area concentration and a new concept to overcome the problem are given.

  5. Static Equilibrium Configurations of Charged Metallic Bodies ...

    African Journals Online (AJOL)

    When charged particles are placed on an uncharged metallic body, the charged particles redistribute themselves along the surface of the body until they reach a point or a configuration that no net tangential force is experienced on each particle. That point is referred to as electrostatic equilibrium configuration or simply as ...


    Energy Technology Data Exchange (ETDEWEB)

    Clarke, John


    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  7. Electrochemically modulated liquid chromatography: Theoretical investigations and applications from the perspectives of chromatography and interfacial electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David W. [Iowa State Univ., Ames, IA (United States)


    Electrochemically modulated liquid chromatography (EMLC) employs a conductive material as both a stationary phase for chromatographic separations and as a working electrode for performing electrochemistry experiments. This dual functionality gives EMLC the capacity to manipulate chromatographic separations by changing the potential applied (Eapp) to the stationary phase with respect to an external reference. The ability to monitor retention as a function of Eapp provides a means to chromatographically monitor electrosorption processes at solid-liquid interfaces. In this dissertation, the retention mechanism for EMLC is examined from the perspective of electrical double layer theory and interfacial thermodynamics. From the chromatographic data, it is possible to determine the interfacial excess (Λ) of a solute and changes in interfacial tension (dγ) as a function of both Eapp and the supporting electrolyte concentration. Taken together, these two experimentally manipulated parameters can be examined within the context of the Gibbs adsorption equation to delineate the contribution of a variety of interfacial properties, including the charge of solute on the stationary phase and the potential of zero charge (PZC), to the mechanism behind EMLC-based retention. The chromatographic probing of interfacial phenomena is complemented by electroanalytical experiments that exploit the ability to monitor the electronic current flowing through an EMLC column. Cyclic voltammetry and chronoamperometry of an EMLC column are used to determine the electronic performance characteristics of an EMLC column. An electrochemical flow injection analysis of a column is provided in which the current required to maintain a constant Eapp is monitored and provides a way to examine the influence that acetonitrile and supporting electrolyte composition, flow rate, column backpressure, and ionic strength have on the structure of electrified interfaces.

  8. Development of net cage acoustic alarm system (United States)

    Hong, Shih-Wei; Wei, Ruey-Chang


    In recent years, the fishery production has been drastically decreased in Taiwan, mainly due to overfishing and coast pollution; therefore, fishermen and corporations are encouraged by government to invest in ocean net cage aquaculture. However, the high-price fishes in the net cage are often coveted, so incidences of fish stealing and net cage breaking were found occasionally, which cause great economical loss. Security guards or a visual monitoring system has limited effect, especially in the night when these intrusions occur. This study is based on acoustic measure to build a net cage alarm system, which includes the sonobuoy and monitor station on land. The sonobuoy is a passive sonar that collects the sounds near the net cage and transmits the suspected signal to the monitor station. The signals are analyzed by the control program on the personal computer in the monitor station, and the alarms at different stages could be activated by the sound levels and durations of the analyzed data. To insure long hours of surveillance, a solar panel is applied to charge the battery, and a photodetector is used to activate the system.

  9. Internal Charging (United States)

    Minow, Joseph I.


    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  10. Magneto-ionic control of interfacial magnetism. (United States)

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L; van Dijken, Sebastiaan; Beach, Geoffrey S D


    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O(2-) migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm(-2) at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  11. Interfacial properties of heat-treated ovalbumin. (United States)

    Croguennec, Thomas; Renault, Anne; Beaufils, Sylvie; Dubois, Jean-Jacques; Pezennec, Stéphane


    The interfacial properties (kinetics of adsorption at the air/water interface, rheology of the interfacial layer) of ovalbumin molecules, unheated or previously heat-denatured in solution (10 g L(-1), pH 7, NaCl 50 mM) under controlled conditions (up to 40 min at 80 degrees C), were investigated. Heat treatments induced the formation of covalent aggregates which surface exhibits a higher hydrophobicity and an increased exposition of sulfhydryl groups when compared to native ovalbumin (unheated). Although they have a larger hydrodynamic size, aggregates adsorb as fast as native ovalbumin at the air/water interface. However, aggregates are able to established rapid contacts in the interfacial layer as shown by the fast increase of both surface pressure and shear elastic constant. In contrast, native ovalbumin needs longer time to developed intermolecular contacts and exhibits lower foam stability even if the shear elastic constant on aging reached higher value than for ovalbumin aggregates.

  12. Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Gerrets Rene PM


    Full Text Available Abstract Background Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. Methods Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. Findings Net use was 62.7% overall, 87.2% amongst infants (0 to1 year, 81.8% amongst young children (>1 to 5 years, 54.5% amongst older children (6 to 15 years and 59.6% amongst adults (>15 years. 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%. Half of nets used by young children (50.0% and over a third of those used by older children (37.2% were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use and was the primary means for protecting adults (60.2% use. All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. Conclusion All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily

  13. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences


    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  14. Electrostatic charge characteristics of jet nebulized aerosols. (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim


    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  15. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. (United States)

    Zuo, Lijian; Chen, Qi; De Marco, Nicholas; Hsieh, Yao-Tsung; Chen, Huajun; Sun, Pengyu; Chang, Sheng-Yung; Zhao, Hongxiang; Dong, Shiqi; Yang, Yang


    The ionic nature of perovskite photovoltaic materials makes it easy to form various chemical interactions with different functional groups. Here, we demonstrate that interfacial chemical interactions are a critical factor in determining the optoelectronic properties of perovskite solar cells. By depositing different self-assembled monolayers (SAMs), we introduce different functional groups onto the SnO2 surface to form various chemical interactions with the perovskite layer. It is observed that the perovskite solar cell device performance shows an opposite trend to that of the energy level alignment theory, which shows that chemical interactions are the predominant factor governing the interfacial optoelectronic properties. Further analysis verifies that proper interfacial interactions can significantly reduce trap state density and facilitate the interfacial charge transfer. Through use of the 4-pyridinecarboxylic acid SAM, the resulting perovskite solar cell exhibits striking improvements to the reach the highest efficiency of 18.8%, which constitutes an ∼10% enhancement compared to those without SAMs. Our work highlights the importance of chemical interactions at perovskite/electrode interfaces and paves the way for further optimizing performances of perovskite solar cells.

  16. La plataforma .NET


    Fornas Estrada, Miquel


    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  17. Biological Petri Nets

    CERN Document Server

    Wingender, E


    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  18. A molecular dynamics study of local pressures and interfacial tensions of SDS micelles and dodecane droplets in water. (United States)

    Kitabata, Masahiro; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu


    To obtain the radial (normal) and lateral (transverse) components of the local pressure tensor, PN(R) and PT(R), respectively, and the interfacial tension of micelles, molecular dynamics (MD) calculations were performed for spherical sodium dodecyl sulfate (SDS) micelles. The local pressure tensor was calculated as a function of radial distance R using the Irving-Kirkwood formula. Similar MD calculations were also carried out for an n-dodecane droplet in water to compare the differences in the local pressure and interfacial tension values with those of the micelles. The calculated interfacial tensions were 20 ± 5 and 44 ± 10 mN/m for the SDS micelles and dodecane droplets, respectively. The excess free energies due to the interfacial tension were 340 and 1331 kJ/mol for the SDS micelle and dodecane droplet, respectively. The micelles are stabilized by 991 kJ/mol by covering their hydrophobic cores with hydrophilic groups. The dodecane droplet has a large interfacial tension caused by the zero or positive values of PN(R) - PT(R) at all values of R. In contrast, the small interfacial tension in the SDS micelles comes from the negative PN(R) - PT(R) values over a wide range of R. The pressure difference between the inside and outside of the oil droplet and its interfacial tension well satisfies the Laplace equation. However, the hydrophobic core of the SDS micelle is quite different from the liquid alkane, and the SDS micelles do not follow Laplace's picture. Decomposing the interfacial tension into contributions from various interactions, it is found that those between charged and polar groups dominate the interfacial tension of the SDS micelles. The positive electrostatic potential (1.3 V) on the micelle surface and the negative potential (-0.15 V) on the oil droplet contribute to the interfacial tensions by 19 and 0.5 mN/m, respectively. Thus, the interfacial tension of the SDS micelles is produced by electrostatic interactions, in contrast to the dodecane

  19. Interfacial rheology and emulsion stability in model systems

    CERN Document Server

    Pratt, G


    Measurements of thermodynamic interfacial tension sigma at a non-equilibrium surfactant adsorption have been made using a pulsed drop rheometer. The pulsed drop rheometer is based on an instantaneous expansion of a water droplet in oil. After perturbation an interfacial relaxation occurs, the interfacial pressure decay is followed as a function of time using a sensitive pressure transducer. The difference in pressure across a curved interface and the interfacial tension are directly related. Interfacial tension decays can be obtained above and below the surfactants CMC. The interfacial tension decays obtained were fitted to known relaxation mechanisms, and found generally to fit diffusional mechanisms. The funnel technique involves expansion of the interface through a funnel, the interfacial tension decays are followed directly. The results were found to be analogous to measurements made by the pulsed drop. Measurements have been made of the interfacial shear viscosity of a polymeric surfactant at the oil / w...

  20. The Constrained Vapor Bubble Experiment - Interfacial Flow Region (United States)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.


    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  1. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley


    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  2. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, van T.; Martin, A.H.; Bos, M.A.


    Recent studies on gelation and interfacial properties of vegetable proteins are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properties of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  3. Interfacial properties of green leaf cellulosic particles

    NARCIS (Netherlands)

    Tamayo Tenorio, A.; Gieteling, J.; Nikiforidis, C.V.; Boom, R.M.; Goot, van der A.J.


    Cellulosic pulp from sugar beet leaves was fractionated and assessed on its interfacial properties. After pressing leaves to express the juice, the press cake was washed at alkaline pH (pH 9) to remove residual protein, dried, milled and air classified. The obtained cellulosic particles mainly

  4. Influence of interfacial layer on contact resistance

    NARCIS (Netherlands)

    Roy, D.; In 't Zand, M.A.A.; Delhounge, R.; Klootwijk, J.H.; Wolters, Robertus A.M.


    The contact resistance between two materials is dependent on the intrinsic properties of the materials in contact and the presence and properties of an interfacial layer at the contact. This article presents the difference in contact resistance measurements with and without the presence of a process

  5. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, T. van; Martin, A.H.; Bos, M.A.


    Recent studies on gelation and interfacial properties of vegetable protiens are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properteis of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  6. Current trends in interfacial polymerization chemistry

    NARCIS (Netherlands)

    Raaijmakers, Michiel; Benes, Nieck Edwin


    Interfacial polymerization is an enabling technique for the large-scale production of ultrathin layers, hollow nanospheres and nanofibers. The availability of a wide range of suitable monomer reactants allows for the synthesis of an impressive collection of polymers, including polyamides,

  7. Modeling interfacial dynamics using nonequilibrium thermodynamics frameworks

    NARCIS (Netherlands)

    Sagis, L.M.C.


    In recent years several nonequilibrium thermodynamic frameworks have been developed capable of describing the dynamics of multiphase systems with complex microstructured interfaces. In this paper we present an overview of these frameworks. We will discuss interfacial dynamics in the context of the

  8. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations. Y Narahari ...

  9. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna


    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  10. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt


    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  11. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian


    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  12. Game Theory .net. (United States)

    Shor, Mikhael


    States making game theory relevant and accessible to students is challenging. Describes the primary goal of is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  13. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  14. Dielectric Spectroscopy of Localized Electrical Charges in Ferrite Thin Film (United States)

    Abdellatif, M. H.; Azab, A. A.; Moustafa, A. M.


    A thin film of Gd-doped Mn-Cr ferrite has been prepared by pulsed laser deposition from a bulk sample of the same ferrite prepared by the conventional double sintering ceramic technique. The charge localization and surface conduction in the ferromagnetic thin film were studied. The relaxation of the dielectric dipoles after exposure to an external alternating-current (AC) electric field was investigated. The effect of charge localization on the real and imaginary parts of the dielectric modulus was studied. The charge localization in the thin film was enhanced and thereby the Maxwell-Wagner-type interfacial polarization. The increase in interfacial polarization is a direct result of the enhanced charge localization. The sample was characterized in terms of its AC and direct-current (DC) electrical conductivity, and thermally stimulated discharge current.

  15. The  Practitioner's guide to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Christensen, Søren; Jensen, Kurt


    four hundred commercial companies. It is available free of charge, also for commercial use. This paper provides a comprehensive road map to the practical use of CP-nets and the Design/CPN tool. We give an informal introduction to the basic concepts and ideas underliying CP-nets. The key components......, hardware design, embedded systems, software system designs, and busness process-engineering. Design/CPN is a graphical computer tool supporting the practial use of CP-nets. The tool supports the construction, simulation, and functional and performance analysis of CPN models. the tool is used by more than...... and facilities of the Design/CPN tool are presented and their use illustrated. The paper is self-contained and does not assume any prior kowledge of Petri nets and CP-nets nor any experience with the Design/CPN tool...

  16. Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries. (United States)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean J; Lu, Jun; Kang, Feiyu; Li, Baohua; Yang, Wenge; Gao, Jing; Indacochea, Ernesto; Curtiss, Larry A; Amine, Khalil


    During the cycling of Li-O2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O2 battery.

  17. Interfacial Effects on Lithium Superoxide Disproportionation in Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean J.; Lu, Jun; Kang, Feiyu; Li, Baohua; Yang, Wenge; Gao, Jing; Indacochea, Ernesto; Curtiss, Larry A.; Amine, Khalil


    During the cycling of Li-O-2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O-2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O-2 battery.

  18. Interfacial Effects on Lithium Superoxide Disproportionation in Li-O₂ Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean; Lu, Jun; Kang, Feiyu; Li, Baohua; Yang, Wenge; Gao, Jing; Indacochea, Ernesto; Curtiss, Larry A.; Amine, Khalil


    During the cycling of Li-O₂ batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O₂ battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO₂ component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO₂ component along with Li₂O₂ in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO₂ component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO₂ reveal that the disproportionation process will be slower at an electrolyte/LiO₂ interface compared to a vacuum/LiO₂ interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO₂ and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O₂ battery.

  19. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [University of California - Irvine


    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy

  20. Interfacial Shear Rheology of β-Lactoglobulin - Bovine Submaxillary Mucin Layers Adsorbed at Air/Water Interface

    DEFF Research Database (Denmark)

    Celebioglu, Hilal Yilmaz; Kmiecik-Palczewska, Joanna; Lee, Seunghwan


    that hydrophobic patches of BSM can be imbedded into the BLG monolayer as driven by a strong hydrophobic interaction with air and disrupt the cohesive assembly of BLG, whereas the hydrophilic (negatively charged) parts of the BSM chain are protruding from the interface towards the bulk water.......The interfacial rheological properties of solutions of β-lactoglobulin (BLG), as a model food compound, mixed with bovine submaxillary mucin (BSM), a major salivary protein, have been investigated. Time, frequency, stress sweep and flow measurements have been performed at different pHs (7.4, 5.......0 and 3.0), to investigate the air/water interfacial properties. All protein layers (BLG, BSM, and BLG-BSM mixtures) formed an elastic network at the air/water interface with low frequency dependence of the interfacial modulus. The results indicated that BLG moves faster as smaller molecule than mucin...


    Energy Technology Data Exchange (ETDEWEB)

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew; Xu, Ren-Kou


    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.

  2. Food Safety Nets:


    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane


    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  3. Net technical assessment


    Wegmann, David G.


    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  4. Ordered mesoporous materials based on interfacial assembly and engineering. (United States)

    Li, Wei; Yue, Qin; Deng, Yonghui; Zhao, Dongyuan


    Ordered mesoporous materials have inspired prominent research interest due to their unique properties and functionalities and potential applications in adsorption, separation, catalysis, sensors, drug delivery, energy conversion and storage, and so on. Thanks to continuous efforts over the past two decades, great achievements have been made in the synthesis and structural characterization of mesoporous materials. In this review, we summarize recent progresses in preparing ordered mesoporous materials from the viewpoint of interfacial assembly and engineering. Five interfacial assembly and synthesis are comprehensively highlighted, including liquid-solid interfacial assembly, gas-liquid interfacial assembly, liquid-liquid interfacial assembly, gas-solid interfacial synthesis, and solid-solid interfacial synthesis, basics about their synthesis pathways, princples and interface engineering strategies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning interfacial complexation in aqueous two phase systems with polyelectrolytes and nanoparticles for compound all water emulsion bodies (AWE-somes). (United States)

    Hann, Sarah D; Lee, Daeyeon; Stebe, Kathleen J


    Interfacial complexation between two oppositely charged polymers in aqueous two phase systems (ATPSs) leads to the formation of mechanically robust microcapsules that can be stressed without losing their structural integrity. When a polyelectrolyte (PE) is replaced with a charged nanoparticle (NP), microcapsules with internal compartments can be generated within an encapsulated shell comprising NPs and PEs, named AWE-somes. These shells, made by interfacial complexation between PEs and NPs, are, however, very brittle and can lose their integrity under mechanical stress, potentially limiting their applications. Improved control over the properties and structure of microcapsules over a wide range is needed to enable their broad utilization. In this work, we show that interfacial complexation of a polycation with a mixture of a polyanion and a negatively charged NP in ATPS presents a simple yet versatile method of tuning the structure and properties of microcapsules. We show that internal structure, along with the mechanical robustness and stimuli-responsive properties of microcapsules, can be varied by changing the concentrations of polyanion and NP present in one of the two aqueous phases. Interfacial complexation of PE with mixtures of PE and NP provides a new strategy for controlling and imparting the properties and functionality of AWE-some interfacial membranes for applications in encapsulation and release of active agents and recapitulation of basic functions of living cells.

  6. Price smarter on the Net. (United States)

    Baker, W; Marn, M; Zawada, C


    Companies generally have set prices on the Internet in two ways. Many start-ups have offered untenably low prices in a rush to capture first-mover advantage. Many incumbents have simply charged the same prices on-line as they do off-line. Either way, companies are missing a big opportunity. The fundamental value of the Internet lies not in lowering prices or making them consistent but in optimizing them. After all, if it's easy for customers to compare prices on the Internet, it's also easy for companies to track customers' behavior and adjust prices accordingly. The Net lets companies optimize prices in three ways. First, it lets them set and announce prices with greater precision. Different prices can be tested easily, and customers' responses can be collected instantly. Companies can set the most profitable prices, and they can tap into previously hidden customer demand. Second, because it's so easy to change prices on the Internet, companies can adjust prices in response to even small fluctuations in market conditions, customer demand, or competitors' behavior. Third, companies can use the clickstream data and purchase histories that it collects through the Internet to segment customers quickly. Then it can offer segment-specific prices or promotions immediately. By taking full advantage of the unique possibilities afforded by the Internet to set prices with precision, adapt to changing circumstances quickly, and segment customers accurately, companies can get their pricing right. It's one of the ultimate drivers of e-business success.

  7. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German


    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  8. X-ray studies of interfacial strontium-extractant complexes in a model solvent extraction system. (United States)

    Bu, Wei; Mihaylov, Miroslav; Amoanu, Daniel; Lin, Binhua; Meron, Mati; Kuzmenko, Ivan; Soderholm, L; Schlossman, Mark L


    The interfacial behavior of a model solvent extraction liquid-liquid system, consisting of solutions of dihexadecyl phosphate (DHDP) in dodecane and SrCl2 in water, was studied to determine the structure of the interfacial ion-extractant complex and its variation with pH. Previous experiments on a similar extraction system with ErCl3 demonstrated that the kinetics of the extraction process could be greatly retarded by cooling through an adsorption transition, thus providing a method to immobilize ion-extractant complexes at the interface and further characterize them with X-ray interface-sensitive techniques. Here, we use this same method to study the SrCl2 system. X-ray reflectivity and fluorescence near total reflection measured the molecular-scale interfacial structure above and below the adsorption transition for a range of pH. Below the transition, DHDP molecules form a homogeneous monolayer at the interface with Sr(2+) coverage increasing from zero to saturation (one Sr(2+) per two DHDP) within a narrow range of pH. Experimental values of Sr(2+) interfacial density determined from fluorescence measurements are larger than those from reflectivity measurements. Although both techniques probe Sr(2+) bound to DHDP, only the fluorescence provides adequate sensitivity to Sr(2+) in the diffuse double layer. A Stern equation determines the Sr(2+) binding constant from the reflectivity measurements and the additional Sr(2+) measured in the diffuse double layer is accounted for by Gouy-Chapman theory. Above the transition temperature, a dilute concentration of DHDP-Sr complexes resides at the interface, even for temperatures far above the transition. A comparison is made of the structure of the interfacial ion-extractant complex for this divalent metal ion to recent results on trivalent Er(3+) metal ions, which provides insight into the role of metal ion charge on the structure of interfacial ion-extractant complexes, as well as implications for extraction of these two

  9. Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent. (United States)

    Coles, Samuel W; Smith, Alexander M; Fedorov, Maxim V; Hausen, Florian; Perkin, Susan


    Many applications of ionic liquids involve their mixtures with neutral molecular solvents. The chemical physics of these high-concentration electrolytes, in particular at interfaces, still holds many challenges. In this contribution we begin to unravel the relationship between measurements of structural ('solvation') forces in mixtures of ionic liquid with polar solvent and the corresponding structure determined by molecular dynamics simulations of the same mixtures. In order to make the quantitative link between experiments with mica surfaces and simulations with fixed-charge surfaces, we present an experimental procedure for determining the effective surface charge on mica in ionic liquid. We find that a structural cross-over recently inferred from force measurements appears to be supported by the simulations: at the cross-over, the charge-oscillatory structure switches to charge-monotonic, and solvent layering becomes dominant. Finally, we map out a phase diagram in composition-surface charge space delineating regions of charge-oscillatory interfacial structure and regions of charge-monotonic decay. We note that these features of structure and oscillatory forces are distinct from (acting simultaneously with) the recently reported longer range monotonic forces arising from anomalously long bulk screening lengths in high-concentration electrolytes.

  10. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S


    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  11. Frontiers of interfacial water research :workshop report.

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall Timothy; Greathouse, Jeffery A.


    Water is the critical natural resource of the new century. Significant improvements in traditional water treatment processes require novel approaches based on a fundamental understanding of nanoscale and atomic interactions at interfaces between aqueous solution and materials. To better understand these critical issues and to promote an open dialog among leading international experts in water-related specialties, Sandia National Laboratories sponsored a workshop on April 24-26, 2005 in Santa Fe, New Mexico. The ''Frontiers of Interfacial Water Research Workshop'' provided attendees with a critical review of water technologies and emphasized the new advances in surface and interfacial microscopy, spectroscopy, diffraction, and computer simulation needed for the development of new materials for water treatment.

  12. Facile Interfacial Electron Transfer of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Chunhai Fan


    Full Text Available Abstract: We herein describe a method of depositing hemoglobin (Hb and sulfonated polyaniline (SPAN on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated Polymers

  13. Kinetics of Model Reactions for Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Henry Hall


    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  14. Kinetics of Model Reactions for Interfacial Polymerization


    Henry Hall; Robert Bates (Harvard University); Jeffrey Robertson; Anne Padias; Trevor Centeno-Hall


    To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  15. Microstructural Evolution Based on Fundamental Interfacial Properties

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Rollett; D. J. Srolovitz; A. Karma


    This first CMSN project has been operating since the summer of 1999. The main achievement of the project was to bring together a community of materials scientists, physicists and mathematicians who share a common interest in the properties of interfaces and the impact of those properties on microstructural evolution. Six full workshops were held at Carnegie Mellon (CMU), Northwestern (NWU), Santa Fe, Northeastern University (NEU), National Institute for Standards and Technology (NIST), Ames Laboratory, and at the University of California in San Diego (UCSD) respectively. Substantial scientific results were obtained through the sustained contact between the members of the project. A recent issue of Interface Science (volume 10, issue 2/3, July 2002) was dedicated to the output of the project. The results include: the development of methods for extracting anisotropic boundary energy and mobility from molecular dynamics simulations of solid/liquid interfaces in nickel; the extraction of anisotropic energies and mobilities in aluminum from similar MD simulations; the application of parallel computation to the calculation of interfacial properties; the development of a method to extract interfacial properties from the fluctuations in interface position through consideration of interfacial stiffness; the use of anisotropic interface properties in studies of abnormal grain growth; the discovery of abnormal grain growth from random distributions of orientation in subgrain networks; the direct comparison at the scale of individual grains between experimentally observed grain growth and simulations, which confirmed the importance of including anisotropic interfacial properties in the simulations; the classification of a rich variety of dendritic morphologies based on slight variations in the anisotropy of the solid-liquid interface; development of phase field methods that permit both solidification and grain growth to be simulated within the same framework.

  16. Facile Interfacial Electron Transfer of Hemoglobin


    Chunhai Fan; Shiping Song; Haiping Wu; Lihua Wang; Xiaofang Hu; Runguang Sun; Bo Zhou


    Abstract: We herein describe a method of depositing hemoglobin (Hb) and sulfonated polyaniline (SPAN) on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated...

  17. Interfacial Functionalization and Engineering of Nanoparticles


    Song, Yang


    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication.Experiment...

  18. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.


    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  19. Teaching Tennis for Net Success. (United States)

    Young, Bryce


    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  20. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten


    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  1. Interfacial phenomena and the ocular surface. (United States)

    Yañez-Soto, Bernardo; Mannis, Mark J; Schwab, Ivan R; Li, Jennifer Y; Leonard, Brian C; Abbott, Nicholas L; Murphy, Christopher J


    Ocular surface disorders, such as dry eye disease, ocular rosacea, and allergic conjunctivitis, are a heterogeneous group of diseases that require an interdisciplinary approach to establish underlying causes and develop effective therapeutic strategies. These diverse disorders share a common thread in that they involve direct changes in ocular surface chemistry as well as the rheological properties of the tear film and topographical attributes of the cellular elements of the ocular surface. Knowledge of these properties is crucial to understand the formation and stability of the preocular tear film. The study of interfacial phenomena of the ocular surface flourished during the 1970s and 1980s, but after a series of lively debates in the literature concerning distinctions between the epithelial and the glandular origin of ocular surface disorders during the 1990s, research into this important topic has declined. In the meantime, new tools and techniques for the characterization and functionalization of biological surfaces have been developed. This review summarizes the available literature regarding the physicochemical attributes of the ocular surface, analyzes the role of interfacial phenomena in the pathobiology of ocular surface disease, identifies critical knowledge gaps concerning interfacial phenomena of the ocular surface, and discusses the opportunities for the exploitation of these phenomena to develop improved therapeutics for the treatment of ocular surface disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Arresting dissolution by interfacial rheology design (United States)

    Beltramo, Peter J.; Gupta, Manish; Alicke, Alexandra; Liascukiene, Irma; Gunes, Deniz Z.; Baroud, Charles N.; Vermant, Jan


    A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air-water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ˜ 100 μm bubbles coated with ˜ 1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications.

  3. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov


    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  4. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne


    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  5. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq


    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  6. Space charge

    CERN Document Server

    Schindl, Karlheinz


    The Coulomb forces between the charged particles of a high-intensity beam in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes. A beam moving with speed n is accompanied by a magnetic field which partially cancels the electrostatic defocusing effect, with complete cancellation at c, the speed of light. The effect of this 'direct space charge' is evaluated for transport lines and synchrotrons where the number of betatron oscillations per machine turn, Q, is reduced by DQ. In a real accelerator, the beam is also influenced by the environment (beam pipe, magnets, etc.) which generates 'indirect' space charge effects. For a smooth and perfectly conducting wall, they can easily be evaluated by introducing image charges and currents. These 'image effects' do not cancel when n approaches c, thus they become dominant for high-energy synchrotrons. Each particle in the beam has its particular incoherent tune Q and incoherent tune...

  7. expansions to and an introduction to (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01 ( is the new moniker for a collection of databases: and Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site ( In this article, (i) we provide an update on the expansions of that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. is an independent component of and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to since its last description in NAR, 2012, and also introduces and presents its new sibling site, PMID:25392426

  8. Interfacial dynamic adsorption and structure of molecular layers of peptide surfactants. (United States)

    Pan, Fang; Zhao, XiuBo; Perumal, Shiamalee; Waigh, Tom A; Lu, Jian R; Webster, John R P


    Short peptide surfactants have recently emerged as a new class of amphiphiles, with tremendous potential in improving surface biocompatibility and mediating interfacial DNA immobilization. To establish their basic interfacial adsorption properties, cationic peptide surfactants V(m)K(n) have been studied by combining the measurements of spectroscopic ellipsometry (SE), neutron reflection (NR) and atomic force microscopy (AFM). Our results showed that changes in peptide structure, concentration, solution pH and ionic strength all affected their interfacial assembly. Increases in m and decreases in n reduced the critical aggregation concentration (CAC), but increased the amount of adsorption, showing the strong influence of the amphiphilic balance between hydrophilic and hydrophobic moieties. While the surface adsorbed amount increased with time and peptide concentration, an increase in ionic strength decreased peptide adsorption due to surface charge neutralization. Changes in solution pH did not affect the equilibrium surface adsorbed amount on the weakly negative SiO(2) surface, but did alter the adsorption dynamics. Neutron reflection revealed that V(6)K readily formed a bilayer structure of 35 A thickness at the interface, with the main part of the V(6) fragments being packed back-to-back to form a 15 A hydrophobic core and the two outer K regions being incorporated with a minor amount of V fragments forming the headgroup layers of 9 A each. AFM imaging revealed a sheet-like membrane structure incorporating defects of holes but the thicknesses probed by AFM were consistent with neutron reflection. It was demonstrated that the V(6)K peptide bilayer was effective for immobilization of DNA. The amount of DNA immobilized followed approximate 1:1 charge neutralization between the outer leaf peptide sublayer and the negatively charged DNA.


    Directory of Open Access Journals (Sweden)

    Evelia Schettini


    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  10. The interfacial tension of the mercury —1 M HClO4− solution interface at high potentials; comparison with double-layer capacitance measurements

    NARCIS (Netherlands)

    Sluyters-Rehbach, M.; Woittiez, W.J.A.; Sluyters, J.H.

    Interfacial tension values have been measured in order to calculate the electrical charge density as a function of potential. The results are in accordance with those obtained from double-layer capacitance data reported earlier2,3, also at highly positive potentials.

  11. Scaling of interfacial jump conditions; Escalamiento de condiciones de salto interfacial

    Energy Technology Data Exchange (ETDEWEB)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G., E-mail: [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)


    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  12. Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planar-Heterojunction Perovskite Solar Cells. (United States)

    Sun, Chen; Xue, Qifan; Hu, Zhicheng; Chen, Ziming; Huang, Fei; Yip, Hin-Lap; Cao, Yong


    Organic halide salts are successfully incorporated in perovskite-based planar-heterojunction solar cells as both the processing additive and interfacial modifier to improve the morphology of the perovskite light-absorbing layer and the charge collecting property of the cathode. As a result, perovskite solar cells exhibit a significant improvement in power conversion efficiency (PCE) from 10% of the reference device to 13% of the modified devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 47 CFR 69.609 - End User Common Line hypothetical net balances. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false End User Common Line hypothetical net balances... SERVICES (CONTINUED) ACCESS CHARGES Exchange Carrier Association § 69.609 End User Common Line hypothetical net balances. (a) If the company does not participate in the association tariff for such element, the...

  14. Interfacial stresses in vibration of multilayer composite materials: experimental and theoretical analysis (United States)

    Agbossou, Amen; Barthod, Christine; Teisseyre, Yves; Gautier, Gérard


    In laminated composites, interfaces are the transfer spots of mechanical charges, mechanical over-stress adaptations and energy dissipations. In order to examine the dynamic effects of interface stresses, we have inserted a thin layer of piezoelectric material at the interface of composite plies of a multilayer cantilever beam excited in bending. The voltage signals generated by the piezoelectric elements are seen to be dependent on the expected interlaminar stresses. Moreover, the realized experimental set-up validates the parameters of finite element simulations. Using the implemented finite element model, two different piezoelectric materials are compared with regard to their possibility for interfacial stress measurement and for mechanical energy dissipation.

  15. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, M.; Nobili, F.; Dsoke, S.; Tossici, R.; Marassi, R. [Dipartimento di Scienze Chimiche, Universita di Camerino, Via S. Agostino, 1, 62032 Camerino (MC) (Italy); D' Amico, F. [Dipartimento di Fisica, Universita di Camerino, Via Madonna delle Carceri, 9, 62032 Camerino (MC) (Italy); Croce, F. [Dipartimento di Scienze del Farmaco, Universita degli Studi ' ' G. D' Annunzio' ' , Via dei Vestini, 31, 66013 Chieti (Italy)


    The electrochemical behavior of composite anodes prepared either by mixing partially oxidized graphite and Cu powders or by coating the pristine partially oxidized graphite electrodes with few-nanometer-thick Cu layers has been studied by slow-scan-rate cyclic voltammetry (SSCV) and galvanostatic charge/discharge cycles over the temperature range of -30 C to 20 C. The interfacial intercalation/deintercalation kinetics has also been investigated using electrochemical impedance spectroscopy (EIS). The role of the Cu in improving low-temperature performances and kinetics of graphite electrodes is discussed. (author)

  16. The equivalency between logic Petri workflow nets and workflow nets. (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue


    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  17. Efficient charge-spin conversion and magnetization switching through the Rashba effect at topological-insulator/Ag interfaces (United States)

    Shi, Shuyuan; Wang, Aizhu; Wang, Yi; Ramaswamy, Rajagopalan; Shen, Lei; Moon, Jisoo; Zhu, Dapeng; Yu, Jiawei; Oh, Seongshik; Feng, Yuanping; Yang, Hyunsoo


    We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) B i2S e3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin-orbit-torque ratio in the B i2S e3/Ag /CoFeB heterostructure shows a significant enhancement as the Ag thickness increases to ˜2 nm and reaches a value of 0.5 for 5 nm Ag, which is ˜3 times higher than that of B i2S e3/CoFeB at room temperature. The observation reveals the interfacial effect of B i2S e3/Ag exceeds that of the topological surface states (TSSs) in the B i2S e3 layer and plays a dominant role in the charge-to-spin conversion in the B i2S e3/Ag /CoFeB system. Based on first-principles calculations, we attribute our observation to the large Rashba splitting bands which wrap the TSS band and have the same net spin polarization direction as the TSS of B i2S e3 . Subsequently, we demonstrate Rashba-induced magnetization switching in B i2S e3/Ag /Py with a low current density of 5.8 ×105A /c m2 .

  18. Interfacial Stress Transfer in an Aramid Reinforced Thermoplastic Elastomer


    Coffey, Austin


    Abstract The interfacial micromechanics of Twaron 2200 aramid fibers in an engineering thermoplastic elastomer (Pebax 7033, polyether amide block co-polymer) has been investigated by determining the distribution of interfacial shear stress along fibers in single-fiber model composites using Raman spectroscopy. The effects of various fiber surface treatments on the interfacial shear stress and fragmentation of the aramid fibers are discussed. The fiber average stress in...

  19. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H


    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  20. Interfacial energies for heterogeneous nucleation of calcium carbonate on mica and quartz. (United States)

    Li, Qingyun; Fernandez-Martinez, Alejandro; Lee, Byeongdu; Waychunas, Glenn A; Jun, Young-Shin


    Interfacial free energies often control heterogeneous nucleation of calcium carbonate (CaCO3) on mineral surfaces. Here we report an in situ experimental study of CaCO3 nucleation on mica (muscovite) and quartz, which allows us to obtain the interfacial energies governing heterogeneous nucleation. In situ grazing incidence small-angle X-ray scattering (GISAXS) was used to measure nucleation rates at different supersaturations. The rates were incorporated into classical nucleation theory to calculate the effective interfacial energies (α'). Ex situ Raman spectroscopy identified both calcite and vaterite as CaCO3 polymorphs; however, vaterite is the most probable heterogeneous nuclei mineral phase. The α' was 24 mJ/m(2) for the vaterite-mica system and 32 mJ/m(2) for the vaterite-quartz system. The smaller α' of the CaCO3-mica system led to smaller particles and often higher particle densities on mica. A contributing factor affecting α' in our system was the smaller structural mismatch between CaCO3 and mica compared to that between CaCO3 and quartz. The extent of hydrophilicity and the surface charge could not explain the observed CaCO3 nucleation trend on mica and quartz. The findings of this study provide new thermodynamic parameters for subsurface reactive transport modeling and contribute to our understanding of mechanisms where CaCO3 formation on surfaces is of concern.

  1. Interfacial interaction between polypropylene and nanotube: A molecular dynamics simulation (United States)

    Zhang, Danhui; Yang, Houbo; Liu, Zhongkui; Liu, Anmin; Li, Yunfang


    The interfacial interaction between polypropylene (PE) and single walled carbon nanotube (SWCNT) was studied using molecular dynamics (MD) simulations. The result showed that the PE chain could stabilize the SWCNT and then extended along the direction of SWCNT. The mechanism of interfacial interaction between PE and SWCNT was also discussed. Furthermore, the interfacial interaction between more PE and SWCNT was also investigated and the position also deeply influenced the interaction. This will be beneficial to understanding the interfacial interaction between polymer and CNT in solution, and also guiding the fabrication of high performance polymer/CNT nanocomposites.

  2. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...

  3. Interfacial properties of semifluorinated alkane diblock copolymers (United States)

    Pierce, Flint; Tsige, Mesfin; Borodin, Oleg; Perahia, Dvora; Grest, Gary S.


    The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F3C(CF2)n-1(CH2)m-1CH3 are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.

  4. Effects of graphene coating and charge injection on water adsorption of solid surfaces. (United States)

    Guo, Yufeng; Guo, Wanlin


    The adhesion and cohesion of water molecules on graphene-coated and bare copper and mica substrates under charge injection have been extensively studied by first-principles calculations. Water adsorption on graphene-coated copper surface is weakened by injecting negative charges into the substrate, while enhanced by positive charges. Both negatively and positively charge injecting on graphene-coated mica strengthen the adsorption between water and the surface. While the adhesive and cohesive energies of water adsorption on charged bare copper and mica exhibit similar trends and much stronger response to charge injection. The charge sensitivity of water adsorbing on positively charged surfaces is significantly weakened by the graphene coating layer, mainly due to lower interfacial charge exchange. Our results suggest a viable way to modify water adsorption on a graphene-coated surface and unveil the role of graphene as a passivation layer for the wetting of a charged substrate.

  5. Interfacial properties of semiconducting transition metal chalcogenides (United States)

    Jaegermann, W.; Tributsch, H.

    This review is aimed at the correlation of structural and electronic properies of semiconducting transition metal chalcogenides with molecular surface processes and mechanisms in photoelectrochemistry, (photo)catalysis, geochemistry and hydrometallurgy. Layer-type, pyrite structured and transition metal cluster containing chalcogenides are selected as model systems to explain the principles involved. Special emphasis is given to the discussion of materials which involve transition metal d- states in the interfacial reaction pathways of holes and electrons. Since they initiate and control heterogeneous coordination chemistry at the surfaces they may provide the possibility of tailoring selective and catalytically demanding reactions. Examples of such mechanisms are presented and discussed in relation to surface properties involved.

  6. Interfacial properties of bottle-brush polyelectrolytes

    DEFF Research Database (Denmark)

    Claesson, P. M.; Naderi, A.; Iruthayaraj, J.


    This article is focused on interfacial properties of bottle brush polyelectrolytes, where side-chains are attached along a polymer backbone. This class of polymer has been much less studied than block copolymers, which is particularly true for bottle brush polyelectrolytes with a high graft density...... whereas on silica both electrostatic forces and interactions between silica and ethylene oxide chains drive the adsorption. On silica the adsorbed amount is very sensitive to solution ionic strength and pH. We also report on surface interactions and frictional forces obtained between surfaces coated...

  7. Viscosity of interfacial water regulates ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Shun; Zhou, Xin [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, Dapeng; Wang, Jianjun, E-mail:; Song, Yanlin [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)


    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  8. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich


    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  9. Variable Charge Soils: Mineralogy and Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert


    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on

  10. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.


    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  11. Interfacial adsorption and aggregation of amphiphilic proteins (United States)

    Cheung, David


    The adsorption and aggregation on liquid interfaces of proteins is important in many biological contexts, such as the formation of aerial structures, immune response, and catalysis. Likewise the adsorption of proteins onto interfaces has applications in food technology, drug delivery, and in personal care products. As such there has been much interest in the study of a wide range of biomolecules at liquid interfaces. One class of proteins that has attracted particular attention are hydrophobins, small, fungal proteins with a distinct, amphiphilic surface structure. This makes these proteins highly surface active and they recently attracted much interest. In order to understand their potential applications a microscopic description of their interfacial and self-assembly is necessary and molecular simulation provides a powerful tool for providing this. In this presentation I will describe some recent work using coarse-grained molecular dynamics simulations to study the interfacial and aggregation behaviour of hydrophobins. Specifically this will present the calculation of their adsorption strength at oil-water and air-water interfaces, investigate the stability of hydrophobin aggregates in solution and their interaction with surfactants.

  12. Charge injection and transport properties of an organic light-emitting diode

    Directory of Open Access Journals (Sweden)

    Peter Juhasz


    Full Text Available The charge behavior of organic light emitting diode (OLED is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport.

  13. Interfacial Engineering with Cross-Linkable Fullerene Derivatives for High-Performance Perovskite Solar Cells. (United States)

    Kang, Tin; Tsai, Cheng-Min; Jiang, Yu-He; Gollavelli, Ganesh; Mohanta, Nayantara; Diau, Eric Wei-Guang; Hsu, Chain-Shu


    Two fullerene derivatives with styryl and oxetane cross-linking groups served as interfacial materials to modify an electron-transporting layer (ETL) of TiO 2 , doped with Au nanoparticles, processed under low-temperature conditions to improve the performance of perovskite solar cells (PSC). The cross-linkable [6,6]-phenyl-C 61 -butyric styryl dendron ester was produced via thermal treatment at 160 °C for 20 min, whereas the cross-linkable [6,6]-phenyl-C 61 -butyric oxetane dendron ester (C-PCBOD) was obtained via UV-curing treatment for 45 s. Both cross-linked fullerenes can passivate surface-trap states of TiO 2 and have also excellent surface coverage on the TiO 2 layer shown in the corresponding atomic force microscopy images. To improve the crystallinity of perovskite, we propose a simple co-solvent method involving mixing dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) in a specific ratio (DMF/DMSO = 90/10). The fullerene derivative layer between the ETL and perovskite layers significantly improved electron extraction and suppressed charge recombination by decreasing the density of traps at the ETL surface. A planar PSC device was fabricated with the configuration indium tin oxide/TiO 2 (Au)/C-PCBOD/perovskite/spiro-OMeTAD/Au to attain a power conversion efficiency (PCE) of 15.9%. The device performance was optimized with C-PCBOD as an interfacial mediate to modify the surface of the mesoporous TiO 2 ETL; the C-PCBOD-treated device attained a significantly enhanced performance, PCE 18.3%. Electrochemical impedance spectral and photoluminescence decay measurements were carried out to understand the characteristics of electron transfer and charge recombination of the perovskite/TiO 2 samples with and without a fullerene interfacial layer.

  14. Self-tuning interfacial architecture for Estradiol detection by surface plasmon resonance biosensor. (United States)

    Boltovets, Praskoviya; Shinkaruk, Svitlana; Vellutini, Luc; Snopok, Borys


    This study reports the operation principles for reusable SPR biosensors utilizing nanoscale-specific electrostatic levitation phenomena in their sensitive layer design. Functional macromolecular building blocks localized near the "charged" surface by a variety of weak electrostatic interactions create a flexible and structurally variable architecture. A proof-of-concept is demonstrated by an immunospecific detection of 17β-Estradiol (E2) following the competitive inhibition format. The sensing interfacial architecture is based on the BSA-E2 conjugate within the BSA matrix immobilized on the "charged" (as a result of guanidine thiocyanate treatment) gold surface at pH 5.0. Kinetic analysis for different E2 concentrations shows that using parameter β of the stretched exponential function ~(1-exp(-(t/τ) β ) as an analyte-specific response measure allows one to substantially decrease the low detection limit (down to 10 -3 ng/ml) and increase the dynamic range (10 -3 -10 3 ng/ml) of the SPR biosensor. Finally, it's concluded that the created interfacial architecture is a typical complex system, where SPR response is formed by the stochastic interactions within the whole variety of processes in the system. The E2 addition destroys the uniformity of the reaction space (where an interaction of the antibody (Ab) and the analog of E2 in the self-tuneable matrix takes place) by the redistribution of the immunospecific complexes Ab(E2) x (x=0, 1, 2) dependent on E2 concentration. Binding dynamics changes are reflected in the values of β which summarize in compact form all "hidden" information specific for the evolving distributed interfacial system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Regulation of Surface Charge by Biological Osmolytes. (United States)

    Govrin, Roy; Schlesinger, Itai; Tcherner, Shani; Sivan, Uri


    Osmolytes, small molecules synthesized by all organisms, play a crucial role in tuning protein stability and function under variable external conditions. Despite their electrical neutrality, osmolyte action is entwined with that of cellular salts and protons in a mechanism only partially understood. To elucidate this mechanism, we utilize an ultrahigh-resolution frequency modulation-AFM for measuring the effect of two biological osmolytes, urea and glycerol, on the surface charge of silica, an archetype protic surface with a pK value similar to that of acidic amino acids. We find that addition of urea, a known protein destabilizer, enhances silica's surface charge by more than 50%, an effect equivalent to a 4-unit increase of pH. Conversely, addition of glycerol, a protein stabilizer, practically neutralizes the silica surface, an effect equivalent to 2-units' reduction of pH. Simultaneous measurements of the interfacial liquid viscosity indicate that urea accumulates extensively near the silica surface, while glycerol depletes there. Comparison between the measured surface charge and Gouy-Chapman-Stern model for the silica surface shows that the modification of surface charge is 4 times too large to be explained by the change in dielectric constant upon addition of urea or glycerol. The model hence leads to the conclusion that surface charge is chiefly governed by the effect of osmolytes on the surface reaction constants, namely, on silanol deprotonation and on cation binding. These findings highlight the unexpectedly large effect that neutral osmolytes may have on surface charging and Coulomb interactions.

  16. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.


    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  17. Manipulation of interfacial instabilities by using a soft, deformable ...

    Indian Academy of Sciences (India)

    Abstract. Multilayer flows are oftensusceptible to interfacial instabilities caused due to jump in viscosity/elasticity across thefluid–fluid interface. It is frequently required to manipulate and control these interfacial instabilities in various applications such as coating processes or polymer coextrusion. We demonstrate here the ...

  18. Interfacial re-arrangement in initial microbial adhesion to surfaces

    NARCIS (Netherlands)

    Busscher, H.J.; Norde, W.; Sharma, P.K.; Mei, van der H.C.


    Upon initial microbial adhesion to a surface multiple events occur that include interfacial re-arrangements in the region between an adhering organism and a surface Application of physico-chemical mechanisms to explain microbial adhesion to surfaces requires better knowledge of the interfacial re

  19. Extraction of temperature dependent interfacial resistance of thermoelectric modules

    DEFF Research Database (Denmark)

    Chen, Min


    This article discusses an approach for extracting the temperature dependency of the electrical interfacial resistance associated with thermoelectric devices. The method combines a traditional module-level test rig and a nonlinear numerical model of thermoelectricity to minimize measurement errors...... on the interfacial resistance. The extracted results represent useful data to investigating the characteristics of thermoelectric module resistance and comparing performance of various modules....

  20. Manipulation of interfacial instabilities by using a soft, deformable ...

    Indian Academy of Sciences (India)

    Multilayer flows are oftensusceptible to interfacial instabilities caused due to jump in viscosity/elasticity across thefluid–fluid interface. It is frequently required to manipulate and control these interfacial instabilities in various applications such as coating processes or polymer coextrusion. We demonstrate here the possibility ...

  1. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study (United States)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.


    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.

  2. The bipolar nature of charge resident on supposedly unipolar aerosols (United States)

    O'Leary, M.; Balachadran, W.; Rogueda, P.; Chambers, F.


    Interest in aerosol electrostatic properties for optimisation of drug delivery within the lung has varied over time. The availability of the Dekati Electrostatic Low Pressure Impactor (ELPI) has facilitated several recent papers investigating distributions of aerosol size and charge. The ELPI operates in a similar fashion to conventional impactors fractionating the aerosol population by aerodynamic size. The impactor plates are electrically conducting and connected to electrometers allowing measurement of inherent aerosol charge transferred upon impaction. Results from pMDIs showing varying charge polarity with size have been cited as evidence of the bipolar nature of charge output. Sum charge over an aerosol measured by the ELPI is, however, simply net charge that may be seen to evolve with size. Electrostatic particle capture methods have been used to assess the nature of the charge resident on a pMDI aerosol population demonstrating unipolar output on the ELPI and have shown consistent bipolarity. Net charge output would have been measured as possessing single polarity but would consist of larger magnitude positive and negative components. Even moderate levels of bipolarity render as inherently flawed any attempt to characterise the level of charge on individual aerosol droplets or the entire population based solely on net charge data.

  3. Charges and Fields in a Current-Carrying Wire (United States)

    Redzic, Dragan V.


    Charges and fields in a straight, infinite, cylindrical wire carrying a steady current are determined in the rest frames of ions and electrons, starting from the standard assumption that the net charge per unit length is zero in the lattice frame and taking into account a self-induced pinch effect. The analysis presented illustrates the mutual…

  4. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy (United States)

    Neppl, Stefan


    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  5. Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells. (United States)

    Zheng, Lingling; Ma, Yingzhuang; Xiao, Lixin; Zhang, Fengyan; Wang, Yuanhao; Yang, Hongxing


    Interfacial materials play a critical role in photoelectric conversion properties as well as the anomalous hysteresis phenomenon of the perovskite solar cells (PSCs). In this article, a water-soluble polythiophene PTEBS was employed as a cathode interfacial material for PSCs. Efficient energy level aligning and improved film morphology were obtained due to an ultrathin coating of PTEBS. Better ohmic contact between the perovskite layer and the cathode also benefits the charge transport and extraction of the device. Moreover, less charge accumulation at the interface weakens the polarization of the perovskite resulting in a relatively quick response of the modified device. The ITO/PTEBS/CH3NH3PbI3/spiro-MeOTAD/Au cells by an all low-temperature process achieved power conversion efficiencies of up to 15.4% without apparent hysteresis effect. Consequently, the utilization of this water-soluble polythiophene is a practical approach for the fabrication of highly efficient, large-area, and low-cost PSCs and compatible with low-temperature solution process, roll-to-roll manufacture, and flexible application.

  6. Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Alex Jen; David Ginger; Christine Luscombe; Hong Ma


    The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

  7. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  8. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD


    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  9. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.


    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  10. Forces acting on dielectric colloidal spheres at a water/nonpolar fluid interface in an external electric field. 2. Charged particles. (United States)

    Danov, Krassimir D; Kralchevsky, Peter A


    Here, we calculate the electric forces acting on charged dielectric colloidal particles, which are attached to the interface between a nonpolar fluid (air and oil) and water in the presence of applied uniform external electric field, E0, directed normal to the interface. Electric charges are present on the particle-nonpolar fluid interface. The solution to the problem represents a superposition of the solutions of two simpler problems: (i) charged particle in the absence of external field and (ii) uncharged particle in the presence of external field. Because the external field can be directed upward or downward, it enhances or opposes the effect of the particle surface charges. As a result, the vertical (electrodipping) force vs. E0 may have a maximum or minimum and can be positive or negative depending on the particle contact angle and dielectric constant. In contrast, the lateral electric force between two identical charged floating particles is always positive (repulsive), but it can vary by many orders of magnitude with E0. This is because at a certain value of E0, the net dipolar moment of the particle becomes zero. Then, the interparticle force is governed by the octupolar moment, which leads to a much weaker and short-range repulsion. In the vicinity of this special value of E0, the interparticle repulsion is very sensitive to the variations in the external field. These effects can be used for a fine control of the lattice spacing in non-densely packed interfacial colloidal crystals of regular hexagonal packing for producing lithographic masks with various applications in nanotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev


    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  12. Surface charge mapping with a nanopipette. (United States)

    McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R


    Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.

  13. Solid-liquid interfacial energy of aminomethylpropanediol

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Yavuz; Keslioglu, Kazim; Marasli, Necmettin [Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Akbulut, Sezen [Department of Physics, Institute of Science and Technology, Erciyes University, 38039 Kayseri (Turkey)], E-mail:


    The grain boundary groove shapes for equilibrated solid aminomethylpropanediol, 2-amino-2 methyl-1.3 propanediol (AMPD) with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient ({gamma}), solid-liquid interfacial energy ({sigma}{sub SL}) and grain boundary energy ({sigma}{sub gb}) of AMPD have been determined to be (5.4 {+-} 0.5) x 10{sup -8} K m, (8.5 {+-} 1.3) x 10{sup -3} J m{sup -2} and (16.5 {+-} 2.8) x 10{sup -3} J m{sup -2}, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for the AMPD has also been measured to be 1.12 at the melting temperature.

  14. Atrito interfacial em escoamento anular transicional


    Marcos Heinzelmann Junqueira Pedras


    Resumo: o objetivo deste trabalho é estudar o atrito interfacial em escoamentos anulares co-correntes ascendentes na condição próxima da reversão de fluxo. O fenômeno foi experimentado em laboratório utilizando-se ar e água como fluidos de trabalho. Os resultados são apresentados e comparados com outros da literatura, validando assim os experimentos realizados. É proposta uma correlação para o cálculo da fração de vazio baseada no modelo de deslizamento. Também é proposta uma correlação para ...

  15. Liquid-liquid interfacial nanoparticle assemblies (United States)

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA


    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  16. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.


    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  17. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters (United States)

    Almansaf, Abdulkhaleq A.; Parida, Manas R.; Besong, Tabot M. D.; Maity, Partha; Bootharaju, Megalamane S.; Bakr, Osman M.; Mohammed, Omar F.


    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  18. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  19. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge


    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  20. Conformal Nets II: Conformal Blocks (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André


    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  1. Interfacial dislocation motion and interactions in single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raabe, D. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Roters, F. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Arsenlis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  2. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty


    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  3. Measurement of temperature inside die and estimation of interfacial heat transfer coefficient in squeeze casting

    Directory of Open Access Journals (Sweden)

    Fei-fan Wang


    Full Text Available As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the interfacial heat transfer coefficient (IHTC is an important boundary condition in numerical simulation. Therefore, the study of the IHTC is of great significance. In the present study, experiments were conducted and a “plate shape” aluminum alloy casting was cast in H13 steel die. In order to obtain accurate temperature readings inside the die, a special temperature sensor units (TSU was designed. Six 1 mm wide and 1 mm deep grooves were machined in the sensor unit for the placement of the thermocouples whose tips were welded to the end wall. Each groove was machined to terminate at a particular distance (1, 3, and 6 mm from the front end of the sensor unit. Based on the temperature measurements inside the die, the interfacial heat transfer coefficient (IHTC at the metal-die interface was determined by applying an inverse approach. The acquired data were processed by a low pass filtering method based on Fast Fourier Transform (FFT. The feature of the IHTC at the metal-die interface was discussed.

  4. First-principles prediction of liquid/liquid interfacial tension

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Bennetzen, M.V.; Klamt, A.


    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation...... of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid...

  5. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)


    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  6. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits


    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  7. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José


    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  8. PolicyNet Publication System (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  9. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  10. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A


    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  11. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn


    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  12. The Economics of Net Neutrality


    Hahn, Robert W.; Wallsten, Scott


    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  13. Structure-property relationships in non-epitaxial chalcogenide heterostructures: the role of interface density on charge exchange (United States)

    Bauers, S. R.; Ditto, J.; Moore, D. B.; Johnson, D. C.


    A homologous series of quasi-2D ([PbSe]1+δ)m(TiSe2)m nanolayered heterostructures are prepared via self-assembly of designed precursors with 1 rock salt structured PbSe layers alternating with TiSe2 layers, and that grain size increases with m. The compounds are all metallic with upturns in resistivity at low temperature suggesting electron localization, with room temperature resistivity of 1-3 10-5 Ω m, negative Hall coefficients and Seebeck coefficients between -50 and -100 μV K-1. A decrease in the mobile carrier concentration with temperature is observed for all m and the rate increases with increasing low-dimensionality. Decreasing the interface density also decreases the average carrier concentration while increasing the electron mobility. The Seebeck coefficients systematically increase in magnitude as m is increased, but the net effect to the power factor is small due to a compensating increase in resistivity. The observed transport behavior is not described by the simple rigid band models with charge transfer between constituents used previously. Charge exchange between constituents stabilizes the intergrowth, but also introduces mobile carriers and interfacial band bending that must play a role in the transport behavior of the heterostructures. As chemical potentials equilibrate in high m heterostructures there is a decrease in total coulombic stabilization as there are fewer interfaces, so m = 1 is likely to be most stable. This rationalizes why the structurally similar misfit layer compounds with m = 1 are often the only intergrowths that can be prepared. Charge transfer and band bending at interfaces should occur in other heterostructures with similar type II broken-gap band alignments and are important considerations regarding both their stability and transport properties.

  14. Nanomechanical Sensing of Biological Interfacial Interactions (United States)

    Du, Wenjian

    Cellulose is the most abundant biopolymer on earth. Cellulase is an enzyme capable of converting insoluble cellulose into soluble sugars. Cellulosic biofuel produced from such fermentable simple sugars is a promising substitute as an energy source. However, its economic feasibility is limited by the low efficiency of the enzymatic hydrolysis of cellulose by cellulase. Cellulose is insoluble and resistant to enzymatic degradation, not only because the beta-1,4-glycosidic bonds are strong covalent bonds, but also because cellulose microfibrils are packed into tightly bound, crystalline lattices. Enzymatic hydrolysis of cellulose by cellulase involves three steps--initial binding, decrystallization, and hydrolytic cleavage. Currently, the mechanism for the decrystallization has not yet been elucidated, though it is speculated to be the rate-limiting step of the overall enzymatic activity. The major technical challenge limiting the understanding of the decrystallization is the lack of an effective experimental approach capable of examining the decrystallization, an interfacial enzymatic activity on solid substrates. The work presented develops a nanomechanical sensing approach to investigate both the decrystallization and enzymatic hydrolytic cleavage of cellulose. The first experimental evidence of the decrystallization is obtained by comparing the results from native cellulase and non-hydrolytic cellulase. Surface topography has been applied to examine the activities of native cellulase and non-hydrolytic cellulase on cellulose substrate. The study demonstrates additional experimental evidence of the decrystallization in the hydrolysis of cellulose. By combining simulation and monitoring technology, the current study also investigates the structural changes of cellulose at a molecular level. In particular, the study employs cellulose nanoparticles with a bilayer structure on mica sheets. By comparing results from a molecular dynamic simulation and the distance

  15. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo-generated...... charges is a major limitation for the efficiency of the organic solar cells, a thorough understanding of this loss mechanism is crucial to improve the performance of the devices. Furthermore, examining this interfacial state is of great importance in order to maximize open-circuit voltage and photocurrent...

  16. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco


    We investigate the prototypical hybrid interface formed between PTCDA and conductive n-doped ZnO films by means of complementary optical and electronic spectroscopic techniques. We demonstrate that shallow donors in the vicinity of the ZnO surface cause an integer charge transfer to PTCDA, which is clearly restricted to the first monolayer. By means of DFT calculations, we show that the experimental signatures of the anionic PTCDA species can be understood in terms of strong hybridization with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron-transport level but requires rather an atomistic understanding of the interfacial interactions. The study reveals that defect sites and dopants can have a significant influence on the specifics of interfacial coupling and thus on carrier injection or extraction.

  17. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses. (United States)


    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  18. 29 CFR 4204.13 - Net income and net tangible assets tests. (United States)


    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  19. Final Project Report for "Interfacial Thermal Resistance of Carbon Nanotubes”

    Energy Technology Data Exchange (ETDEWEB)

    Cumings, John [Univ. of Maryland, College Park, MD (United States)


    This report describes an ongoing project to comprehensively study the interfacial thermal boundary resistance (Kapitza resistance) of carbon nanotubes. It includes a list of publications, personnel supported, the overall approach, accomplishments and future plans.

  20. Charles J. McMahon Interfacial Segregation and Embrittlement Symposium

    National Research Council Canada - National Science Library

    Vitek, Vaclav


    .... McMahon Interfacial Segregation and Embrittlement Symposium: Grain Boundary Segregation and Fracture in Steels was sponsored by ASM International, Materials Science Critical Technology Sector, Structural Materials Division, Materials Processing...

  1. Evanescent wave induced fluorescence. A tool for quantitative interfacial analysis

    CERN Document Server

    Byrne, C D


    Time-resolved angle-resolved evanescent wave induced fluorescence spectroscopy (EWIFS) has been used, for the first time, to determine interfacial concentration distributions of molecular species. Theoretical calculations demonstrate that in dynamic systems the non-radiative fluorescence decay coefficients of molecular species are effected only in a minor way by the presence of a dielectric interface. Consequently, measurements of interfacial fluorescence decay times are used to probe variations in molecular fluorescence quantum efficiencies, caused by the presence of an interface. The understanding of these variations is combined with angle-resolved evanescent wave theory. Examination of derived theoretical models using simulated data demonstrates that angle-resolved EWIFS is capable of measuring interfacial interactions on a nanometer scale. An evanescent wave induced fluorescence spectrometer is designed and fabricated to allow the measurement of the time-integrated and time-resolved interfacial emission. ...

  2. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  3. Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface

    DEFF Research Database (Denmark)

    Lindell, L.; Unge, Mikael; Osikowicz, W.


    In organic-based electronics, interfacial properties have a profound impact on device performance. The lineup of energy levels is usually dependent on interface dipoles, which may arise from charge transfer reactions. In many applications, metal-organic junctions are prepared under ambient condit...

  4. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance. (United States)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael


    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  5. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo


    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  6. Protein packing defects "heat up" interfacial water. (United States)

    Sierra, María Belén; Accordino, Sebastián R; Rodriguez-Fris, J Ariel; Morini, Marcela A; Appignanesi, Gustavo A; Fernández Stigliano, Ariel


    Ligands must displace water molecules from their corresponding protein surface binding site during association. Thus, protein binding sites are expected to be surrounded by non-tightly-bound, easily removable water molecules. In turn, the existence of packing defects at protein binding sites has been also established. At such structural motifs, named dehydrons, the protein backbone is exposed to the solvent since the intramolecular interactions are incompletely wrapped by non-polar groups. Hence, dehydrons are sticky since they depend on additional intermolecular wrapping in order to properly protect the structure from water attack. Thus, a picture of protein binding is emerging wherein binding sites should be both dehydrons rich and surrounded by easily removable water. In this work we shall indeed confirm such a link between structure and dynamics by showing the existence of a firm correlation between the degree of underwrapping of the protein chain and the mobility of the corresponding hydration water molecules. In other words, we shall show that protein packing defects promote their local dehydration, thus producing a region of "hot" interfacial water which might be easily removed by a ligand upon association.

  7. Quantum interference in an interfacial superconductor. (United States)

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D


    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T c ; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T c superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  8. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. (United States)

    Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin


    Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.

  9. Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning


    Pelipenko, Jan; KRISTL, JULIJANA; Rošic, Romana; Baumgartner, Saša; KOCBEK, PETRA


    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the s...

  10. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.


    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  11. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.


    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  12. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.


    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  13. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.


    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  14. Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration

    KAUST Repository

    Zaouri, Noor A


    In the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms.

  15. Single Drop Electroanalysis and Interfacial Interactions: Sensitivity versus Limit of Detection†. (United States)

    Walgama, Charuksha; Gallman, Matthew; Krishnan, Sadagopan


    We report single drop electroanalytical measurements of pharmaceutically and biologically relevant compounds using screen printed electrodes (SPEs) modified with carboxylated multiwalled carbon nanotubes (MWCNT-COOH) as the sensor surface. Acetaminophen, nicotine, ascorbic acid, and nicotinamide adenine dinucleotide reduced form (NADH) were detected in a single drop of solution. We show that combined polar and nonpolar interactions of analytes with -COOH functional groups and large surface area of MWCNT, respectively, allow highly sensitive analyte detection with wide dynamic range. Smaller analytes can bind to a significantly greater number of sensor sites than the bulkier analytes and offer better detection sensitivity. Results suggest that sensitivity is controlled by predominant nonpolar interactions that an analyte can undergo with the MWCNT-COOH SPE sensor surface, whereas limit of detection is controlled by the extent of polar interactions between an analyte and the sensor surface, facilitating interfacial charge transport and an electrochemical signal output. Furthermore, a combination of polar and nonpolar analyte interactions with the sensor surface shows a synergistic effect on sensitivity and detection limit. This could be a likely reason for why sensitivity does not need to always correlate with lower detection limits as variations in the interfacial interactions are critical. Application of the designed single drop method to real samples was validated by estimating the amounts of acetaminophen, nicotine, ascorbic acid, and NADH in commercially available pharmaceuticals with excellent recovery.

  16. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein


    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  17. Power-Law Distributions in a Two-sided Market and Net Neutrality


    Deng, Xiaotie; Feng, Zhe; Papadimitriou, Christos H.


    "Net neutrality" often refers to the policy dictating that an Internet service provider (ISP) cannot charge content providers (CPs) for delivering their content to consumers. Many past quantitative models designed to determine whether net neutrality is a good idea have been rather equivocal in their conclusions. Here we propose a very simple two-sided market model, in which the types of the consumers and the CPs are {\\em power-law distributed} --- a kind of distribution known to often arise p...

  18. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius


    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  19. Net4Care PHMR Library

    DEFF Research Database (Denmark)


    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  20. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur


    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  1. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.


    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  2. Interfacial Behavior of Polymer Coated Nanoparticle (United States)

    Qi, Luqing; Shamsijazeyi, Hadi; Mann, Jason; Verduzco, Rafael; Hirasaki, George; Rice University Team


    Oxidized carbon black (OCB) nanoparticle is functionalized with different coatings, i.e. alkyl group, polyvinyl alcohol (PVA) and partially sulfonated polyvinyl alcohol (sPVA). In oil and water systems, the functionalized nanoparticle is found to have a versatile dispersion i.e. in lower aqueous phase, in upper oil phase, or in middle phase microemulsion. Oil substitute n-octane and commercial oil IOSPAR have been test as oil phase; series of commercially available surfactant, C12-4,5 orthoxylene sulfonate(OXS), i-C13-(PO)7 -SO4Na (S13B), surfactant blend of anionic Alfoterra with nonionic Tergitol have been test as additive to help with the OCB dispersion. It is found that the OCB with sulfonated polyvinyl alcohol attachment (sPVA-OCB) stays in microemulsion; with the increase of salinity, it follows the microemulsion to go from lower phase, to middle phase, and to upper phase. The dispersion of sPVA and alkyl functionalized OCB (Cn-OCB-sPVA) is the balance of the length of alkyl and sPVA and the degree of sulfonation of PVA, depending on which, it can either disperse into microemulsion or form a separate layer. The sPVA-OCB also indicates a tolerance of high salinity; this is shown by the stable dispersion of it in blend surfactant solution of anionic Alfoterra and nonionic Tergitol at high salinity API brine(8% NaCl and 2% CaCl2). The study of different functionality on OCB dispersion can help design appropriate modified nanoparticle as additive for enhanced oil recovery either to reduce the interfacial tension between oil and water, or to stabilize microemulsion.

  3. Interfacial Water Structure and Cation Binding with the Dppc Phosphate at Air /aqueous Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy (United States)

    Hua, Wei; Allen, Heather C.


    Molecular-level knowledge of water structure and cation binding specificity to lipid headgroups at lipid/water interfaces plays a key role in many relevant chemical, biological, and environmental processes. To obtain information on the molecular organization at aqueous interfaces, vibrational sum frequency generation (VSFG) has been applied extensively as an interface-specific technique. Dipalmitoylphosphocholine (DPPC) is a major component of cell membranes and has been used as a proxy for the organic coating on fat-coated aerosols. In the present work, in addition to conventional VSFG studies on cation interaction with the phosphate headgroup moiety of DPPC, we employ phase-sensitive vibrational sum frequency generation (PS-VSFG) to investigate the average direction of the transition dipole moment of interfacial water molecules. The average orientation of water structure at DPPC/water interfaces is inferred. DPPC orients interfacial water molecules on average with their net transition dipole moment pointing towards the surface. The influence of Na+, K+, Mg2+, Ca2+ is identified in regard to interfacial water structure and DPPC headgroup organization. Ca2+ is observed to have greater impact on the water structure and a unique binding affinity to the phosphate headgroup relative to other cations tested. In highly concentrated Ca2+ regimes the already disturbed interfacial hydrogen-bonding network reorganizes to resemble that of the neat salt solution interface.

  4. Supersaturated Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells (United States)


    applications such as organic photovoltaics ,1−6 thin - film transistors,7−9 and organic/ polymer light-emitting diodes.10−13 Using SAM surface mod- ification...dipolar SAMs. This heterogeneous SAM grafting approach suggests broad potential in technologies as diverse as organic thin - film transistors,7,81,101...Minarini, C.; Della Sala, D.; Rubino, A. Thin Solid Films 2008, 516, 4232−4237. (43) Armstrong, N. R.; Carter, C.; Donley, C.; Simmonds, A.; Lee, P

  5. Developing Efficient Charge-Selective Interfacial Materials for Polymer and Perovskite Solar Cells (United States)


    Materials for Polymer and Pervskite Solar Cells 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4066 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Alex K...fabrication of multi-junction organic and perovskite solar cells to reach high efficiency, low-cost, and good stability. To gain insights in these...enable the fabrication of highly efficient single- and multi-junction organic/hybrid solar cells . 15.  SUBJECT TERMS nanoscience, AOARD 16

  6. Systematic Investigation of Organic Photovoltaic Cell Charge Injection/Performance Modulation by Dipolar Organosilane Interfacial Layers (United States)


    room temperature. The solution was diluted with distilled water (40 mL) and the product was extracted with ethyl acetate (3 × 15 mL). The organic...character of the products and highly reactive nature of the −SiCl3 moieties. The 1H, 13C, and 19F NMR spectra of all new compounds are provided in the...layer = poly(3-hexylthiophene):phenyl- C71-butyric acid methyl ester (P3HT:PC71BM) or poly[[4,8-bis[(2-ethylhexyl)- oxy]benzo[1,2-b:4,5-b’]dithiophene

  7. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhu Guang


    Full Text Available Abstract Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%. The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.

  8. Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes. (United States)

    Yigit, Cemil; Kanduč, Matej; Ballauff, Matthias; Dzubiella, Joachim


    We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one- and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule, we observe large binding affinities up to tens of the thermal energy, kBT, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.

  9. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen


    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  10. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion (United States)

    Li, Hao-Bo; Wang, Weichao; Xie, Xinjian; Cheng, Yahui; Zhang, Zhaofu; Dong, Hong; Zheng, Rongkun; Wang, Wei-Hua; Lu, Feng; Liu, Hui


    Cu/Cu2O composite structures have been discovered to show sizable ferromagnetism (FM) with the potential applications in spintronic devices. To date, there is no consensus on the FM origin in Cu/Cu2O systems. Here, first principles calculations are performed on the interface structure to explore the microscopic mechanism of the FM. It is found that only the Cu vacancy (VCu) adjacent to the outermost Cu2O layer induces a considerable magnetic moment, mostly contributed by 2p orbitals of the nearest-neighbor oxygen atom (ONN) with two dangling bonds and 3d orbitals of the Cu atoms bonding with the ONN. Meanwhile, the charge transfer from Cu to Cu2O creates higher density of states at the Fermi level and subsequently leads to the spontaneous FM. Furthermore, the FM could be modulated by the amount of interfacial VCu, governed by the interfacial Cu diffusion with a moderate energy barrier (~1.2 eV). These findings provide insights into the FM mechanism and tuning the FM via interfacial cation diffusion in the Cu/Cu2O contact. PMID:26478505

  11. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)


    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  12. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs


    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  13. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.


    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  14. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.


    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  15. Some Aspects of Interfacial Phenomena in Steelmaking and Refining (United States)

    Wang, L. J.; Viswanathan, N. N.; Muhmood, L.; Kapilashrami, E.; Seetharaman, S.


    Unique experiments were designed to study the surface phenomena in steelmaking reactions. The concept of surface sulfide capacities and an understanding of the surface accumulation of surface-active species, based on experimental results, are presented. In order to understand the flow phenomenon at slag/metal interface, experiments were designed to measure the interfacial velocity of S on the surface of an iron drop immersed in an aluminosilicate slag using the X-ray sessile drop method. The oscillation of the iron drop in the slag due to the change in the surface concentration of sulfur at the slag-metal interface was monitored by X-ray imaging. From the observations, the interfacial velocity of sulfur was evaluated. Similar experiments were performed to measure the interfacial velocity of oxygen at the interface as well as the impact of oxygen potential on the interfacial velocity of sulfur. The interfacial shear viscosity and the dilatational modulus were also evaluated. In a study of the wetting of alumina base by iron drop at constant oxygen pressure under isothermal condition, the contact angle was found to be decreased with the progress of the reaction leading to the formation of hercynite as an intermediate layer creating non-wetting conditions. In the case of silica substrate, an intermediate liquid fayalite layer was formed.

  16. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)


    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  17. Multiscale Modeling of Mesoscale and Interfacial Phenomena (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  18. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker


    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  19. Army Net Zero Prove Out. Army Net Zero Training Report (United States)


    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  20. Army Net Zero Prove Out. Net Zero Waste Best Practices (United States)


    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  1. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)


    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  2. Inequalities in purchase of mosquito nets and willingness to pay for insecticide-treated nets in Nigeria: Challenges for malaria control interventions

    Directory of Open Access Journals (Sweden)

    Hanson Kara


    Full Text Available Abstract Objective To explore the equity implications of insecticide-treated nets (ITN distribution programmes that are based on user charges. Methods A questionnaire was used to collect information on previous purchase of untreated nets and hypothetical willingness to pay (WTP for ITNs from a random sample of householders. A second survey was conducted one month later to collect information on actual purchases of ITNs. An economic status index was used for characterizing inequity. Major findings The lower economic status quintiles were less likely to have previously purchased untreated nets and also had a lower hypothetical and actual WTP for ITNs. Conclusion ITN distribution programmes need to take account of the diversity in WTP for ITNs if they are to ensure equity in access to the nets. This could form part of the overall poverty reduction strategy.

  3. Interfacial characteristics of petroleum bitumens in contact with acid water

    Energy Technology Data Exchange (ETDEWEB)

    Salou, M.; Siffert, B.; Jada, A. [Institut de Chimie des Surfaces et Interfaces, Mulhouse (France)


    The chemical and interfacial properties of two bitumens were compared. The chemical properties were characterized by determining the asphaltene and resin contents of the bitumens. The interfacial properties were studied by wettability measurements and by determining the zeta potential of bitumen dispersions in acid water, with and without maturation of asphaltene dispersions in acid water and of bitumen dispersions in acid water containing asphaltenes. The study of the influence of the maturation at 80{degree}C for 7 h and of the addition of asphaltenes on the stability of the bitumen dispersion showed that the evolution of the interfacial properties of the bitumen depends on the resin content of the bitumen. Short communication. 15 refs., 1 figs., 2 tabs.

  4. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.


    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  5. On Modulating Interfacial Structure towards Improved Anti-Icing Performance

    Directory of Open Access Journals (Sweden)

    Kshitij C. Jha


    Full Text Available The design of anti-icing surfaces presents an interface with high causal density that has been challenging to quantify in terms of individual contributions of various interactions and environmental factors. In this commentary, we highlight the role of interfacial water structure as uniquely expressing the physico-chemical aspects of ice accretion. Recent work on the topic that focuses on control of interfacial structure is discussed along with results by our research group on wettability of chemically modified surfaces and the role of ions in modulating interfacial structure. Suggestions for systematic studies to understand the fundamental interactions at play in ice adhesion at interfaces are made especially in the under-explored areas of cooperative hydrogen bonding and the role of solvated counterions. Insights expected from such studies would contribute to design of robust anti-icing hierarchies.

  6. Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries (United States)

    Hardin, G. R.; Zhang, Y.; Fincher, C. D.; Pharr, M.


    Nanowires (NW) have emerged as a promising design for high power-density lithium-ion battery (LIB) electrodes. However, volume changes during cycling can lead to fracture of the NWs. In this paper, we investigate a particularly detrimental form of fracture: interfacial detachment of the NW from the current collector (CC). We perform finite element simulations to calculate the energy release rates of NWs during lithiation as a function of geometric parameters and mechanical properties. The simulations show that the energy release rate of a surface crack decreases as it propagates along the NW/CC interface toward the center of the NW. Moreover, this paper demonstrates that plastic deformation in the NWs drastically reduces stresses and thus crack-driving forces, thereby mitigating interfacial fracture. Overall, the results in this paper provide design guidelines for averting NW/CC interfacial fractures during operation of LIBs.

  7. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  8. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library



      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  9. Charge distribution and Fermi level in bimetallic nanoparticles


    Holmberg, Nico; Laasonen, Kari; Peljo, Pekka Eero


    Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We present a new model to explain this charge transfer by considering the bimetallic system as a nanocapacit...

  10. Isolated unit tests in .Net


    Haukilehto, Tero


    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  11. The effects of interfacial exchange coupling in Fe/ErFeO3 heterostructures (United States)

    Tang, J.; Ke, Y. J.; He, W.; Zhang, X. Q.; Zhang, Y. S.; Zhang, W.; Li, Y.; Ahmad, S. S.; Cheng, Z. H.


    Exploring exchange bias in ferromagnetic (FM)/antiferromagnetic (AFM) heterostructures is vital for both fundamental magnetism and practical application. However, in the case of conventional FM/AFM systems, the essential field cooling process above the Néel temperature of AFM materials hinders their application if the Néel temperature is far higher than room-temperature. Here, we report the effects of interfacial exchange coupling in Fe/ErFeO3 heterostructures. The magnetic-field-induced switchable exchange bias, originating from the AFM exchange coupling between Fe film and Dzyaloshinskii-Moriya-interaction-induced net moment of ErFeO3 along c axis, is successfully achieved without field cooling or in-field growth process of AFM. Different from the most previous pinning layer using a hard FM or traditional AFM, ErFeO3 pinning layer has the advantages of both the magnetic field sensitivity (~780 Oe) and ultrahigh dynamic frequency. In addition, although Fe film is polycrystalline, it exhibits a strong uniaxial magnetic anisotropy resulted from the so-called ‘spin-flop-coupling effect’, i.e. the magnetic coupling between Fe film and the compensated G-type AFM spins of EFO along a axis. Interestingly, the exchange bias field and asymmetric switching field offer entirely different information about the asymmetry of magnetization reversal near hard axis. The asymmetric switching field is further proved to be an effective measure to determine the weak unidirectional magnetic anisotropy for film with nearly 180° domain wall displacement. Our experimental results provide a practical method to establish room-temperature exchange bias in FM/G-type AFM without field cooling. Furthermore, the magnetic-field-induced switchable exchange-bias, the spin-flop coupling effect and the angular dependent asymmetry of magnetization reversal in the vicinity of hard axis in Fe/ErFeO3 heterostructures may provide new insights on the interfacial exchange coupling in FM/AFM systems.

  12. Charge Transport in Conjugated Block Copolymers (United States)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  13. Physiochemical charge stabilization of silver nanoparticles and its antibacterial applications (United States)

    Vanitha, G.; Rajavel, K.; Boopathy, G.; Veeravazhuthi, V.; Neelamegam, P.


    Environmental standardization and stabilization of surface charges of silver nanoparticles (AgNPs) is important in biological systems and interest in bio-interfacial interaction. Different synthesized AgNPs in chemical reduced (AgNO3 (0.01, 0.1 and 0.5 M); NaBH4 and Na3C6H5O7) garnered for analysis of physico-chemical charge stabilization by means of different pH (1-13) and ionic interferences (NaCl, Ca(NO3)2, Na2CO3 and NaNO3). The uniform sized (size: ∼22 nm) and highly charged (zeta potential: -37.9 mV) AgNPs with uniform dispersion remains unaltered in high ionic interferences. Highest antifungal activity of AgNPs against Candida albicans and moderate activity against Staphylococcus aureus are correlated.

  14. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM (United States)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu


    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance–voltage and current–voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  15. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail:


    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  16. 78 FR 27472 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals (United States)


    ... PFC approvals and disapprovals under the provisions of the Aviation Safety and Capacity Expansion Act... checkpoint modification. Friction measuring equipment. Runway 20 resealing. East public ramp expansion... Amended estimatd estimated Amendment No. city, state approved date approved net approved net charge exp...

  17. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni


    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  18. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W


    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  19. Long Term RadNet Quality Data (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  20. Possible consequences of regionally based bundled payments for diabetic amputations for safety net hospitals in Texas. (United States)

    Newhall, Karina; Stone, David; Svoboda, Ryan; Goodney, Philip


    Ongoing health reform in the United States encourages quality-based reimbursement methods such as bundled payments for surgery. The effect of such changes on high-risk procedures is unknown, especially at safety net hospitals. This study quantified the burden of diabetes-related amputation and the potential financial effect of bundled payments at safety net hospitals in Texas. We performed a cross-sectional analysis of diabetic amputation burden and charges using publically available data from Centers for Medicare and Medicaid and the Texas Department of Health from 2008 to 2012. Using hospital referral region (HRR)-level analysis, we categorized the proportion of safety net hospitals within each region as very low (0%-9%), low (10%-20%), average (20%-33%), and high (>33%) and compared amputation rates across regions using nonparametric tests of trend. We then used charge data to create reimbursement rates based on HRR to estimate financial losses. We identified 51 adult hospitals as safety nets in Texas. Regions varied in the proportion of safety net hospitals from 0% in Victoria to 65% in Harlingen. Among beneficiaries aged >65, amputation rates correlated to the proportion of safety net hospitals in each region; for example, patients in the lowest quartile of safety net had a yearly rate of 300 amputations per 100,000 beneficiaries, whereas those in the highest quartile had a yearly rate of 472 per 100,000 (P = .007). Charges for diabetic amputation-related admissions varied almost 200-fold, from $5000 to $1.4 million. Using reimbursement based on HRR to estimate a bundled payment, we noted net losses would be higher at safety net vs nonsafety net hospitals ($180 million vs $163 million), representing a per-hospital loss of $1.6 million at safety nets vs $700,000 at nonsafety nets (P amputations in Texas. Changes to traditional payment models should account for the disproportionate burden of high-risk procedures performed by these hospitals. Copyright © 2016

  1. PsychoNet: a psycholinguistc commonsense ontology


    Mohtasseb, Haytham; Ahmed, Amr


    Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization...

  2. A Novel Thermodynamic Model for Obtaining Solid-Liquid Interfacial Energies (United States)

    Zhang, Cong; Du, Yong


    The modeling of solid-liquid interfacial energies is developed in the present work. The total interfacial energy is separated into chemical and structure contributions, which are estimated by applying reported Gibbs energies, as well as correlated with molar interfacial area and melting temperature of solid phase. The present model is well validated with comprehensive datasets of measured solid-liquid interfacial energies, and it can provide key input parameters for microstructure simulations.

  3. Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, J. J.; Asta, Mark; Karma, Alain


    We present a method to compute accurately the weak anisotropy of the solid-liquid interfacial free energy, a parameter which influences dendritic evolution in materials with atomically rough interfaces. The method is based on monitoring interfacial fluctuations during molecular dynamics simulation and extracting the interfacial stiffness which is an order of magnitude more anisotropic than the interfacial free energy. We present results for pure Ni with interatomic potentials derived from the embedded atom method.

  4. Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy (United States)

    Hoyt, J. J.; Asta, Mark; Karma, Alain


    We present a method to compute accurately the weak anisotropy of the solid-liquid interfacial free energy, a parameter which influences dendritic evolution in materials with atomically rough interfaces. The method is based on monitoring interfacial fluctuations during molecular dynamics simulation and extracting the interfacial stiffness which is an order of magnitude more anisotropic than the interfacial free energy. We present results for pure Ni with interatomic potentials derived from the embedded atom method.

  5. Performance of photo-sensors for KM3NeT

    NARCIS (Netherlands)

    Hasankiadeh, Q. Dorosti; Kavatsyuk, O.; Löhner, H.; Peek, H.; Steijger, J.


    The future deep-sea neutrino telescope of multi cubic-km size, KM3NeT, has been designed for an efficient search for high energy neutrinos originating from galactic and extragalactic sources. The detection principle relies on the measurement of Cherenkov light emitted from relativistic charged

  6. 47 CFR 32.7250 - Provision for deferred operating income taxes-net. (United States)


    ... Accounts § 32.7250 Provision for deferred operating income taxes—net. (a) This account shall be charged or credited, as appropriate, with contra entries recorded to the following accounts for income tax expense... 47 Telecommunication 2 2010-10-01 2010-10-01 false Provision for deferred operating income taxes...

  7. 78 FR 72451 - Net Investment Income Tax (United States)


    ... Revenue Service 26 CFR Part 1 RIN 1545-BL74 Net Investment Income Tax AGENCY: Internal Revenue Service...). These regulations provide guidance on the computation of net investment income. The regulations affect... lesser of: (A) The individual's net investment income for such taxable year, or (B) the excess (if any...

  8. 47 CFR 69.302 - Net investment. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account...

  9. 47 CFR 65.450 - Net income. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  10. 47 CFR 65.500 - Net income. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  11. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David


    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  12. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro


    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...

  13. 27 CFR 4.37 - Net contents. (United States)


    ... the volume of wine within the container, except that the following tolerances shall be allowed: (1... THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is...

  14. Visualization and characterization of interfacial polymerization layer formation

    NARCIS (Netherlands)

    Zhang, Yali; Benes, Nieck Edwin; Lammertink, Rob G.H.


    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous–organic interface that allows a direct observation of the films formation process via optical

  15. Liquid-liquid interfacial tension of electrolyte solutions

    NARCIS (Netherlands)

    Bier, Markus; Zwanikken, J.W.; van Roij, R.H.H.G.


    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as (-) for small I and as (±I) for large I. The former regime is dominated by the electrostatic potential due to an unequal

  16. Measurement of surface and interfacial tension using pendant drop tensiometry. (United States)

    Berry, Joseph D; Neeson, Michael J; Dagastine, Raymond R; Chan, Derek Y C; Tabor, Rico F


    Pendant drop tensiometry offers a simple and elegant solution to determining surface and interfacial tension - a central parameter in many colloidal systems including emulsions, foams and wetting phenomena. The technique involves the acquisition of a silhouette of an axisymmetric fluid droplet, and iterative fitting of the Young-Laplace equation that balances gravitational deformation of the drop with the restorative interfacial tension. Since the advent of high-quality digital cameras and desktop computers, this process has been automated with high speed and precision. However, despite its beguiling simplicity, there are complications and limitations that accompany pendant drop tensiometry connected with both Bond number (the balance between interfacial tension and gravitational forces) and drop volume. Here, we discuss the process involved with going from a captured experimental image to a fitted interfacial tension value, highlighting pertinent features and limitations along the way. We introduce a new parameter, the Worthington number, Wo, to characterise the measurement precision. A fully functional, open-source acquisition and fitting software is provided to enable the reader to test and develop the technique further. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  17. Phase transitions, interfacial fluctuations and hidden symmetries for ...

    Indian Academy of Sciences (India)

    Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain. E-mail: Abstract. Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous ...

  18. Limiting amplitudes of fully nonlinear interfacial tides and solitons

    NARCIS (Netherlands)

    Aguiar-González, B.; Gerkema, T.


    A new two-fluid layer model consisting of forcedrotation-modified Boussinesq equations is derived for studyingtidally generated fully nonlinear, weakly nonhydrostaticdispersive interfacial waves. This set is a generalization ofthe Choi–Camassa equations, extended here with forcingterms and Coriolis

  19. A comparative study regarding effects of interfacial ferroelectric ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 2. A comparative study regarding effects of interfacial ferroelectric Bi4Ti3O12 (BTO) layer on electrical characteristics of Au/-Si structures. M Yildirim M Gökçen. Electronic Supplementary Material Volume 37 Issue 2 April 2014 pp 257-262 ...

  20. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.


    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  1. Interfacial properties of immiscible Co-Cu alloys

    DEFF Research Database (Denmark)

    Egry, I.; Ratke, L.; Kolbe, M.


    Using electromagnetic levitation under microgravity conditions, the interfacial properties of an Cu75Co25 alloy have been investigated in the liquid phase. This alloy exhibits a metastable liquid miscibility gap and can be prepared and levitated in a configuration consisting of a liquid cobalt-ri...... experiment carried out on board the TEXUS 44 sounding rocket....

  2. Measurement of Interfacial Area Production and Permeability within Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.


    An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.

  3. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud


    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  4. Fluorescent probes used to monitor membrane interfacial polarity.

    NARCIS (Netherlands)

    Epand, R.M.; Kraayenhof, R.


    The polarity of the interface between a lipid bilayer membrane and bulk water is an important physical parameter of the membrane. It is likely that several membrane-dependent biological functions are modulated by this property. However, interfacial polarity can be difficult to define because of an

  5. High performance CNT point emitter with graphene interfacial layer. (United States)

    Lee, Jeong Seok; Kim, Taewoo; Kim, Seul-Gi; Cho, Myung Rae; Seo, Dong Kyun; Lee, Minwoo; Kim, Seontae; Kim, Dae Weon; Park, Gun-Sik; Jeong, Dae Hong; Park, Yun Daniel; Yoo, Ji-Beom; Kang, Tae June; Kim, Yong Hyup


    Carbon nanotubes (CNTs) have great potential in the development of high-power electron beam sources. However, for such a high-performance electronic device, the electric and thermal contact problem between the metal and CNTs must be improved. Here, we report graphene as an interfacial layer between the metal and CNTs to improve the interfacial contact. The interfacial graphene layer results in a dramatic decrease of the electrical contact resistance by an order of 2 and an increase of the interfacial thermal conductivity by 16%. Such a high improvement in the electrical and thermal interface leads to superior field emission performance with a very low turn-on field of 1.49 V μm(-1) at 10 μA cm(-2) and a threshold field of 2.00 V μm(-1) at 10 mA cm(-2), as well as the maximum current of 16 mA (current density of 2300 A cm(-2)).

  6. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Author Affiliations. Zergua Abdesselam1. Department of Civil Engineering, University of Constantine 1, Constantine, Algeria. Dates.

  7. Interfacial microstructure and strength of diffusion brazed joint ...

    Indian Academy of Sciences (India)


    Abstract. Joining of composite, Al2O3–TiC, with heat-resistant 9Cr1MoV steel, was carried out by diffusion brazing technology, using a combination of Ti, Cu and Ti as multi-interlayer. The interfacial strength was measured by shear testing and the result was explained by the fracture morphology. Microstructural charac-.

  8. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena (United States)

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao


    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  9. Perturbation theory for solid-liquid interfacial free energies

    Energy Technology Data Exchange (ETDEWEB)

    Warshavsky, Vadim B; Song Xueyu, E-mail: xsong@iastate.ed [Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA 50011 (United States)


    A perturbation theory is developed to calculate solid-liquid interfacial free energies, including anisotropy. The method is applied to systems with inverse-power and Lennard-Jones pair potentials as well as to metal systems with embedded-atom model potentials. The results are in reasonable agreement with the corresponding ones obtained from molecular dynamics simulations.

  10. Interfacial thermodynamics of water and six other liquid solvents. (United States)

    Pascal, Tod A; Goddard, William A


    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  11. Nonlinear spectroscopic studies of interfacial molecular ordering

    Energy Technology Data Exchange (ETDEWEB)

    Superfine, R.


    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  12. Charged Domain Walls


    Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L.


    In this paper we investigate Charged Domain Walls (CDW's), topological defects that acquire surface charge density $Q$ induced by fermion states localized on the walls. The presence of an electric and magnetic field on the walls is also discussed. We find a relation in which the value of the surface charge density $Q$ is connected with the existence of such topological defects.

  13. Studies on the disbonding initiation of interfacial cracks.

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, Brian J. (Lehigh University, Bethlehem, PA); Pearson, Raymond A. (Lehigh University, Bethlehem, PA)


    With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believed to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub

  14. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  15. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase. (United States)

    Zakim, D; Eibl, H


    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do

  16. NET 40 Generics Beginner's Guide

    CERN Document Server

    Mukherjee, Sudipta


    This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy.

  17. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding


    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...... marker is proven to erroneously yield a positive NRI. Some insight into this phenomenon is provided. Since large values for the NRI statistic may simply be due to use of poorly fitting risk models, we suggest caution in using the NRI as the basis for marker evaluation. Other measures of prediction...

  18. Charge transport in nanoscale junctions. (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas


    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  19. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.


    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  20. Electrodynamics of Radiating Charges

    Directory of Open Access Journals (Sweden)

    Øyvind Grøn


    Full Text Available The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.

  1. Molecular determinants for interfacial binding and conformational change in a soluble diacylglycerol kinase. (United States)

    Jerga, Agoston; Miller, Darcie J; White, Stephen W; Rock, Charles O


    DgkB is a soluble diacylglycerol (DAG) kinase that is essential for membrane lipid homeostasis in many Gram-positive pathogens. Anionic phospholipids, like phosphatidylglycerol (PtdGro), were required for DgkB to recognize diacylglycerol embedded in a phospholipid bilayer. An activity-independent vesicle binding assay was used to determine the role of specific residues in DgkB-PtdGro interactions. Lys15 and Lys165 were required for DgkB to dock with PtdGro vesicles and flank the entrance to the DgkB active site. Mg2+ was required for vesicle binding. The compromised vesicle binding by mutants in the key asparate residues forming the structural Mg2+-aspartate-water network within the substrate binding domain revealed that interfacial binding of DgkB required a Mg2+-dependent conformational change. DgkB interaction with phospholipid vesicles was not influenced by the presence of ATP, but anionic vesicles decreased the Km of the enzyme for ATP. Arg100 and Lys15 are two surface residues in the ATP binding domain that were necessary for high affinity ATP binding. The key residues responsible for the structural Mg2+ binding site, the conformational changes that increase ATP affinity, and interfacial recognition of anionic phospholipids were identical in DgkB and the mammalian diacylglycerol kinase catalytic cores. This sequence conservation suggests that the mammalian enzymes also require a structural divalent cation and surface positively charged residues to bind phospholipid bilayers and trigger conformational changes that accelerate catalysis.

  2. Molecular Determinants for Interfacial Binding and Conformational Change in a Soluble Diacylglycerol Kinase* (United States)

    Jerga, Agoston; Miller, Darcie J.; White, Stephen W.; Rock, Charles O.


    DgkB is a soluble diacylglycerol (DAG) kinase that is essential for membrane lipid homeostasis in many Gram-positive pathogens. Anionic phospholipids, like phosphatidylglycerol (PtdGro), were required for DgkB to recognize diacylglycerol embedded in a phospholipid bilayer. An activity-independent vesicle binding assay was used to determine the role of specific residues in DgkB-PtdGro interactions. Lys15 and Lys165 were required for DgkB to dock with PtdGro vesicles and flank the entrance to the DgkB active site. Mg2+ was required for vesicle binding. The compromised vesicle binding by mutants in the key asparate residues forming the structural Mg2+-aspartate-water network within the substrate binding domain revealed that interfacial binding of DgkB required a Mg2+-dependent conformational change. DgkB interaction with phospholipid vesicles was not influenced by the presence of ATP, but anionic vesicles decreased the Km of the enzyme for ATP. Arg100 and Lys15 are two surface residues in the ATP binding domain that were necessary for high affinity ATP binding. The key residues responsible for the structural Mg2+ binding site, the conformational changes that increase ATP affinity, and interfacial recognition of anionic phospholipids were identical in DgkB and the mammalian diacylglycerol kinase catalytic cores. This sequence conservation suggests that the mammalian enzymes also require a structural divalent cation and surface positively charged residues to bind phospholipid bilayers and trigger conformational changes that accelerate catalysis. PMID:19112175

  3. Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration. (United States)

    Zaouri, Noor; Gutierrez, Leonardo; Dramas, Laure; Garces, Daniel; Croue, Jean-Philippe


    In the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Interfacial solvation and excited state photophysical properties of 7-aminocoumarins at silica/liquid interfaces (United States)

    Roy, Debjani

    The properties of solutes adsorbed at interfaces can be very different compared to bulk solution limits. This thesis examines how polar, hydrophilic silica surfaces and different solvents systematically change a solute's equilibrium and dynamic solvation environment at solid/liquid interfaces. The primary tools used in these studies are steady state fluorescence spectroscopy and time correlated single photon counting (TCSPC) --a fluorescence method capable resolving fluorescence emission on the picosecond timescale. To sample adsorbed solutes, TCSPC experiments were carried out in total internal reflection (TIR) geometry. These studies used total of six different 7-aminocoumarin dyes to isolate the effects of molecular and electronic structure on solute photophysical behavior. Fluorescence lifetimes measured in the TIR geometry are compared to the lifetimes of coumarins in bulk solution using different solvents to infer interfacial polarity and excited state solute conformation and dynamics. Steady state emission experiments measuring the behavior of the coumarins adsorbed at silica surfaces from bulk methanol solutions show that all coumarins had a similar affinity DeltaG ads ˜ - 25-30 kJ/mole. Despite these similar adsorption energetics solute structure had a very pronounced effect on the tendency of solutes to aggregate and form multilayers. Our finding suggests that hydrogen bonding donating properties of the silica surface plays a dominant role in determining the interfacial behavior of these solutes. The silica surface also had pronounced effects on the time dependent emission of some solutes. In particular, the strong hydrogen bond donating properties of the silica surface inhibit formation of a planar, charge transfer state through hydrogen bond donation to the solute's amine group. A consequence of this interaction is that the time dependent emission from solutes adsorbed at the surface appears to be more similar to emission from solutes in nonpolar

  5. Electroluminescence and impedance analyses of organic light emitting diodes using anhydride materials as cathode interfacial layers

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Eunkyoung [Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Park, Hyungjun [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Park, Keunhee; Moon, Mi Ran [Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Sohn, Sunyoung [Korea Basic Science Institute, Dukjin Dong 664-14, Jeonju 561-756 (Korea, Republic of); Jung, Donggeun [Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Yi, Junsin [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chae, Heeyeop [Department of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Hyoungsub, E-mail: hsubkim@skku.ed [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)


    Pyromellitic dianhydride (PMDA) and trimellitic anhydride (TMA) were tried as cathode interfacial layers between tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) and Al in organic light emitting diodes (OLEDs). Both ultra-thin anhydride cathode interfacial layers improved the electroluminescence characteristics of OLEDs compared to those without any interfacial layer, and the PMDA interfacial layer showed the most significant enhancement of the device performance. According to impedance measurements and equivalent circuit analysis, the PMDA interfacial layer decreased the impedance, probably due to the increase in the injection efficiency of electrons from the Al cathode.

  6. Effect of Protein Charge on the Generation of Aggregation-Prone Conformers

    NARCIS (Netherlands)

    Broersen, K.; Weijers, M.; Groot, de J.; Hamer, R.J.; Jongh, de H.H.J.


    This study describes how charge modification affects aggregation of ovalbumin, thereby distinguishing the role of conformational and electrostatic stability in the process. Ovalbumin variants were engineered using chemical methylation or succinylation to obtain a range of protein net charge from -1

  7. Effect of protein charge on the generation of aggregation-prone conformers

    NARCIS (Netherlands)

    Broersen, K.; Weijers, M.; Groot,; Hamer, R.J.; Jongh,


    This study describes how charge modification affects aggregation of ovalbumin, thereby distinguishing the role of conformational and electrostatic stability in the process. Ovalbumin variants were engineered using chemical methylation or succinylation to obtain a range of protein net charge from -1

  8. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS2 on Metal Substrates. (United States)

    Yan, Zhequan; Chen, Liang; Yoon, Mina; Kumar, Satish


    We investigate the role of interfacial electronic properties on the phonon transport in two-dimensional MoS2 adsorbed on metal substrates (Au and Sc) using first-principles density functional theory and the atomistic Green's function method. Our study reveals that the different degree of orbital hybridization and electronic charge distribution between MoS2 and metal substrates play a significant role in determining the overall phonon-phonon coupling and phonon transmission. The charge transfer caused by the adsorption of MoS2 on Sc substrate can significantly weaken the Mo-S bond strength and change the phonon properties of MoS2, which result in a significant change in thermal boundary conductance (TBC) from one lattice-stacking configuration to another for same metallic substrate. In a lattice-stacking configuration of MoS2/Sc, weakening of the Mo-S bond strength due to charge redistribution results in decrease in the force constant between Mo and S atoms and substantial redistribution of phonon density of states to low-frequency region which affects overall phonon transmission leading to 60% decrease in TBC compared to another configuration of MoS2/Sc. Strong chemical coupling between MoS2 and the Sc substrate leads to a significantly (∼19 times) higher TBC than that of the weakly bound MoS2/Au system. Our findings demonstrate the inherent connection among the interfacial electronic structure, the phonon distribution, and TBC, which helps us understand the mechanism of phonon transport at the MoS2/metal interfaces. The results provide insights for the future design of MoS2-based electronics and a way of enhancing heat dissipation at the interfaces of MoS2-based nanoelectronic devices.

  9. Printable highly conductive conjugated polymer sensitized ZnO NCs as cathode interfacial layer for efficient polymer solar cells. (United States)

    Liu, Jian; Wu, Jiang; Shao, Shuyan; Deng, Yunfeng; Meng, Bin; Xie, Zhiyuan; Geng, Yanhou; Wang, Lixiang; Zhang, Fengling


    We report a facile way to produce printable highly conductive cathode interfacial layer (CIL) for efficient polymer solar cells (PSCs) by sensitizing ZnO nanocrystals (NCs) with a blue fluorescent conjugated polymer, poly(9, 9-bis-(6'-diethoxylphosphorylhexyl) fluorene) (PFEP). Herein, PFEP plays dual distinctive roles in the composite. Firstly, PFEP chains can effectively block the aggregation of ZnO NCs, leading to uniform and smooth film during solution processing via assembly on ZnO NC surfaces through their pending phosphonate groups. Secondly, PFEP can greatly improve the conductivity of ZnO NCs by charge transfer doping, that is the charge transfer from the sensitizer driven by electron-chemical potential equilibrium, which could be even more pronounced under light illumination because of light excitation of PFEP sensitizer. The increased conductivity in ZnO-PFEP layer renders more efficient electron transport and extraction compared to pristine ZnO layer. This ZnO-PFEP CIL was successfully applied to PSCs based on three polymer donor systems with different band-gaps, and efficiency enhancements from 44 to 70% were observed compared to those PSCs with pristine ZnO CIL. The highest efficiency of 7.56% was achieved in P(IID-DTC):PC70BM-based PSCs by using ZnO-PFEP film as CIL. Moreover, the enhanced conductivity due to the charge-transfer doping effect allows thick ZnO-PFEP film to be used as CIL in high-performance PSCs. Both the high conductivity and good film-forming properties of ZnO-PFEP CIL are favorable for large-scale printable PSCs, which is also verified by high-efficiency PSCs with ZnO-PFEP CIL fabricated using doctor-blading, a large-scale processing technique. The work provides an efficient printable cathode interfacial material for efficient PSCs.

  10. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano


    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  11. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip (United States)

    Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman


    We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.

  12. On the physics of both surface overcharging and charge reversal at heterophase interfaces. (United States)

    Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei


    The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the

  13. NETS - Danish participation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alsen, S. (Grontmij - Carl Bro, Glostrup (Denmark)); Theel, C. (Baltic Sea Solutions, Holeby (Denmark))


    Within the NICe-funded project 'Nordic Environmental Technology Solutions (NETS)' a new type of networking at the Nordic level was organized in order to jointly exploit the rapidly growing market potential in the environmental technology sector. The project aimed at increased and professionalized commercialization of Nordic Cleantech in energy and water business segments through 1) closer cooperation and joint marketing activities, 2) a website, 3) cleantech product information via brochures and publications 4) and participating in relevant trade fairs and other industry events. Facilitating business-to-business activities was another core task for the NETS project partners from Norway, Sweden, Finland and Denmark with the aim to encourage total solutions for combined Cleantech system offers. The project has achieved to establish a Cleantech register of 600 Nordic Cleantech companies, a network of 86 member enterprises, produced several publications and brochures for direct technology promotion and a website for direct access to company profiles and contact data. The project partners have attended 14 relevant international Cleantech trade fairs and conferences and facilitated business-to-business contacts added by capacity building offers through two company workshops. The future challenge for the project partners and Nordic Cleantech will be to coordinate the numerous efforts within the Nordic countries in order to reach concerted action and binding of member companies for reliable services, an improved visibility and knowledge exchange. With Cleantech's growing market influence and public awareness, the need to develop total solutions is increasing likewise. Marketing efforts should be encouraged cross-sectional and cross-border among the various levels of involved actors from both the public and the private sector. (au)

  14. Charged slurry droplet research (United States)

    Kelly, A. J.


    Rayleigh Bursting, wherein critically charged droplets explosively expel a number of micron sized sibling droplets, enhances atomization and combustion of all liquid fuels. Droplet surface charge is retained during evaporation, permitting multiple Rayleigh Bursts to occur. Moreover, the charge is available for the deagglomeration of residual particulate flocs from slurry droplet evaporation. To fill gaps in our knowledge of these processes, an experimental program involving the use of a charged droplet levitator and a Quadrupole Mass Spectrometer, High Speed Electrometer (QMS/HSE) has been undertaken to observe the disruption and to measure quantitatively the debris. A charged droplet levitator based on a new video frame grabber technology to image transient events, is described. Sibling droplet size is ten microns or less and is close to, if not coincident with, the predicted phase transition in droplet charging level. The research effort has focused on the exploration of this transition and its implications.

  15. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L


    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  16. Topology-generating interfacial pattern formation during liquid metal dealloying (United States)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain


    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  17. Quantification of interfacial segregation by analytical electron microscopy

    CERN Document Server

    Muellejans, H


    The quantification of interfacial segregation by spatial difference and one-dimensional profiling is presented in general where special attention is given to the random and systematic uncertainties. The method is demonstrated for an example of Al-Al sub 2 O sub 3 interfaces in a metal-ceramic composite material investigated by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy in a dedicated scanning transmission electron microscope. The variation of segregation measured at different interfaces by both methods is within the uncertainties, indicating a constant segregation level and interfacial phase formation. The most important random uncertainty is the counting statistics of the impurity signal whereas the specimen thickness introduces systematic uncertainties (via k factor and effective scan width). The latter could be significantly reduced when the specimen thickness is determined explicitly. (orig.)

  18. The Interfacial-Area-Based Relative Permeability Function

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Khaleel, Raziuddin


    CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

  19. Trapping a Charged Atom

    Energy Technology Data Exchange (ETDEWEB)

    Hla, Saw-Wai [Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Nanoscience and Quantum Phenomena Institute and Condensed Matter and Surface Science Program, Ohio University, Athens, Ohio 45701, United States


    Engineering of supramolecular assemblies on surfaces is an emerging field of research impacting chemistry, electronics, and biology. Among supramolecular assemblies, metal-containing structures provide rich properties and enable robust nanostructured designs. In this issue of ACS Nano, Feng eta!, report that supramolecular assemblies can trap gold adatoms that maintain a charged state on a Au(111) surface. Such charged adatoms may offer additional degrees of freedom in designing novel supramolecular architectures for efficient catalysts, memory, and charge storage for medical applications.

  20. The role of interfacial lipids in stabilizing membrane protein oligomers. (United States)

    Gupta, Kallol; Donlan, Joseph A C; Hopper, Jonathan T S; Uzdavinys, Povilas; Landreh, Michael; Struwe, Weston B; Drew, David; Baldwin, Andrew J; Stansfeld, Phillip J; Robinson, Carol V


    Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.

  1. Higher derivative free energy terms and interfacial curvatures


    Mihailescu, M.


    High derivative terms do not play a major role in field theories because of the associated complexity and inherent difficulty in connecting these terms to physically measurable quantities. A role for higher derivative terms is analyzed for the case of field theories used to describe phase separated systems. In these theories, higher derivative terms are directly connected to an interfacial free energy which contains the mean and the Gaussian curvature and are shown to determine explicitly the...

  2. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties (United States)

    Nadim, Ali


    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  3. International Symposium on Interfacial Joining and Surface Technology (IJST2013) (United States)

    Takahashi, Yasuo


    Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27-29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013

  4. Multiscale Random-Walk Algorithm for Simulating Interfacial Pattern Formation

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Mathis; Karma, Alain


    We present a novel computational method to simulate accurately a wide range of interfacial patterns whose growth is limited by a large-scale diffusion field. To illustrate the computational power of this method, we demonstrate that it can be used to simulate three-dimensional dendritic growth in a previously unreachable range of low undercoolings that is of direct experimental relevance. (c) 2000 The American Physical Society.

  5. Probing model tumor interfacial properties using piezoelectric cantilevers


    Yegingil, Hakki; Shih, Wan Y.; Shih, Wei-Heng


    Invasive malignant breast cancers are typically branchy and benign breast tumors are typically smooth. It is of interest to characterize tumor branchiness (roughness) to differentiate invasive malignant breast cancer from noninvasive ones. In this study, we examined the shear modulus (G) to elastic modulus (E) ratio, G∕E, as a quantity to describe model tumor interfacial roughness using a piezoelectric cantilever capable of measuring both tissue elastic modulus and tissue shear modulus. The p...

  6. Contractor Software Charges

    National Research Council Canada - National Science Library

    Granetto, Paul


    .... Examples of computer software costs that contractors charge through indirect rates are material management systems, security systems, labor accounting systems, and computer-aided design and manufacturing...

  7. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically....... Balbo and W. Reisig, 18 submitted papers, and seven project papers. The submitted papers and project presentations were selectedby the programme committee and a panel of referees from a large number of submissions....

  8. Are You Neutral About Net Neutrality (United States)


    Information Resources Management College National Defense University Are You Neutral About Net Neutrality ? A presentation for Systems & uses Verizon FiOS for phone, TV, and internet service 3 Agenda Net Neutrality —Through 2 Lenses Who Are the Players & What Are They Saying...Medical Treatment Mini-Case Studies Updates Closing Thoughts 4 Working Definitions of Net Neutrality "Network Neutrality" is the concept that

  9. Texture Based Image Analysis With Neural Nets (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.


    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  10. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    Directory of Open Access Journals (Sweden)

    Graves Patricia M


    Full Text Available Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use. Methods Generalized linear latent and mixed models (GLLAMM were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy; net factors (condition, age, net density; household factors (number of rooms [2006] or sleeping spaces [2007], IRS, women's knowledge and school attendance [2007 only], wealth, altitude; and cluster level factors (rural or urban were investigated in univariate and multi-variable models for each survey. Results In 2006, increased net use was associated with: age 25-49 years (adjusted (a OR = 1.4, 95% confidence interval (CI 1.2-1.7 compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5; fewer nets with holes (Ptrend = 0.002; and increasing net density (Ptrend [all nets in HH good] = 1.6; 95% CI 1.2-2.1; increasing net density (Ptrend [per additional space] = 0.6, 95% CI 0.5-0.7; more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7; and increasing household altitude (Ptrend Conclusion In both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density, and improving net condition while focusing on education and promotion of net use, especially in school-age children

  11. Bubble detachment assisted by electrowetting-driven interfacial wave (United States)

    Xu, Haolun; Yan, Run; Wang, Sheng; Chen, Chung-Lung


    This article investigates both theoretically and numerically a novel mechanism of bubble detachment by an electrowetting-driven interfacial wave, inspired by droplet control and manipulation via electrowetting. Electrowetting-on-dielectric can be used to modulate the contact point movement at the water-air interface in a thin liquid film. Rapid oscillation of the contact line is achieved by a swift change of voltage under an AC signal. When disturbed with such contact angle changes, the interfacial wave between two immiscible fluids disrupts bubble dynamics. Numerical modeling reveals that an air bubble on a hydrophobic surface can be detached by the trough of such a wave. The frequency of the interfacial wave is twice the voltage frequency. A higher voltage frequency leads to a smaller amplitude and higher celerity of the wave, while a lower voltage frequency leads to a larger wave amplitude and lower celerity. The bubble can easily detach when the voltage frequency is 10 Hz. However, the bubble fails to detach when the voltage frequency is 100 Hz. This approach can be useful to improve two-phase cooling performance.

  12. Wettability controls slow immiscible displacement through local interfacial instabilities (United States)

    Jung, Michael; Brinkmann, Martin; Seemann, Ralf; Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan


    Immiscible fluid displacement with average front velocities in the capillary-dominated regime is studied in a transparent Hele-Shaw cell with cylindrical posts. Employing various combinations of fluids and wall materials allows us to cover a range of advancing contact angles 46∘≤θa≤180∘ of the invading fluid in our experiments. In parallel, we study the displacement process in particle-based simulations that account for wall wettability. Considering the same arrangement of posts in experiments and simulation, we find a consistent crossover between stable interfacial displacement at θa≲80∘ and capillary fingering at high contact angles θa≳120∘ . The position of the crossover is quantified through the evolution of the interface length and the final saturation of the displaced fluid. A statistical analysis of the local displacement processes demonstrates that the shape evolution of the fluid front is governed by local instabilities as proposed by Cieplak and Robbins for a quasistatic interfacial displacement [Cieplak and Robbins, Phys. Rev. Lett. 60, 2042 (1988), 10.1103/PhysRevLett.60.2042]. The regime of stable front advances coincides with a corresponding region of contact angles where cooperative interfacial instabilities prevail. Capillary fingering, however, is observed only for large θa, where noncooperative instabilities dominate the invasion process.

  13. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. (United States)

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong


    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  14. Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites. (United States)

    Arias, Veluska; Odelius, Karin; Höglund, Anders; Albertsson, Ann-Christine


    The demand for "green" degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of "green" homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300-500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young's modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable.

  15. Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites (United States)


    The demand for “green” degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of “green” homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300–500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young’s modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable. PMID:26523245

  16. Modelling interfacial cracking with non-matching cohesive interface elements (United States)

    Nguyen, Vinh Phu; Nguyen, Chi Thanh; Bordas, Stéphane; Heidarpour, Amin


    Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these interfacial cracks usually employs compatible or matching cohesive interface elements. In this paper, incompatible or non-matching cohesive interface elements are proposed for interfacial fracture mechanics problems. They allow non-matching finite element discretisations of the opposite crack faces thus lifting the constraint on the compatible discretisation of the domains sharing the interface. The formulation is based on a discontinuous Galerkin method and works with both initially elastic and rigid cohesive laws. The proposed formulation has the following advantages compared to classical interface elements: (i) non-matching discretisations of the domains and (ii) no high dummy stiffness. Two and three dimensional quasi-static fracture simulations are conducted to demonstrate the method. Our method not only simplifies the meshing process but also it requires less computational demands, compared with standard interface elements, for problems that involve materials/solids having a large mismatch in stiffnesses.

  17. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yifan; Lv, Hongliang [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Song, Qingwen, E-mail: [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China); School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071 (China); Tang, Xiaoyan, E-mail: [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Xiao, Li; Wang, Liangyong; Tang, Guangming [Zhongxing Telecommunication Equipment Corporation, Shenzhen 518057 (China); Zhang, Yimen; Zhang, Yuming [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China)


    Highlights: • Effect of oxidation temperature on interfacial properties of SiO{sub 2}/SiC is investigated. • Raising the oxidation temperature effectively decreases the density of NITs and N{sub eff}. • The higher oxidation temperature reduces the surface RMS roughness of the grow SiO{sub 2}. • SIMS and XPS results reveal the improvement mechanism of high temperature oxidation. - Abstract: The effect of oxidation temperature on interfacial properties of n-type 4H-SiC metal-oxide-semiconductor capacitors has been systematically investigated. Thermal dry oxidation process with three different oxidation temperatures 1200 °C, 1300 °C and 1350 °C were employed to grow SiO{sub 2} dielectric, following by the standard post-oxidation annealing (POA) in NO ambience at 1175 °C for 2 h. The root mean square (RMS) roughness measured by Atomic Force Microscopy for the thermally grown SiO{sub 2} before POA process is reduced with increasing the oxidation temperature, obtaining an atomically flat surface with a RMS of 0.157 nm from the sample oxidized at 1350 °C. Several kinds of electrical measurements were used to evaluate the densities of near interface traps and effective fixed dielectric charge for the samples, exhibiting a trend reduced with increasing the oxidation temperature. The interface state density of 3 × 10{sup 11} cm{sup −2}eV{sup −1} at 0.2 eV from the conduction band edge was achieved from conductance method measurement for the sample oxidized at 1350 °C. The results from Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy demonstrate that high oxidation temperature can reduce the width of transition layer, the excess Si and silicon suboxide compositions near the interface, leading to effective improvement of the interfacial properties.

  18. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells. (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong


    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  19. Pro Agile NET Development with Scrum

    CERN Document Server

    Blankenship, Jerrel; Millett, Scott


    Pro Agile .NET Development with SCRUM guides you through a real-world ASP.NET project and shows how agile methodology is put into practice. There is plenty of literature on the theory behind agile methodologies, but no book on the market takes the concepts of agile practices and applies these in a practical manner to an end-to-end ASP.NET project, especially the estimating, requirements and management aspects of a project. Pro Agile .NET Development with SCRUM takes you through the initial stages of a project - gathering requirements and setting up an environment - through to the development a

  20. Pro ASP.NET MVC 4

    CERN Document Server

    Freeman, Adam


    The ASP.NET MVC 4 Framework is the latest evolution of Microsoft's ASP.NET web platform. It provides a high-productivity programming model that promotes cleaner code architecture, test-driven development, and powerful extensibility, combined with all the benefits of ASP.NET. ASP.NET MVC 4 contains a number of significant advances over previous versions. New mobile and desktop templates (employing adaptive rendering) are included together with support for jQuery Mobile for the first time. New display modes allow your application to select views based on the browser that's making the request whi

  1. Professional Visual Basic 2010 and .NET 4

    CERN Document Server

    Sheldon, Bill; Sharkey, Kent


    Intermediate and advanced coverage of Visual Basic 2010 and .NET 4 for professional developers. If you've already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is your book. You'll find a quick review of introductory topics-always helpful-before the author team of experts moves you quickly into such topics as data access with ADO.NET, Language Integrated Query (LINQ), security, ASP.NET web programming with Visual Basic, Windows workflow, threading, and more. You'll explore all the new features of Visual Basic 2010 as well as all t

  2. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.


    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  3. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure


    When designing complex systems, mechanisms for structuring, composing, and reusing system components are crucial. Today, there are many approaches for equipping Petri nets with such mechanisms. In the context of defining a standard interchange format for Petri nets, modular PNML was defined....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high...


    Directory of Open Access Journals (Sweden)

    Neil THORPE


    Full Text Available This paper focuses upon public attitudes to and public acceptance of road-user charging as an effective means of managing travel demand, with the overall aim of identifying the characteristics of key interest groups, the kinds of attitudes they hold and their preferences for the distribution of the benefits of generated net revenues and released roadspace. It is argued that this knowledge can play a pivotal role in the design of road-user charging systems that satisfy two important criteria – namely, that they are capable of achieving their stated objectives and are generally acceptable to the public. A case-study of three toll-rings used for revenue generation by the Norwegian cities of Bergen, Oslo and Trondheim is selected, where a team of Norwegian interviewers administered a computer-based survey to a total of 756 respondents. Results of the analyses of the attitudinal data collected raise concerns about the approach of introducing initially low levels of road-use charge, designed to have negligible impacts on travel behaviour but to raise revenues to fund necessary improvements to public transport, both to familiarise private car-users with the principles of a pay-as-you-go system of charging and hopefully to reduce levels of public opposition prior to the introduction of the longer term objective of higher charges for traffic restraint. The timescale over which charges are increased may be crucial in terms of balancing a resistance to change in the longer term against the credibility of a system whose objectives are modified in the relatively short-term. The key conclusion from the first Stated Preference exercise is that there is a high degree of consensus among individuals on the importance of investing significant amounts of net revenues in new road infrastructure as well as improved public transport. The second Stated Preference exercise highlights respondents' concerns that the benefits in improved network performance achieved by a

  5. The contribution of different formulation components on the aerosol charge in carrier-based dry powder inhaler systems. (United States)

    Hoe, Susan; Traini, Daniela; Chan, Hak-Kim; Young, Paul M


    To measure aerosol performance of a lactose carrier/salbutamol sulphate powder blend and identify contributions of non-formulation and formulation components on the resulting aerosol charge. A 67.5:1 (%w/w) blend of 63-90 microm lactose with salbutamol sulphate, and lactose alone (with and without the blending process), was dispersed from a Cyclohaler into the electrical Next Generation Impactor at 30, 60 and 90 L/min. Mass and charge profiles were measured from each dispersion, as a function of impactor stage. The charge profile from an empty capsule in the Cyclohaler was also studied. Lactose deposition from the blend was significantly greater, and net charge/mass ratios were smaller, in the pre-separator compared to formulations without drug. Fine particle fraction of salbutamol sulphate increased with flow rate (9.2 +/- 2.5% to 14.7 +/- 2.7%), but there was no change in net charge/mass ratio. The empty capsule produced a cycle of alternating net positive and negative discharges ( approximately 200 pC to 4 nC). Capsule charge can ionize surrounding air and influence net charge measurements. Detachment of fine drug during aerosolisation may reduce net specific charge and lead to increased lactose deposition in the pre-separator. Increase in FPF may be due to increased force of detachment rather than electrostatic forces.

  6. Experiments and simulation of a net closing mechanism for tether-net capture of space debris (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.


    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  7. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek


    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  8. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng


    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  9. Direct, Dynamic Measurement of Interfacial Area within Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant


    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the


    Energy Technology Data Exchange (ETDEWEB)

    Seugjin Kim


    . This study investigates the geometric effects of 90-degree vertical elbows and flow configurations in two-phase flow. The study shows that the elbows make a significant effect on the transport characteristics of two-phase flow, which includes the changes in interfacial structures, bubble interaction mechanisms and flow regime transition. The effect of the elbows is characterized for global and local two-phase flow parameters. The global two-phase flow parameters include two-phase pressure, interfacial structures and flow regime transition. In order to characterize the frictional pressure drop and minor loss across the vertical elbows, pressure measurements are obtained across the test section over a wide range of flow conditions in both single-phase and two-phase flow conditions. A two-phase pressure drop correlation analogous to Lockhart-Martinelli correlation is proposed to predict the minor loss across the elbows. A high speed camera is employed to perform extensive flow visualization studies across the elbows in vertical upward, horizontal and vertical downward sections and modified flow regime maps are proposed. It is found that modified flow regime maps immediately downstream of the vertical upward elbow deviate significantly from the conventional flow regime map. A qualitative assessment of the counter-current flow limitation characteristics specific to the current experimental facility is performed. A multi-sensor conductivity probe is used to measure local two-phase flow parameters such as: void fraction, bubble velocity, interfacial area concentration and bubble frequency. The local measurements are obtained for six different flow conditions at ten measurement locations along axial direction of the test section. Both the vertical-upward and vertical-downward elbows have a significant impact on bubble distribution, resulting in, a bimodal distribution along the horizontal radius of the tube cross-section and migration of bubbles towards the inside of the

  11. Determination of interfacial tension of binary mixtures from perturbative approaches (United States)

    Martínez-Ruiz, F. J.; Blas, F. J.


    We determine the interfacial properties of mixtures of spherical Lennard-Jones molecules from direct simulation of the vapour-liquid interface. We consider mixtures with same molecular size but different dispersive energy parameter values. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janeček, presented recently by MacDowell and Blas and Martínez-Ruiz et al., to deal with the interaction energy and microscopic components of the pressure tensor. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of mixtures of Lennard-Jones molecules with a cut-off distance rc = 3σ in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The vapour-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, and interfacial thickness as functions of pressure, at a given temperature. According to our results, the main effect of increasing the ratio between the dispersive energy parameters of the mixture, ε22/ε11, is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative maximum in the density profiles of the less volatile component at the interface. This maximum is related with adsorption or accumulation of these molecules at the interface, a direct consequence of stronger attractive interactions between these molecules in

  12. Role of the charge transfer state in organic donor-acceptor solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, Carsten; Strobel, Thomas [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Dyakonov, Vladimir [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Bavarian Centre for Applied, Energy Research (ZAE Bayern), Wuerzburg (Germany)


    Charge transfer complexes are interfacial charge pairs residing at the donor-acceptor heterointerface in organic solar cell. Experimental evidence shows that it is crucial for the photovoltaic performance, as both photocurrent and open circuit voltage directly depend on it. For charge photogeneration, charge transfer complexes represent the intermediate but essential step between exciton dissociation and charge extraction. Recombination of free charges to the ground state is via the bound charge transfer state before being lost to the ground state. In terms of the open circuit voltage, its maximum achievable value is determined by the energy of the charge transfer state. An important question is whether or not maximum photocurrent and maximum open circuit voltage can be achieved simultaneously. The impact of increasing the CT energy - in order to raise the open circuit voltage, but lowering the kinetic excess energy of the CT complexes at the same time - on the charge photogeneration will accordingly be discussed. Clearly, the fundamental understanding of the processes involving the charge transfer state is essential for an optimisation of the performance of organic solar cells. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells. (United States)

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi


    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  14. Charged weak currents

    CERN Document Server

    Turlay, René


    In this review of charged weak currents the author concentrates on inclusive high energy neutrino physics. The authors discusses the general structure of charged currents, new results on total cross- sections, the Callan-Gross relation, antiquark distributions, scaling violations and tests of QCD. A very short summary on multilepton physics is given. (44 refs).

  15. Benchmarking charging infrastructure utilization

    NARCIS (Netherlands)

    Wolbertus, R.; van den Hoed, R.; Maase, S.


    Since 2012 the dutch metropolitan area (the metropole region of amsterdam, the city of amsterdam, rotterdam, the hague, utrecht ) cooperate in finding the best way to stimulate electric mobility through the implementation of a public charging infrastructure. with more than 5600 charge points and 1.6

  16. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  17. Charge-based forces at the Nafion-water interface. (United States)

    Das, Ronnie; Pollack, Gerald H


    Interfacial water lying next to hydrophilic surfaces has been shown to be spectroscopically, mechanically, and electrically distinct from bulk water. Interfacial water has also been shown to exclude negatively and positively charged microspheres and has thus become known as the "exclusion zone". Measurements have demonstrated that exclusion zones exhibit a negative electrical potential on the order of -100 mV relative to bulk water, with a corresponding distribution of positive protons in the bulk water region beyond the exclusion zone. This separation of charge is hypothesized to create an electrostatic force between the exclusion zone and the proton-enriched zone beyond. To test this hypothesis, a hydrophilic Nafion ring was attached to the tip of a deflectable ribbonlike force sensor. The sensor was designed to obstruct the flow of protons from one side of the lever to the other, so that any proton-based force would remain unilateral. pH-sensitive dye measurements confirmed that the protons were largely confined to one side. When the lever assembly was exposed to water, the sensor deflected toward the protons. Over a period of 20 min, deflection amounted to approximately 20 μm, corresponding to a force of approximately 22 μN. Hence, electrostatic forces are confirmed. If exclusion zones exist ubiquitously at hydrophilic surfaces, including biological surfaces, then the resulting electrostatic forces may play significant roles in many biological phenomena including adhesion and protein folding.

  18. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode. (United States)

    Zhang, Kai; Dong, Tianjiao; Xie, Guancai; Guan, Liming; Guo, Beidou; Xiang, Qin; Dai, Yawen; Tian, Liangqiu; Batool, Aisha; Jan, Saad Ullah; Boddula, Rajender; Thebo, Akbar Ali; Gong, Jian Ru


    The semiconductor/electrolyte interface plays a crucial role in photoelectrochemical (PEC) water-splitting devices as it determines both thermodynamic and kinetic properties of the photoelectrode. Interfacial engineering is central for the device performance improvement. Taking the cheap and stable hematite (α-Fe2O3) wormlike nanostructure photoanode as a model system, we design a facile sacrificial interlayer approach to suppress the crystal overgrowth and realize Ti doping into the crystal lattice of α-Fe2O3 in one annealing step as well as to avoid the consequent anodic shift of the photocurrent onset potential, ultimately achieving five times increase in its water oxidation photocurrent compared to the bare hematite by promoting the transport of charge carriers, including both separation of photogenerated charge carriers within the bulk semiconductor and transfer of holes across the semiconductor-electrolyte interface. Our research indicates that understanding the semiconductor/electrolyte interfacial engineering mechanism is pivotal for reconciling various strategies in a beneficial way, and this simple and cost-effective method can be generalized into other systems aiming for efficient and scalable solar energy conversion.

  19. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. (United States)

    Gao, Yue; Zhao, Yuming; Li, Yuguang C; Huang, Qingquan; Mallouk, Thomas E; Wang, Donghai


    The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. We report a new skin-grafting strategy that stabilizes the Li metal-liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) but also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi0.5Co0.2Mn0.3O2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm(2) in a carbonate-based electrolyte. This proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.

  20. Molecular-Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein. (United States)

    Willow, Soohaeng Yoo; Xantheas, Sotiris S


    The effect of the Hofmeister anions on the precipitation of proteins is often discussed using liquid-vapor coexisting systems with the assumption that the liquid-vapor interface mimics the liquid-protein interface. Solvated proteins, however, have both hydrophobic and hydrophilic regions on their surfaces rather than just a pure hydrophobic one. Using a solvated parallel β-sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces, we investigated the adsorption of kosmotropic (SO 4 2- ) and chaotropic (ClO 4 - ) anions toward the protein's hydrophobic and hydrophilic surfaces via Born-Oppenheimer molecular dynamics simulations using the BLYP density functional theory. It was found that both anions prefer to reside on the hydrophilic surface. Furthermore, kosmotropic anions, like SO 4 2- , enhance the interfacial surface tension of the protein and stabilize the protein, whereas, in contrast, chaotropic anions, like ClO 4 - , weaken the interfacial surface tension of the protein and allow water molecules to penetrate toward the peptide bonds to form water-peptide hydrogen bonds, thus destabilizing the protein.

  1. Poly(4-Vinylpyridine)-Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells. (United States)

    Chaudhary, Bhumika; Kulkarni, Ashish; Jena, Ajay Kumar; Ikegami, Masashi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Miyasaka, Tsutomu


    It is well known that the surface trap states and electronic disorders in the solution-processed CH3 NH3 PbI3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (Voc ) by 120 to 160 mV whereas the standard cell fabricated in same conditions showed Voc as low as 0.9 V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with Voc more than 1.05 V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30 days of exposure to open atmosphere (50 % humidity). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M


    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  3. Electric vehicle battery charging controller


    Pedersen, Anders Bro; Andersen, Peter Bach; Sørensen, Thomas Meier; Martinenas, Sergejus


    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for contr...

  4. 78 FR 72393 - Net Investment Income Tax (United States)


    ... Investment Income Tax; Final and Proposed Rules #0;#0;Federal Register / Vol. 78, No. 231 / Monday, December... Parts 1 and 602 RIN 1545-BK44 Net Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury... Investment Income Tax and the computation of Net Investment Income. The regulations affect individuals...

  5. 77 FR 72611 - Net Investment Income Tax (United States)


    ... December 5, 2012 Part V Department of the Treasury Internal Revenue Service 26 CFR Part 1 Net Investment... Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of proposed rulemaking...) the individual's net investment income for such taxable year, or (B) the excess (if any) of (i) the...

  6. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.


    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  7. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.


    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  8. Using the MVC architecture on . NET platform


    Ježek, David


    This thesis deals with usage of MVC (Model View Controller) technology in web development on ASP.NET platform from Microsoft. Mainly it deals with latest version of framework ASP.NET MVC 3. First part describes MVC architecture and the second describes usage of MVC in certain parts of web application an comparing with PHP.

  9. Analysis of Petri Nets and Transition Systems

    Directory of Open Access Journals (Sweden)

    Eike Best


    Full Text Available This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.

  10. 27 CFR 7.27 - Net contents. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 7.27 Section 7.27 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... the net contents are displayed by having the same blown, branded, or burned in the container in...

  11. Petri nets and other models of concurrency

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Sassone, Vladimiro


    This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency.......This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency....

  12. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    This report is identical to an earlier version of May 1978 except that Chapter 5 has been revised. A new paper: "A Petri Net Definition of a System Description Language", DAIMI, April 1979, 20 pages, extends the Petri net model to include a data state representing the program variables. Delta...

  13. Net neutrality and inflation of traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, Florian

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate the short-run effects of different net neutrality rules. Content differs in its

  14. Net Neutrality and Inflation of Traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, F.


    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate different net neutrality rules. Content differs in its sensitivity to delay.

  15. The Net Neutrality Debate: The Basics (United States)

    Greenfield, Rich


    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and…

  16. Dynamic response of the thermometric net radiometer (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters


    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  17. Teaching and Learning with the Net Generation (United States)

    Barnes, Kassandra; Marateo, Raymond C.; Ferris, S. Pixy


    As the Net Generation places increasingly greater demands on educators, students and teachers must jointly consider innovative ways of teaching and learning. In this, educators are supported by the fact that the Net Generation wants to learn. However, these same educators should not fail to realize that this generation learns differently from…

  18. Verification of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær


    Timed-Arc Petri Nets (TAPN) are an extension of the classical P/T nets with continuous time. Tokens in TAPN carry an age and arcs between places and transitions are labelled with time intervals restricting the age of tokens available for transition firing. The TAPN model posses a number...

  19. A Brief Introduction to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt


    Coloured Petri Nets (CP-nets or CPN) is a graphical oriented language for design, specification, simulation and verification of systems. It is in particular well- suited for systems in which communication, synchronisation and resource sharing are important. Typical examples of application areas a...

  20. Gill net and trammel net selectivity in the northern Aegean Sea, Turkey

    Directory of Open Access Journals (Sweden)

    F. Saadet Karakulak


    Full Text Available Fishing trials were carried out with gill nets and trammel nets in the northern Aegean Sea from March 2004 to February 2005. Four different mesh sizes for the gill nets and the inner panel of trammel nets (16, 18, 20 and 22 mm bar length were used. Selectivity parameters for the five most economically important species, bogue (Boops boops, annular sea bream (Diplodus annularis, striped red mullet (Mullus surmuletus, axillary sea bream (Pagellus acarne and blotched picarel (Spicara maena, caught by the two gears were estimated. The SELECT method was used to estimate the selectivity parameters of a variety of models. Catch composition and catch proportion of several species were different in gill and trammel nets. The length frequency distributions of the species caught by the two gears were significantly different. The bi-modal model selectivity curve gave the best fit for gill net and trammel net data, and there was little difference between the modal lengths of these nets. However, a clear difference was found in catching efficiency. The highest catch rates were obtained with the trammel net. Given that many discard species and small fish are caught by gill nets and trammel nets with a mesh size of 16 mm, it is clear that these nets are not appropriate for fisheries. Consequently, the best mesh size for multispecies fisheries is 18 mm. This mesh size will considerably reduce the numbers of small sized individuals and discard species in the catch.

  1. Electrical properties and interfacial issues of high-k/Si MIS capacitors characterized by the thickness of Al2O3 interlayer

    Directory of Open Access Journals (Sweden)

    Xing Wang


    Full Text Available A thin Al2O3 interlayer deposited between La2O3 layer and Si substrate was used to scavenge the interfacial layer (IL by blocking the out-diffusion of substrate Si. Some advantages and disadvantages of this method were discussed in detail. Evident IL reduction corroborated by the transmission electron microscopy results suggested the feasibility of this method in IL scavenging. Significant improvements in oxygen vacancy and leakage current characteristics were achieved as the thickness of Al2O3 interlayer increase. Meanwhile, some disadvantages such as the degradations in interface trap and oxide trapped charge characteristics were also observed.

  2. Interfacial Donor-Acceptor Engineering of Nanofiber Materials To Achieve Photoconductivity and Applications. (United States)

    Zang, Ling


    the molecular structure and nanoscale interface engineering. As a result, maximal photoconductivity can be achieved for different D-A nanofibril composites. The photoconductive nanomaterials thus obtained demonstrate unique features and functions when employed in photochemiresistor sensors, photovoltaics and photocatalysis, all taking advantages of the large, open interface of nanofibril structure. Upon deposition onto a substrate, the intertwined nanofibers form networks with porosity in nanometer scale. The porous structure enables three-dimensional diffusion of molecules (analytes in sensor or reactants in catalysis), facilitating the interfacial chemical interactions. For carbon nanotubes, the completely exposed π-conjugation facilitates the surface modification through π-π stacking in conjunction with D-A interaction. Depending on the electronic energy levels of D and A parts, appropriate band alignment can be achieved, thus producing an electric field across the interface. Presence of such an electric field enhances the charge separation, which may lead to design of new type of photovoltaic system using carbon nanotube composite.

  3. Discrete, continuous, and hybrid petri nets

    CERN Document Server

    David, René


    Petri nets do not designate a single modeling formalism. In fact, newcomers to the field confess sometimes to be a little puzzled by the diversity of formalisms that are recognized under this "umbrella". Disregarding some extensions to the theoretical modeling capabilities, and looking at the level of abstraction of the formalisms, Condition/Event, Elementary, Place/Transition, Predicate/Transition, Colored, Object Oriented... net systems are frequently encountered in the literature. On the other side, provided with appropriate interpretative extensions, Controled Net Systems, Marking Diagrams (the Petri net generalization of State Diagrams), or the many-many variants in which time can be explicitly incorporated -Time(d), Deterministic, (Generalized) Stochastic, Fuzzy...- are defined. This represents another way to define practical formalisms that can be obtained by the "cro- product" of the two mentioned dimensions. Thus Petri nets constitute a modeling paradigm, understandable in a broad sense as "the total...

  4. Interfacial Layer Growth Condition Dependent Carrier Transport Mechanisms in HfO2/SiO2 Gate Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, S. K.; Misra, D.


    The temperature and field dependent leakage current in HfO{sub 2}/SiO{sub 2} gate stack for in situ steam grown and chemical interfacial layers (ILs) are studied in the temperature range of 20 C to 105 C. Poole-Frenkel mechanism in high field whereas Ohmic conduction in low field region are dominant for both devices. Leakage current decreases whereas both trap energy level ({phi}{sub t}) and activation energy (E{sub a}) increase for chemically grown IL devices. The trap level energy, ({phi}{sub t}) -0.2 eV, indicates that doubly charged oxygen vacancies (V{sup 2-}) are the active electron traps which contribute to the leakage current in these gate stacks.

  5. Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions

    Directory of Open Access Journals (Sweden)

    H. F. Li


    Full Text Available Using density functional theory (DFT method combined with non-equilibrium Green’s function approach, we systematically investigated the structural, ferroelectric and electronic transport properties of Pt/BaTiO3/Pt ferroelectric tunnel junctions (FTJ with the interface atomic layers doped by charge neutral NbTi substitution. It is found that interfacial NbTi substitution will produce several anomalous effects such as the vanishing of ferroelectric critical thickness and the decrease of junction resistance against tunneling current. Consequently, the thickness of the ferroelectric thin film (FTF in the FTJ can be reduced, and both the electroresistance effect and sensitivity to external bias of the FTJ are enhanced. Our calculations indicate that the enhancements of conductivity and ferroelectric distortion can coexist in FTJs, which should be important for applications of functional electronic devices based on FTJs.

  6. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)


    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  7. Maximising the Interfacial Fracture Toughness of Thin Coatings and Substrate through Optimisation of Defined Parameters


    Khan, Zulfiqar Ahmad; Nazir, M.H.


    The influence of three parameters i.e. interfacial roughness, coating thickness and the size of impurity at the interface on interfacial fracture toughness has been investigated within the framework of two approaches i.e. thermodynamics and fracture mechanics. Mathematical relationship for both the approaches have been designed independently and then fused to form a governing law for evaluating the interfacial toughness. Simulation techniques founded on the experimental studies, have been dev...

  8. Like-charged protein-polyelectrolyte complexation driven by charge patches. (United States)

    Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim


    We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.

  9. Pro visual C++/CLI and the net 35 platform

    CERN Document Server

    Fraser, Stephen


    Pro Visual C++/CLI and the .NET 3.5 Platform is about writing .NET applications using C++/CLI. While readers are learning the ins and outs of .NET application development, they will also be learning the syntax of C++, both old and new to .NET. Readers will also gain a good understanding of the .NET architecture. This is truly a .NET book applying C++ as its development language not another C++ syntax book that happens to cover .NET.

  10. Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements (United States)

    Kumar, Sandeep; Iyer, S. Sundar Kumar


    Accurate and convenient evaluation methods of the interfacial barrier ϕb for charge carriers in metal semiconductor (MS) junctions are important for designing and building better opto-electronic devices. This becomes more critical for organic semiconductor devices where a plethora of molecules are in use and standardised models applicable to myriads of material combinations for the different devices may have limited applicability. In this paper, internal photoemission (IPE) from spectral response (SR) in the ultra-violet to near infra-red range of different MS junctions of metal-organic semiconductor-metal (MSM) test structures is used to determine more realistic MS ϕb values. The representative organic semiconductor considered is [6, 6]-phenyl C61 butyric acid methyl ester, and the metals considered are Al and Au. The IPE signals in the SR measurement of the MSM device are identified and separated before it is analysed to estimate ϕb for the MS junction. The analysis of IPE signals under different bias conditions allows the evaluation of ϕb for both the front and back junctions, as well as for symmetric MSM devices.

  11. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis


    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  12. Theoretical description of metal/oxide interfacial properties: The case of MgO/Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Stefano [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 53, 20125 Milano (Italy); Giordano, Livia, E-mail: [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 53, 20125 Milano (Italy); Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 53, 20125 Milano (Italy); Goniakowski, Jacek [CNRS-Sorbonne Universités UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris (France)


    Highlights: • Characteristics of Ag-supported MgO(100) films are studied with different DFT functionals. • All approaches predict a similar nature of supported pristine and oxygen-deficient films. • Interface distances and adhesion are particularly sensitive to the choice of the approximation. • Satisfactory matching with the experiment is obtained with the DFT-optB88 functional. • Charge transfer, work function and vacancy characteristics are little influenced by the method. - Abstract: We compare the performances of different DFT functionals applied to ultra-thin MgO(100) films supported on the Ag(100) surface, a prototypical system of a weakly interacting oxide/metal interface, extensively studied in the past. Beyond semi-local DFT-GGA approximation, we also use the hybrid DFT-HSE approach to improve the description of the oxide electronic structure. Moreover, to better account for the interfacial adhesion, we include the van de Waals interactions by means of either the semi-empirical force fields by Grimme (DFT-D2 and DFT-D2*) or the self-consistent density functional optB88-vdW. We compare and discuss the results on the structural, electronic, and adhesion characteristics of the interface as obtained for pristine and oxygen-deficient Ag-supported MgO films in the 1–4 ML thickness range.

  13. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells. (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J


    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  14. Effects of interfacial alignments on the stability of graphene on Ru(0001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lei; Liu, Yanmin; Ma, Tianbao, E-mail:; Shi, Ruoyu; Hu, Yuanzhong; Luo, Jianbin, E-mail: [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)


    Structure and electronic properties of two-dimensional materials could be tuned by interfacial misfit or orientation angles. However, graphene grown on Ru(0001) substrate usually shows stable moiré superlattice with a periodicity of 3.0 nm indicating an aligned geometry. The reason for the absence of misaligned structure is still unknown. We have performed first-principles calculation to investigate the microstructure and morphology of graphene on Ru(0001) substrate in both aligned and misaligned geometries with rotation angles of 0°, 7.6°, and 23.4°, respectively. Our results indicate that both the graphene corrugation and moiré superlattice periodicity decrease as the rotation angle increases. Meanwhile the interaction energy between graphene and Ru(0001) substrate also becomes weakened with the rotation angle, as the decrease and discretization of intense charge transfer sites at the graphene/Ru interface, which is closely related to the interface stacking structure. Counterintuitively, the strain energy in graphene also increases anomalously with the rotation angle, which is attributed to the highly distorted local deformation of graphene due to the strong but discrete covalent bonding with Ru substrate. The simultaneous increase in both the interaction energy and strain energy in graphene/Ru(0001) heterostructure with rotation angle contributes to the preferred configuration in the aligned state.

  15. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)


    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Fast Nanoscale Surface Charge Mapping with Pulsed-Potential Scanning Ion Conductance Microscopy. (United States)

    Page, Ashley; Perry, David; Young, Philip; Mitchell, Daniel; Frenguelli, Bruno G; Unwin, Patrick R


    A vast range of interfacial systems exhibit charge heterogeneities on the nanoscale. These differences in local surface charge density are challenging to visualize, but recent work has shown the scanning ion conductance microscope (SICM) to be a very promising tool to spatially resolve and map surface charge and topography via a hopping potential sweep technique with a single nanopipette probe, with harmonic modulation of a bias applied between quasi-reference counter electrodes in the nanopipette and bulk solution, coupled with lock-in detection. Although powerful, this is a relatively slow process, with limitations on resolution and the size of the images that can be collected. Herein, we demonstrate a new scanning routine for mapping surface charge and topography with SICM, which increases the data acquisition rate by an order of magnitude and with the potential for further gains. Furthermore, the method is simplified, eliminating the need for bias modulation lock-in detection, by utilizing a potential-pulse, chronoamperometric approach, with self-referencing calibration of the response at each pixel in the image. We demonstrate the application of this new method to both a model substrate and living PC-12 cells under physiological (high ionic strength) conditions, where charge mapping is most challenging (small Debye length). This work contributes significantly to the emergence of SICM as a multifunctional technique for simultaneously probing interfacial structure and function with nanometer resolution.

  17. Surfactant-mediated ion exchange and charge reversal at ionic liquid interfaces. (United States)

    Chen, Lang G; Lerum, Ronald V; Aranda-Espinoza, Helim; Bermudez, Harry


    Room-temperature ionic liquids (ILs) exhibit a unique set of properties due to their charged character, presenting opportunities for numerous applications. Here, we show that the combination of charged surfactants with ILs leads to rich interfacial behavior due to the interplay between electrostatic and surface forces. Using traditional measures of surface activity and X-ray photoelectron spectroscopy (XPS), we find that sodium alkyl sulfates and alkyl trimethylammonium bromides are, indeed, surface-active at the air-IL interfaces of both [EMIM][EtSO(4)] and [BHEDMA][MeSO(3)]. XPS also reveals that surfactant counterions readily dissociate into the bulk, which when combined with the surfactant surface activity has striking consequences. We find that ion exchange occurs between surfactants and like-charged IL ions, with the greatest exchange for short surfactant alkyl chains. The initial negative surface charge of neat [EMIM][EtSO(4)] can be switched to positive by the addition of alkyl trimethylammonium bromides, with the effect most pronounced at short chain lengths. By contrast, the surface charge of [BHEDMA][MeSO(3)] is largely unaffected by the added surfactants, suggesting a key role for the strength of ion-pairing within the IL. The results here illustrate a simple but effective means of manipulating IL interfacial properties.

  18. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan


    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  19. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study. (United States)

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlögl, Udo; Bai, Haili


    Magnetic and electronic properties of Fe4N(111)/MoS2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) Fe(I)Fe(II)-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between Fe(I)/Fe(II) and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe(I). For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices.

  20. Charge gradient microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Andreas; Hong, Seungbum


    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.