WorldWideScience

Sample records for net generation fossil-fuel

  1. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and major...

  2. 75 FR 63404 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption... address the reduction of fossil fuel-generated energy consumption in new Federal buildings and Federal... they believe meeting the full fossil fuel-generated energy consumption reduction level is technically...

  3. Water treatment for fossil fuel power generation - technology status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-07

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing.

  4. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  5. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    Science.gov (United States)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  6. Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1 (GM (1, 1, back propagation (BP and LSSVM, in terms of prediction accuracy and forecasting risk.

  7. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  8. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, Elisa [Fondazione Eni Enrico Mattei (Italy); Verdolini, Elena, E-mail: elena.verdolini@feem.it [Fondazione Eni Enrico Mattei (Italy); Universita Cattolica, del Sacro Cuore di Milano (Italy); Hascic, Ivan [OECD Environment Directorate (France)

    2011-11-15

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: > We study innovation in efficiency-improving electricity generation technologies. > Relevant patents are identified and used as an indicator of innovation. > We show that there is significant technology transfer in this field. > Most patents are first filed in OECD countries and then in non-OECD countries. > Patents in non-OECD countries are mostly marketed domestically.

  9. Reconciling fossil fuel power generation development and climate issues: CCS and CCS-Ready

    Energy Technology Data Exchange (ETDEWEB)

    Paelinck, Philippe; Sonnois, Louis; Leandri, Jean-Francois

    2010-09-15

    This paper intends to analyse how CCS can contribute to reduce CO2 emissions from fossil-fuel power plants and to describe what is its current overall status. Its potential future development is assessed, in both developed and developing countries, and an economical assessment of different investment options highlight the importance of CCS retrofit. The paper analyses then the challenges of the development of fossil fuelled power plants and details case examples to illustrate some technical challenges related to CCS and what are the technical solutions available today to ease and address them: CCS-Ready power plants.

  10. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  12. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  13. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  14. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of public impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.

  15. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  16. Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Annette; Strezov, Vladimir; Evans, Tim

    2010-09-15

    The sustainability parameters of electricity generation have been assessed by the application of eight key indicators. Photovoltaics, wind, hydro, geothermal, biomass, natural gas, coal and nuclear power have been assessed according to their price, greenhouse gas emissions, efficiency, land use, water use, availability, limitations and social impacts on a per kilowatt hour basis. The relevance of this information to the Australian context is discussed. Also included are the results of a survey on Australian opinions regarding electricity generation, which found that Australian prefer solar electricity above any other method, however coal, biomass and nuclear power have low acceptance.

  17. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  18. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel... government 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150...

  19. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Energy Technology Data Exchange (ETDEWEB)

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  20. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  1. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    A reliance on fossil fuels as a source of energy has resulted in the generation of pollutants which have entered the environment. Health of humans, animals, plants and microorganisms has been compromised due to activities linked to fossil fuel extraction, processing and use. Coal conversion to value added products has ...

  2. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  3. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... limited to, the following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric...

  4. Replacement of fossil fuels by hydrogen

    Science.gov (United States)

    Dahlberg, R.

    The replacement of fossil fuels by solar hydrogen plantations is considered. A model is proposed in which ten plantation families, situated in suitable deserted zones of the world after the year 2000, would generate enough electrical energy to produce solar cells and materials for the construction of ten new plantations within a decade. The technological growth process for identical solar plantation units could be completed about 50 years after construction of the first plantation. All ten plantation families would, by using their electrical energy for the electrolysis of water, generate an amount of hydrogen per year which is four to five times the energy of the world's present annual consumption of oil. This concept envisions the global replacement of fossil fuels by hydrogen within a period consistent with the remaining time span of fossil fuel availability. Storage and transportation of hydrogen would be economical, and the energy produced would not present any environmental problems. Advantages with respect to gains in international cooperation, world peace, and world economy are also discussed.

  5. Fossil fuel derivatives with reduced carbon. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  6. OVERVIEW OF THE ROMANIAN FOSSIL FUEL MARKET BETWEEN 2002 AND 2012

    OpenAIRE

    ALINA ZAHARIA

    2015-01-01

    In a context in which the energy needs seems to increase fast and the limited stocks of fossil fuels can generate negative impacts on human society, biodiversity and environment, the policy makers proposed several economic models for achieving sustainable development, like green economy, which appears to promote the necessity of decreasing fossil fuel consumption and of increasing energy savings. This paper aims to emphasize the evolution of fossil fuel market, and the electricity...

  7. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  8. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  9. On Prediction of Depreciation Time of Fossil Fuel in Malaysia

    OpenAIRE

    Tey Jin Pin; Nora Muda

    2012-01-01

    Problem statement: The fossil fuels play a crucial role in the world energy markets. Demand for fossil fuels become increasingly high and worrisome, because of fossil fuels will be significantly reduced and ultimately exhausted. This study was conducted to predict the depreciation time of fossil fuels in Malaysia and estimate the time remaining before the fossil fuels will finish. Approach: To predict the depreciation time of fossil fuels, the reserves, consumption and prices of fossil fuel w...

  10. Fossil Fuels, Backstop Technologies, and Imperfect Substitution

    NARCIS (Netherlands)

    van der Meijden, G.C.; Pittel, Karen; van der Ploeg, Frederick; Withagen, Cees

    2014-01-01

    This chapter studies the transition from fossil fuels to backstop technologies in a general equilibrium model in which growth is driven by research and development. The analysis generalizes the existing literature by allowing for imperfect substitution between fossil fuels and the new energy

  11. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  12. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw...

  13. Present technologies and the next future in Mexico for the power generation starting from fossil fuels; Tecnologias actuales y del futuro proximo en Mexico para la generacion de electricidad a partir de combustibles fosiles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez S, J.M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    1999-07-01

    A brief analysis is done of the expected evolution of the world energy and electrical energy demand and a projection of the Mexican electrical demand is presented. Typical data for electric power generation technologies that currently in use or under development are presented and a discussion is made of the factors that influence technology selection, particularly for fossil fuel technologies. Taking into account the current expansion plans of the Mexican electrical sector, and proposing some reasonable hypotheses about the behavior of the factors that were identified, the evolution of the electrical demand in Mexico up to the year 2020 is presented, showing the installed capacity expected for each fuel and for each technology. At the end the needs for research and development in the area of power generation, emphasizing the Mexican R and D Programs, are discussed. (Author)

  14. Fossil fuels in the 21st century.

    Science.gov (United States)

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  15. OVERVIEW OF THE ROMANIAN FOSSIL FUEL MARKET BETWEEN 2002 AND 2012

    Directory of Open Access Journals (Sweden)

    ALINA ZAHARIA

    2015-04-01

    Full Text Available In a context in which the energy needs seems to increase fast and the limited stocks of fossil fuels can generate negative impacts on human society, biodiversity and environment, the policy makers proposed several economic models for achieving sustainable development, like green economy, which appears to promote the necessity of decreasing fossil fuel consumption and of increasing energy savings. This paper aims to emphasize the evolution of fossil fuel market, and the electricity generated from fossil fuels since 2002, and especially after 2010, when in Romania were taken some measures for implementing the principles of green economy. In order to see their effects, this research presents an historical analysis for Romania based on the data obtained from European Commission and Romanian Institute of Statistics. The results indicate decreasing trends of primary energy production and consumption, and decreasing trends of electricity generation from fossil fuels due to the more and more use of renewable and nuclear energy sources. The results highlight the need of taking more actions in the energy sector by promoting even more the renewable energy production and consumption for reducing the fossil fuel use, and by promoting, also, a more efficient use of fossil fuel resources for a sustainable future.

  16. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example

    Directory of Open Access Journals (Sweden)

    Anja Hansen

    2016-06-01

    Full Text Available Bioresources are used in different production systems as materials as well as energy carriers. The same is true for fossil fuel resources. This study explored whether preferential resource usages exist, using a building insulation system as an example, with regard to the following sustainability criteria: climate impact, land, and fossil fuel demand. We considered the complete life cycle in a life cycle assessment-based approach. The criteria were compared for two strategies: one used natural fibers as material and generated production energies from fossil fuels; the other generated production energies from bioenergy carriers and transformed fossil resources into the insulation material. Both strategies finally yielded the same insulation effect. Hence, the energy demand for heating the building was ignored. None of the strategies operated best in all three criteria: While cropland demand was lower in the bioenergy than in the biomaterial system, its fossil fuel demand was higher. Net contribution to climate change was in the same range for both strategies if we considered no indirect changes in land use. Provided that effective recycling concepts for fossil-derived insulations are in place, using bioresources for energy generation was identified as a promising way to mitigate climate change along with efficient resource use.

  17. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - implications for cyclone induced rapid lift and TIL physico-chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, Hans; Aufmhoff, Heinfried; Baumann, Robert; Schumann, Ulrich [DLR IPA, Oberpfaffenhofen (Germany); Arnold, Frank [MPI Kernphysik, Heidelberg (Germany); DLR IPA, Oberpfaffenhofen (Germany); Simgen, Hardy; Lindemann, Siegfried; Rauch, Ludwig; Kaether, Frank [MPI Kernphysik, Heidelberg (Germany); Pirjola, Liisa [University of Helsinki, Helsinki (Finland)

    2013-07-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of polluted planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO{sub 2} and other species), which had increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important impact of East-Asian cyclone induced pollutants transport to the TIL. This impact includes particularly aerosol formation.

  18. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    Science.gov (United States)

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  19. The Fascinating Story of Fossil Fuels

    Science.gov (United States)

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  20. Fossil fuels supplies modeling and research

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, P.N.

    1996-06-01

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  1. Starting of the steam generator of a fossil fuel power plant, using predictive control based in a neuronal model; Arranque del generador de vapor de una central termoelectrica, usando control predictivo basado en un modelo neuronal

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo Dominguez, Tonatiuh

    2004-09-15

    In this thesis work it is presented the design and implementation of a simulator of total scope of a predictive controller based in the neuronal model of the temperature in two stages of the heating of the steam generator of a fossil fuel power plant. An implemented control scheme is detailed, as well as the methodology for the identification of a neuronal model utilized for the control. Finally the results of the implementation in the simulator located at the Instituto de Investigaciones Electricas (IIE) are shown to be satisfactory. This control structure is not applied directly in closed circuit, but provides the value of the control actions to a human operator. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion, en un simulador de alcance total, de un controlador predictivo basado en un modelo neuronal para el control de la temperatura en dos etapas del calentamiento del generador de vapor de una central termoelectrica. Se detalla el esquema de control implementado, asi como la metodologia de identificacion de un modelo neuronal utilizado para la sintesis del control. Finalmente se muestran los resultados de la implementacion en el simulador que se encuentra en el Instituto de Investigaciones Electricas (IIE); dichos resultados fueron satisfactorios. Esta estructura de control no se aplica directamente en lazo cerrado, sino que provee el valor de las acciones de control a un operador humano.

  2. Simulation of the park for electric generation of the Argentine Republic, analysis of its possible expansion with restrictions in the disposability of the fossil fuels; Simulacion del parque de generacion electrica de la Republica Argentina, analisis de su posible expansion con restricciones en la disponibilidad de los combustibles fosiles

    Energy Technology Data Exchange (ETDEWEB)

    Giubergia, J.H.; Coppari, N.R. [Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Unidad de Actividad Reactores y Centrales Nucleares, Avda. Gral. Paz 1499 (1650) San Martin, Provincia de Buenos Aires (Argentina); Rey, F.C. [Comision Nacional de Energia Atomica, Centro Atomico Ezeiza, Presbitero Juan Gonzalez y Aragon 15, (B1802AYA) Ezeiza, Provincia de Buenos Aires (Argentina)]. E-mail: giuberg@cnea.gov.ar

    2004-07-01

    In this work one simulates, using the program MESSAGE, the generation park electric of the Argentine Republic and their possible expansion, with restrictions in the readiness of fossil fuels. This, as other models of planning energetics promoted by IAEA, optimizes the expansion of the net having as function objective the smallest cost in the system. 25 years they were simulated, adopting like base the anus 2000 and considering different scenarios of internal and external demands. It was analysed the increase of the demand with restrictions in the readiness of the natural gas in the winter periods, since the Argentinean electric system has a great dependence of this fuel. To cover the increase of the electric demand, were selected the machines and fuels, at the moment available, with more technical and economic possibilities. In the scenarios without restrictions to the use of natural gas the program selects to the nuclear power station of Atucha II, to the increase of bench mark of the hydraulic power station of Yacireta and combined cycles that burn natural gas. In those in that the supply of natural gas is limited, it selects previously besides the signal ones, other nuclear power stations, other hydroelectric projects and turbines of gas operating with gas oil to cover the top requirements. (Author)

  3. Diatoms: a fossil fuel of the future.

    Science.gov (United States)

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fossil-fuel constraints on global warming

    Energy Technology Data Exchange (ETDEWEB)

    Zecca, Antonio; Chiari, Luca [Physics Department, University of Trento, Via Sommarive 14, I-38050 Povo TN (Italy)

    2010-01-15

    In 2008 and 2009 two papers by Kharecha and Hansen and by Nel and Cooper examined possible fossil energy availability and energy consumption scenarios and consequences for future climate. The papers yield somewhat similar results regarding atmospheric CO{sub 2} levels, but they reach substantially different conclusions regarding future climate change. Here, we compare their methods and results. Our work shows that Nel and Cooper's paper significantly underestimates future warming. Nel and Cooper conclude that even if all the available fossil fuels would be burned at the maximum possible rate during this century, the consequent warming would cap at less than 1 C above the 2000 level. We find that - under Nel and Cooper's assumption of an intensive exploitation of fossil fuels - the global temperature in 2100 will likely reach levels which would lead to severely damaging long-term impacts. (author)

  5. Fossil fuels in a trillion tonne world

    Science.gov (United States)

    Scott, Vivian; Haszeldine, R. Stuart; Tett, Simon F. B.; Oschlies, Andreas

    2015-05-01

    The useful energy services and energy density value of fossil carbon fuels could be retained for longer timescales into the future if their combustion is balanced by CO2 recapture and storage. We assess the global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores. A hierarchy of value for extraction-to-storage pairings is proposed, which is augmented by classification of CO2 containment as temporary (100,000 yr). Using temporary stores is inefficient and defers an intergenerational problem. Permanent storage capacity is adequate to technically match current fossil fuel reserves. However, rates of storage creation cannot balance current and expected rates of fossil fuel extraction and CO2 consequences. Extraction of conventional natural gas is uniquely holistic because it creates the capacity to re-inject an equivalent tonnage of carbon for storage into the same reservoir and can re-use gas-extraction infrastructure for storage. By contrast, balancing the extraction of coal, oil, biomass and unconventional fossil fuels requires the engineering and validation of additional carbon storage. Such storage is, so far, unproven in sufficiency.

  6. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  7. An assessment of econometric models applied to fossil fuel power generation; Un'analisi critica dell'applicazione dei modelli econometrici alla generazione termoelettrica

    Energy Technology Data Exchange (ETDEWEB)

    Gracceva, F.; Quercioli, R. [ENEA, Funzione Centrale Studi, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The main purpose of this report is to provide a general view of those studies, in which the econometric approach is applied to the selection of fuel in fossil fired power generation, focusing the attention to the key role played by the fuel prices. The report consists of a methodological analysis and a survey of the studies available in literature. The methodological analysis allows to assess the adequateness of the econometric approach, in the electrical power utilities policy. With this purpose, the fundamentals of microeconomics, which are the basis of the econometric models, are pointed out and discussed, and then the hypotheses, which are needed to be assumed for complying the economic theory, are verified in their actual implementation in the power generation sector. The survey of the available studies provides a detailed description of the Translog and Logit models, and the results achieved with their application. From these results, the estimated models show to fit the data with good approximation, a certain degree of interfuel substitution and a meaningful reaction to prices on demand side. [Italian] In questo rapporto viene tracciato un quadro generale degli studi che utilizzano modelli econometrici per analizzare la scelta dei combustibili nella termogenerazione, con particoalre attenzione al ruolo svolto dal prezzo dei combustibili. La trattazione si compone di un'analisi di tipo metodologico e di una rassegna della letteratura. L'analisi metodologica consente di valutare l'adeguatezza dell'approccio econometrico nell'analisi del comportamento delle imprese di generazione elettrica. A tal fine vengono esplicitati e discussi i fondamenti microeconomici su cui poggiano i modelli econometrici, e viene verificata la sussistenza, nel settore termoelettrico, delle ipotesi che e' necessario assumere per soddisfare la teoria economica. La rassegna fornisce invece una descrizione dei modelli translog e logit lineare, ed un

  8. Fossil fuel combined cycle power generation method

    Science.gov (United States)

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  9. Recent developments in biodesulfurization of fossil fuels.

    Science.gov (United States)

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  10. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  11. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  12. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    The conversion of biomass to four different outputs via gasification is a renewable technology that could reduce the use of fossil fuels and greenhouse gas (GHG) emissions. This study investigates the energy aspects for a new concept of biomass based quad-generation plant producing power, heat......, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.......3 and 7.2. The lowest limit corresponds to the wood chips-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim...

  13. Microbial biocatalyst developments to upgrade fossil fuels.

    Science.gov (United States)

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  14. Microalgal and terrestrial transport biofuels to displace fossil fuels

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  15. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    Science.gov (United States)

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  16. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay

    Science.gov (United States)

    Wang, Jingxian; Wu, Wenzhong; Henkelmann, Bernhard; You, Li; Kettrup, Antonius; Schramm, Karl-Werner

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

  17. FOSSIL FUEL ENERGY RESOURCES OF ETHIOPIA Wolela Ahmed ...

    African Journals Online (AJOL)

    a

    , P.O. Box 486, Addis Ababa,. Ethiopia ... KEY WORDS: Coal, Energy, Ethiopia, Fossil fuel, Oil shale, Oil and gas. INTRODUCTION. Energy is ...... metamorphosed to semi-anthracite stage due to high geothermal gradient. The moisture content.

  18. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    Science.gov (United States)

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  19. Fossil Fuel Emission Verification Modeling at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

    2009-08-06

    We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and

  20. Traversing the mountaintop: world fossil fuel production to 2050

    OpenAIRE

    Nehring, Richard

    2009-01-01

    During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per ...

  1. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  2. Teaching and Learning with the Net Generation

    Science.gov (United States)

    Barnes, Kassandra; Marateo, Raymond C.; Ferris, S. Pixy

    2007-01-01

    As the Net Generation places increasingly greater demands on educators, students and teachers must jointly consider innovative ways of teaching and learning. In this, educators are supported by the fact that the Net Generation wants to learn. However, these same educators should not fail to realize that this generation learns differently from…

  3. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  4. Spatiotemporal patterns of the fossil-fuel CO2 signal in central Europe: results from a high-resolution atmospheric transport model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2017-11-01

    detectable for a surface-based observing system for atmospheric CO2, while it is beyond the edge of detectability for the current generation of satellites with the exception of a few hotspot sites. Changes in variability in atmospheric CO2 might open an additional door for the monitoring and verification of changes in fossil-fuel emissions, primarily for surface-based systems.

  5. Demonstration of the Energy Component of the Installation Master Plan Using the Net Zero Energy Planner Tool: Cost and Performance Report

    Science.gov (United States)

    2015-12-11

    fossil fuel based energy to achieve a net zero fossil fuel energy status. Energy goals are achieved through synergy among energy use reduction in... fossil fuel based energy to achieve a net zero fossil fuel energy status. Energy goals will be achieved through synergy among energy use reduction in... fossil fuel use in new and renovated facilities by 2030 and to reduce overall facility energy usage by 30% by 2015 (EISA 2007).

  6. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    Science.gov (United States)

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  7. Assessing global fossil fuel availability in a scenario framework

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Nico; Hilaire, Jerome; Brecha, Robert J.; Edmonds, James A.; Jiang, Kejun; Kriegler, Elmar; Rogner, Hans-Holger; Sferra, Fabio

    2016-06-01

    This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to include alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.

  8. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Directory of Open Access Journals (Sweden)

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  9. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  10. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  11. Net energy output from harvesting small-diameter trees using a mechanized system

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    What amount of extra energy can be generated after subtracting the total energy consumed to produce the biomass energy? Knowing the ratio between energy output and input is a valid question when highly mechanized systems that consume fossil fuels are used to harvest and transport forest biomass for energy. We estimated the net energy generated from mechanical fuel...

  12. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Science.gov (United States)

    David Nicholls; John. Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  13. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    NARCIS (Netherlands)

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  14. The European carbon balance. Part 1: fossil fuel emissions

    NARCIS (Netherlands)

    Ciais, P.; Paris, J.D.; Marland, G.; Peylin, P.; Piao, S.L.; levin, I.; Pregger, T.; Scholz, Y.; Friedrich, R.; Rivier, L.; Houweling, S.; Schulze, E.D.

    2010-01-01

    We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in

  15. The preliminary study of urbanization, fossil fuels consumptions and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-29

    Mar 29, 2010 ... As a result the demand of more energy in form of fossil fuels increased for domestic, industrial and transportation purpose. In this research the maximum available data of Karachi about urbanization, population and vehicles growth, industrialization, energy consumption and CO2 emissions are analyzed.

  16. Divesting Fossil Fuels : The Implications for Investment Portfolios

    NARCIS (Netherlands)

    Trinks, Arjan; Scholtens, Bert; Mulder, Machiel; Dam, Lammertjan

    2017-01-01

    Fossil fuel divestment campaigns urge investors to sell their stakes in companies that supply coal, oil, and gas. However, avoiding investments in such companies can be expected to impose a financial cost on the investor because of reduced opportunities for portfolio diversification. We compare the

  17. The financial impact of divestment from fossil fuels

    NARCIS (Netherlands)

    Plantinga, Auke; Scholtens, Bert

    2016-01-01

    Divesting from fossil companies has been put forward as a means to address climate change. We study the impact of such divesting on investment portfolio performance. To this extent, we systematically investigate the investment performance of portfolios with and without fossil fuel company stocks. We

  18. Rationale of Early Adopters of Fossil Fuel Divestment

    Science.gov (United States)

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  19. Fossil Fuel and Food Tax Incidence in Ethiopia | Mekonnen ...

    African Journals Online (AJOL)

    Most studies suggest that environmental taxes are regressive, making them less attractive policy options. The general objective of this paper is to analyze and compare fossil fuel and food tax incidence in Ethiopia in different expenditure groups of households considering urban and rural parts of Ethiopia separately. We use ...

  20. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80...

  1. Fossil Fuels: Factors of Supply Reduction and Use of The Renewable Energy As A Suitable Alternative

    OpenAIRE

    Askari Mohammad Bagher,

    2015-01-01

    In this article we will review the consumption of fossil fuels in the world. According to the exhaustible resources of fossil fuels, and the damaging effects of these fuels on the environment and nature, we introduce renewable energy sources as perfect replacement for fossil fuels.

  2. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these

  3. Contextualizing avian mortality. A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies. (author)

  4. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)], E-mail: bsovacool@nus.edu.sg

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  5. Brown Clouds over South Asia: Biomass or Fossil Fuel Combustion?

    Science.gov (United States)

    Gustafsson, Örjan; Kruså, Martin; Zencak, Zdenek; Sheesley, Rebecca J.; Granat, Lennart; Engström, Erik; Praveen, P. S.; Rao, P. S. P.; Leck, Caroline; Rodhe, Henning

    2009-01-01

    Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90 % of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

  6. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Johannes, E-mail: johannes.schmidt@boku.ac.at [Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Leduc, Sylvain [International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Dotzauer, Erik [Maelardalen University, P.O. Box 883, SE-72123 Vaesteras (Sweden); Schmid, Erwin [Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)

    2011-06-15

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets. - Highlights: > Costs of energy policies and effects on reduction of CO{sub 2} emissions and fossil fuel consumption. > Particular focus on new bioenergy production technologies such as second generation biofuels. > Spatially explicit techno-economic optimization model. > CO{sub 2} tax: high costs for reducing fossil fuel consumption if carbon capture and storage is available. > Biofuel policy: no significant reductions in CO{sub 2} emissions or fossil fuel consumption.

  7. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  8. Sanitary effects of fossil fuels; Effets sanitaires des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (IN2P3/CNRS), 38 - Grenoble (France)

    2006-07-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  9. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  10. Educating College Students of the Net Generation

    Science.gov (United States)

    Worley, Karen

    2011-01-01

    Faculty and administrators of higher education today face a challenge with their student populations, many of whom are part of what is known as the net generation. As students become more technologically advanced, faculty must be technologically ready to meet the needs of students. Many college faculty and administrators are from earlier…

  11. The future of oil: unconventional fossil fuels.

    Science.gov (United States)

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  12. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Water interaction with laboratory-simulated fossil fuel combustion particles.

    Science.gov (United States)

    Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

    2009-10-01

    To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere.

  14. US fossil fuel technologies for Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  15. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  16. Fossil fuel energy resources of Ethiopia

    Directory of Open Access Journals (Sweden)

    Wolela Ahmed

    2008-04-01

    Full Text Available Inter-Trappean coal and oil shale-bearing sediments are widely distributed in the Delbi-Moye, Lalo-Sapo, Yayu, Sola, Chida, Chilga, Mush Valley, Wuchale and Nejo Basins. Coal and oil shale-bearing sediments were deposited in fluvio-lacustrine and paludal depositional environments. The Ethiopian oil shales reach a maximum thickness of 60 m, and contain mixtures of algal, herbaceous and higher plant taxa. Type II and I kerogen dominated the studied oil shales. Pyrolysis data revealed that the Ethiopian oil shales are good to excellent source rocks types up to 34.5 % TOC values and up to 130 HC g/kg S2. A total of about 653,000,000 - 1,000,000,000 tones of oil shale reserve registered in the country. The coal and coal-bearing sediments attain a maximum thickness of 4 m and 278 m, respectively. Proximate analysis and calorific value data show that the Ethiopian coals fall under the soft coal series (lignite to bituminous coal, and genetically classified under humic, sapropelic and mixed coals. A total of about 297,000,000 tones of coal reserve registered in the country. The Permian Bokh Shale, Oxfordian-Bathonian Hamanlei Limestones, Kimmeridgian Urandab Shale are potential organic-rich source rocks. The Permian Calub sandstone, Triassic-Liassic Adigrat sandstone and Oxfordian-Bathonian Hamanlei carbonates are reservoirs in the Ogaden and Blue Nile Basins. 2.7 TCF (76 x 109 m3 sulfur-free gas and 1817 x 106 tons condensate reserves are estimated in the Calub field. About 1.3 TCF gas deposit is also encountered in Hilala field. The Blue Nile Basin is one of the potential basins for hydrocarbon exploration. The presence of mature source rocks and oil seepage in the Blue Nile Basin is clue for the generation of hydrocarbon in the basin. The Gambella Basin is the southern extension of the petroliferous Sudan Interior Basins, and could be one of the potential basins for oil and gas deposits.

  17. A Transition Strategy from Fossil Fuels to Renewable Energy Sources in the Mexican Electricity System

    Directory of Open Access Journals (Sweden)

    Juan J. Vidal-Amaro

    2018-03-01

    Full Text Available Renewable energy sources exploitation acquires special importance for creating low-carbon energy systems. In Mexico a national regulation limits the fossil fuel-based electricity generation to 65%, 60% and 50% by years 2024, 2030 and 2050 respectively. This study evaluates several scenarios of renewables incorporation into the Mexican electricity system to attend those targets as well as a 75% renewables-based electricity share target towards a 100% renewable system. By its size, the Mexican electricity system, with a generation of 260.4 TWh/year (85% based on fossil fuels, can be regarded as an illustrating reference. The impact of increasing amounts of wind, photovoltaic solar, biomass, biogas, geothermal, hydro and concentrating solar power on the system’s capacity to attend demand on a one-hour timescale resolution is investigated utilizing the EnergyPLAN model and the minimum total mix capacity method. Possible excess of electricity production is also assessed. For every target year, a solution is obtained corresponding to the combination resulting in the minimum total generation capacity for the electricity system. A transition strategy to a system with a high share of renewables-based electricity is designed where every transition step corresponds to the optimal energy mix for each of the target years.

  18. Revisiting global fossil fuel and biofuel emissions of ethane

    Science.gov (United States)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  19. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  20. Burning Fossil Fuels: Impact of Climate Change on Health.

    Science.gov (United States)

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. © The Author(s) 2015.

  1. Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper presents a set of indicators that are used to analyse the energy efficiency of electricity production from fossil fuels on a global level and for a number of key countries and regions. The analysis is based on IEA statistics and includes public electricity plants and public CHP plants. Electricity production by autoproducers is not included and represents less than 6% of global electricity production. However, the share of autoproducers is significant in certain countries, particularly in Europe. Austria, Finland, Luxembourg, the Netherlands and Spain all have a share of electricity production from autoproducers that is more than twice the global average.

  2. Fossil-fuels, bio-fuels and food: Raking priorities

    OpenAIRE

    Dias, Guilherme Leite da Silva; Guilhoto, Joaquim José Martins

    2010-01-01

    This paper deals with the question of the trade-offs between bio-fuels, fossil-fuels, and food. To do so an analysis is conducted taking into consideration the differences in relative prices and in the productive structure among the countries. The results shows that in general food puts a greater stress over the economies than energy does, and mainly in the developing economies. As a consequence of that, the possibilities for the growing use of bio-fuels is limited and restrict to countries w...

  3. CAUSAL RELATIONSHIP BETWEEN FOSSIL FUEL CONSUMPTION AND ECONOMIC GROWTH IN JAPAN: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Hazuki Ishida

    2013-01-01

    Full Text Available This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causality between fossil fuels and GDP. The results also show that there is no causal relationship between non-fossil energy and GDP. The results of cointegration analysis, Granger causality tests, and variance decomposition analysis imply that non-fossil energy may not necessarily be able to play the role of fossil fuels. Japan cannot seem to realize both continuous economic growth and the departure from dependence on fossil fuels. Hence, growth-oriented macroeconomic policies should be re-examined.

  4. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    Science.gov (United States)

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  6. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  7. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  8. Net Generation's Learning Styles in Nursing Education.

    Science.gov (United States)

    Christodoulou, Eleni; Kalokairinou, Athina

    2015-01-01

    Numerous surveys have confirmed that emerging technologies and Web 2.0 tools have been a defining feature in the lives of current students, estimating that there is a fundamental shift in the way young people communicate, socialize and learn. Nursing students in higher education are characterized as digital literate with distinct traits which influence their learning styles. Millennials exhibit distinct learning preferences such as teamwork, experiential activities, structure, instant feedback and technology integration. Higher education institutions should be aware of the implications of the Net Generation coming to university and be prepared to meet their expectations and learning needs.

  9. Análisis de combustibles fósiles en el mercado de generación de energía eléctrica en Colombia: un contraste entre modelos de volatilidad // Analysis of Fossil Fuels in the Market for Electricity Generation in Colombia: A Contrast between Models of Volatility

    Directory of Open Access Journals (Sweden)

    Mónica Andrea Arango A.

    2016-12-01

    Full Text Available La importancia del sector eléctrico en el crecimiento de las economías incentiva el estudio sobre las variables que determinan la ejecución de nuevos proyectos de inversión en el sector. Las barreras en la disponibilidad de los combustibles se traducen en un incremento de la incertidumbre, convirtiéndose en un aspecto fundamental en la toma de decisiones en los mercados de generación de energía. Ante esto, se realiza un contraste entre un modelo de volatilidad determinística y dos modelos de volatilidad estocástica paramétrica GARCH y EWMA, aplicados en el precio de los combustibles fósiles, con el fin de identificar trade off, entre costos y riesgo, enfrentado por los generadores en una matriz energética conformada por tecnologías basadas en carbón, gas y petróleo. Los tres modelos permiten contrastar los resultados empíricos de las covarianzas obtenidas a través de la metodología de Pearson, EWMA y Vech. La evidencia sugiere que en un contexto en el que sea necesario seleccionar uno de los combustibles, el carbón presenta menor exposición al riesgo y menor variación en su precio, implicando un menor egreso en los mercados de generación. Sin embargo, contar con la matriz energética conformada por los tres combustibles fósiles permite una menor exposición al riesgo para el mercado global. ------------------------------------ The importance of the electricity sector in the growth of economies encourages the study of the variables that determine the implementation of new investment projects in the sector. The barriers in the availability of fuels result in increased uncertainty, becoming a key issue in making decisions in the markets for power generation. Regarding this, a contrast is performed between a deterministic volatility model and two parametric stochastic volatility models, GARCH and EWMA, applied to the price of fossil fuels, in order to identify trade off between cost and risk faced by generators in an energy

  10. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  11. Replacing Burning of Fossil Fuels with Solar Cell and Wind Energy: How Important and How Soon?

    Science.gov (United States)

    Partain, L., II; Hansen, R. T.; Hansen, S. F.; Bennett, D.; Newlands, A.

    2016-12-01

    The IPCC indicated that atmospheric CO2 rise should stop to control global climate change. CO2 is the longest lived, most problematic anthropogenic greenhouse emission from burning fossil fuel. For 2000 years atmospheric CO2 concentration remained 280 ppm until 1870, when it rose sharply and nonlinearly to 400 ppm, correlated with a 1oC global mean temperature rise. Antarctic ice core data for the past 400,000 years indicate, 80 ppm shifts in atmospheric CO2 concentrations with 10,000-30,000 year interglacial periods at 280 ppm, were between ice-age glacial periods of 75,000-100,000 years at 200 ppm. The last 12,000-year interglacial "Goldilocks" period so far spans 4 civilizations: 6000 years of Western, 4000-5000 years of Inca and Aztec and 7000-8000 years of Chinese civilizations. The UN-led 2015 Paris Agreement set a goal limiting temperature rise to 2oC to prevent devastating climate change. Unfortunately IPCC modeling found a substantial probability of a rise by 4oC or more should all current fossil fuels be burned by 2100. This would result in weather extremes, rising oceans, storm surges and temperatures where low-lying coastal regions, Pacific Islands and large equatorial regions of the world could become uninhabitable. By Swanson's Law, an empirical learning curve observation, solar cell production costs drop 50% for every 10X increase in their cumulative production. After 40 years and over 5 orders-of-magnitude cumulative production increase, solar cells currently provide over 1% of the world's electricity generating capacity at a cost competitive with electricity generated from burning fossil fuels. If their cumulative generating capacity keeps doubling every 2 years (similar to Moore's Law), energy equivalent to all the world's electricity generating capacity could be provided by solar cells by 2028. The variability of solar cell energy can be mitigated by combining it with wind power, storage, super grids, space mirrors, and demand response.

  12. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  13. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  14. Krakow Clean Fossil Fuels and Energy Efficiency Program

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.; Pierce, B.; Krishna, C.R.

    1992-09-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

  15. Aromatic nitrogen compounds in fossil fuels: a potential hazard

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C H; Clark, B R; Guerin, M R; Ma, C Y; Rao, T K

    1979-01-01

    To achieve energy independence in the United States, converting coal to oil or extracting oil from shale will be required. Before commercial scale fossil fuel conversion facilities become a reality, chemical and biological studies of currently available synfuel samples derived from coal or shale are urgently needed in order to determine what the potential health problems, such as from occupational exposure, might be. Aromatic nitrogen compounds such as basic aza-arenes, neutral aza-arenes, and aromatic amines are considered environmentally important and several members of these classes of compounds possess biological activity. For example, dibenz(a,h)acridine, 7 H-dibenzo(c,g)carbazole, and 2-naphthylamine, are well known as carcinogens. The methods used to isolate the basic aromatic nitrogen compounds and neutral aza-arenes from one shale oil and one coal-derived oil are discussed. The mutagenic activities of these fractions, based on the Ames Salmonella typhimurium test, are compared.

  16. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  17. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    Science.gov (United States)

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress. © The Author(s) 2015.

  18. An oxy-hydrocarbon model of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fred D. Lang; Tom Canning [Exergetic Systems, Inc., San Rafael, CA (United States)

    2007-09-15

    This paper asserts a new method of analyzing fossil fuels, useful for sorting coals into well-defined categories and for the identification of outlying ultimate analysis data. It describes a series of techniques starting with a new multivariant approach for describing the lower ranks of coal, progressing to a classical, but modified, single-variant approach for the volatile and high-energy ranks. In addition, for a few special cases, multiple low and high ranks are also well described by the multivariant approach. As useful as these techniques are for analyzing fuel chemistry in the laboratory arena, this work was initiated in support of Exergetic Systems' Input/Loss Method. At commercial coal-fired power plants, Input/Loss allows the determination of fuel chemistry based on combustion effluents. The methods presented allow equations to be developed independent of combustion stoichiometrics, which improve Input/Loss accuracy in determining fuel chemistry on-line and in real time.

  19. Progress performance report of clean uses of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  20. Progress performance report of clean uses of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  1. Net Generation: Visions for their Education

    Directory of Open Access Journals (Sweden)

    Sandra Davila

    2006-04-01

    Full Text Available This study discusses the changes that are demanded in the conception and culture of the learning, focuses the attention on the effect that the new digital environments have cause on the person, the education and the society. The main reflection is over the digital culture that characterizes to the Net generation (people that had from zero to 20 years for the year 1999 and their requirements of knowing or knowledge and of how to learn that knowledge today and always. This research was carried out a bibliographical and documental revision. The information makes us meditate about the change of the traditional transmission learning to the interactive learning defendant in the digital environments; they involve a new culture of educational system, of teaching and learning, where this responsible the own individual, the family and the society. This will contribute with the understanding, acceptance, adaptation, use, development and life in an interconnected world, digital and communicated globally.

  2. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  3. Comparing the social costs of biofuels and fossil fuels: A case study of Vietnam

    NARCIS (Netherlands)

    Thanh, le L.; Ierland, van E.C.; Zhu, X.; Wesseler, J.H.H.; Ngo, G.

    2013-01-01

    Biofuel substitution for fossil fuels has been recommended in the literature and promoted in many countries; however, there are concerns about its economic viability. In this paper we focus on the cost-effectiveness of fuels, i.e., we compare the social costs of biofuels and fossil fuels for a

  4. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Science.gov (United States)

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  5. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    Science.gov (United States)

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  6. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  7. Do forests best mitigate CO2emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    Science.gov (United States)

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  9. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    Science.gov (United States)

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  10. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  11. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    Science.gov (United States)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  12. An oxy-hydrocarbon model of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tom Canning; Fred D. Lang [Electricity Supply Board, Dublin (Ireland)

    2007-07-01

    This paper asserts a new method of analysing fossil fuels, useful for sorting coals into well defined categories and for the identification of outlying ultimate analysis data. It describes a series of techniques starting with a new multi-variant approach for describing the lower Ranks of coal, progressing to a classical, but modified, single-variant approach for the volatile and high energy Ranks. In addition, for a few special cases, multiple low and high Ranks are also well described by the multivariant approach. As useful as these techniques are for analysing fuel chemistry in the laboratory arena, this work was initiated in support of Exergetic Systems' Input/Loss Method. At commercial coal-fired power plants, Input/Loss allows the determination of fuel chemistry based on combustion effluents. The methods presented allow equations to be developed independent of combustion stoichiometrics, which improve Input/Loss accuracy in determining fuel chemistry on-line and in real time. 17 refs., 9 figs., 7 tabs.

  13. Effects of New Fossil Fuel Developments on the Possibilities of Meeting 2C Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meindertsma, W.; Blok, K.

    2012-12-15

    Recent years have seen an increasing activity in developing new fossil fuel production capacity. This includes unconventional fossil fuels, such as tar sands and shale gas, fossil fuels from remote locations, and fossil fuels with a very large increase in production in the near future. In this report, the impact of such developments on our ability to mitigate climate change is investigated. Our inventory shows that the new fossil fuel developments currently underway consist of 29,400 billion cubic meters of natural gas, 260,000 million barrels of oil and 49,600 million tonnes of coal. The development of these new fossil fuels would result in emissions of 300 billion tonnes of CO2 -equivalent (CO2e) from 2012 until 2050. Until 2050, a 'carbon budget' of 1550 billion tonnes CO2e is still available if we want to of keep global warming below 2C with a 50% probability. For a 75% probability to stay below 2C this budget is only 1050 billion tonnes CO2e. So, the new fossil fuel developments identified in this report consume 20-33% of the remaining carbon budget until 2050. In a scenario where the new fossil fuels are developed, we need to embark on a rapid emission reductions pathway at the latest in 2019 in order to meet the 50% probability carbon budget. Avoiding the development of new fossil fuels will give us until 2025 to start further rapid emission reductions. These calculations are based on the assumption that the maximum emission reduction rate is 4% per year and that the maximum change in emission trend is 0.5 percentage point per year. The starting year for rapid emission reductions depends on the choice of these parameters. A sensitivity analysis shows that, in all cases, refraining from new fossil fuel development allows for a delay of 5 to 8 years before we should embark on a rapid emission reduction pathway. The high investments required for developing new fossil fuels lead to a lock in effect; once developed, these fossil fuels need to be

  14. Climate agreements: Optimal taxation of fossil fuels and the distribution of costs and benefits across countries

    Energy Technology Data Exchange (ETDEWEB)

    Holtsmark, Bjart

    1997-12-31

    This report analyses the response of governments to a climate agreement that commits them to reduce their CO{sub 2} emissions. It develops a formula for optimal taxation of fossil fuels in open economies subject both to an emission constraint and a public budget constraint. The theory captures how national governments` behaviours are sensitive to the size of the benefits from revenue recycling and how these benefits adjust the distribution of abatement costs. The empirical part of the report illustrates the significance of the participating countries` current and potential fossil fuel taxation schemes and their roles in the fossil fuel markets. 23 refs., 11 figs., 2 tabs.

  15. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    Science.gov (United States)

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  16. Competition between the various fossil-fuel energy resources on the European and World markets in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, G.

    1980-05-01

    This paper looks at probable developments between now and the year 2000 in the role played by each of the major primary energy sources : Oil (still occupies a dominant position but is partially on the decline); natural gas (uncertainty over cost prices); coal (substantial developments in international trade due in the main to the increase in European requirements); and nuclear energy (competition with coal over electricity generation). Also looks at other fossil fuels - where production is limited on the grounds of cost and environmental problems. (In French)

  17. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  18. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  19. Status of fossil fuel reserves; Etat des reserves des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Laherrere, J

    2005-07-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  20. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per...

  1. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per year per one...

  2. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    Science.gov (United States)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  3. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    Directory of Open Access Journals (Sweden)

    N. Gruber

    2011-12-01

    Full Text Available The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C, potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than −0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985–2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  4. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  5. Monitoring fossil fuel sources of methane in Australia

    Science.gov (United States)

    Loh, Zoe; Etheridge, David; Luhar, Ashok; Hibberd, Mark; Thatcher, Marcus; Noonan, Julie; Thornton, David; Spencer, Darren; Gregory, Rebecca; Jenkins, Charles; Zegelin, Steve; Leuning, Ray; Day, Stuart; Barrett, Damian

    2017-04-01

    CSIRO has been active in identifying and quantifying methane emissions from a range of fossil fuel sources in Australia over the past decade. We present here a history of the development of our work in this domain. While we have principally focused on optimising the use of long term, fixed location, high precision monitoring, paired with both forward and inverse modelling techniques suitable either local or regional scales, we have also incorporated mobile ground surveys and flux calculations from plumes in some contexts. We initially developed leak detection methodologies for geological carbon storage at a local scale using a Bayesian probabilistic approach coupled to a backward Lagrangian particle dispersion model (Luhar et al. JGR, 2014), and single point monitoring with sector analysis (Etheridge et al. In prep.) We have since expanded our modelling techniques to regional scales using both forward and inverse approaches to constrain methane emissions from coal mining and coal seam gas (CSG) production. The Surat Basin (Queensland, Australia) is a region of rapidly expanding CSG production, in which we have established a pair of carefully located, well-intercalibrated monitoring stations. These data sets provide an almost continuous record of (i) background air arriving at the Surat Basin, and (ii) the signal resulting from methane emissions within the Basin, i.e. total downwind methane concentration (comprising emissions including natural geological seeps, agricultural and biogenic sources and fugitive emissions from CSG production) minus background or upwind concentration. We will present our latest results on monitoring from the Surat Basin and their application to estimating methane emissions.

  6. Atmospheric measurement of point source fossil fuel CO2 emissions

    Science.gov (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  7. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    Science.gov (United States)

    Nelson, Peter F.

    2009-12-01

    all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is

  8. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  9. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  10. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  11. Policy Surveillance in the G20 Fossil Fuel Subsidies Agreement: Lessons for Climate Policy

    OpenAIRE

    Aldy, Joseph Edgar

    2015-01-01

    Inadequate policy surveillance has undermined the effectiveness of multilateral climate agreements. To illustrate an alternative approach to transparency, I evaluate policy surveillance under the 2009 G-20 fossil fuel subsidies agreement. The Leaders of the Group of 20 nations tasked their energy and finance ministers to identify and phase-out fossil fuel subsidies. The G-20 leaders agreed to submit their subsidy reform strategies to peer review and to independent expert review conducted by i...

  12. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  13. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    Science.gov (United States)

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  14. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  15. Material flow analysis of fossil fuels in China during 2000-2010.

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  16. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2012-01-01

    Full Text Available Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio, resource consumption intensity (RCI, and fossil fuels productivity (FFP, are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China’s requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities’ popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  17. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  18. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  19. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    Science.gov (United States)

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  20. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Science.gov (United States)

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  1. Towards constraining megacity fossil-fuel emissions estimates with OCO-2 observations and Lagrangian modeling.

    Science.gov (United States)

    Kort, E. A.; Yang, E.; Ware, J.; Ye, X.; Lauvaux, T.; Wu, D.; Lin, J. C.; Oda, T.

    2016-12-01

    Rapid changes in human behavior are introducing significant perturbations to the Earth's carbon cycle and atmospheric balance of greenhouse gases. Emissions of carbon dioxide (CO2) are continuing to rise, and uncertainties in fossil-fuel emissions are increasing. Meanwhile urbanization continues to concentrate the global population in urban centers, and urban regions are now a dominant driver of global CO2 emissions. Observational constraints on fossil-fuel emissions and models representing fossil-fuel emissions are needed both to inform societal choices and to use atmospheric observations to study feedbacks in the natural carbon cycle. In this presentation we will discuss an approach we are developing that leverages space-based observations of total column carbon dioxide (XCO2, "top-down") and compares with simulated XCO2 values produced with a Lagrangian model coupled with different meteorological winds and multiple fossil-fuel inventories ("bottom-up"). We will highlight observational successes for measurements from the Orbiting Carbon Observatory 2 (OCO-2) and times when robust results are expected. We will further discuss questions that can be robustly answered with this framework and OCO-2 data and when techniques with greater fidelity are required, explaining limitations of the current observational-modeling system. Finally, we will discuss implications of these observational constraints on different bottom-up fossil-fuel emission estimates, and how such impliactions may impact interpretation of global OCO-2 data.

  2. Marketing library services to the Net Generation

    Directory of Open Access Journals (Sweden)

    Nadia Haji azizi

    2008-04-01

    Full Text Available This paper aims to examine the role of marketing to new generations of library users. The paper reviews classical marketing texts and current user studies for applicability to library service. The paper finds that libraries can apply classic marketing principles to attract and better serve new generations of users. Although libraries no longer have a monopoly on information sources, libraries do offer value-added services. By understanding the users and their contexts, the paper proposes various strategies of value to market librarians and library resources.

  3. Getting Ready for the Net Generation Learner

    Science.gov (United States)

    Dobbins, Kenneth W.

    2005-01-01

    Kenneth W. Dobbins, president of Southeast Missouri State University, discusses attending a June 2004 conference on "The Key to Competitiveness: Understanding the Next Generation Learner," sponsored by the American Association of State Colleges and Universities, EDUCAUSE, and Microsoft. The conference addressed what today's students, the…

  4. Direct and Indirect Use of Fossil Fuels in Farming: Cost of Fuel-price Rise for Indian Agriculture.

    OpenAIRE

    Anand, Mukesh

    2014-01-01

    A hornet's nest could be an apt simile for fossil fuel prices in India. Over years a policy maze has evolved around it, with sharply diverging influence on disparate constituencies. We estimate the increase in total cost of farming as a multiple of direct input costs of fossil fuels in farming. Over the period between 1990-1 and 2010-1, direct use of fossil fuels on farms has risen and there is also increasing indirect use of fossil fuels for non-energy purposes. Consequently, for Indian agri...

  5. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms...... of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions...

  6. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  7. Effect of subsidies to fossil fuel companies on United States crude oil production

    Science.gov (United States)

    Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug

    2017-11-01

    Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.

  8. Estimating methane emissions from biological and fossil-fuel sources in the San Francisco Bay Area

    Science.gov (United States)

    Jeong, Seongeun; Cui, Xinguang; Blake, Donald R.; Miller, Ben; Montzka, Stephen A.; Andrews, Arlyn; Guha, Abhinav; Martien, Philip; Bambha, Ray P.; LaFranchi, Brian; Michelsen, Hope A.; Clements, Craig B.; Glaize, Pierre; Fischer, Marc L.

    2017-01-01

    We present the first sector-specific analysis of methane (CH4) emissions from the San Francisco Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during September - December 2015. We apply a hierarchical Bayesian inversion to separate the biological from fossil-fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a source-specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4 emissions are 166-289 Gg CH4/yr (at 95% confidence), 1.3-2.3 times higher than a recent inventory with much of the underestimation from landfill. Including the VOCs, 82 ± 27% of total posterior median CH4 emissions are biological and 17 ± 3% fossil fuel, where landfill and natural gas dominate the biological and fossil-fuel CH4 of prior emissions, respectively.

  9. Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017

    Science.gov (United States)

    Sherwood, Owen A.; Schwietzke, Stefan; Arling, Victoria A.; Etiope, Giuseppe

    2017-08-01

    The concentration of atmospheric methane (CH4) has more than doubled over the industrial era. To help constrain global and regional CH4 budgets, inverse (top-down) models incorporate data on the concentration and stable carbon (δ13C) and hydrogen (δ2H) isotopic ratios of atmospheric CH4. These models depend on accurate δ13C and δ2H end-member source signatures for each of the main emissions categories. Compared with meticulous measurement and calibration of isotopic CH4 in the atmosphere, there has been relatively less effort to characterize globally representative isotopic source signatures, particularly for fossil fuel sources. Most global CH4 budget models have so far relied on outdated source signature values derived from globally nonrepresentative data. To correct this deficiency, we present a comprehensive, globally representative end-member database of the δ13C and δ2H of CH4 from fossil fuel (conventional natural gas, shale gas, and coal), modern microbial (wetlands, rice paddies, ruminants, termites, and landfills and/or waste) and biomass burning sources. Gas molecular compositional data for fossil fuel categories are also included with the database. The database comprises 10 706 samples (8734 fossil fuel, 1972 non-fossil) from 190 published references. Mean (unweighted) δ13C signatures for fossil fuel CH4 are significantly lighter than values commonly used in CH4 budget models, thus highlighting potential underestimation of fossil fuel CH4 emissions in previous CH4 budget models. This living database will be updated every 2-3 years to provide the atmospheric modeling community with the most complete CH4 source signature data possible. Database digital object identifier (DOI): https://doi.org/10.15138/G3201T.

  10. Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017

    Directory of Open Access Journals (Sweden)

    O. A. Sherwood

    2017-08-01

    Full Text Available The concentration of atmospheric methane (CH4 has more than doubled over the industrial era. To help constrain global and regional CH4 budgets, inverse (top-down models incorporate data on the concentration and stable carbon (δ13C and hydrogen (δ2H isotopic ratios of atmospheric CH4. These models depend on accurate δ13C and δ2H end-member source signatures for each of the main emissions categories. Compared with meticulous measurement and calibration of isotopic CH4 in the atmosphere, there has been relatively less effort to characterize globally representative isotopic source signatures, particularly for fossil fuel sources. Most global CH4 budget models have so far relied on outdated source signature values derived from globally nonrepresentative data. To correct this deficiency, we present a comprehensive, globally representative end-member database of the δ13C and δ2H of CH4 from fossil fuel (conventional natural gas, shale gas, and coal, modern microbial (wetlands, rice paddies, ruminants, termites, and landfills and/or waste and biomass burning sources. Gas molecular compositional data for fossil fuel categories are also included with the database. The database comprises 10 706 samples (8734 fossil fuel, 1972 non-fossil from 190 published references. Mean (unweighted δ13C signatures for fossil fuel CH4 are significantly lighter than values commonly used in CH4 budget models, thus highlighting potential underestimation of fossil fuel CH4 emissions in previous CH4 budget models. This living database will be updated every 2–3 years to provide the atmospheric modeling community with the most complete CH4 source signature data possible. Database digital object identifier (DOI: https://doi.org/10.15138/G3201T.

  11. Renewable Generation Effect on Net Regional Energy Interchange: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor; Brinkman, Gregory; Denholm, Paul; Jenkin, Thomas; Margolis, Robert

    2015-07-30

    Using production-cost model (PLEXOS), we simulate the Western Interchange (WECC) at several levels of the yearly renewable energy (RE) generation, between 13% and 40% of the total load for the year. We look at the overall energy exchange between a region and the rest of the system (net interchange, NI), and find it useful to examine separately (i) (time-)variable and (ii) year-average components of the NI. Both contribute to inter-regional energy exchange, and are affected by wind and PV generation in the system. We find that net load variability (in relatively large portions of WECC) is the leading factor affecting the variable component of inter-regional energy exchange, and the effect is quantifiable: higher regional net load correlation with the rest of the WECC lowers net interchange variability. Further, as the power mix significantly varies between WECC regions, effects of ‘flexibility import’ (regions ‘borrow’ ramping capability) are also observed.

  12. The “keep in the ground future” of Arctic fossil fuel resources

    OpenAIRE

    Sandi Lansetti

    2016-01-01

    It is extremely important to understand which role Arctic fossil fuel resources will play in the development and geopolitics of the Arctic region. The article analyses the recent trends in the world energy supply with special focus on renewable energy and future demand for fossil fuels. Focusing on the Arctic LNG projects it comes to the conclusion that there is a growing possibility that the majority of Arctic oil and natural gas will be kept in the ground. Such an outcome would strongly inf...

  13. The “keep in the ground future” of Arctic fossil fuel resources

    Directory of Open Access Journals (Sweden)

    Sandi Lansetti

    2016-12-01

    Full Text Available It is extremely important to understand which role Arctic fossil fuel resources will play in the development and geopolitics of the Arctic region. The article analyses the recent trends in the world energy supply with special focus on renewable energy and future demand for fossil fuels. Focusing on the Arctic LNG projects it comes to the conclusion that there is a growing possibility that the majority of Arctic oil and natural gas will be kept in the ground. Such an outcome would strongly influence the sustainable development and geopolitics of the region.

  14. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    Energy Technology Data Exchange (ETDEWEB)

    Pethig, Ruediger; Wittlich, Christian [Sigen Univ. (Germany). Dept. of Economics

    2009-08-15

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  15. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...

  16. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken...... significant corrosion attack was due to sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed....

  17. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  18. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass

    OpenAIRE

    Speirs, Jamie; McGlade, Christophe; Slade, Raphael

    2015-01-01

    Energy policies are strongly influenced by resource availability and recoverability estimates. Yet these estimates are often highly uncertain, frequently incommensurable, and regularly contested. This paper explores how the uncertainties surrounding estimates of the availability of fossil fuels, biomass and critical metals are conceptualised and communicated. The contention is that a better understanding of the uncertainties surrounding resource estimates for both conventional and renewable e...

  19. Environmental and Financial Performance of Fossil Fuel Firms : A Closer Inspection of their Interaction

    NARCIS (Netherlands)

    Gonenc, Halit; Scholtens, Bert

    We investigate the relationship between environmental and financial performance of fossil fuel firms. To this extent, we analyze a large international sample of firms in chemicals, oil, gas, and coal with respect to several environmental indicators in relation to financial performance for the period

  20. Review of NO/sub x/ emission factors for stationary fossil fuel combustion sources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, R.J.; Sailor, W.C.; Wasilewski, J.; Kuby, W.C.

    1979-09-01

    A review of recent NOx test data was performed, and summaries of emission factors presented for various types of stationary source combustion and for various fossil fuels. The effects of combustion modifications on NOx emissions are quantified. Background data are given to help the user determine the reliability of each factor in particular applications.

  1. Climate Policy and the Optimal Extraction of High- and Low-Carbon Fossil Fuels

    NARCIS (Netherlands)

    Smulders, J.A.; van der Werf, E.H.

    2005-01-01

    We study how restricting CO2 emissions affcts resource prices and depletion over time.We use a Hotelling-style model with two nonrenewable fossil fuels that differ in their carbon content (e.g. coal and natural gas) and that are imperfect substitutes in final good production.We study both an

  2. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    Science.gov (United States)

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  3. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Science.gov (United States)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  4. Understanding Our Energy Footprint: Undergraduate Chemistry Laboratory Investigation of Environmental Impacts of Solid Fossil Fuel Wastes

    Science.gov (United States)

    Berger, Michael; Goldfarb, Jillian L.

    2017-01-01

    Engaging undergraduates in the environmental consequences of fossil fuel usage primes them to consider their own anthropogenic impact, and the benefits and trade-offs of converting to renewable fuel strategies. This laboratory activity explores the potential contaminants (both inorganic and organic) present in the raw fuel and solid waste…

  5. Fossil Fuel (CO2) Emission Verification Capability07-ERD-064Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cameron-Smith, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-04-26

    This work focused exclusively on designing a system for California as a test-bed. Fossil fuel CO2 emissions account for ~96% of the total California anthropogenic CO2 emissions (CEC GHG Inventory, 2006).

  6. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    NARCIS (Netherlands)

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays

  7. CO2 emission mitigation and fossil fuel markets : Dynamic and international aspects of climate policies

    NARCIS (Netherlands)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Méjean, Aurélie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use

  8. Subsidies in WTO Law and Energy Regulation : Some Implications for Fossil Fuels and Renewable Energy

    NARCIS (Netherlands)

    Marhold, Anna

    2017-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  9. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. (ed.)

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  10. Subsidy regulation in WTO Law : Some implications for fossil fuels and renewable energy

    NARCIS (Netherlands)

    Marhold, Anna

    2016-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  11. Subsidies in WTO Law and Energy Regulation : Some Implications for Fossil Fuels and Renewable Energy

    NARCIS (Netherlands)

    Marhold, Anna

    2018-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  12. Economic value of U.S. fossil fuel electricity health impacts.

    Science.gov (United States)

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. Published by Elsevier Ltd.

  13. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C

    Science.gov (United States)

    McGlade, Christophe; Ekins, Paul

    2015-01-01

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  14. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  15. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  16. Formulating energy policies related to fossil fuel use: Critical uncertainties in the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O' Neill, R.V.; Peng, T.-H.; Farrell, M.P.

    1990-01-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs. 87 refs.

  17. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    Science.gov (United States)

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  18. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    Science.gov (United States)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  19. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Science.gov (United States)

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  20. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne

    2013-01-01

    Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI) and by the use of energy intensive nutrients from...... imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy....... Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus...

  1. Organic farming without fossil fuels - life cycle assessment of two Swedish cases

    OpenAIRE

    Sundberg, C; Kimming, M.; Nordberg, Å.; Baky, A; Hansson, P.-A.

    2013-01-01

    Organic agriculture is dependent on fossil fuels, just like conventional agriculture, but this can be reduced by the use of on-farm biomass resources. The energy efficiency and environmental impacts of different alternatives can be assessed by life cycle assessment (LCA), which we have done in this project. Swedish organic milk production can become self-sufficient in energy by using renewable sources available on the farm, with biogas from manure as the main energy source. Thereby greenhouse...

  2. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results

    Science.gov (United States)

    Asefi-Najafabady, S.; Rayner, P. J.; Gurney, K. R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K.

    2014-09-01

    High-resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008-2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

  3. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    Science.gov (United States)

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Relating N2O emissions from energy crops to the avoided fossil fuel-derived CO2 – a study on bioethanol and biogas produced from organically managed maize, rye, vetch and grass-clover

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggard-Nielsen, Henrik; Thomsen, Sune Tjalfe

    2010-01-01

    One way of reducing the emissions of fossil fuel‐derived CO2 is to replace fossil fuels with biofuels. However, cultivation of soils results in emission of other greenhouse gasses, especially nitrous oxide (N2O). In this study we relate measured field emissions of N2O to the reduction in fossil...... fuel‐derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass‐clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2......) biogas production and 3) co‐production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas production. The net reduction in greenhouse gas missions is calculated as the avoided fossil fuel...

  5. The climate penalty for clean fossil fuel combustion

    Science.gov (United States)

    Junkermann, W.; Vogel, B.; Sutton, M. A.

    2011-12-01

    To cope with the world's growing demand for energy, a large number of coal-fired power plants are currently in operation or under construction. To prevent environmental damage from acidic sulphur and particulate emissions, many such installations are equipped with flue gas cleaning technology that reduces the emitted amounts of sulphur dioxide (SO2) and nitrogen dioxide (NO2). However, the consequences of this technology for aerosol emissions, and in particular the regional scale impact on cloud microphysics, have not been studied until now. We performed airborne investigations to measure aerosol size distributions in the air masses downwind of coal-fired power installations. We show how the current generation of clean technology reduces the emission of sulphur and fine particulate matter, but leads to an unanticipated increase in the direct emission of ultrafine particles (1-10 nm median diameter) which are highly effective precursors of cloud condensation nuclei (CCN). Our analysis shows how these additional ultrafine particles probably modify cloud microphysics, as well as precipitation intensity and distribution on a regional scale downwind of emission sources. Effectively, the number of small water droplets might be increased, thus reducing the water available for large droplets and rain formation. The possible corresponding changes in the precipitation budget with a shift from more frequent steady rain to occasionally more vigorous rain events, or even a significant regional reduction of annual precipitation, introduce an unanticipated risk for regional climate and agricultural production, especially in semi-arid climate zones.

  6. Carbon Monitoring System Flux for Fossil Fuel L4 V1 (CMSFluxFossilfuel) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fossil Fuel. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  7. Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels

    Science.gov (United States)

    Zhang, Xiaochun; Caldeira, Ken

    2015-06-01

    The Earth warms both when fossil fuel carbon is oxidized to carbon dioxide and when greenhouse effect of carbon dioxide inhibits longwave radiation from escaping to space. Various important time scales and ratios comparing these two climate forcings have not previously been quantified. For example, the global and time-integrated radiative forcing from burning a fossil fuel exceeds the heat released upon combustion within 2 months. Over the long lifetime of CO2 in the atmosphere, the cumulative CO2-radiative forcing exceeds the amount of energy released upon combustion by a factor >100,000. For a new power plant, the radiative forcing from the accumulation of released CO2 exceeds the direct thermal emissions in less than half a year. Furthermore, we show that the energy released from the combustion of fossil fuels is now about 1.71% of the radiative forcing from CO2 that has accumulated in the atmosphere as a consequence of historical fossil fuel combustion.

  8. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  9. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  10. The climate penalty for clean fossil fuel combustion

    Directory of Open Access Journals (Sweden)

    W. Junkermann

    2011-12-01

    Full Text Available To cope with the world's growing demand for energy, a large number of coal-fired power plants are currently in operation or under construction. To prevent environmental damage from acidic sulphur and particulate emissions, many such installations are equipped with flue gas cleaning technology that reduces the emitted amounts of sulphur dioxide (SO2 and nitrogen dioxide (NO2. However, the consequences of this technology for aerosol emissions, and in particular the regional scale impact on cloud microphysics, have not been studied until now. We performed airborne investigations to measure aerosol size distributions in the air masses downwind of coal-fired power installations. We show how the current generation of clean technology reduces the emission of sulphur and fine particulate matter, but leads to an unanticipated increase in the direct emission of ultrafine particles (1–10 nm median diameter which are highly effective precursors of cloud condensation nuclei (CCN. Our analysis shows how these additional ultrafine particles probably modify cloud microphysics, as well as precipitation intensity and distribution on a regional scale downwind of emission sources. Effectively, the number of small water droplets might be increased, thus reducing the water available for large droplets and rain formation. The possible corresponding changes in the precipitation budget with a shift from more frequent steady rain to occasionally more vigorous rain events, or even a significant regional reduction of annual precipitation, introduce an unanticipated risk for regional climate and agricultural production, especially in semi-arid climate zones.

  11. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    Science.gov (United States)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  12. Climate change adaptation, damages and fossil fuel dependence. An RETD position paper on the costs of inaction

    Energy Technology Data Exchange (ETDEWEB)

    Katofsky, Ryan; Stanberry, Matt; Hagenstad, Marca; Frantzis, Lisa

    2011-07-15

    The Renewable Energy Technology Deployment (RETD) agreement initiated this project to advance the understanding of the ''Costs of Inaction'', i.e. the costs of climate change adaptation, damages and fossil fuel dependence. A quantitative estimate was developed as well as a better understanding of the knowledge gaps and research needs. The project also included some conceptual work on how to better integrate the analyses of mitigation, adaptation, damages and fossil fuel dependence in energy scenario modelling.

  13. The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    Y. Yun

    2013-04-01

    Full Text Available Fossil fuel black carbon and organic matter (ffBC/OM are often emitted together with sulfate, which coats the surface of these particles and changes their hygroscopicity. Observational studies at cirrus temperatures (≈−40 °C show that the hygroscopicity of soot particles can modulate their ice nucleation ability. Here, we implement a scheme for 3 categories of soot (hydrophobic, hydrophilic and hygroscopic on the basis of laboratory data and specify their ability to act as ice nuclei at mixed-phase temperatures by extrapolating the observations using a published deposition/condensation/immersion freezing parameterization. The new scheme results in significant changes to anthropogenic forcing in mixed-phase clouds. The net forcing in our offline model studies varies from 0.111 to 1.059 W m−2 depending on the ice nucleation capability of hygroscopic soot particles. The total anthropogenic cloud forcing and whole-sky forcing with the new scheme are 0.06 W m−2 and −2.45 W m−2, respectively, but could be more positive (by about 1.17 W m−2 if hygroscopic soot particles are allowed to nucleate ice particles. The change in liquid water path dominates the anthropogenic forcing in mixed-phase clouds.

  14. Co-combustion of fossil fuels and waste

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao

    2011-05-15

    combustion, co-combustion of coal and SRF (up to 10% thermal share) generally promoted the formation of ultrafine particles with a concentration peak around 0.1 {mu}m, while the total concentration of PM{sub 2.5} decreased. Composition analyses showed that the Ca, S and P were significantly enriched in the ultrafine particles, indicating a high volatility of these elements in pulverized coal combustion. Compared to dedicated coal combustion, the content of the Ca, P and K was larger in the fine particles generated from co-combustion, whereas the S content was slightly smaller. During the full-scale tests, the dust emission appeared to be significantly increased during co-combustion of coal and SRF, which was presumably related to a reduction of the collection efficiency of the electrostatic precipitator (ESP). Dust-firing of straw was performed in an entrained flow reactor, and the feasibility of utilizing spent bleaching earth (SBE) as an additive was investigated through a comparison with kaolinite. It was found that about 70% of the K in the fly ash from straw-dust firing was water soluble, and the KCl contributed more than 40% of the water soluble K. With the addition of 10-20 wt% of SBE, the Cl retention in ash was decreased, the SO{sub 2} emission was increased, and the formation of water soluble alkali species was reduced. Compared to kaolinite, the inhibiting effect of SBE on the formation of alkali chlorides was slightly smaller when the molar ratio of K/(Al+Si) was similar in the fuel mixture. The addition of SBE significantly reduced the Cl content of the deposits collected on a probe. The release and transformation of inorganic elements during the combustion of a residual bran was studied through experiments and equilibrium modeling. The work revealed that the major inorganic elements released during bran combustion were K, P and S. The S was almost fully vaporized during pyrolysis at temperatures below 700 deg. C, whereas about 60-70 % of the K and P in the bran

  15. The Strategies of Academic Library to Serve Net-Generation

    Directory of Open Access Journals (Sweden)

    Chandra Pratama Setiawan

    2015-04-01

    Full Text Available The  fast  developments  in  information  and  communication  technology  have  rapidly  shaped  and created enormous changes in the way people live and use libraries. The generation who grow in this era is called net generation. Academic libraries, where the majority of the users are the net-generation,  have  started  to  implement  the  concept  of  hybrid  library  as  a  response  of  the technological  advances.  The  trend  of  digital  collections  usage  is  getting  increase,  on  the  other hand,  the  number  of  library  visitor  is  getting  lower  significantly.  The  condition  make  librarians afraid  of  being  abandoned  by  its  users,  whereas  libraries  still  have  many  physical  collections. This paper is written as a result of simple observation in some libraries where the needs of net-generation  has  accommodated.  The  concept  of library  as  place,  and  library  marketing  offer  the solutions to deal with the problem. Libraries can develop and provide some facilities that suitable with  the net-generation  characteristics.  In  addition,  libraries  can  create  some  events  to  promote their services even the collections to attract the users to visit library.

  16. Automatic Structure-Based Code Generation from Coloured Petri Nets

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Westergaard, Michael

    2010-01-01

    Automatic code generation based on Coloured Petri Net (CPN) models is challenging because CPNs allow for the construction of abstract models that intermix control flow and data processing, making translation into conventional programming constructs difficult. We introduce Process-Partitioned CPNs...... (PP-CPNs) which is a subclass of CPNs equipped with an explicit separation of process control flow, message passing, and access to shared and local data. We show how PP-CPNs caters for a four phase structure-based automatic code generation process directed by the control flow of processes....... The viability of our approach is demonstrated by applying it to automatically generate an Erlang implementation of the Dynamic MANET On-demand (DYMO) routing protocol specified by the Internet Engineering Task Force (IETF)....

  17. The Strategies of Academic Library to Serve Net-Generation

    Directory of Open Access Journals (Sweden)

    candra pratama setiawan

    2018-01-01

    Full Text Available The fast developments in information and communication technology have rapidly shaped and created enormous changes in the way people live and use libraries. The generation who grow in this era is called net generation. Academic libraries, where the majority of the users are the netgeneration, have started to implement the concept of hybrid library as a response of the technological advances. The trend of digital collections usage is getting increase, on the other hand, the number of library visitor is getting lower significantly. The condition make librarians afraid of being abandoned by its users, whereas libraries still have many physical collections. This paper is written as a result of simple observation in some libraries where the needs of netgeneration has accomodated. The concept of library as place, and library marketing offer the solutions to deal with the problem. Libraries can develop and provide some facilities that suitable with the net-generation characteristics. In addition, libraries can create some events to promote their services even the collections to attract the users to visit library.

  18. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.

    Science.gov (United States)

    van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.

  19. Intelligent support system online for the operation of fossil fuel units; Sistema inteligente de ayuda en linea para la operacion de unidades termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Quintero R, Agustin; Suarez C, Dionisio A; Sanchez L, Jose Alfredo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The purpose of this publication is to present a support system online for the operation (SAO) of fossil fuel units, having as objective to support the operator of fossil fuel units when handling guidelines and essential information to carry out the starting and shutdown in a safe and efficient way, reducing the consumption of the useful life of the steam generator and the turbine, as well as the operational cost. Here are presented the intelligent systems for the support of the operation and are described the main characteristics in the dominion of application for the support system, its architecture and functionality, as well as the results obtained in the system assessment performed with the aid of total reach simulator of a fossil fuel unit and a pilot unit. [Spanish] Es motivo de esta publicacion, la presentacion de un sistema de ayuda en linea para la operacion (SAO) de unidades termoelectricas que tiene como objetivo asistir al operador de una unidad termoelectrica con guias de manejo e informacion esencial para llevar a cabo el arranque o paro en forma segura y eficiente, reducir el consumo de vida util del generador de vapor y la turbina, asi como el costo de operacion. Aqui se presentan los sistemas inteligentes de ayuda a la operacion y se describen las caracteristicas principales del dominio de aplicacion para el sistema de ayuda, su arquitectura y funcionalidad, asi como los resultados obtenidos de la evaluacion del sistema realizada con la ayuda de un simulador de alcance total de una unidad termoelectrica y una unidad piloto.

  20. Theoretical studies of oxides relevant to the combustion of fossil fuels

    Science.gov (United States)

    Hicks, Jason Michael

    Anthropogenic pollution has greatly increased since the industrial revolution and continues to increase as more of the world becomes dependent upon fossil fuels for important applications like transportation and power production. In a general case, whenever a fossil fuel is consumed, a primary product of a complete combustion reaction is carbon dioxide. In a more specific case, the collection, processing and combustion of coal for power production are one of the primary ways by which trace elements, such as arsenic and selenium, are released into the environment. All of these pollutants are known to have harmful effects, whether on the environment, human health or power production itself. Because of this there has been an increasing interest in studies related to combating these pollutants. Concerning CO2 emissions, recently there has been a significant amount of work related to CO2 capture. A promising method involves the encapsulation of CO2 into isoreticular metal-organic frameworks (IRMOFs). The effectiveness of IMROFs greatly depends on the choice of both metal and organic parts. Molecular simulations have been used in the past to aid in the design and characterization of new MOFs, in particular by generating an adsorption isotherm. However, these traditional simulation methods have several drawbacks. The method used in this thesis, namely expanded Wang-Landau, not only overcomes these drawbacks but provides access to all the thermodynamic properties relevant to the adsorption process through a solution thermodynamics approach. This is greatly beneficial, since an excellent way to characterize the performance of various MOFs is by comparing their desorption free energy, i.e., the energy it takes to regenerate a saturated MOF to prepare it for the next adsorption cycle. Expanded WL was used in the study of CO 2 adsorption into IRMOF-1, 8 and 10 at eight temperatures, spanning both the subcritical and supercritical regimes and the following were obtained

  1. Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach

    Directory of Open Access Journals (Sweden)

    Mojtaba Jorli

    2017-12-01

    Full Text Available Air pollutants from fossil fuel fired power plants harm the environment and human health. More than 91% of Iran’s electricity production is from thermal power plants that use natural gas, diesel, and fuel oil. We apply the impact pathway approach to estimate the health impacts arising from Iranian fossil-based electricity generation emission, and in a next step, we calculate monetary costs of the estimated damages, for a one-year period starting from 20 March 2016 through 2017. We use the new version of SIMPACTS (International Atomic Energy Agency, Vienna, Austria to investigate the health effects from 61 major Iran fossil-based power plants separately. The selected plants represent 95.6% of total Iran fossil-based power generation. Using the individual and different power plant estimates, we avoid extrapolation and our results can be considered more reliable, taking into account spatial differences. The total damage cost is 723.42 million USD (2000. The damage cost per generated electricity varies from 0.06 to 22.41 USD/MWh and average plant damage cost is 2.85 USD/MWh. Accounting for these external costs indicates the actual costs of fossil energy. The results are useful for policy makers to compare the health costs from these plants and to decide on cleaner energy sources and to take measures to increase benefits for society.

  2. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming

    Science.gov (United States)

    Jacobson, Mark Z.

    2002-10-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which 12 identifiable effects of aerosol particles on climate are treated, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) may slow global warming more than may any emission reduction of CO2 or CH4 for a specific period. When all f.f. BC + OM and anthropogenic CO2 and CH4 emissions are eliminated together, the period is 25-100 years. It is also estimated that historical net global warming can be attributed roughly to greenhouse gas plus f.f. BC + OM warming minus substantial cooling by other particles. Eliminating all f.f. BC + OM could eliminate 20-45% of net warming (8-18% of total warming before cooling is subtracted out) within 3-5 years if no other change occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars emitting continuously under the most recent U.S. and E.U. particulate standards (0.08 g/mi; 0.05 g/km) may warm climate per distance driven over the next 100+ years more than equivalent gasoline cars. Thus, fuel and carbon tax laws that favor diesel appear to promote global warming. Toughening vehicle particulate emission standards by a factor of 8 (0.01 g/mi; 0.006 g/km) does not change this conclusion, although it shortens the period over which diesel cars warm to 13-54 years. Although control of BC + OM can slow warming, control of greenhouse gases is necessary to stop warming. Reducing BC + OM will not only slow global warming but also improve human health.

  3. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  4. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    Science.gov (United States)

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  5. Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, L. Turtos; Ruiz, E. Meneses; Gacita, M. Sanchez; Oliva, J. Rivero; Rivero, N. Diaz [Cubaenergia, Playa, Ciudad de la Habana (Cuba)

    2007-03-15

    Fossil fuel electricity generation has been demonstrated to be a main source of atmospheric pollution. The necessity of finding out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost have lead to the process of estimating the external costs derived from these impacts and not included in the electricity prices as a quantitative measure of it that, even when there are large uncertainties involved, can be used by decision makers in the process of achieving a global sustainable development. The external costs of the electricity generation in three Cuban power plants that use fossil fuel oils with high sulfur content have been assessed. With that purpose a specific implementation of the Impact Pathways Methodology for atmospheric emissions was developed. Dispersion of atmospheric pollutants is modeled at local and regional scales in a detailed way. Health impacts include mortality and those morbidity effects that showed relation with the increment of selected pollutant concentration in national studies. The external cost assessed for the three plants was 40, 588, 309 USD yr{sup -1} (min/max: 10, 194, 833/169, 013, 252), representing 1.06 USD Cent kWh{sup -1}. Costs derived from sulfur species (SO{sub 2} and sulfate aerosol) stand for 93% of the total costs. (Author)

  6. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    Science.gov (United States)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  7. A Vulnerability-Benefit Analysis of Fossil Fuel CO2 Emissions

    Science.gov (United States)

    Delman, E. M.; Stephenson, S. R.; Davis, S. J.; Diffenbaugh, N. S.

    2015-12-01

    Although we can anticipate continued improvements in our understanding of future climate impacts, the central challenge of climate change is not scientific, but rather political and economic. In particular, international climate negotiations center on how to share the burden of uncertain mitigation and adaptation costs. We expose the relative economic interests of different countries by assessing and comparing their vulnerability to climate impacts and the economic benefits they derive from the fossil fuel-based energy system. Vulnerability refers to the propensity of humans and their assets to suffer when impacted by hazards, and we draw upon the results from a number of prior studies that have quantified vulnerability using multivariate indices. As a proxy for benefit, we average CO2 related to each country's extraction of fossil fuels, production of CO2 emissions, and consumption of goods and services (Davis et al., 2011), which should reflect benefits accrued in proportion to national economic dependence on fossil fuels. We define a nondimensional vulnerability-benefit ratio for each nation and find a large range across countries. In general, we confirm that developed and emerging economies such as the U.S., Western Europe, and China rely heavily on fossil fuels and have substantial resources to respond to the impacts of climate change, while smaller, less-developed economies such as Sierra Leone and Vanuatu benefit little from current CO2 emissions and are much more vulnerable to adverse climate impacts. In addition, we identify some countries with a high vulnerability and benefit, such as Iraq and Nigeria; conversely, some nations exhibit both a low vulnerability and benefit, such as New Zealand. In most cases, the ratios reflect the nature of energy-climate policies in each country, although certain nations - such as the United Kingdom and France - assume a level of responsibility incongruous with their ratio and commit to mitigation policy despite

  8. Preliminary carbon isotope measurements of fossil fuel and biogenic emissions from the Brazilian Southeastern region

    Science.gov (United States)

    Oliveira, F. M.; Santos, G.; Macario, K.; Muniz, M.; Queiroz, E.; Park, J.

    2014-12-01

    Researchers have confirmed that the continuing global rising of atmospheric CO2 content is caused by anthropogenic CO2 contributions. Most of those contributions are essentially associated with burning of fossil fuels (coal, petroleum and natural gas). However, deforestation, biomass burning, and land use changes, can also play important roles. Researchers have showed that 14C measurements of annual plants, such as corn leaf (Hsueh et al. 2007), annual grasses (Wang and Pataki 2012), and leaves of deciduous trees (Park et al. 2013) can be used to obtain time-integrated information of the fossil fuel ration in the atmosphere. Those regional-scale fossil fuel maps are essential for monitoring CO2 emissions mitigation efforts and/or growth spikes around the globe. However, no current data from anthropogenic contributions from both biogenic and fossil carbon has been reported from the major urban areas of Brazil. Here we make use of carbon isotopes (13C and 14C) to infer sources of CO2 in the highly populated Brazilian Southeastern region (over 80 million in 2010). This region leads the country in population, urban population, population density, vehicles, industries, and many other utilities and major infrastructures. For a starting point, we focus on collecting Ipê leaves (Tabebuia, a popular deciduous tree) from across Rio de Janeiro city and state as well as Sao Paulo city during May/June of 2014 to obtain the regional distribution of 13C and 14C of those urban domes. So far, Δ14C range from -10 to 32‰, when δ13C values are running from -26 to -35‰. The result of these preliminary investigations will be presented and discussed.Hsueh et al. 2007 Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters. 34: L02816. doi:10.1029/2006GL027032 Wang and Pataki 2012 Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles Basin. Plant and Soil 350: 323

  9. Flexibility in the Production of Hydrogen and Electricity from Fossil Fuel Power Plants

    OpenAIRE

    Starr, Frederick; STEEN MARC; PETEVES ESTATHIOS

    2005-01-01

    Concerns about global climate change have led to the formulation of a number of fossil fuel power plant concepts, which are intended to capture the carbon dioxide produced, so that it can be stored in geological structures. In the medium and long-term future, these plants will have to operate in a market where a large fraction of the electricity that is produced will come from wind and solar power. Because these renewables are intermittent sources of energy, it is likely that the main use of ...

  10. Emission of greenhouse gases from the use of fossil fuels in Ibague, Tolima (Colombia

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2017-01-01

    Full Text Available Climate change is caused by the increase of concen-trations of greenhouse gases (ghg, especially CO2, caused by the proliferation of fossil fuels use. Forest systems can capture carbon in biomass and mitigate the climate change problem. The aim of this research was to estimate the emission of ghg from the sale of fossil fuels in the city of Ibague and propose options of mitigation with productive systems in Tolima. Throughout a review, the total number of service stations in the city urban area was determined. Carrying on interviews to employers that attend public, the sales of fossil fuels (gasoline, diesel and ResumoA mudança climática é causada pelo aumento das concentrações dos gases de efeito estufa (gei, especialmente, pelo CO2 produzido pela prolife-ração do uso de combustíveis fósseis. Os sistemas forestais podem absorver carbono na biomassa e mitigar o problema da mudança climática. O objetivo do estudo foi estimar a emissão de geide acordo com a venda de combustíveis fósseis em Ibagué e plantear opções de mitigação com sistemas de produção no Tolima. Mediante revisão de literatura, determinou-se o número de postos de gasolina no perímetro urbano de Ibagué. Através de enquetes a empregados que atendem ao público, natural gas vehicle-ngv, were determined and based on the total number of stations and emission factors, it was estimated the total emission from each fuel in the city. Some mitigation options, such as coffee, cocoa and teak plantations have been proposed. It was estimated an emission of 368 Gg CO2/year (1 Gg = 10⁹ g from sales of fuels, equivalent to 718 kg CO2/person/year. These ghgemissions should be mitigated with reduction in the use of fossil fuels or throughout establishment of agricultural and forestry production systems which allows fixating CO2

  11. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  12. An overview of alternative fossil fuel price and carbon regulation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2

  13. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels

    Science.gov (United States)

    Staples, Mark D.; Malina, Robert; Barrett, Steven R. H.

    2017-01-01

    The size of the global bioenergy resource has been studied extensively; however, the corresponding life-cycle greenhouse gas benefit of bioenergy remains largely unexplored at the global scale. Here we quantify the optimal use of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce life-cycle emissions from fossil fuel-derived electricity and heat, and liquid fuels, by a maximum of 4.9-38.7 Gt CO2e, or 9-68%, and that offsetting electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting liquid fuels. At the same time, liquid fuels make up 18-49% of the optimal allocation of bioenergy in our results for 2050, indicating that a mix of bioenergy end-uses maximizes life-cycle emissions reductions. Finally, emissions reductions are maximized by limiting deployment of total available primary bioenergy to 29-91% in our analysis, demonstrating that life-cycle emissions are a constraint on the usefulness of bioenergy for mitigating global climate change.

  14. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    Science.gov (United States)

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.

  15. Radiocarbon-based assessment of fossil fuel-derived contaminant associations in sediments.

    Science.gov (United States)

    White, Helen K; Reddy, Christopher M; Eglinton, Timothy I

    2008-08-01

    Hydrophobic organic contaminants (HOCs) are associated with natural organic matter (OM) in the environment via mechanisms such as sorption or chemical binding. The latter interactions are difficult to quantitatively constrain, as HOCs can reside in different OM pools outside of conventional analytical windows. Here, we exploited natural abundance variations in radiocarbon (14C) to trace various fossil fuel-derived HOCs (14C-free) within chemically defined fractions of contemporary OM (modern 14C content) in 13 samples including marine and freshwater sediments and one dust and one soil sample. Samples were sequentially treated by solvent extraction followed by saponification. Radiocarbon analysis of the bulk sample and resulting residues was then performed. Fossil fuel-derived HOCs released by these treatments were quantified from an isotope mass balance approach as well as by gas chromatography-mass spectrometry. For the majority of samples (n = 13), 98-100% of the total HOC pool was solvent extractable. Nonextracted HOCs are only significant (29% of total HOC pool)in one sample containing p,p-2,2-bis(chlorophenyl)-1,1,1-trichloroethane and its metabolites. The infrequency of significant incorporation of HOCs into nonextracted OM residues suggests that most HOCs are mobile and bioavailable in the environment and, as such, have a greater potential to exert adverse effects.

  16. Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro lake sediments (Central Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, L. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile)]. E-mail: lchirin@pucp.edu.pe; Rose, N.L. [Environmental Change Research Centre, University College London, 26 Bedford Way, London WG1HOAP (United Kingdom); Urrutia, R. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Munoz, P. [Departamento de Biologia Marina, Universidad Catolica del Norte, Larrondo 1281, Coquimbo (Chile); Torrejon, F. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Torres, L. [Departamento de Botanica, Universidad de Concepcion, Concepcion (Chile); Cruces, F. [Departamento de Botanica, Universidad de Concepcion, Concepcion (Chile); Araneda, A. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Zaror, C. [Facultad de Ingenieria Quimica, Universidad de Concepcion, Concepcion (Chile)

    2006-05-15

    This paper describes lake sediment spheroidal carbonaceous particle (SCP) profiles from Laguna Chica San Pedro, located in the Biobio Region, Chile (36{sup o} 51' S, 73{sup o} 05' W). The earliest presence of SCPs was found at 16 cm depth, corresponding to the 1915-1937 period, at the very onset of industrial activities in the study area. No SCPs were found at lower depths. SCP concentrations in Laguna Chica San Pedro lake sediments were directly related to local industrial activities. Moreover, no SCPs were found in Galletue lake (38{sup o} 41' S, 71{sup o} 17.5' W), a pristine high mountain water body used here as a reference site, suggesting that contribution from long distance atmospheric transport could be neglected, unlike published data from remote Northern Hemisphere lakes. These results are the first SCP sediment profiles from Chile, showing a direct relationship with fossil fuel consumption in the region. Cores were dated using the {sup 21}Pb technique. - The lake sediment record of SCPs shows the record of fossil-fuel derived pollution in Central Chile.

  17. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    Directory of Open Access Journals (Sweden)

    Hanne Østergård

    2013-08-01

    Full Text Available Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI and by the use of energy intensive nutrients from imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy. Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus nutrient constraints may develop in the coming decades, the current system may need to adapt by reducing use of fossil energy at the farm and for transportation of food and feed. An operational strategy may be to relocalise the supply of energy, nutrients, feed and food.

  18. Sources of non-fossil-fuel emissions in carbonaceous aerosols during early winter in Chinese cities

    Science.gov (United States)

    Liu, Di; Li, Jun; Cheng, Zhineng; Zhong, Guangcai; Zhu, Sanyuan; Ding, Ping; Shen, Chengde; Tian, Chongguo; Chen, Yingjun; Zhi, Guorui; Zhang, Gan

    2017-09-01

    China experiences frequent and severe haze outbreaks from the beginning of winter. Carbonaceous aerosols are regarded as an essential factor in controlling the formation and evolution of haze episodes. To elucidate the carbon sources of air pollution, source apportionment was conducted using radiocarbon (14C) and unique molecular organic tracers. Daily 24 h PM2. 5 samples were collected continuously from October 2013 to November 2013 in 10 Chinese cities. The 14C results indicated that non-fossil-fuel (NF) emissions were predominant in total carbon (TC; average = 65 ± 7 %). Approximately half of the EC was derived primarily from biomass burning (BB) (average = 46 ± 11 %), while over half of the organic carbon (OC) fraction comprised NF (average = 68 ± 7 %). On average, the largest contributor to TC was NF-derived secondary OC (SOCnf), which accounted for 46 ± 7 % of TC, followed by SOC derived from fossil fuels (FF) (SOCf; 16 ± 3 %), BB-derived primary OC (POCbb; 13 ± 5 %), POC derived from FF (POCf; 12 ± 3 %), EC derived from FF (ECf; 7 ± 2 %) and EC derived from BB (ECbb; 6 ± 2 %). The regional background carbonaceous aerosol composition was characterized by NF sources; POCs played a major role in northern China, while SOCs contributed more in other regions. However, during haze episodes, there were no dramatic changes in the carbon source or composition in the cities under study, but the contribution of POC from both FF and NF increased significantly.

  19. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, S.

    2014-01-01

    is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized......The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce...... the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper...

  20. The Solodamu Surveys: determining fossil fuel use and sea transport need in a coastal village in Fiji

    Directory of Open Access Journals (Sweden)

    Alison Patricia Newell

    2015-08-01

    Full Text Available Domestic sea transport is critical to all aspects of life in the Pacific, providing access to markets and health and education services, as well as enabling cultural and social connectivity. Current sea transport services are entirely dependent upon use of increasingly expensive fossil fuels. Whilst there has been increasing research on international shipping, very little focus has been given to date to domestic shipping in the Pacific, and in particular at the local, village level. Recent studies have highlighted lack of data, particularly at a village level, as being a major impediment to progressing a shift to more sustainable transport.The importance of transport in achieving sustainable development and green growth is being increasingly highlighted by Pacific Leaders as a key priority, and particularly the need to find alternatives to reduce the region’s crippling dependency on imported fossil fuels. Small Island Developing States (SIDS in other regions also face similar challenges.This paper provides a summary of the findings of a village-based assessment of transport and fossil fuel use in Solodamu Village, Kadavu, Fiji carried out in 2009 and 2011. The objectives of the surveys were to gauge the overall sea, land and air transport use by the village and the fossil fuel footprint of the village by collecting data on a household by household basis. We then go on to outline how this assessment methodology has been expanded for an island group and highlight the potential of using this in other SIDS, so building the data sets available for more accurate analysis of both transport need and fossil fuel use to better address the issues of fossil fuel dependency and sustainable transport for the Pacific.

  1. Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources

    Science.gov (United States)

    Walters, W.; Michalski, G. M.; Fang, H.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various

  2. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    DEFF Research Database (Denmark)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.

    2011-01-01

    /ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low R-CO:CO2ff of 13 +/- 3 ppb/ppm, slightly higher than......Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2(CO(2)ff, derived from Delta(CO2)-C-14 observations). The five-year TAP record shows high CO(2)ff when local air comes from...

  3. Chemical and toxicologic characterization of fossil fuel combustion product phenalen-1-one

    Energy Technology Data Exchange (ETDEWEB)

    Leary, J.A.; Lafleur, A.L.; Liber, H.L.; Biemann, K.

    1983-04-01

    In the course of analysis of the combustion products of fossil fuels, phenalen-1-one has been identified as one of the components. It was differentiated from fluoren-9-one and benzo(c)cinnoline, all of which exhibit very similar mass spectra, by gas chromatographic mass spectrometry, and high-performance liquid chromatography with high-speed spectrophotometric detection. Ultraviolet spectra are reported along with retention data for both gas and liquid chromatography. Mutagenic activity was determined in Salmonella typhimurium, using resistance to the purine analogue 8-azaguanine as a genetic marker. Phenalen-1-one was found to be a potent mutagen, while benzo(c)cinnoline was six times less active. Fluoren-9-one was completely inactive as a bacterial mutagen.

  4. Significant long-term increase of fossil fuel CO2 uptake from reduced marine calcification

    Science.gov (United States)

    Ridgwell, A.; Zondervan, I.; Hargreaves, J. C.; Bijma, J.; Lenton, T. M.

    2006-11-01

    Analysis of available plankton manipulation experiments demonstrates a previously unrecognized wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi not representative of calcification generally. We assess the implications of the experimental uncertainty in plankton calcification response by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response. We predict a substantial future reduction in marine carbonate production, with ocean CO2 sequestration across the model ensemble enhanced by between 62 and 199 PgC by the year 3000, equivalent to a reduction in the atmospheric fossil fuel CO2 burden at that time of up to 13%. Concurrent changes in ocean circulation and surface temperatures contribute about one third to the overall importance of reduced plankton calcification.

  5. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  6. Organic Mass Fragments and Organic Functional Groups in Aged Biomass Burning and Fossil Fuel Combustion Aerosol

    Science.gov (United States)

    Day, D. A.; Hawkins, L. N.; Russell, L. M.

    2009-12-01

    Organic functional group concentrations in submicron aerosol particles collected from 27 June to 17 September at the Scripps Pier in La Jolla, California as part of AeroSCOPE 2008 were quantified using Fourier Transform Infrared (FTIR) spectroscopy. Organic and inorganic non-refractory components in the same air masses were quantified using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). Previous measurements at the Scripps pier indicate that a large fraction of submicron particle mass originates in Los Angeles and the port of Long Beach. Additional particle sources to the region include local urban emissions and periodic biomass burning during large wildfires. Three distinct types of organic aerosol components were identified from organic composition and elemental tracers, including biomass burning, fossil fuel combustion, and polluted marine components. Fossil fuel combustion organic aerosol was dominated by unsaturated alkane and was correlated with sulfur, vanadium, and nickel supporting ship and large trucks in and around the Los Angeles/Long Beach region as the dominant source. Biomass burning organic aerosol comprised a smaller unsaturated alkane fraction and larger fractions of non-acid carbonyl, amine, and carboxylic acid and was correlated with potassium and bromine. Polluted marine organic aerosol was dominated by organic hydroxyl and unsaturated alkane and was not correlated with any elemental tracers. Mass spectra of the organic aerosol support the aerosol sources determined by organic functional groups and elemental tracers and contain fragments commonly attributed to oxygenated organic aerosol (OOA), hydrocarbon-like organic aerosol (HOA), and biomass burning organic aerosol (BBOA). Comparisons of the PMF-derived Q-AMS source spectra with FTIR source spectra and functional group composition provide additional information on the relationship between commonly reported organic aerosol factors and organic functional groups in specific organic aerosol

  7. Contributions of Fossil Fuel Combustion to Winter-time Arctic Aerosols

    Science.gov (United States)

    Barrett, T. E.; Usenko, S.; Robinson, E.; Sheesley, R. J.

    2014-12-01

    Over the last century, the Arctic has been warming at a rate almost twice the global average. Aerosols both directly and indirectly affect the radiative balance of the Arctic through the absorption and scattering of sunlight and by providing a source of cloud and ice condensation nuclei. Global climate models currently have difficulty reproducing the observed warming in the Arctic but could be improved through high temporal resolution measurements of aerosols and their sources. This study focuses on the quantification of fossil fuel and biomass combustion contributions to particulate organic carbon (OC) collected during a winter sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from December 2012 to March 2013 were analyzed for organic tracer analysis combined with radiocarbon of elemental and organic carbon (EC and OC). Organic tracers, including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and levoglucosan, were quantified using gas chromatography-mass spectrometry (GCMS). These tracers, commonly used as molecular markers for anthropogenic combustion sources, were then used in a molecular-marker chemical mass balance (CMB) model. Results from the CMB were then combined with radiocarbon (14C) abundance measurements. Radiocarbon analysis differentiates between fossil fuel combustion and biomass burning based on the large difference in end members between fossil and contemporary carbon. Radiocarbon results show an average fossil contribution of 44% to Arctic OC from with spark ignition (gasoline) and compression ignition (diesel) engines being implicated as major sources of fossil OC to Arctic aerosols. The 14C analysis and CMB source apportionment will be combined with back trajectory (BT) to assess the impact of geographic source regions on carbonaceous aerosol burden in the

  8. Quantification of space/time explicit fossil fuel CO2 emissions in urban domes

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Sweeney, C.; Karion, A.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P. B.; Cambaliza, M. L.; Lehman, S. J.; Tans, P. P.

    2011-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to local management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data products for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles. The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving

  9. Fossil Fuel Combustion Fingerprint in High-Resolution Urban Water Vapor Isotope Measurements

    Science.gov (United States)

    Gorski, G.; Good, S. P.; Bowen, G. J.

    2014-12-01

    Increasing energy consumption and rapid urbanization have many important and poorly understood consequences for the hydrologic cycle in urban and suburban areas. Wide use of fossil fuels for transportation and heating releases isotopically distinctive water vapor that contributes to the overall water vapor budget in varying, usually unknown, concentrations. The use of long term, high resolution isotopic measurements can help determine different sources and proportions of water vapor at various time scales. We present two months of high-resolution water vapor isotope measurements coupled with CO2 concentrations and co-located meteorological observations from December 2013 - January 2014 in Salt Lake City, UT. Periods of atmospheric stagnation (cold-air inversions) show a buildup of CO2 from baseline values of 420 ppm to as high as 600 ppm and an associated decrease in water vapor deuterium-excess values from a baseline of approx. 10‰ to values as low as -10‰ (where d = δ2H - 8*δ18O, in per mil units). We suggest that the strong relationship between CO2and d during inversion periods is driven by the build-up of fossil fuel combustion-derived water vapor with very low d values (≤ -150‰). Based on our measurements of its isotopic composition, combustion-derived water vapor could contribute as much as 15% to the total water vapor budget during inversion periods. We present evidence of this effect at both the multi-day scale and the diurnal scale, where periods of increased automobile use and home heating can be identified. This study provides the first isotopic evidence that accumulation of water of combustion can be identified in boundary layer water vapor, suggests that an appreciable fraction of boundary layer vapor can be derived from combustion under certain atmospheric conditions, and indicates that the distinctive d values of combustion-derived vapor may be a useful tracer for this component of the atmospheric water budget in other urban regions.

  10. What Geological, Economic, or Policy Forces Might Limit Fossil Fuel Production?

    Science.gov (United States)

    Heinberg, R.

    2015-12-01

    In order to ensure a 50% chance of keeping global temperatures from exceeding 2°C above pre-industrial levels, it has been estimated that total carbon dioxide emissions between 2011-2050 must be capped at roughly 1,100 gigatons.[1] However, some estimates calculate that global fossil fuel reserves—including unconventional oil and gas—hold at least three times this amount of potential greenhouse gas emissions.[2]What socio-political, technological, or economic forces are most likely to keep these energy resources from being burned? While it is difficult to predict with specificity what combination of technological, geological, or human factors will significantly minimize global fossil fuel production, there are at least four key potential drivers: 1. Under-investment and the economics of unconventional oil and natural gas; 2. International policy, driven by citizen demand and leadership from key nations; 3. Massive deployment of renewable energy sources and other technological solutions; and 4. Large-scale energy curtailment resulting from global economic contraction. We will explore the implications, viability, and consequences of each of these potential factors. [1] [1]United Nations Framework Convention on Climate Change (UNFCC) Report of the Conference of the Parties on its Fifteenth Session, held in Copenhagen from 7 to 19 December 2009. Part Two: Action taken by the Conference of the Parties at its Fifteenth Session. United Nations Climate Change Conf. Report 43 http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf (UNFCC, 2009) [2] Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nature Clim. Chang. 4, 873-879 (2014)

  11. Survey of population health in towns with nuclear and fossil fuel power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.; Shubik, V. M.

    2004-07-01

    Comparative assessment of population health in Sosnovy Bor with nuclear power plant and Kirovsk with fossil fuel power station was made for public and administration information. Both towns are located in Leningrad administrative region at 150 km distance from each other. In nuclear power town radiological situation was assessed as normal and in Kirovsk up to 1995 yr. with coal fuel, maximum permissible levels of suspended particle of sulfur oxide in atmosphere were exceeded in 6-9% of samples. After 1995 yr. the natural gas was used as fuel. Demographic data for 1991-2000 yrs indicate that mortality including infants mortality and stillborns was lower in Sosnovy Bor (NOS) then in Kirovsk (fossil fuel) and on average Leningrad administrative region. Birth rate and population growth was higher in Sosnovy Bor at the same time surprisingly the recorded morbidity was higher in Sosnovy Bor which might be explained by extensive medical supervision and improved diagnostics. However, cancer and tuberculosis morbidity was lower in Sosnovy Bor. In Kirovsk in 1997-2000 yrs. oncological morbidity was higher on average comparing to Leningrad administrative region. Oncological mortality in Sosnovy Bor in 1997-2000 yrs. was lower than in Kirovsk and Leningrad region Standardized annual mortality in Sosnovy Bor, Kirovsk and Leningrad administrative region was 128.3, 209.6 and 211.7 on 100 000 respectively. Health state of pregnant women, deliveries, new-born condition were all in normal range in Sosnovy Bor, contrary to higher increased abortion rate and pregnancy complications in Kirovsk. These findings need further studies. (Author)

  12. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and regional and global pollution) alternative feedstocks are gaining interest as possible solutions. Biomass, considered sustainable and renewable, is an option with the potential to replace a wide diversity

  13. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or

  14. Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

    Directory of Open Access Journals (Sweden)

    F. Dalir

    2017-12-01

    Full Text Available In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient condition effect on carbon footprint assessment of fossil fuel power plant is the specific feature of the proposed model. To evaluate the model, a sensitivity analysis is performed under different scenarios covering all possible choices for investigated parameters. The results show that carbon footprint of fossil fuel electrical energy that is produced, transmitted and distributed, varies from 321 g CO2 eq/kWh to 980 g CO2 equivalent /kWh. Carbon footprint of combined cycle with natural gas as main fuel is the minimum carbon footprint. Other factors can also cause indicative variation. Fuel type causes a variation of 28%. Ambient condition may change the result up to 13%. Transmission makes the carbon footprint larger by 4%. Internal consumption and degradation influence the result by 2 and 2.5%, respectively. Therefore, to minimize the carbon footprint of fossil fuel electricity, it is recommended to construct natural gas ignited combined cycles in low lands where the temperature is low and relative humidity is high. And the internal consumption is as least as possible and the maintenance and overhaul is as regular as possible.

  15. Wine ethanol C-14 as a tracer for fossil fuel CO2 emissions in Europe : Measurements and model comparison

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-01-01

    C-14 (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the C-14 measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff

  16. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  17. Fossil fuel subsidy reform in the WTO : Options for constraining dual pricing in the multilateral trading system

    NARCIS (Netherlands)

    Marhold, Anna

    2017-01-01

    Fossil fuel subsidies harm the environment, add to health hazards caused by air pollution, and delay the energy transition. Scholars and practitioners have therefore been exploring ways to reform and eliminate them. This paper discusses the practice of energy dual pricing in the broader context of

  18. Technological research and development of fossil fuels; Ricerca e sviluppo tecnologico per lo sfruttamento ottimale dei combustibili fossili

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E.; Palazzi, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-05-01

    The aim of the present document is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this effort are: (1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; (2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this document the international and national energy situations and trends are shown. After some brief notes on environment problems and alternative fuels, such as biomasses and municipal wastes, technological aspects, mainly relevant to increasing fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (National Agency for New technologies, Energy and the Environment) Engineering Branch in order to improve fossil fuels energy and environmental use are presented.

  19. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    DEFF Research Database (Denmark)

    Taeroe, Anders; Fayez Mustapha, Walid; Stupak, Inge

    2017-01-01

    fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest...... the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model...... assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE...

  20. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    Science.gov (United States)

    McGlade, Christophe; Ekins, Paul

    2015-01-08

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  1. Methods for nitrogen oxides (NO{sub x}) control in fossil fuel power stations; Metodos para control de oxidos de nitrogeno (NO{sub x}) en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Romo Millares, Cesar A.; Huerta Espino, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1994-03-01

    In this article the different existing methods for nitrogen oxides (NO{sub x}) control in fossil fuel power stations, mainly those related to operational parameters and to burners design, that show a decisive influence on the formation or destruction of the NO{sub x}, are delineated. Also, a review of the new technologies of low NO{sub x} generation burners and of their basic operational principles, is presented. [Espanol] En este articulo se describen los diversos metodos existentes para el control de oxidos de nitrogeno (NO{sub x}) en centrales termoelectricas, principalmente aquellos que tienen que ver con los parametros operativos y de diseno en quemadores, y que muestran una influencia decisiva en la formacion o destruccion de los NO{sub x}. Se presenta ademas una revision de las nuevas tecnologias de quemadores de baja produccion de NO{sub x} y sus principios basicos de operacion.

  2. Overall intelligent hybrid control system for a fossil-fuel power unit

    Energy Technology Data Exchange (ETDEWEB)

    Garduno-Ramirez, Raul

    2000-08-01

    This research present a methodology to design a generalized overall unit control system for a fossil fuel power unit (FFPU), and develops a minimum prototype to demonstrate its feasibility. Toward the above goal, the associated research project was undertaken as a technology innovation process with its two ends identified as follows. First, it is recognized that the coordinated control strategies constitute the uppermost control level in current FFPUs, and so, are responsible for driving the boiler-turbine-generator set as a single entity. Second, a FFPU is envisioned as a complex process, subject to multiple changing operating conditions, that should perform as an intelligent system, for which an advanced integral control concept is needed. Therefore, as an outcome of the innovation process, a generalized unit control concept that extends the capabilities of current coordinated control schemes is proposed. This concept is presented as the Intelligent Coordinated Control System (ICCS) paradigm, which establishes an open reference framework for the development of overall unit control schemes. The ICCS's system goals are identified using power plant process engineering concepts, and intelligent control systems engineering concepts are used to identify main tasks and to achieve system functional decomposition. A software engineering agency concept is used to identify and group agents according to their knowledge and purpose interactions. The resultant ICCS structure is an open set of functionally grouped agent clusters in a two-level hierarchical system. The upper level, mainly characterized for knowledge-driven processes, performs the supervisory functions needed to provide self governing operation characteristics, while the lower level, mainly characterized for data-driven processes, performs the fast reactive behavior functions necessary for hybrid real-time control and protection. Developed through several stages, the ICCS-MP finally implements a two

  3. Uncertainty in projected climate change caused by methodological discrepancy in estimating CO2 emissions from fossil fuel combustion

    Science.gov (United States)

    Quilcaille, Yann; Gasser, Thomas; Ciais, Philippe; Lecocq, Franck; Janssens-Maenhout, Greet; Mohr, Steve; Andres, Robert J.; Bopp, Laurent

    2016-04-01

    There are different methodologies to estimate CO2 emissions from fossil fuel combustion. The term "methodology" refers to the way subtypes of fossil fuels are aggregated and their implied emissions factors. This study investigates how the choice of a methodology impacts historical and future CO2 emissions, and ensuing climate change projections. First, we use fossil fuel extraction data from the Geologic Resources Supply-Demand model of Mohr et al. (2015). We compare four different methodologies to transform amounts of fossil fuel extracted into CO2 emissions based on the methodologies used by Mohr et al. (2015), CDIAC, EDGARv4.3, and IPCC 1996. We thus obtain 4 emissions pathways, for the historical period 1750-2012, that we compare to the emissions timeseries from EDGARv4.3 (1970-2012) and CDIACv2015 (1751-2011). Using the 3 scenarios by Mohr et al. (2015) for projections till 2300 under the assumption of an Early (Low emission), Best Guess or Late (High emission) extraction peaking, we obtain 12 different pathways of CO2 emissions over 1750-2300. Second, we extend these CO2-only pathways to all co-emitted and climatically active species. Co-emission ratios for CH4, CO, BC, OC, SO2, VOC, N2O, NH3, NOx are calculated on the basis of the EDGAR v4.3 dataset, and are then used to produce complementary pathways of non-CO2 emissions from fossil fuel combustion only. Finally, the 12 emissions scenarios are integrated using the compact Earth system model OSCAR v2.2, in order to quantify the impact of the selected driver onto climate change projections. We find historical cumulative fossil fuel CO2 emissions from 1750 to 2012 ranging from 365 GtC to 392 GtC depending upon the methodology used to convert fossil fuel into CO2 emissions. We notice a drastic increase of the impact of the methodology in the projections. For the High emission scenario with Late fuel extraction peaking, cumulated CO2 emissions from 1700 to 2100 range from 1505 GtC to 1685 GtC; this corresponds

  4. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities

    Science.gov (United States)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.

    2016-12-01

    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  5. Quantification of space/time explicit fossil fuel CO2 emissions in urban domains

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2013-05-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in development of a carbon monitoring system. A space/time explicit emissions data product can verify atmospheric CO2 measurements and offer practical information to authorities in order to optimize mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing in Los Angeles. The work in Indianapolis is now part of a larger effort, INFLUX, aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions. The work in Los Angeles with JPL colleagues is aimed at building an operational carbon monitoring system with focus on global megacities. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate using Hestia to distribute emissions in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model constrained with multiple local data streams. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In collaboration with our JPL colleagues, we are testing the feasibility of quantifying a megacity domain and how it might integrate with remote sensing and in situ measurement systems. The Hestia effort also holds promise for a useable policy tool at the city scale. With detailed information on energy consumption and emissions with process

  6. Use of (13)C-labeled compounds to trace their reactivity in fossil fuel systems

    Science.gov (United States)

    McKinney, Daniel E.

    The scope of this investigation was to analyze the fate of sp{13}C isotopically labeled hydrocarbons in complex fuel systems, such as jet fuel and reservoir oils, under pyrolysis conditions using sp{13}C NMR techniques and select ion monitoring-gas chromatography-mass spectrometry. The major questions to be addressed during the thesis research were: (1) to utilize and develop analytical techniques accurate enough to follow the thermal degradation of specific sp{13}C-labeled hydrocarbons in complex fuel mixtures; (2) to assess the accuracy of model compound studies, and determine whether or not these compounds behave in similar fashion when thermally degraded in complex fossil fuel systems; (3) determine what influence, if any, the chemical composition of fossil fuels have on the thermal cracking of some representative saturated and aromatic hydrocarbons. sp{13}C NMR in conjunction with sp{13}C-labeling proved to be a reliable technique for analyzing overall trends and changes which occurred to the sp{13}C-labeled hydrocarbon in question, but a more precise and sensitive analytical technique was needed to follow the reactions of sp{13}C-labeled n-Csb{25} added to two dissimilar crude oils. Select ion monitoring/gas chromatography/mass spectrometry (SIM/GC/MS) in conjunction with sp{13}C-labeling provided a more accurate assessment of the thermal degradation and product distributions of sp{13}C-labeled n-Csb{25}, mixed with reservoir oils in contrast to sp{13}C NMR. Results demonstrated that the n-Csb{25} was more thermally stable in the reservoir oils in comparison to kinetic parameters obtained for the neat thermal stressing of the n-Csb{25} and the n-alkane product distributions varied between the two oil systems, as well. Contrary to the oils ability to stabilize the n-Csb{25} the opposite trend was found when a sp{13}C-labeled alkylarene was added to the oils. The oils enhanced the rate of degradation of the added 9-methylphenanthrene by increasing the rate of

  7. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    Science.gov (United States)

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  8. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  9. The Zero Emission Fossil Fuel Power Plant - from vision to reality.

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, L.; Sauthoff, M.

    2007-07-01

    Sufficient supply of energy without fossil fuels is not possible the next fifty years. Thus, we must find a solution to use coal, without endangering the environment. Carbon Capture and Storage, CCS, might be the answer. At a cost of about 20 Euro/ton CO{sub 2}, there exist technologies, which can be ready for commercial application in 2020. After that, even more cost effective technologies will be developed. To reduce emissions by more than half until 2050, cannot be reached without CCS. However, CCS is very powerful, but not the only tool. All ways to reduce emissions, including renewables and nuclear must be used. To put emphasis behind the words, Vattenfall has started an R and D program to develop technology for CCS in a ten year program. As part of that, Vattenfall is building a Pilot Plant including all process steps from coal input to liquid CO{sub 2}. It will be ready in 2008. In parallel, preparations for a demonstration plant are ongoing. It will be a coal fired full size plant with storage on shore. That will be ready for operation in 2015. (auth)

  10. Integral power evaluation in fossil fuel power plants; Evaluacion energetica integral en unidades de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa I, Luis R; Sanchez H, Laura E; Rodriguez M, Jose H [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Nebradt G, Jesus [Unidad de Investigacion y Desarrollo de la Subdireccion de Generacion de la Comision Federal de Electricidad, (Mexico)

    2006-07-01

    In this occasion, a methodology is presented that carries out an integral energy evaluation of fossil fuel power plants units (FFPPU) with the purpose of determining the root of the significant decrements of power produced soon after the annual maintenance service. This proposal, besides identifying the origin of the energy efficiency problems, offers information about the contributions of each one of the involved equipment in the total decrement of the unit. With this methodology, the maintenance focuses in the equipment that contributes to the greater energy loss. This document presents such methodology along with its application in a real case, results and necessary remedial actions, demonstrating that its application offers bases for the investment in corrective measures. [Spanish] En esta ocasion se presenta una metodologia que efectua una evaluacion energetica integral de las unidades de centrales termoelectricas (UCT) con el fin de determinar la raiz de los decrementos de potencia significativos producidos luego del servicio anual de mantenimiento. Dicha propuesta, ademas de identificar el origen de los problemas de eficiencia energetica, brinda informacion acerca de las aportaciones de cada uno de los equipos involucrados al decremento total de la unidad. Con esta metodologia, el mantenimiento se enfoca a los equipos que contribuyen a la mayor perdida de potencia. Este documento exhibe tal metodologia junto con su aplicacion en un caso real, resultados y las acciones correctivas necesarias, demostrando que su aplicacion ofrece bases para una inversion futura en medidas correctivas.

  11. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  12. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  13. Various Perspectives of Mitigating Fossil Fuel Use and Air Pollutant Emissions in China's Megacity

    Science.gov (United States)

    Wang, H.

    2014-12-01

    It is critical to reduce energy use and air pollutions in metropolitan areas because these areas usually serve as economic engines and have large, dense populations. Fossil fuel use and air-polluting emissions were analyzed in Beijing between 1997 and 2010 from both a bottom-up and a top-down perspective. From a bottom-up perspective, the key energy-intensive industrial sectors directly caused changes in Beijing's air pollution by means of a series of energy and economic policies. From a top-down perspective, variation in industrial production caused increases in most emissions between 2000 and 2010, however, there were decreases in PM10 and PM2.5 emissions during 2005-2010. Population growth was found to be the largest driver of energy consumption and emissions between1997 and 2010. Energy use and air pollutant emissions were also found to outsource from Beijing to other regions in China. Policies for reducing urban energy consumption and emissions should consider not only the key industrial sectors but also socioeconomic drivers.

  14. High-molecular-mass substances in resinites as possible precursors of specific hydrocarbons in fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Aarssen, B.G.K. van.; de Leeuw, J.W. (Delft University of Technology, Delft (Netherlands). Organic Geochemistry Unit)

    1992-12-01

    A critical review of the literature concerning the composition of high-molecular-mass (HMM) substances in fossil resins, or resinites, indicated that rigorous assignments of chemical structures of resins of gymnosperm origin have not been performed. Detailed knowledge of the structures of such macromolecules is needed to fully understand their diagenetic and catagenetic behaviour. Therefore a representative set of fossil gymnosperm resins (Victoria, Australia) was investigated. HMM substances were separated from the low-molecular-mass (LMM) substances and studied for their structures and thermal breakdown products. The LMM compounds consist mainly of tricyclic carboxylic acids. The presence of C[sub 40]-compounds which were tentatively identified as dimeric communic acids is shown. Specific compounds that are formed upon flash pyrolysis of the HMM substances were tentatively identified by gas chromatography-mass spectrometry. Their proposed structures indicate that the basic structural unit of the macromolecule consists of a diterpenoid carboxylic acid with a labdatriene carbon skeleton. This is in agreement with literature in which the gymnosperm resinous macromolecules are described as polycommunic acids. Prolonged heating of the resinite and the separated HMM substances yields predominantly bi- and tricyclic aromatic hydrocarbons which are often encountered in fossil fuels. 47 refs., 11 figs.

  15. TOWARDS A RESILIENT ENERGY SYSTEM IN EASTERN ROMANIA – FROM FOSSIL FUELS TO RENEWABLE SOURCES

    Directory of Open Access Journals (Sweden)

    BĂNICĂ Alexandru

    2015-12-01

    Full Text Available The study takes into account the two Romanian Eastern regions (North East and South East trying to emphasize the post-communist dynamics of the energy sector in order to draw a general perspective for the future evolution towards both energy security and a clean environment. Before 1989, the energy sector, that had to sustain not only the population needs, but also an oversized manufacturing industry, was based on big power plants usually using coal and oil and highly polluting the environment. The hydropower had a rather small share in the total energy production. This inherited system was very much resistant after the end of the centralized political system, therefore after the general industrial decline the energy sector remained the main source of air pollution in many towns and cities from Romania. Meanwhile, in the last 6-7 years, due to a favourable national political context, we assisted, especially in the analysed area, to an important emergence of renewable energy investments (mainly wind and solar energy, but also biomass or hydro-energy. Our purpose is to evaluate, from a geographical point of view, the extent and the implications of a desirable progressive shift from fossil fuels to renewable energy that could radically change the territorial relations and sustain development on the long term.

  16. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    Science.gov (United States)

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  17. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  18. Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Martinez, Maria J.; Da Riva, Ignacio; Canoira, Laureano; Llamas, Juan F.; Alcantara, Ramon [Department of Chemical Engineering and Fuels, School of Mines, Technical University of Madrid, Rios Rosas 21, 28003-Madrid (Spain); Gallego, Jose Luis R. [Department of Exploitation and Prospecting for Mines, Campus of Mieres, University of Oviedo, Gonzalo Gutierrez S/N-33600 Mieres, Asturias (Spain)

    2006-10-05

    This paper describes the photodegradation behavior of polycyclic aromatic hydrocarbons present in different types of fossil fuels (commercial diesel, Arabian light crude, heavy fuel oil from the Prestige oil spill and coal from an abandoned coal dump) suspended in artificial seawater or ultrapure water, under irradiation in a stirred photochemical reactor for 14 days. The reactor was continuously fed with air from a compressor at a constant rate of 6NLh{sup -1}, and thin films of TiO{sub 2} (anatase) supported on pyrex glass raschig rings were used as catalyst. Dark control samples were carried out simultaneously for all the experiments, and both phases, aqueous and organic, were analyzed by gas chromatography-mass spectrometry in the experimental and dark control samples, allowing to calculate a photodegradation ratio. The polycyclic aromatic hydrocarbons reached a high degree of photodegradation in the water-soluble fraction of the samples, but the organic fractions remained almost unaffected in most of the experiments. Some photodegradation products have been also identified in the aqueous and organic fractions of the samples. (author)

  19. Implications of Switching Fossil Fuel Subsidies to Solar: A Case Study for the European Union

    Directory of Open Access Journals (Sweden)

    Jon Sampedro

    2017-12-01

    Full Text Available Fossil fuel subsidies (FFS constitute one of the most obvious barriers to tackling climate change, as they encourage inefficient energy consumption and divert investment away from clean energy sources. According to the International Monetary Fund, FFS amounted globally to $233 billion in 2014, over four times the value of subsidies awarded to promote renewable energy. In this study an integrated assessment model is used to analyse the CO2 implications in the European Union of eliminating FFS and recycling the revenues to promote rooftop PV. It is found that eliminating FFS would give rise to a small reduction in CO2 due to fuel-switching from coal to gas. If the revenues were recycled to promote solar, then the CO2 reduction would increase from 1.8% to 2.2% by 2030. Eliminating FFS is not a panacea from the mitigation point of view, even if the revenues are recycled, but other important objectives, such as those related to renewable energy promotion and the reduction of air pollution, are advanced at zero cost for the government.

  20. Low energy buildings – the basis for realizing the strategy for independency of fossil fuels in 2050

    DEFF Research Database (Denmark)

    Svendsen, Svend

    2011-01-01

    The paper introduces how low energy buildings can be developed, designed, optimized, constructed and operated in the future and thereby make a significant contribution to the realization of aim of the energy policy of EU: to become independent of fossil fuels in 2050. The paper describes how low...... energy buildings can become independent of fossil fuels in 2020 based on the following activities. Innovation of building components and systems with improved energy performance. Heating of low energy building with low temperature district heating based on renewable heat. Integrated design...... and optimization of low energy buildings. Continuous commissioning of low energy buildings with respect to energy use, indoor environment and durability. The very big and quick change of the energy performance of buildings is a challenge for the building sector but it can be solved by improving the methods...

  1. Pragmatics Annotated Coloured Petri Nets for Protocol Software Generation and Verification

    DEFF Research Database (Denmark)

    Simonsen, Kent Inge; Kristensen, Lars Michael; Kindler, Ekkart

    This paper presents the formal definition of Pragmatics Annotated Coloured Petri Nets (PA-CPNs). PA-CPNs represent a class of Coloured Petri Nets (CPNs) that are designed to support automated code genera-tion of protocol software. PA-CPNs restrict the structure of CPN models and allow Petri net...... elements to be annotated with so-called pragmatics, which are exploited for code generation. The approach and tool for gen-erating code is called PetriCode and has been discussed and evaluated in earlier work already. The contribution of this paper is to give a formal def-inition for PA-CPNs; in addition...

  2. A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    J. Ray

    2014-09-01

    Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.

  3. Impact on food productivity by fossil fuel independence - A case study of a Swedish small-scale integrated organic farm

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Sheshti [Dept. of Energy and Technology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Belfrage, Kristina [Centre for Sustainable Agriculture, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Olsson, Mats [Dept. of Soil and Environment, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2013-02-15

    The large-scale industrial agriculture that provides the majority of food at present is dependent upon fossil fuels in the form of tractor fuel, mineral fertilizers, pesticides, and irrigation. Yet, the age of cheap and abundant fossil fuels will likely come to an end within the coming decades. In this case study, the productivity of a small-scale farm (8 ha arable land, 5.5 ha meadow, 3.5 ha pasture and 18 ha forest) independent on fossil fuels by using organic methods and draught horse power was investigated. The aim was to quantify its productivity when the animal composition and possible alternatives to tractive power were varied. After an analysis of possible solutions, three scenarios for tractive power were selected: draught horse power, diesel tractor, and combination of draught horse power and rapeseed oil fueled tractor. A model that calculates the amount of food available at the farm in terms of meat, milk egg, and crops, converts it into energy units and calculates how many people can be supplied from the farm was developed. The most reasonable of the scenarios studied was when draught horse power was combined with tractor (and combine harvester) driven on locally produced rapeseed oil. Then the farm will have access to all advantages with the tractor and harvester, e.g., timeliness in harvest and lifting heavy loads, and the renewability and efficiency of draught horse power on smaller fields, and lighter operations. This system was able to support between 66 and 82 persons depending on crop yields, milk yields, meat production, fuel demand for the tractor, and availability of forest grazing. Most likely the production capacity lands on ability to support approximately 68 - 70 persons, and the farm may require fossil fuels to support more than 80 persons. If all farmland globally was to be operated with the same productivity, this would be enough for supplying the global population with food at present.

  4. Pragmatics Annotated Coloured Petri Nets for Protocol Software Generation and Verification

    DEFF Research Database (Denmark)

    Fagerland Simonsen, Kent Inge; Kristensen, Lars Michael; Kindler, Ekkart

    2015-01-01

    PetriCode is a tool that supports automated generation of protocol software from a restricted class of Coloured Petri Nets (CPNs) called Pragmatics Annotated Coloured Petri Nets (PA-CPNs). Petri-Code and PA-CPNs have been designed with five main requirements in mind, which include the same model...

  5. Code Generation from Pragmatics Annotated Coloured Petri Nets

    DEFF Research Database (Denmark)

    Simonsen, Kent Inge

    implemented in a prototype tool called PetriCode. We defined several criteria for our code generation approach, the approach should be scalable so that is can be used to generate code for industrial sized protocols. The models should be verifiable and it should be possible to perform efficient verification...... the PA-CPN model that describe the protocol design. The generated code is also shown to be readable and we demonstrate that a generated implementation can be easily integrated with third party software. We also show that our approach scales to industrial sized protocols by applying our approach...

  6. A very high-resolution (1 km?1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights

    National Research Council Canada - National Science Library

    T. Oda; S. Maksyutov

    2011-01-01

    .... We developed a global 1 km×1 km annual fossil fuel CO 2 emission inventory for the years 1980-2007 by combining a worldwide point source database and satellite observations of the global nightlight distribution...

  7. Clean uses of fossil fuels. Progress performance report, September 29, 1991--January 25, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Stencel, J.M.

    1994-01-25

    Science and engineering doctoral students performing energy related research were supported by a USDOE/ESPCoR Traineeship grant awarded to the Kentucky EPSCoR Committee. The grant, administered by the KY DOE/EPSCoR Subcommittee, focused on research having the general description of {open_quotes}Clean Uses of Fossil Fuels{close_quotes}. The value of the grant was $500,000 for three years duration, beginning September 30, 1991 and ending September 29, 1994. Ten PhD students were selected for support during the first year of the Traineeship. Upon reviewing coursework and research progress of the students at the end of the first year, the KY DOE/EPSCoR Subcommittee awarded a second year of support at the same $25,000/year funding level. A total of 12 students will have been supported during the duration of the grant as a consequence of one student completing his degree during the support period and of one student deciding that she wanted to complete only a Masters rather than a PhD degree. The students supported were at either the University of Kentucky or the University of Louisville - the two PhD, science and engineering granting universities within the Commonwealth of Kentucky. The disciplines of these students included Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for the initial statewide solicitation for student support, the annual review of the students progress for support renewal, and a summary of progress and impact of the awards after two years are presented. It is shown that the Traineeships presented opportunities to: perform high quality research; initiate interactions between different scientific disciplines and departments; develop collaborations at national DOE laboratories, universities outside of Kentucky and industries; and establish research ideas for submittal to funding agencies.

  8. Inter-annual variability in fossil-fuel CO2 emissions due to temperature anomalies

    Science.gov (United States)

    Bréon, F.-M.; Boucher, O.; Brender, P.

    2017-07-01

    It is well known that short-term (i.e. interannual) variations in fossil-fuel CO2 emissions are closely related to the evolution of the national economies. Nevertheless, a fraction of the CO2 emissions are linked to domestic and business heating and cooling, which can be expected to be related to the meteorology, independently of the economy. Here, we analyse whether the signature of the inter-annual temperature anomalies is discernible in the time series of CO2 emissions at the country scale. Our analysis shows that, for many countries, there is a clear positive correlation between a heating-degree-person index and the component of the CO2 emissions that is not explained by the economy as quantified by the gross domestic product (GDP). Similarly, several countries show a positive correlation between a cooling-degree-person (CDP) index and CO2 emissions. The slope of the linear relationship for heating is on the order of 0.5-1 kg CO2 (degree-day-person)-1 but with significant country-to-country variations. A similar relationship for cooling shows even greater diversity. We further show that the inter-annual climate anomalies have a small but significant impact on the annual growth rate of CO2 emissions, both at the national and global scale. Such a meteorological effect was a significant contribution to the rather small and unexpected global emission growth rate in 2014 while its contribution to the near zero emission growth in 2015 was insignificant.

  9. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    Science.gov (United States)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure

  10. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example

    OpenAIRE

    Anja Hansen; Jörn Budde; Annette Prochnow

    2016-01-01

    Bioresources are used in different production systems as materials as well as energy carriers. The same is true for fossil fuel resources. This study explored whether preferential resource usages exist, using a building insulation system as an example, with regard to the following sustainability criteria: climate impact, land, and fossil fuel demand. We considered the complete life cycle in a life cycle assessment-based approach. The criteria were compared for two strategies: one used natural...

  11. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D. [Hadley Center for Climate Predictions & Research, Exeter (United Kingdom)

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  12. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  13. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin P. [Univ. of Pittsburgh, PA (United States)

    2015-02-13

    operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  14. Spatially- explicit Fossil Fuel Carbon Dioxide Inventories for Transportation in the U.S.

    Science.gov (United States)

    Hutchins, M.; Gurney, K. R.

    2016-12-01

    The transportation sector is the second largest source of Fossil Fuel CO2 (FFCO2) emissions, and is unique in that federal, state, and municipal levels of government are all able to enact transportation policy. However, since data related to transportation activities are reported by multiple different government agencies, the data are not always consistent. As a result, the methods and data used to inventory and account for transportation related FFCO2 emissions have important implications for both science and policy. Aggregate estimates of transportation related FFCO2 emissions can be spatially distributed using traffic data, such as the Highway Performance Monitoring System (HPMS) Average Annual Daily Traffic (AADT). There are currently two datasets that estimate the spatial distribution of transportation related FFCO2 in the United States- Vulcan 3.0 and the Database of Road Transportation Emissions (DARTE). Both datasets are at 1 km resolution, for the year 2011, and utilize HPMS AADT traffic data. However, Vulcan 3.0 and DARTE spatially distribute emissions using different methods and inputs, resulting in a number of differences. Vulcan 3.0 and DARTE estimate national transportation related FFCO2 emissions within 2.5% of each other, with more significant differences at the county and state level. The differences are most notable in urban versus rural regions, and for specific road classes. The origin of these differences are explored in depth to understand the implication of using specific data sources, such as the National Emissions Inventory and other aggregate transportation statistics from the Federal Highway Administration (FHWA). In addition to comparing Vulcan 3.0 and DARTE to each other, the results from both data sets are compared to independent traffic volume measurements acquired from the FHWA Continuous Count Station (CCS) network. The CCS records hourly traffic counts at fixed locations in space throughout the U.S. We calculate transportation

  15. The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.

    Science.gov (United States)

    Clauss, Ralf; Mayes, Julian; Hilton, Paul; Lawrenson, Ross

    2005-01-01

    Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung

  16. Characterization of aromatic organosulfur model compounds relevant to fossil fuels by using atmospheric pressure chemical ionization with CS2 and high-resolution tandem mass spectrometry.

    Science.gov (United States)

    Tang, Weijuan; Sheng, Huaming; Jin, Chunfen; Riedeman, James S; Kenttämaa, Hilkka I

    2016-04-15

    The chemistry of desulfurization involved in processing crude oil is greatly dependent on the forms of sulfur in the oil. Sulfur exists in different chemical bonding environments in fossil fuels, including those in thiophenes and benzothiophenes, thiols, sulfides, and disulfides. In this study, the fragmentation behavior of the molecular ions of 17 aromatic organosulfur compounds with various functionalities was systematically investigated by using high-resolution tandem mass spectrometry. Multiple-stage tandem mass spectrometric experiments were carried out using a linear quadrupole ion trap (LQIT) equipped with an atmospheric pressure chemical ionization (APCI) source. (+)APCI/CS2 was used to generate stable dominant molecular ions for all the compounds studied except for three sulfides that also showed abundant fragment ions. The LQIT coupled with an orbitrap mass spectrometer was used for elemental composition analysis, which facilitated the identification of the neutral molecules lost during fragmentation. The characteristic fragment ions generated in MS(2) and MS(3) experiments provide clues for the chemical bonding environment of sulfur atoms in the examined compounds. Upon collision-induced dissociation (CID), the molecular ions can lose the sulfur atom in a variety of ways, including as S (32 Da), HS(•) (33 Da), H2 S (34 Da), CS (44 Da), (•) CHS (45 Da) and CH2 S (46 Da). These neutral fragments are not only indicative of the presence of sulfur, but also of the type of sulfur present in the compound. Generally, losses of HS(•) and H2 S were found to be associated with compounds containing saturated sulfur functionalities, while losses of S, CS and (•) CHS were more common for heteroaromatic sulfur compounds. High-resolution tandem mass spectrometry with APCI/CS2 ionization is a viable approach to determining the types of organosulfur compounds. It can potentially be applied to analysis of complex mixtures, which is beneficial to improving the

  17. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion

    Science.gov (United States)

    Staufer, Johannes; Broquet, Grégoire; Bréon, François-Marie; Puygrenier, Vincent; Chevallier, Frédéric; Xueref-Rémy, Irène; Dieudonné, Elsa; Lopez, Morgan; Schmidt, Martina; Ramonet, Michel; Perrussel, Olivier; Lac, Christine; Wu, Lin; Ciais, Philippe

    2016-11-01

    The ability of a Bayesian atmospheric inversion to quantify the Paris region's fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated for 1 year as part of the CO2-MEGAPARIS experiment (August 2010-July 2011), is analysed. Differences in hourly CO2 atmospheric mole fractions between the near-ground monitoring sites (CO2 gradients), located at the north-eastern and south-western edges of the urban area, are used to estimate the 6 h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km × 2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km × 1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6 h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s-1 and if the modelled wind at the upwind site is within ±15° of the transect between downwind and upwind sites. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions: by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year 2010, which better corresponds to the measurement period than the 2008

  18. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion

    Directory of Open Access Journals (Sweden)

    J. Staufer

    2016-11-01

    Full Text Available The ability of a Bayesian atmospheric inversion to quantify the Paris region's fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated for 1 year as part of the CO2-MEGAPARIS experiment (August 2010–July 2011, is analysed. Differences in hourly CO2 atmospheric mole fractions between the near-ground monitoring sites (CO2 gradients, located at the north-eastern and south-western edges of the urban area, are used to estimate the 6 h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km  ×  2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km  ×  1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6 h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s−1 and if the modelled wind at the upwind site is within ±15° of the transect between downwind and upwind sites. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions: by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year

  19. Pragmatics annotated coloured petri nets for protocol software generation and verification

    DEFF Research Database (Denmark)

    Simonsen, Kent Inge Fagerland; Kristensen, Lars M.; Kindler, Ekkart

    2016-01-01

    Pragmatics Annotated Coloured Petri Nets (PA-CPNs) are a restricted class of Coloured Petri Nets (CPNs) developed to support automated generation of protocol software. The practical application of PA-CPNs and the supporting PetriCode software tool have been discussed and evaluated in earlier pape...... already. The contribution of this paper is to give a formal definition of PA-CPNs, motivate the definitions, and demonstrate how the structure of PA-CPNs can be exploited for more efficient verification....

  20. Web 2.0 and the Net Generation - A Critical Perspective

    DEFF Research Database (Denmark)

    Ryberg, Thomas

    2012-01-01

    , and books have revolved around social media, web 2.0, personal learning environments, student-centred learning, and student-generated content. Alongside these internet developments we have witnessed debates on what schools and universities can do to cater to the 'net-generation' or the 'digital natives' in...

  1. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist.

    Science.gov (United States)

    Perera, Frederica

    2017-12-23

    Fossil-fuel combustion by-products are the world's most significant threat to children's health and future and are major contributors to global inequality and environmental injustice. The emissions include a myriad of toxic air pollutants and carbon dioxide (CO₂), which is the most important human-produced climate-altering greenhouse gas. Synergies between air pollution and climate change can magnify the harm to children. Impacts include impairment of cognitive and behavioral development, respiratory illness, and other chronic diseases-all of which may be "seeded" in utero and affect health and functioning immediately and over the life course. By impairing children's health, ability to learn, and potential to contribute to society, pollution and climate change cause children to become less resilient and the communities they live in to become less equitable. The developing fetus and young child are disproportionately affected by these exposures because of their immature defense mechanisms and rapid development, especially those in low- and middle-income countries where poverty and lack of resources compound the effects. No country is spared, however: even high-income countries, especially low-income communities and communities of color within them, are experiencing impacts of fossil fuel-related pollution, climate change and resultant widening inequality and environmental injustice. Global pediatric health is at a tipping point, with catastrophic consequences in the absence of bold action. Fortunately, technologies and interventions are at hand to reduce and prevent pollution and climate change, with large economic benefits documented or predicted. All cultures and communities share a concern for the health and well-being of present and future children: this shared value provides a politically powerful lever for action. The purpose of this commentary is to briefly review the data on the health impacts of fossil-fuel pollution, highlighting the neurodevelopmental

  2. Inverse modeling of fossil fuel CO2 emissions at urban scale using OCO-2 retrievals of total column CO2

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.

    2016-12-01

    Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.

  3. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    Science.gov (United States)

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Age and transit time distributions of carbon in a nonlinear global model perturbed by nonautonomous fossil-fuel emissions signals

    Science.gov (United States)

    Metzler, Holger; Müller, Markus; Sierra, Carlos A.

    2017-04-01

    Carbon fluxes in the ocean-atmosphere-biosphere system are governed by nonlinear processes, which are usually modeled by a system of ordinary differential equations. It is very difficult to analyze such nonlinear models and to predict their future behavior, particularly their internal age structure: How old is the carbon in different pools (ages) and how old is the carbon that leaves the system (transit times)? How is this age structure modified by the addition of fossil fuel emissions? To answer these questions, we developed a new mathematical approach that allows us to compute and visualize the age structure of models of well mixed pools even if they are nonlinear and nonautonomous. We do not only consider mean ages and mean transit times, but entire distributions. Consequently, we can consider important statistics such as the median, quantiles, or the variance. We applied this mathematical approach to a nonlinear global carbon model consisting of three pools (atmosphere, surface ocean, and terrestrial biosphere) and driven by four emission scenarios (RCP3-PD, RCP4.5, RCP6, RCP8.5). Results showed that the addition of fossil fuels modifies the age structure of C in the atmosphere by drastically increasing its proportion of young carbon. We found little differences among predicted mean ages for the four emission scenarios, but changes in the overall distributions were large with effects on median, quantiles and variance. In the short-term, fossil-fuel emissions have an important effect on the amount of carbon that is exchanged among Earth's main C reservoirs. In the long-term, most added C will eventually end up in the deep ocean, but the time required to return to pre-industrial C age distributions is largely dependent on emission scenarios.

  5. Evaluation of long range transport of fossil fuel originated organic aerosol at a background site in Northeast Asia

    Science.gov (United States)

    Hwang, Eun Jin; Lee, Ji Yi; Park, Jin Soo; Lee, Seok Jo; Kim, Hyun Jae; Jeon, Ha Eun; Sung, Min Young

    2013-04-01

    Northeast Asia is heavy air pollution region due to usage of large amounts of fossil fuel. In addition, meteorological conditions represented as prevailing westerlies in Northeast Asia region causes long range transport of anthropogenic pollutants emitted from China to Korea and Japan and even the United States across the Pacific Ocean (Bey et al., 2001). The Baengnyeong Island of Korea is located at the northwestern part of the Korean peninsula and close by North Korea and China, thus this site is regarded as an ideal place for background air measurements in Northeast Asia. Also, it has low local anthropogenic emissions and is frequently influenced by various air masses from China and North Korea in the Island. In this study, we performed intensive sampling during summer and winter in the Baengnyeong Island and analyzed various organic compounds including fossil fuel originated organic markers such as hopanes and PAHs using thermal desorption two dimensional gas chromatography with time of flight mass spectrometry (TD-GC×GC-TOFMS). We also analyzed ~20 urban aerosol samples collected at Seoul, a representative urban site in Northeast Asia region to compare organic compounds distributions of aerosol samples at the Baengnyeong Island. By applying air mass back trajectory analysis and comparing organic compounds distributions in aerosol samples of the Baengnyeong Island and Seoul, the impact of long-range transport of fossil fuel originated organic pollutants at a background site in Northeast Asia were evaluated. (References) Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. Journal of Geophysical Research-Atmosphere 106, 23097-23113.

  6. Proceedings of the US Department of Energy environmental control symposium. Volume 1. Plenary session and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    Volume one of the proceedings (Plenary Session and Fossil Fuels) contains papers on environmental pollution control which resulted mainly from US DOE's research programs in coal (preparation, desulfurization, gasification, liquefaction, combustion, fluidized-bed combustion, and pollution control methods with respect to SO/sub 2/, NO/sub x/, and CO/sub 2/ (global effects and feasibility studies); a few papers deal with oil shale operations and the enhanced recovery of petroleum. Papers have been entered individually into EDB and ERA, with 3 also into EAPA; six papers had been entered previously from other sources. (LTN)

  7. Use of Chia Plant to Monitor Urban Fossil Fuel CO2 Emission: An Example From Irvine, CA in 2010

    Science.gov (United States)

    Xu, X.; Stills, A.; Trumbore, S.; Randerson, J. T.; Yi, J.

    2011-12-01

    Δ14CO2 is a unique tracer for quantifying anthropogenic CO2 emissions. However, monitoring 14CO2 change and distribution in an urban environment is challenging because of its large spatial and temporal variations. We have tested the potential use of a chia plant (Salvia hispanica) as an alternative way to collect a time-integrated CO2 sample for radiocarbon analysis. The results show that Δ14C of the new growth of chia sprouts and chia leaves are consistent with the Δ14C of air samples collected during the growing period, indicating the new growth has no inherited C from seeds and thus records atmospheric 14CO2. Time-integrated air samples and chia leaf samples significantly reduced the noises of Δ14CO2 in an urban environment. We report here an example of monitoring 14CO2 change in Irvine, CA from Mar 2010 to Mar 2011 utilizing such a method. The results showed a clear seasonal cycle with high (close to remote air background level) Δ14C in summer and low Δ14C in winter months in this urban area. Excess (above remote air background) fossil fuel CO2 was calculated to be closed to 0 ppm in June to about 16 ppm from November 2010 to February 2011. Monthly mean Δ14CO2 was anti-correlated with monthly mean CO mixing ratio, indicating Δ14CO2 is mainly controlled by fossil fuel CO2 mixing with clean on-shore marine air. In summary, this study has shown encouraging result that chia plant can be potentially used as a convenient and inexpensive sampling method for time-integrated atmospheric 14CO2. Combined with other annual plants this provides the opportunity to map out time-integrated fossil fuel-derived CO2 in major cities at low cost. This in turn can be used to: 1) establish a baseline for fossil fuel emissions reductions in cities in the future; 2) provide invaluable information for validating emission models.

  8. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    Science.gov (United States)

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  9. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  10. Electricity generation by living plants in a plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.

    2012-01-01

    Society is facing local and global challenges to secure needs of people. One of those needs is the increasing demand of energy. Currently most energy is generated by conversion of fossil fuels. The major drawback of using fossil fuels is pollution of the environment by emission of carbon dioxide,

  11. Research on the general analytical method of fossil fuel cycle from a viewpoint of the global environment. 3; Chikyu kankyo kara mita sogoteki kaseki nenryo cycle bunseki hyoka shuho no chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The general analysis/assessment method of a fossil fuel cycle was studied. Seven kinds of power generation plants such as LNG cycle and coal cycle ones, and four kinds of transport and treatment systems of recovered CO2 such as ocean and underground systems were studied as case studies on life cycle analysis. As data necessary for life cycle analysis, the database was constructed which stores the facilities and operational energy required for a total energy system from mining of fossil fuel to treatment of recovered CO2, and the quantity of environmental waste such as CO2 emission. As a result, the decrease rate of energy balance defined as ratio of input energy to power plant output was estimated to be 14-43% and 20-60% in LNG cycle and coal cycle, respectively. Even if the recovery rate of CO2 in power plants reached 80-90%, reduction of total CO2 emission was limited to only 20-40% because of CO2 emission during mining, liquefaction and transport of fuel. 168 refs., 48 figs., 102 tabs.

  12. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    Energy Technology Data Exchange (ETDEWEB)

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the

  13. Method development for mass spectrometry based molecular characterization of fossil fuels and biological samples

    Science.gov (United States)

    Mahat, Rajendra K.

    In an analytical (chemical) method development process, the sample preparation step usually determines the throughput and overall success of the analysis. Both targeted and non-targeted methods were developed for the mass spectrometry (MS) based analyses of fossil fuels (coal) and lipidomic analyses of a unique micro-organism, Gemmata obscuriglobus. In the non-targeted coal analysis using GC-MS, a microwave-assisted pressurized sample extraction method was compared with the traditional extraction method, such as Soxhlet. On the other hand, methods were developed to establish a comprehensive lipidomic profile and to confirm the presence of endotoxins (a.k.a. lipopolysaccharides, LPS) in Gemmata.. The performance of pressurized heating techniques employing hot-air oven and microwave irradiation were compared with that of Soxhlet method in terms of percentage extraction efficiency and extracted analyte profiles (via GC-MS). Sub-bituminous (Powder River Range, Wyoming, USA) and bituminous (Fruitland formation, Colorado, USA) coal samples were tested. Overall 30-40% higher extraction efficiencies (by weight) were obtained with a 4 hour hot-air oven and a 20 min microwave-heating extraction in a pressurized container when compared to a 72 hour Soxhlet extraction. The pressurized methods are 25 times more economic in terms of solvent/sample amount used and are 216 times faster in term of time invested for the extraction process. Additionally, same sets of compounds were identified by GC-MS for all the extraction methods used: n-alkanes and diterpanes in the sub-bituminous sample, and n-alkanes and alkyl aromatic compounds in the bituminous coal sample. G. obscuriglobus, a nucleated bacterium, is a micro-organism of high significances from evolutionary, cell and environmental biology standpoints. Although lipidomics is an essential tool in microbiological systematics and chemotaxonomy, complete lipid profile of this bacterium is still lacking. In addition, the presence of

  14. Surrogate gas proxy prediction model for Delta 14C-based measurements of fossil fuel-CO2

    Science.gov (United States)

    Coakley, K. J.; Miller, J. B.; Montzka, S. A.; Sweeney, C.; Miller, B.

    2016-12-01

    The measured {}14}C {:12} {C isotopic ratio ofatmospheric CO2 (and its associated derived Δ 14Cvalue) is an ideal tracer for determination of the fossil fuelderived CO2 enhancement contributing to any atmosphericCO2 measurement (Cff). Given enough such measurements,independent top-down estimation of US fossil fuel- CO2emissions should be possible. However, the number of Δ 14Cmeasurements is presently constrained by cost, available samplevolume, and availability of mass spectrometer measurement facilities.Δ 14C is therefore measured in just a small fraction ofsamples obtained by flask air sampling networks around the world.Here, we develop a Projection Pursuit Regression model topredict Cff as a function of multiple surrogate gases acquiredwithin the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN).The surrogates consist of measured enhancements of various anthropogenictrace gases, including CO, SF6, and halo- andhydro-carbons acquired in vertical airborne sampling profiles nearCape May, NJ and Portsmouth, NH from 2005 through 2010. Modelperformance is quantified based on predicted values correspondingto test data excluded from the model building process. Chi-squarehypothesis test analysis indicates that these predictions andcorresponding observations are consistent given our uncertaintybudget which accounts for random effects and one particular systematiceffect. To account for the possibility of additional systematiceffects, we incorporate another component of uncertainty into ourbudget. Provided that these estimates are of comparable qualityto Δ 14C -based estimates, we expect an improved determinationof fossil fuel-CO2 emissions.

  15. Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia).

    Science.gov (United States)

    Talovskaya, A V; Yazikov, E G; Filimonenko, E A; Lata, J-C; Kim, J; Shakhova, T S

    2017-07-20

    Recognition and detailed characterization of solid particles emitted from thermal power plants into the environment is highly important due to their potential detrimental effects on human health. Snow cover is used for the identification of anthropogenic emissions in the environment. However, little is known about types, physical and chemical properties of solid airborne particles (SAP) deposited in snow around thermal power plants. The purpose of this study is to quantify and characterize in detail the traceable SAP deposited in snow near fossil fuel thermal power plant in order to identify its emissions into the environment. Applying the scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, mineral and anthropogenic phase groups in SAP deposited in snow near the plant and in fly ash were observed. We identified quartz, albite and mullite as most abundant mineral phases and carbonaceous matter, slag and spherical particles as dominate anthropogenic phases. This is the first study reporting that zircon and anthropogenic sulphide-bearing, metal oxide-bearing, intermetallic compound-bearing and rare-earth element-bearing particles were detected in snow deposits near thermal power plant. The identified mineral and anthropogenic phases can be used as tracers for fossil fuel combustion emissions, especially with regard to their possible effect on human health.

  16. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    Science.gov (United States)

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  17. Power Generation by Harvesting Ambient Energy with a Micro-Electromagnetic Generator

    Science.gov (United States)

    2009-03-01

    the use of a MEMS accelerometer. MEMS technology is often asso- ciated with microelectronics, but there are distinct differences. This misconception is...solar, thermal, and electromagnetic systems which include wind, hydroelectric and fossil fuel generators. However, additional sources that become... fossil fuel plants and wind generators. The interest in the use of electromagnetic generators at the micro scale is largely based on the high power

  18. Net Generation

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2010-08-01

    Full Text Available Unlike television, where the role of the viewer is limited by channel changing, the Internet allows to demonstrate your own will, to ask questions and get answers, to express your opinion and, on the whole, to self-actualize. It is the conversational nature of the Internet that gave rise to the most common forms of the Internet addiction: surfing, cybersex and cybercommunication.

  19. Carbon as Investment Risk—The Influence of Fossil Fuel Divestment on Decision Making at Germany’s Main Power Providers

    Directory of Open Access Journals (Sweden)

    Dagmar Kiyar

    2015-09-01

    Full Text Available German electricity giants have recently taken high-level decisions to remove selected fossil fuel operations from their company portfolio. This new corporate strategy could be seen as a direct response to the growing global influence of the fossil fuel divestment campaign. In this paper we ask whether the divestment movement currently exerts significant influence on decision-making at the top four German energy giants—E.On, RWE, Vattenfall and EnBW. We find that this is not yet the case. After describing the trajectory of the global fossil fuel divestment campaign, we outline four alternative influences on corporate strategy that, currently, are having a greater impact than the divestment movement on Germany’s power sector. In time, however, clear political decisions and strong civil support may increase the significance of climate change concerns in the strategic management of the German electricity giants.

  20. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  1. The Knowledge Building Paradigm: A Model of Learning for Net Generation Students

    Science.gov (United States)

    Philip, Donald

    2005-01-01

    In this article Donald Philip describes Knowledge Building, a pedagogy based on the way research organizations function. The global economy, Philip argues, is driving a shift from older, industrial models to the model of the business as a learning organization. The cognitive patterns of today's Net Generation students, formed by lifetime exposure…

  2. An Expanded Study of Net Generation Perceptions on Privacy and Security on Social Networking Sites (SNS)

    Science.gov (United States)

    Lawler, James P.; Molluzzo, John C.; Doshi, Vijal

    2012-01-01

    Social networking on the Internet continues to be a frequent avenue of communication, especially among Net Generation consumers, giving benefits both personal and professional. The benefits may be eventually hindered by issues in information gathering and sharing on social networking sites. This study evaluates the perceptions of students taking a…

  3. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. 1. FID performances and response of pure compounds related to fossil fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Cebolla, V.L.; Vela, J.; Membrado, L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos

    1998-10-01

    The performance of a modern TLC-FID system (which includes the newest detector configuration) was tested on polycyclic aromatic compound standards and related compounds as a preliminary step to evaluate its suitability for quantitative hydrocarbon group type analysis of different coal and petroleum products. FID linearity was evaluated as a function of sample load and scan speed for high-molecular-weight and semi-volatile standards. TLC-FID response factors for compounds of several homologous series were studied in order to differentiate effects of volatility from those exclusively due to the chemical nature concerning FID response. Criteria are developed for the accurate application of TLC-FID to fossil fuel samples. Measurements of chromarod temperatures were carried out in order to evaluate whether an evaporation of compounds outside the H{sub 2} flame might take place. 10 refs., 3 figs., 4 tabs.

  4. Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet

    OpenAIRE

    Xie, Jianwen; Zhu, Song-Chun; Wu, Ying Nian

    2016-01-01

    Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that a spatial-temporal generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-tem...

  5. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    Directory of Open Access Journals (Sweden)

    A. R. Mosier

    2008-01-01

    Full Text Available The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O, has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3–5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1% estimated by IPCC (2006, and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35–0.45% cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize, depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors

  6. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  7. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Science.gov (United States)

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  8. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  9. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4

    Science.gov (United States)

    Schaefer, Hinrich; Fletcher, Sara E. Mikaloff; Veidt, Cordelia; Lassey, Keith R.; Brailsford, Gordon W.; Bromley, Tony M.; Dlugokencky, Edward J.; Michel, Sylvia E.; Miller, John B.; Levin, Ingeborg; Lowe, Dave C.; Martin, Ross J.; Vaughn, Bruce H.; White, James W. C.

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

  10. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    Science.gov (United States)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  11. Sources of non-fossil-fuel emissions in carbonaceous aerosols during early winter in Chinese cities

    Directory of Open Access Journals (Sweden)

    D. Liu

    2017-09-01

    Full Text Available China experiences frequent and severe haze outbreaks from the beginning of winter. Carbonaceous aerosols are regarded as an essential factor in controlling the formation and evolution of haze episodes. To elucidate the carbon sources of air pollution, source apportionment was conducted using radiocarbon (14C and unique molecular organic tracers. Daily 24 h PM2. 5 samples were collected continuously from October 2013 to November 2013 in 10 Chinese cities. The 14C results indicated that non-fossil-fuel (NF emissions were predominant in total carbon (TC; average  =  65 ± 7 %. Approximately half of the EC was derived primarily from biomass burning (BB (average  =  46 ± 11 %, while over half of the organic carbon (OC fraction comprised NF (average  =  68 ± 7 %. On average, the largest contributor to TC was NF-derived secondary OC (SOCnf, which accounted for 46 ± 7 % of TC, followed by SOC derived from fossil fuels (FF (SOCf; 16 ± 3 %, BB-derived primary OC (POCbb; 13 ± 5 %, POC derived from FF (POCf; 12 ± 3 %, EC derived from FF (ECf; 7 ± 2 % and EC derived from BB (ECbb; 6 ± 2 %. The regional background carbonaceous aerosol composition was characterized by NF sources; POCs played a major role in northern China, while SOCs contributed more in other regions. However, during haze episodes, there were no dramatic changes in the carbon source or composition in the cities under study, but the contribution of POC from both FF and NF increased significantly.

  12. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    Science.gov (United States)

    Guazzotti, S. A.; Suess, D. T.; Coffee, K. R.; Quinn, P. K.; Bates, T. S.; Wisthaler, A.; Hansel, A.; Ball, W. P.; Dickerson, R. R.; Neusüß, C.; Crutzen, P. J.; Prather, K. A.

    2003-08-01

    A major objective of the Indian Ocean Experiment (INDOEX) involves the characterization of the extent and chemical composition of pollution outflow from the Indian Subcontinent during the winter monsoon. During this season, low-level flow from the continent transports pollutants over the Indian Ocean toward the Intertropical Convergence Zone (ITCZ). Traditional standardized aerosol particle chemical analysis, together with real-time single particle and fast-response gas-phase measurements provided characterization of the sampled aerosol chemical properties. The gas- and particle-phase chemical compositions of encountered air parcels changed according to their geographic origin, which was traced by back trajectory analysis. The temporal evolutions of acetonitrile, a long-lived specific tracer for biomass/biofuel burning, number concentration of submicrometer carbon-containing particles with potassium (indicative of combustion sources), and mass concentration of submicrometer non-sea-salt (nss) potassium are compared. High correlation coefficients (0.84 biofuel burning are subject to long-range transport, thereby contributing to anthropogenic pollution even in areas downwind of South Asia. Specifically, high concentrations of submicrometer nss potassium, carbon-containing particles with potassium, and acetonitrile are observed in air masses advected from the Indian subcontinent, indicating a strong impact of biomass/biofuel burning in India during the sampling periods (74 (±9)% biomass/biofuel contribution to submicrometer carbonaceous aerosol). In contrast, lower values for these same species were measured in air masses from the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results from single-particle analysis and supported by results from gas-phase measurements (63 (±9))% fossil fuel contribution to submicrometer carbonaceous aerosol). Results presented here demonstrate the importance of simultaneous, detailed gas- and particle

  13. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  14. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions

    Science.gov (United States)

    Townsend-Small, Amy; Tyler, Stanley C.; Pataki, Diane E.; Xu, Xiaomei; Christensen, Lance E.

    2012-04-01

    Recent studies have suggested that CH4 emissions in Los Angeles and other large cities may be underestimated. We utilized stable isotopes (13C and D) and radiocarbon (14C) to investigate sources of CH4 in Los Angeles, California. First, we made measurements of δ13C and δD of various CH4 sources in urban areas. Fossil fuel CH4 sources (oil refineries, power plants, traffic, and oil drilling fields) had δ13C values between -45 and -30‰ and dD values between -275 and -100‰, whereas biological CH4 (cows, biofuels, landfills, sewage treatment plants, and cattle feedlots) had δ13C values between -65 and -45‰ and δD values between -350 and -275‰. We made high-altitude observations of CH4 concentration using continuous tunable laser spectroscopy measurements combined with isotope analyses (13C, 14C, and D) of discrete samples to constrain urban CH4 sources. Our data indicate that the dominant source of CH4 in Los Angeles has a δ13C value of approximately -41.5‰ and a δD value between -229 and -208‰. Δ14C of CH4 in urban air samples ranged from +262 to +344‰ (127.1 to 134.9 pMC), depleted with respect to average global background CH4. We conclude that the major source of CH4 in Los Angeles is leakage of fossil fuels, such as from geologic formations, natural gas pipelines, oil refining, and/or power plants. More research is needed to constrain fluxes of CH4 from natural gas distribution and refining, as this flux may increase with greater reliance on natural gas and biogas for energy needs.

  15. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    Science.gov (United States)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  16. INVESTIGATION OF FOSSIL FUEL AND LIQUID BIOFUEL BLEND PROPERTIES USING ARTIFICIAL NEURAL NETWORK

    OpenAIRE

    Najafi, G.; B Ghobadian; P. Nematizade

    2012-01-01

    Gasoline fuel is the baseline fuel in this research, to which bioethanol, biodiesel and diesel are additives. The fuel blends were prepared based on different volumes and following which, ASTM (American Society for Testing and Materials) test methods analysed some of the important properties of the blends, such as: density, dynamic viscosity, kinematic viscosity and water and sediment. Experimental data were analysed by means of Matlab software. The results obtained from artificial neural net...

  17. Net-generation attributes and seductive properties of the internet as predictors of online activities and internet addiction.

    Science.gov (United States)

    Leung, Louis

    2004-06-01

    Born between 1977 and 1997, Net-generation is the first generation to grow up surrounded by home computers, video games, and the Internet. As children of the Baby Boomers, the Internet is the medium of choice for the Net-geners. Based on the assumption that Net-generation has unique characteristics, this study examined (1) how Net-geners addicted to the Internet differ from the non-addicted and (2) how these attributes, together with the seductive properties of the Internet, are related to Internet addiction. Data were gathered from a probability sample of 699 Net-geners between the ages of 16 and 24. Results show that Net-geners addicted to the Internet tend to be young female students. Being emotionally open on the Net and a heavy user of ICQ were most influential in predicting Net-geners' problematic use of the Internet. Addicted Net-geners are also strongly linked to the pleasure of being able to control the simulated world in online games. The finding reinforces previous research that "dependents" of the Internet spend most of their time in the synchronous communication environment engaging in interactive online games, chat rooms, and ICQ for pleasure-seeking or escape, while "non-dependents" use information-gathering functions available on the Internet. Furthermore, Internet addicts tend to watch television significantly less, indicating a displacement effect on traditional media use for the Net-generation.

  18. Will economic growth and fossil fuel scarcity help or hinder climate stabilization? Overview of the RoSE multi-model study

    NARCIS (Netherlands)

    Kriegler, Elmar; Mouratiadou, Ioanna; Luderer, Gunnar; Bauer, Nico; Brecha, Robert J.; Calvin, Katherine; De Cian, Enrica; Edmonds, Jae; Jiang, Kejun; Tavoni, Massimo; Edenhofer, Ottmar

    We investigate the extent to which future energy transformation pathways meeting ambitious climate change mitigation targets depend on assumptions about economic growth and fossil fuel availability. The analysis synthesizes results from the RoSE multi-model study aiming to identify robust and

  19. Prices of agricultural commodities, biofuels and fossil fuels in long-run relationships: a comparative study for the USA and Europe

    DEFF Research Database (Denmark)

    Groth, Tanja; Bentzen, Jan

    2013-01-01

    Time-series data for the USA and Europe representing prices of agricultural commodities, biofuels and fossil fuels are used for a comparative analysis of long-run price relationships. There is some evidence for cointegration between ethanol and gasoline, especially for the USA, and in the case of...

  20. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  1. Fossil Fuels, Let’s Leave Them under Earth. Four Reasons to Vote “Yes” at the Italian Referendum on Drilling

    OpenAIRE

    ASPO Italy Association for the Study of PeakOil And Gas

    2016-01-01

    The referendum that will be held on 17 April 2016 is calling Italians to express their willingness on an aspect of licensing the sea drilling activities: The end of the licenses to the offshore exploitation of fossil fuel resources within the 12 miles from the coast.

  2. Fossil Fuels, Let’s Leave Them under Earth. Four Reasons to Vote “Yes” at the Italian Referendum on Drilling

    Directory of Open Access Journals (Sweden)

    ASPO Italy Association for the Study of PeakOil And Gas

    2016-04-01

    Full Text Available The referendum that will be held on 17 April 2016 is calling Italians to express their willingness on an aspect of licensing the sea drilling activities: The end of the licenses to the offshore exploitation of fossil fuel resources within the 12 miles from the coast.

  3. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  4. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  5. Proposals for the gradual reduction of the inefficiencies associated with the account of consumption of fossil fuels of isolated systems; Propostas para a gradativa reducao das ineficiencias associadas a conta de consumo de combustiveis fosseis dos sistemas isolados

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Pedro Coelho de Souza Monteiro; Tiryaki, Gisele Ferreira [Universidade Salvador (UNIFACS), BA (Brazil)

    2008-07-01

    Restricted access to electricity, the existence of an energy matrix based on fossil fueled electricity plants and the lack of financial means by the population living in the Northern region of Brazil to afford the costs with electricity generation, transmission and distribution in the region created the need to implement cross subsidies in the country's Electric Sector Isolated System. The subsidy policies have aimed at allowing the access to electricity for the population and industries in the north of Brazil and at promoting the economic development of this region, but have brought a great cost to society, particularly the Fuel Consumption Account (CCC). This paper evaluates the current structure and the regulatory norms of the electricity sector' subsidies granted to the Isolated Systems, and indicates solutions to the inefficiency associated to cross-subsidization. (author)

  6. Influence of human-climate system feedbacks on predicted 21st century land use/land cover trajectories, fossil fuel emissions, and climate change

    Science.gov (United States)

    Thornton, P. E.; Edmonds, J. A.; Collins, W.; Janetos, A. C.; Hurtt, G. C.; Shi, X.; Mao, J.; Thomson, A. M.; Calvin, K. V.; Bond-Lamberty, B. P.; Chini, L. P.

    2012-12-01

    The interaction between human system and climate system models in the current climate change assessment framework is based on one-way coupling, in which estimates of human actions such as land use and land cover change (LULCC), and fossil fuel combustion, are generated by integrated assessment models (IAMs) and passed as forcing functions to Earth system models (ESMs). By neglecting the return flow of information from the physical climate and biogeochemical systems, inconsistencies are inevitably introduced in this one-way coupling approach. We are developing an integrated Earth System Model (iESM) to characterize, address, and minimize these inconsistencies, by merging the capabilities of IAMs and ESMs in a single coupling framework. Here, we have applied the iESM to estimate the impact of two-way interactions between LULCC and climate on the evolution of the coupled human-climate system over the 21st century. Our simulations followed the Reference Concentration Pathway (RCP) 4.5 scenario, a member of the recent Climate Model Intercomparison Project v5 (CMIP5) family of climate system scenarios. We compared a traditional RCP4.5 simulation from the Community Earth System Model v1 (CESM1) coupled climate-biogeochemistry model with an iESM simulation in which the estimation of LULCC dynamics was performed synchronously with the physical climate simulation. As a first step in a series of planned coupling exercises, we evaluated the influence of a very simple feedback mechanism, in which information generated within the physical-biogeochemical model components was passed back to the human dimensions component by way of a set of scalars capturing the effects of changing climate on terrestrial ecosystem productivity. This mechanism provides a signal within the human system component model modifying crop yields, bioenergy potential, and pasture and forest productivity in response to climate change, including changes in temperature, precipitation, CO2 concentrations, and

  7. Web 2.0 and the Net Generation - A Critical Perspective

    DEFF Research Database (Denmark)

    2012-01-01

    , and books have revolved around social media, web 2.0, personal learning environments, student-centred learning, and student-generated content. Alongside these internet developments we have witnessed debates on what schools and universities can do to cater to the 'net-generation' or the 'digital natives' in......In the recent years, social media and web 2.0 have been hot topics within educational debates and within the research area of networked learning. The latter is evident from symposia and papers from the last years' networked learning conferences, but also European research projects, special issues...

  8. k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification

    Directory of Open Access Journals (Sweden)

    Blaž Meden

    2018-01-01

    Full Text Available Image and video data are today being shared between government entities and other relevant stakeholders on a regular basis and require careful handling of the personal information contained therein. A popular approach to ensure privacy protection in such data is the use of deidentification techniques, which aim at concealing the identity of individuals in the imagery while still preserving certain aspects of the data after deidentification. In this work, we propose a novel approach towards face deidentification, called k-Same-Net, which combines recent Generative Neural Networks (GNNs with the well-known k-Anonymitymechanism and provides formal guarantees regarding privacy protection on a closed set of identities. Our GNN is able to generate synthetic surrogate face images for deidentification by seamlessly combining features of identities used to train the GNN model. Furthermore, it allows us to control the image-generation process with a small set of appearance-related parameters that can be used to alter specific aspects (e.g., facial expressions, age, gender of the synthesized surrogate images. We demonstrate the feasibility of k-Same-Net in comprehensive experiments on the XM2VTS and CK+ datasets. We evaluate the efficacy of the proposed approach through reidentification experiments with recent recognition models and compare our results with competing deidentification techniques from the literature. We also present facial expression recognition experiments to demonstrate the utility-preservation capabilities of k-Same-Net. Our experimental results suggest that k-Same-Net is a viable option for facial deidentification that exhibits several desirable characteristics when compared to existing solutions in this area.

  9. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  10. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  11. The economic viability of nuclear power in a fossil-fuel-rich country: Australia

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Anthony

    2010-09-15

    This paper assesses the economic viability of investment in nuclear power generation in Australia and factors which may influence government policy towards such investments. It argues that the structure of the grid in Eastern Australia and the nature of the existing generator mix require nuclear technology that has similar attributes to combined cycle gas technology; i.e. modular construction of generating units, load following capability, low unit capital cost, and a general acceptance by the Australian public. The paper concludes that it is only Generation IV nuclear technology that has the potential to be part of Australia's energy mix after 2030.

  12. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  13. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    Directory of Open Access Journals (Sweden)

    G. S. Jones

    2011-01-01

    Full Text Available Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC, produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  14. Comprehensive study on the detrimental effects of fossil fuel exploration and pipe laying in deltaic region

    Science.gov (United States)

    Sandeep Khanna, L.; Ramnath, K.; Monica, J.; Muthu, D.; Venkatasubramanian, C.

    2017-07-01

    Thanjavur is the “Granary of South India”. As the prosperous capital of Chola kingdom it was praised as “Chola Naadu Sorudaithu” (the land that had abundant food). Now, due to Cauvery water shortage issues, the farmers had to be content with single crop a year. Adding to the woes are urbanization and development programs which lack foresight or long term plans that exploit natural resources without a well-articulated thought process. Presently the net sown area in the deltaic region is about 11.87 lac hectares. In the guise of national interests, there is a pursuit of these regions by agencies- public sector undertakings with vested interests. The oil exploration in Cauvery basin (Narimanam block) by Public Sector Undertakings, estimated lignite reserves of 36000 million tonnes and gas reserves and 104.7 billion cubic metres (CBM Coal Gas Methane), which has placed the deltaic region in the corporate radar. Environmentalists and legislators have also turned a blind eye towards the detrimental aftermaths upon the execution of crude product explorations on our cultivable lands.

  15. Estimating particulate matter health impact related to the combustion of different fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn [TNO, Utrecht (Netherlands); Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle [MINES ParisTech, Sophia Antipolis (France); Drebszok, Kamila; Wyrwa, Artur [AGH Univ. of Science and Technology, Krakow (Poland); Stetter, Daniel [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2013-07-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  16. [Relationships amongst work values, job characteristics and job involvement in "net generation" nurses].

    Science.gov (United States)

    Chen, Sue-Hui; Chiou, Chii-Jun

    2010-04-01

    Children of the so-called "net generation" began joining the nurse workforce from the mid-1990s. Studies on the characteristics of this generation have been done primarily outside of Taiwan, and results may not adequately reflect conditions in Taiwan due to cultural differences. This study aimed to investigate the relationships amongst work values, job characteristics and job involvement in "net generation" nurses. This study employed a cross-sectional design. A randomized sample of 370 nurses born between 1977 and 1985 working in a medical center or a community hospital in Southern Taiwan accepted our invitation to join this study. A structured questionnaire was used to collect data. (1) Variables including work values, job characteristics, head nurse leadership qualities, job structure and opportunities for in-service education all correlated significantly with job involvement. (2) Regression analysis showed work values, job characteristics, head nurse leadership and religious belief to be significant predictors of job involvement, explaining 22.6% of the variance. This study provides insights that may be of potential value to nursing administrators. We suggest that administrators adopt democratic management practices, build diverse learning methods, strengthen autonomy, completeness, and feedback, and provide appropriate work guidance for nurses to increase job involvement.

  17. C code generation from Petri-net-based logic controller specification

    Science.gov (United States)

    Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei

    2017-08-01

    The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.

  18. The energy demand and the impact by fossil fuels use in the Mexico City Metropolitan Area, from 1988 to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nava, M. [Instituto Mexicano del Petroleo, Eje Central Norte 152. Del. Gustavo A. Madero, CP 07730 Mexico, D.F. (Mexico)]. E-mail: manava@imp.mx; Gasca, J. [Instituto Mexicano del Petroleo, Eje Central Norte 152. Del. Gustavo A. Madero, CP 07730 Mexico, D.F. (Mexico); Gonzalez, U. [Instituto Mexicano del Petroleo, Eje Central Norte 152. Del. Gustavo A. Madero, CP 07730 Mexico, D.F. (Mexico)

    2006-12-15

    Temporary variation for the demand of refining products which are used in the Mexico City Metropolitan Area (MCMA) is presented. Its consequent energy contribution is evaluated from 1988 to 2000. The annual estimation was integrated from a detailed inventory of fuels volume, so as the calculus of its respective energy equivalence. The fuel quality specifications, which have been required by regional Air Quality authority for controlling emissions to the atmosphere, are also presented for the same period. The evolution demand of fuels, in term of volume, quality and its energy contribution for this area, is compared with the national demand. On this regard, fuel pool differs in each bound and the demand along the same period has been increasing on both regions but at different rates, with 21% at MCMA and 31% countrywide. In 2000, the MCMA demanded 14% of the internal refining products volume sales, which represented 17% of the energy contribution to the country for those fuels. Likewise, the energy use coefficient (GJ per capita) was applied to compare this region with country trends. During 1996 and up to 2000, the MCMA presented slightly minor energy use per capita, than the rest of the country, and this period was distinguished also for using cleaner fuels and for obtaining improvements in air quality. On the other hand, MCMA and country greenhouse gases emissions will increase because of their fossil fuel dependence, so several mitigation measures must be implemented in the next decades.

  19. Real Costs Assessment of Solar-Hydrogen and Some Fossil Fuels by means of a Combustion Analysis

    Directory of Open Access Journals (Sweden)

    Giovanni Nicoletti

    2016-01-01

    Full Text Available In order to compare solar-hydrogen and the most used fossil fuels, the evaluation of the “external” costs related to their use is required. These costs involve the environmental damage produced by the combustion reactions, the health problems caused by air pollution, the damage to land from fuel mining, and the environmental degradation linked to the global warming, the acid rains, and the water pollution. For each fuel, the global cost is determined as sum of the market price and of the correspondent external costs. In order to obtain a quantitative comparison, the quality of the different combustion reactions and the efficiency of the technologies employed in the specific application sector have to be considered adequately. At this purpose, an entropic index that considers the degree of irreversibility produced during the combustion process and the degradation of surroundings is introduced. Additionally, an environmental index that measures the pollutants released during the combustions is proposed. The combination of these indexes and the efficiency of the several technologies employed in four energy sectors have allowed the evaluation of the total costs, highlighting an economic scenario from which the real advantages concerning the exploitation of different energy carrier are determined.

  20. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    Science.gov (United States)

    Ridgwell, A.; Zondervan, I.; Hargreaves, J. C.; Bijma, J.; Lenton, T. M.

    2007-07-01

    Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4-13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  1. Conclusions drawn from actions implemented within the first stage of the Cracow program of energy conservation and clean fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, J.; Bardel, J.; Pierce, B.

    1995-12-31

    Since 1992 Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL), acting on behalf of the U.S. Department of Energy, executed the first stage of the Cracow Program of Energy Conservation and Clean Fossil Fuels, called also American-Polish Program of Actions for Elimination of Low Emission Sources in Cracow. The main contractor for BNL and PNL was the Cracow Development Office (BRK). The interest in improving the condition of Cracow air results from the fact that the standard for permissible air pollution was exceeded several times in Cracow and especially within the central part of the town. Therefore, air pollution appeared one of the most important problems that faced the municipal authorities. It followed from monitoring investigations that the high level of air pollutant concentration is caused by in-home coal-fired tile stoves operated in winter seasons and by coal- and coke-fired boiler houses simulated mainly in the central part of the town. The results obtained in first stage are presented. This paper is an attempt to formulate conclusions drawn from these works and recommendations with regard to the future policy of the town authorities; selected results are presented to clarify or illustrate the conclusions.

  2. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    Science.gov (United States)

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  3. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2007-07-01

    Full Text Available Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4–13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  4. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J [University of Maryland; Andres, Robert Joseph [ORNL; Marland, Gregg [ORNL

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  5. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  6. Electric power monthly, July 1995 - with data for April 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This publication provides statistical data on net generation, fuel consumption, fossil fuel stocks, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on fossil fuel stocks and costs are also included.

  7. Effective utilization of fossil fuels for low carbon world -- IGCC and high performance gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiromi; Hashimoto, Takao; Sakamoto, Koichi; Komori, Toyoaki; Kishine, Takashi; Shiozaki, Shigehiro

    2010-09-15

    The reduction of greenhouse-gas emissions is required to minimize the effect of hydrocarbon based power generation on global warming. In pursue of this objective, Mitsubishi Heavy Industries is dedicating considerable efforts on two different ways to reduce the environmental impact. The first one involves gas turbine performance improvement by raising firing temperature for Natural-gas and LNG applications. In this regard, the latest J class gas turbine was designed to operate at 1600 deg C and expected combined cycle efficiency in excess of 60%. The other approach involves the use of Integrated Gasification Combined Cycle (IGCC) plants to burn solid fuel like coal.

  8. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  9. Intelligent system of aid for the starting of fossil fuel units; Sistema inteligente de ayuda para el arranque de unidades termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Cerda, Dionisio A; Ibargueengoytia Gonzalez, Pablo H; Villavicencio Ramirez, Alejandro [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this article the aid system for the starting of fossil fuel units is described (SIAAT) based on techniques of artificial intelligence, that the Management of Supervision of Processes of the Instituto de Investigaciones Electricas (IIE) develops. It analyzes the problem of the starting of fossil fuel units, which sets out to solve through computer techniques based on artificial intelligence. The system architecture is proposed and the challenges that are due to face are mentioned so that the system works in line with the process and along with it. In addition to the technical aspects covered in the project, the more relevant results that make an impact in the expectations of application of the system are mentioned, as well as the expected benefits of its use in fossil fuel power stations. [Spanish] En este articulo se describe el Sistema de ayuda para el Arranque de Unidades Termoelectricas (SIAAT) basado en tecnicas de inteligencia artificial, que desarrolla la Gerencia de Supervision de Procesos del Instituto de Investigaciones Electricas (IIE). Se analiza el problema del arranque de unidades termoelectricas, el cual se propone resolver a traves de tecnicas computacionales basadas en inteligencia artificial. Se presenta la arquitectura del sistema y se mencionan los retos que se deben enfrentar para que el sistema funcione en linea junto con el proceso. Ademas de los aspectos tecnicos abordados en el proyecto, se mencionan los resultados mas relevantes que impactan en las expectativas de aplicacion del sistema, asi como los beneficios esperados de su uso en centrales termoelectricas.

  10. {Delta}{sup 14}C level of annual plants and fossil fuel derived CO{sub 2} distribution across different regions of China

    Energy Technology Data Exchange (ETDEWEB)

    Xi, X.T.; Ding, X.F.; Fu, D.P. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Zhou, L.P. [Laboratory for Earth Surface Processes, Department of Geography, Peking University, Beijing 100871 (China); Liu, K.X., E-mail: kxliu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2013-01-15

    The {sup 14}C level in annual plants is a sensitive tracer for monitoring fossil fuel derived CO{sub 2} in the atmosphere. Corn leave samples were selected from different regions of China, including high mountains in the Tibetan Plateau, grassland in Inner Mongolia, and inland and coastal cities during the summer of 2010. The {sup 14}C/{sup 12}C ratio of the samples was measured with the NEC compact AMS system at the Institute of Heavy Ion Physics, Peking University. The fossil fuel derived CO{sub 2} was estimated by comparing the measured {Delta}{sup 14}C values of corn leave samples to background atmospheric {Delta}{sup 14}C level. The influences of topography, meteorological conditions and carbon cycling processes on the fossil fuel derived CO{sub 2} concentration are considered when interpreting the data. Our results show a clear association of the low {Delta}{sup 14}C values with regions where human activities are intensive.

  11. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  12. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  13. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    Directory of Open Access Journals (Sweden)

    Staffan A Qvist

    Full Text Available There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  14. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    Science.gov (United States)

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  15. Electric power monthly, March 1998 with data for December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  16. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    Science.gov (United States)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  17. Assessing Uncertainties in Gridded Emissions: A Case Study for Fossil Fuel Carbon Dioxide (FFCO2) Emission Data

    Science.gov (United States)

    Oda, T.; Ott, L.; Lauvaux, T.; Feng, S.; Bun, R.; Roman, M.; Baker, D. F.; Pawson, S.

    2017-01-01

    Fossil fuel carbon dioxide (CO2) emissions (FFCO2) are the largest input to the global carbon cycle on a decadal time scale. Because total emissions are assumed to be reasonably well constrained by fuel statistics, FFCO2 often serves as a reference in order to deduce carbon uptake by poorly understood terrestrial and ocean sinks. Conventional atmospheric CO2 flux inversions solve for spatially explicit regional sources and sinks and estimate land and ocean fluxes by subtracting FFCO2. Thus, errors in FFCO2 can propagate into the final inferred flux estimates. Gridded emissions are often based on disaggregation of emissions estimated at national or regional level. Although national and regional total FFCO2 are well known, gridded emission fields are subject to additional uncertainties due to the emission disaggregation. Assessing such uncertainties is often challenging because of the lack of physical measurements for evaluation. We first review difficulties in assessing uncertainties associated with gridded FFCO2 emission data and present several approaches for evaluation of such uncertainties at multiple scales. Given known limitations, inter-emission data differences are often used as a proxy for the uncertainty. The popular approach allows us to characterize differences in emissions, but does not allow us to fully quantify emission disaggregation biases. Our work aims to vicariously evaluate FFCO2 emission data using atmospheric models and measurements. We show a global simulation experiment where uncertainty estimates are propagated as an atmospheric tracer (uncertainty tracer) alongside CO2 in NASA's GEOS model and discuss implications of FFCO2 uncertainties in the context of flux inversions. We also demonstrate the use of high resolution urban CO2 simulations as a tool for objectively evaluating FFCO2 data over intense emission regions. Though this study focuses on FFCO2 emission data, the outcome of this study could also help improve the knowledge of similar

  18. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  19. Light-absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources

    Science.gov (United States)

    Healy, R. M.; Wang, J. M.; Jeong, C.-H.; Lee, A. K. Y.; Willis, M. D.; Jaroudi, E.; Zimmerman, N.; Hilker, N.; Murphy, M.; Eckhardt, S.; Stohl, A.; Abbatt, J. P. D.; Wenger, J. C.; Evans, G. J.

    2015-07-01

    The optical properties of ambient black carbon-containing particles and the composition of their associated coatings were investigated at a downtown site in Toronto, Canada, for 2 weeks in June 2013. The objective was to assess the relationship between black carbon (BC) coating composition/thickness and absorption. The site was influenced by emissions from local vehicular traffic, wildfires in Quebec, and transboundary fossil fuel combustion emissions in the United States. Mass concentrations of BC and associated nonrefractory coatings were measured using a soot particle-aerosol mass spectrometer (SP-AMS), while aerosol absorption and scattering were measured using a photoacoustic soot spectrometer (PASS). Absorption enhancement was investigated both by comparing ambient and thermally denuded PASS absorption data and by relating absorption data to BC mass concentrations measured using the SP-AMS. Minimal absorption enhancement attributable to lensing at 781 nm was observed for BC using both approaches. However, brown carbon was detected when the site was influenced by wildfire emissions originating in Quebec. BC coating to core mass ratios were highest during this period (~7), and while direct absorption by brown carbon resulted in an absorption enhancement at 405 nm (>2.0), no enhancement attributable to lensing at 781 nm was observed. The efficiency of BC coating removal in the denuder decreased substantially when wildfire-related organics were present and may represent an obstacle for future similar studies. These findings indicate that BC absorption enhancement due to lensing is minimal for downtown Toronto, and potentially other urban locations, even when impacted by long-range transport events.

  20. Co-firing experiences of biomass with fossil fuel in the world's largest biofuel power boiler

    Energy Technology Data Exchange (ETDEWEB)

    Nickull, S.; Petaenen, P. [Oy Alholmens Kraft AB (Finland)

    2007-07-01

    The major objective of Alhomens Kraft power plant that started up in early 2002 in Pietarsaari, Finland was to demonstrate a novel technology for multifuel and low emission cogeneration at a new commercial size, and co-firing of biomass with fossil fuel. Plant design was based on maximum exploitation of wood based fuels and peat with bituminous coal. Other objectives included electricity production at a competitive price for sale in the open market, utilization of the process steam and heat in the paper mill and for the city of Pietarsaari, and maximum use of combustible by-products from the paper industry. The utility side required higher steam data and the industrial side required better load flexibility. The boiler design requirements combine both features. The biofuel handling systemposed challenges due to the large plant and the diversity of fuels. The ratio of fuels to be used is varying according to availability, quality and price. The boiler capacity is 550 MWth. The high-pressure and re-heater steam values are 194/179 kg/s at 545/545{sup o}C and 165/40 bar. The large fuel flow and fuel variation make even mixing of the fuel components essential in order to secure optimal combustion, which ensures the lowest emissions for the circulating fluidized bed process. The paper compares operating experiences to objectives of the planning and design phase related to fuel logistics up to boiler plant operation. It describes the experience of using different fuel components in different operational situations. Experiences of auxiliary systems needed for reliable operation in co-combustion as well as experience of the boiler controllability with this heterogeneous fuel combination are described. 7 figs.

  1. Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-25

    In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

  2. On the Ability of Ascends to Constrain Fossil Fuel, Ocean and High Latitude Emissions: Flux Estimation Experiments

    Science.gov (United States)

    Crowell, S.; Kawa, S. R.; Hammerling, D.; Moore, B., III; Rayner, P. J.

    2014-12-01

    In Hammerling et al., 2014 (H14) the authors demonstrated a geostatistical method for mapping satellite estimates of column integrated CO2 mixing ratio, denoted XCO2, that incorporates the spatial variability in satellite-measured XCO2 as well as measurement precision. The goal of the study was to determine whether the Active Sensing of CO2 over Nights, Days and Seasons (ASCENDS) mission would be able to detect changes in XCO2 given changes in the underlying fluxes for different levels of instrument precision. Three scenarios were proposed: a flux-neutral shift in fossil fuel emissions from Europe to China (shown in the figure); a permafrost melting event; interannual variability in the Southern Oceans. The conclusions of H14 were modest but favorable for detectability in each case by ASCENDS given enough observations and sufficient precision. These signal detection experiments suggest that ASCENDS observations, together with a chemical transport model and data assimilation methodology, would be sufficient to provide quality estimates of the underlying surface fluxes, so long as the ASCENDS observations are precise enough. In this work, we present results that bridge the gap between the previous signal detection work by [Hammerling et al., 2014] and the ability of transport models to recover flux perturbations from ASCENDS observations utilizing the TM5-4DVAR data assimilation system. In particular, we will explore the space of model and observational uncertainties that will yield useful scientific information in each of the flux perturbation scenarios. This work will give a sense of the ability of ASCENDS to answer key questions about some of the foremost questions in carbon cycle science today. References: Hammerling, D., Kawa, S., Schaefer, K., and Michalak, A. (2014). Detectability of CO2 flux signals by a space-based lidar mission. Submitted.

  3. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland

    Science.gov (United States)

    Berhanu, Tesfaye A.; Szidat, Sönke; Brunner, Dominik; Satar, Ece; Schanda, Rüdiger; Nyfeler, Peter; Battaglia, Michael; Steinbacher, Martin; Hammer, Samuel; Leuenberger, Markus

    2017-09-01

    Fossil fuel CO2 (CO2ff) is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Since October 2012, we have been continuously measuring the mixing ratios of CO, CO2, CH4, and H2O at five different heights at the Beromünster tall tower, Switzerland. Air samples for radiocarbon (Δ14CO2) analysis have also been collected from the highest sampling inlet (212.5 m) of the tower on a biweekly basis. A correction was applied for 14CO2 emissions from nearby nuclear power plants (NPPs), which have been simulated with the Lagrangian transport model FLEXPART-COSMO. The 14CO2 emissions from NPPs offset the depletion in 14C by fossil fuel emissions, resulting in an underestimation of the fossil fuel component in atmospheric CO2 by about 16 %. An average observed ratio (RCO) of 13.4 ± 1.3 mmol mol-1 was calculated from the enhancements in CO mixing ratios relative to the clean-air reference site Jungfraujoch (ΔCO) and the radiocarbon-based fossil fuel CO2 mole fractions. The wintertime RCO estimate of 12.5 ± 3.3 is about 30 % higher than the wintertime ratio between in situ measured CO and CO2 enhancements at Beromünster over the Jungfraujoch background (8.7 mmol mol-1) corrected for non-fossil contributions due to strong biospheric contribution despite the strong correlation between ΔCO and ΔCO2 in winter. By combining the ratio derived using the radiocarbon measurements and the in situ measured CO mixing ratios, a high-resolution time series of CO2ff was calculated exhibiting a clear seasonality driven by seasonal variability in emissions and vertical mixing. By subtracting the fossil fuel component and the large-scale background, we have determined the regional biospheric CO2 component that is characterized by seasonal variations ranging between -15 and +30 ppm. A pronounced diurnal variation was observed during summer modulated by biospheric exchange and vertical mixing, while no

  4. Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation

    Directory of Open Access Journals (Sweden)

    T. Krings

    2011-12-01

    Full Text Available Carbon dioxide (CO2 is the most important man-made greenhouse gas (GHG that cause global warming. With electricity generation through fossil-fuel power plants now being the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010, random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP. CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO with an 828-km orbit height, local time ascending node (LTAN of 13:30 (01:30 p.m. LT and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat has the potential to verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1 with a systematic error of less than ~4.9% and a random error of less than ~6.7% for 50% of all the power plants. For 90% of all the power plants, the systematic error was less than ~12.4% and the random error was less than ~13%. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other

  5. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were

  6. Distributions of fossil fuel originated CO{sub 2} in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the {Delta}{sup 14}C in ginkgo leaves

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Hong, W. [Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no Yuseong, Daejeon 305-350 (Korea, Republic of); Park, G., E-mail: junghun@kigam.re.kr [Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no Yuseong, Daejeon 305-350 (Korea, Republic of); Sung, K.S.; Lee, K.H.; Kim, Y.E.; Kim, J.K.; Choi, H.W.; Kim, G.D.; Woo, H.J. [Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no Yuseong, Daejeon 305-350 (Korea, Republic of)

    2013-01-15

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO{sub 2} (fossil fuel CO{sub 2}) in the atmosphere. Regions assumed to be free of fossil fuel CO{sub 2} were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The {Delta}{sup 14}C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO{sub 2} ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO{sub 2} in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO{sub 2} over total CO{sub 2} in atmosphere), 13.9 {+-} 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  7. PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.

    Science.gov (United States)

    Klarner, Hannes; Streck, Adam; Siebert, Heike

    2017-03-01

    The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de.

  8. FORMATION OF THE SYNTHESIS ALGORITHMS OF THE COORDINATING CONTROL SYSTEMS BY MEANS OF THE AUTOMATIC GENERATION OF PETRI NETS

    Directory of Open Access Journals (Sweden)

    A. A. Gurskiy

    2016-09-01

    Full Text Available The coordinating control system by drives of the robot-manipulator is presented in this article. The purpose of the scientific work is the development and research of the new algorithms for parametric synthesis of the coordinating control systems. To achieve this aim it is necessary to develop the system generating the required parametric synthesis algorithms and performing the necessary procedures according to the generated algorithm. This scientific work deals with the synthesis of Petri net in the specific case with the automatic generation of Petri nets.

  9. Electric power monthly, February 1998 with data for November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  10. Electric Power Monthly with data for July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 57 tabs.

  11. The NetVISA automatic association tool. Next generation software testing and performance under realistic conditions.

    Science.gov (United States)

    Le Bras, Ronan; Arora, Nimar; Kushida, Noriyuki; Tomuta, Elena; Kebede, Fekadu; Feitio, Paulino

    2016-04-01

    The CTBTO's International Data Centre is in the process of developing the next generation software to perform the automatic association step. The NetVISA software uses a Bayesian approach with a forward physical model using probabilistic representations of the propagation, station capabilities, background seismicity, noise detection statistics, and coda phase statistics. The software has been in development for a few years and is now reaching the stage where it is being tested in a realistic operational context. An interactive module has been developed where the NetVISA automatic events that are in addition to the Global Association (GA) results are presented to the analysts. We report on a series of tests where the results are examined and evaluated by seasoned analysts. Consistent with the statistics previously reported (Arora et al., 2013), the first test shows that the software is able to enhance analysis work by providing additional event hypothesis for consideration by analysts. A test on a three-day data set was performed and showed that the system found 42 additional real events out of 116 examined, including 6 that pass the criterion for the Reviewed Event Bulletin of the IDC. The software was functional in a realistic, real-time mode, during the occurrence of the fourth nuclear test claimed by the Democratic People's Republic of Korea on January 6th, 2016. Confirming a previous statistical observation, the software found more associated stations (51, including 35 primary stations) than GA (36, including 26 primary stations) for this event. Nimar S. Arora, Stuart Russell, Erik Sudderth. Bulletin of the Seismological Society of America (BSSA) April 2013, vol. 103 no. 2A pp709-729.

  12. Jerusalem artichoke as low-cost fructose-rich feedstock for fossil fuels desulphurization by a fructophilic bacterium.

    Science.gov (United States)

    Silva, T P; Paixão, S M; Roseiro, J C; Alves, L

    2015-03-01

    Through biodesulphurization (BDS) is possible to remove the sulphur present in fossil fuels to carry out the very strict legislation. However, this biological process is limited by the cost of the culture medium, and thus, it is important to explore cheaper alternative carbon sources, such as Jerusalem artichoke (JA). These carbon sources usually contain sulphates which interfere with the BDS process. The goal of this work was to remove the sulphates from Jerusalem artichoke juice (JAJ) through BaCl2 precipitation viewing the optimization of dibenzothiophene (DBT) desulphurization by Gordonia alkanivorans strain 1B. Using a statistical design (Doehlert distribution), the effect of BaCl2 concentration (0.125-0.625%) and pH (5-9) was studied on sulphate concentration in hydrolysed JAJ. A validated surface response derived from data indicated that zero sulphates can be achieved with 0.5-0.55% (w/v) BaCl2 at pH 7; however, parallel BDS assays showed that the highest desulphurization was obtained with the juice treated with 0.5% (w/v) BaCl2 at pH 8.73. Further assays demonstrated that enhanced DBT desulphurization was achieved using hydrolysed JAJ treated in these optimal conditions. A total conversion of 400 μmol l(-1) DBT into 2-hydroxybiphenyl (2-HBP) in <90 h was observed, attaining a 2-HBP maximum production rate of 28.2 μmol l(-1) h(-1) and a specific production rate of 5.06 μmol(-1) g(-1) (DCW) h(-1) . These results highlight the efficacy of the treatment applied to JAJ in making this agromaterial a promising low-cost renewable feedstock for improved BDS by the fructophilic strain 1B. This study is a fundamental step viewing BDS application at the industrial level as it accounts a cost-effective production of the biocatalysts, one of the main drawbacks for BDS scale-up. © 2014 The Society for Applied Microbiology.

  13. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  14. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    Science.gov (United States)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  15. Fault Diagnosis System of Wind Turbine Generator Based on Petri Net

    Science.gov (United States)

    Zhang, Han

    Petri net is an important tool for discrete event dynamic systems modeling and analysis. And it has great ability to handle concurrent phenomena and non-deterministic phenomena. Currently Petri nets used in wind turbine fault diagnosis have not participated in the actual system. This article will combine the existing fuzzy Petri net algorithms; build wind turbine control system simulation based on Siemens S7-1200 PLC, while making matlab gui interface for migration of the system to different platforms.

  16. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  17. A numerical analysis of worldwide CO{sub 2} emissions based on fossil fuels and effects on atmospheric warming in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tokgoz, Nuray

    2007-07-01

    The climate system of the earth, globally and locally, obviously has been changed from pre-industrial period to present. Some of the changes are due to human activities where the vital role has been played by the emission. Fossil fuels (coal, natural gas, oil), the raw materials for energy, play an effective and determining role in the development and sustenance of industrial development, as well as in the energy planning in all major countries. When global and regional geographies are evaluated from the geo-strategic and geo-political points of view, it is clearly seen that among all fossil fuels, coal is distributed more 'equally' in ratio than oil and natural gas reserves. Coal is gradually gaining importance for countries that do not have energy resources, have limited ones, or have resources on the verge of exhaustion. With the latest environmentally-friendly technological innovations in the field of burning-storing CO2 emissions in thermal power plants and given today's emphasis on the principle of 'sustainable development,' it is an undeniable fact that coal will continue to be a significant primary energy resource in the future, both in Turkey and around the world. In this study, in order to numerically calculate the impact of CO2 from fossil fuel consumption on global warming and the process of climate change, a global scale numerical evaluation has been constructed. The evaluation utilizes the 'total primary energy supply (TPES) - CO2 emission' from 136 countries in 2004 together with such basic indicators as 'TPES/capita' and 'ton CO2/capita'. The potential CO2 emission for the year 2030 has also been estimated. Moreover, to maintain the integrity of the subject under study, the distribution of thermal power plants utilizing fossil fuels among the differing geographical regions of Turkey, the relationship between forests (F) in these regions, and the average annual increase in temperature ({delta

  18. Fluoride and chloride determination in fossil fuels after sample preparation by pyrohydrolysis; Preparo de amostras de combustiveis fosseis por piroidrolise para a determinacao de fluor e cloro

    Energy Technology Data Exchange (ETDEWEB)

    Antes, Fabiane G.; Duarte, Fabio A.; Flores, Eder L. M.; Paniz, Jose Neri G.; Flores, Erico M. M.; Dressler, Valderi L., E-mail: valdres@quimica.ufsm.b [Universidade Federal de Santa Maria (DQ/UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    Pyrohydrolysis is proposed for fossil fuels sample preparation for further fluorine and chlorine determination. Samples were heated during 10 min at temperatures up to 1000 deg C. Water vapor was passed through the reactor and the volatile products were condensed and collected in NH{sub 4}OH solution. Fluoride was determined by potentiometry using an ion selective electrode (ISE) and Cl by ICP OES and DRC-ICP-MS. The results are in good agreement with certified values and the precision is better than 10% (n = 4). Sample preparation by means of pyrohydrolysis is relatively simple, whereas chlorine and fluorine can be determined at low concentrations (author)

  19. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  20. How to protect the distribution net with the increase of the distributed generation; Como proteger as redes de distribuicao com o crescimento da geracao distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Rintamaki, Olli [ABB Oy, Zurich (Switzerland); Kauhaniemi, Kimmo [Vaasa University (Finland)

    2010-11-15

    The growth of the distributed generation impose new challenges to the protection of the distribution nets. The main critical point has been the net drop, which needs the separation between the generator unit and the net. A possible solution is the use of the line differential relay. Using appropriate communication channel, it guarantees selective protection for the feeder. This solution makes possible the correct operation of the feeder and the generator unit.

  1. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    Science.gov (United States)

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  2. Electric power monthly January 1997 with data for October 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This publication presents monthly electricity statistical data. Information is included on U.S. electric utility net generation, consumption of fossil fuels, and fossil-fuel stocks; U.S. electric utility sales; receipts and cost of fossil fuels at utilities; and monthly plant aggregates. A glossary is included.

  3. An Integrated Model to Compare Net Electricity Generation for Carbon Dioxide- and Water-Based Geothermal Systems

    Science.gov (United States)

    Agarwal, Vikas

    Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed by Brown in 2000 and its advantages have been discussed by him and other researchers such as Karsten Pruess and Fouillac. This work assesses the net electricity that could be generated by using supercritical CO2 as a geothermal working fluid and compares it with water under the same temperature and pressure reservoir conditions. This procedure provides a method of direct comparison of water and CO2 as geothermal working fluids, in terms of net electricity generation over time given a constant geothermal fluid flow rate. An integrated three-part model has been developed to determine net electricity generation for CO2- and water-based geothermal reservoirs. This model consists of a wellbore model, reservoir simulation, and surface plant simulation. To determine the bottomhole pressure and temperature of the geothermal fluid (either water or CO2) in the injection well, a wellbore model was developed using fluid-phase, thermodynamic equations of state, fluid dynamics, and heat transfer models. A computer program was developed that solves for the temperature and pressure of the working fluid (either water or CO 2) down the wellbore by simultaneously solving for the fluid thermophysical properties, heat transfer, and frictional losses. For the reservoir simulation, TOUGH2, a general purpose numerical simulator has been used to model the temperature and pressure characteristics of the working fluid in the reservoir. The EOS1 module of TOUGH2 has been used for the water system and the EOS2 module of the TOUGH2 code has been employed for the CO2 case. The surface plant is simulated using CHEMCAD, a chemical process simulator, to determine the net electricity generated. A binary organic (iso-pentane) Rankine cycle is simulated. The calculated net electricity generated for the optimized water and CO2 systems are compared over the working time of the reservoir. Based on the theoretical

  4. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  5. Impact assessment of biomass-based district heating systems in densely populated communities. Part II: Would the replacement of fossil fuels improve ambient air quality and human health?

    Science.gov (United States)

    Petrov, Olga; Bi, Xiaotao; Lau, Anthony

    2017-07-01

    To determine if replacing fossil fuel combustion with biomass gasification would impact air quality, we evaluated the impact of a small-scale biomass gasification plant (BRDF) at a university campus over 5 scenarios. The overall incremental contribution of fine particles (PM2.5) is found to be at least one order of magnitude lower than the provincial air quality objectives. The maximum PM2.5 emission from the natural gas fueled power house (PH) could adversely add to the already high background concentration levels. Nitrogen dioxide (NO2) emissions from the BRDF with no engineered pollution controls for NOx in place exceeded the provincial objective in all seasons except during summer. The impact score, IS, was the highest for NO2 (677 Disability Adjusted Life Years, DALY) when biomass entirely replaced fossil fuels, and the highest for PM2.5 (64 DALY) and CO (3 DALY) if all energy was produced by natural gas at PH. Complete replacement of fossil fuels by one biomass plant can result in almost 28% higher health impacts (708 DALY) compared to 513 DALY when both the current BRDF and the PH are operational mostly due to uncontrolled NO2 emissions. Observations from this study inform academic community, city planners, policy makers and technology developers on the impacts of community district heating systems and possible mitigation strategies: a) community energy demand could be met either by splitting emissions into more than one source at different locations and different fuel types or by a single source with the least-impact-based location selection criteria with biomass as a fuel; b) advanced high-efficiency pollution control devices are essential to lower emissions for emission sources located in a densely populated community; c) a spatial and temporal impact assessment should be performed in developing bioenergy-based district heating systems, in which the capital and operational costs should be balanced with not only the benefit to greenhouse gas emission

  6. Perceived intrusiveness and trust in relation to online advertising : A qualitative study amongst individuals of the Net Generation

    OpenAIRE

    Beauvillain, Antoine; Tiger, Oskar

    2013-01-01

    The purpose of this qualitative study is to advance an understanding of trust and perceived intrusiveness in online advertising. The theoretical framework in this thesis is based upon theories about trust and intrusiveness that derives from previous research. The theory of psychological reactance is a further constituent. These concepts and theories are defined and discussed. and possible models are introduced. Semi-structured interviews with eight individuals of the Net Generation have been ...

  7. The Sower's way. Quantifying the Narrowing Net-Energy Pathways to a Global Energy Transition

    CERN Document Server

    Sgouridis, Sgouris; Csala, Denes

    2016-01-01

    Planning the appropriate renewable energy installation rate should balance two partially contradictory objectives: substituting fossil fuels fast enough to stave-off the worst consequences of climate change while maintaining a sufficient net energy flow to support the world's economy. The upfront energy invested in constructing a renewable energy infrastructure subtracts from the net energy available for societal energy needs, a fact typically neglected in energy projections. Modeling feasible energy transition pathways to provide different net energy levels we find that they are critically dependent on the fossil fuel emissions cap and phase-out profile and on the characteristic energy return on energy invested of the renewable energy technologies. The easiest pathway requires installation of renewable energy plants to accelerate from 0.12TWp/year in 2013 to peak between 6.6 and 10.4 TWp/year, for an early or a late fossil-fuel phase-out respectively in order for emissions to stay within the recommended CO2 ...

  8. Fossil fuels: technical, economical and political challenges for 2030-2050; Combustibles fossiles: enjeux techniques, economiques et politiques a l'horizon 2030-2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This panorama takes stock on the international energy actuality in 2003 and discusses the instability of the geo-political context of the energy and the part of the fossil fuels for the future years 2030-2050. The following topics were presented: activities and market for the exploration-production, refining and petrochemistry, the world gas trade situation, the petroleum supply and demand, the Iraq, the diesel in the USA, the investments and the depletion, long-dated evolutions of motors and fuels, implementing of the european directive concerning the market of tradable permits of CO{sub 2}, the carbon sequestration, hydrogen the energy of the future and the biofuels in Europe. (A.L.B.)

  9. Impacts of proposed RCRA regulations and other related federal environmental regulations on Fossil Fuel-Fired Facilities: Final report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    In order to fulfill its responsibilities, DOE contracted with Engineering-Science to perform a multi-phase engineering and economics study to evaluate the impact of the proposed RCRA regulations and other related federal environmental regulations on coal-fired utilities. This Interim Phase I report presents the findings of the impacts of proposed RCRA and related federal regulations on the utility sector fossil fuel-fired facilities. Subsequent phases involve parallel engineering studies on the industrial sector as well as economic evaluations. The framework of this study was based on the development and analysis (engineering and economic) of four regulatory scenarios for the disposal of fly ash, bottom ash and FGD sludge from the utility industry.

  10. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    DEFF Research Database (Denmark)

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard......, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil...... gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1...

  11. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Daniel J. Hayes; David P. Turner; Graham Stinson; A. David Mcguire; Yaxing Wei; Tristram O. West; Linda S. Heath; Bernardus Dejong; Brian G. McConkey; Richard A. Birdsey; Werner A. Kurz; Andrew R. Jacobson; Deborah N. Huntzinger; Yude Pan; W. Mac Post; Robert B. Cook

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000-2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2,...

  12. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels.

    Directory of Open Access Journals (Sweden)

    Sebastian Heger

    Full Text Available Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss. The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.

  13. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens' air quality, as inferred from long term CO measurements.

    Science.gov (United States)

    Gratsea, Myrto; Liakakou, Eleni; Mihalopoulos, Nikos; Adamopoulos, Anastasios; Tsilibari, Eirini; Gerasopoulos, Evangelos

    2017-08-15

    To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels.

    Science.gov (United States)

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.

  15. Δ14CO2from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    Science.gov (United States)

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ( 14 C) has been widely used for quantification of fossil fuel CO 2 (CO 2ff ) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14 C signature of fossil fuels and other sources. In past studies, the 14 C content of CO 2 derived from plants has been equated with the 14 C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO 2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO 2 we determine Δ 14 C res values, and from the bulk organic matter we determine Δ 14 C bom values. A significant difference between Δ 14 C res and Δ 14 C bom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ 14 C res values are in agreement with mean atmospheric Δ 14 CO 2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ 14 C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO 2ff , an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ 14 C in plants to quantify atmospheric CO 2ff . Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An assessment of fossil fuel energy use and CO{sub 2} emissions from farm field operations using a regional level crop and land use database for Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J.A. [Private Consultant, Cambridge, ON (Canada); Kulshreshtha, S.N. [University of Saskatchewan, Saskatoon, SA (Canada); McConkey, B.G. [Research Branch, AAFC, Swift Current, SA (Canada); Desjardins, R.L. [Research Branch, AAFC, C.E.F. Ottawa, ON (Canada)

    2010-05-15

    The Canadian Economic and Emissions Model for Agriculture (CEEMA) is considered a potentially useful tool for investigating the impacts of biofuel feedstock production on rural land use. Fossil CO{sub 2} emissions from fieldwork in the CEEMA model were upgraded with the Fossil Fuel Farm Fieldwork Energy and Emissions (F4E2) simulation model. There was very close agreement between the two models at the national level, but differences between the two models at the regional scale and among the three major land uses illustrated the need to revise CEEMA. Emission coefficients from the F4E2 model will give the upgraded CEEMA a more realistic response to the energy requirements by specific field operations and to differences between the major forms of land cover (annuals and perennials). The highest fossil fuel CO{sub 2} emission intensity for fieldwork in 2001 was in Quebec at 0.19 t{l_brace}CO{sub 2}{r_brace}/ha, followed by Ontario at 0.17 t{l_brace}CO{sub 2}{r_brace}/ha, while the emission intensities were the lowest in Western Canada, at 0.12 t{l_brace}CO{sub 2}{r_brace}/ha. Fossil CO{sub 2} emissions from just annual crops in Canada was 0.16 t/ha and the emissions from just harvesting perennial forages was 0.07 t{l_brace}CO{sub 2}{r_brace}/ha. Fieldwork to maintain summerfallow emitted only 0.02 t{l_brace}CO{sub 2}{r_brace}/ha. (author)

  17. The spatial distribution of fossil fuel CO2 traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Zhang, Xiaoshan; Wang, Sen; Zhang, Dongxia; Lu, Xuefeng; Cheng, Peng; Wu, Shugang; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-01-01

    Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ(14)C values were in the range of -35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average -8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.

  18. Perspectives on gasification systems to produce energy carriers and other chemicals with low CO2 emissions : techno‐economic system analysis on current and advanced flexible thermo‐chemical conversion of fossil fuels and biomass

    NARCIS (Netherlands)

    Meerman, J.C.

    2012-01-01

    To prevent dangerous climate change, the emissions of anthropogenic greenhouse gasses (GHG) need to be reduced. Two key mitigation options to reduce GHG involve a transition from the current fossil-fuel based infrastructure towards one based on renewable and the implementation of CO2 capture,

  19. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Real, Diego [IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2. 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented.

  20. Generation time, net reproductive rate, and growth in stage-age-structured populations

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2014-01-01

    Abstract Major insights into the relationship between life-history features and fitness have come from Lotka's proof that population growth rate is determined by the level (expected amount) of reproduction and the average timing of reproduction of an individual. But this classical result is limited...... to age-structured populations. Here we generalize this result to populations structured by stage and age by providing a new, unique measure of reproductive timing (Tc) that, along with net reproductive rate (R0), has a direct mathematical relationship to and approximates growth rate (r). We use simple...... features of the life history determine population growth rate r and reveal a complex interplay of trait dynamics, timing, and level of reproduction. Our results contribute to a new framework of population and evolutionary dynamics in stage-and-age-structured populations....

  1. New technologies for the reduction of the use of fossil fuels in automobiles; Nuevas tecnologias para la reduccion del uso de combustibles fosiles en automoviles

    Energy Technology Data Exchange (ETDEWEB)

    Maya Violante, A.; Dorantes Rodriguez, R. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Energia, Mexico D. F. (Mexico)

    1995-12-31

    The new technologies developed for the reduction of the use of fossil fuels in automobiles can be classified by the way these try to reduce the use of energy. In the search for the technologies for the conservation of it the environmental problem is added, that although it is not the subject of this presentation results decisive for the evaluation of the performance of type of technology. The development of technologies in this field has followed three basic tendencies. First: The efficient improvement of internal combustion motors, which consist in the control and constant monitoring the functioning of these motors in order to determine the strictly necessary consumption for the motor operation in accordance with its load conditions. Second, the development of a system that utilizes alternate fuels, as is the case of hybrid vehicles, that utilize gas turbines that can burn these fuels. Third the development of electric driven and energy regeneration systems avoiding the use of fossil fuels. A fourth tendency could be considered, which consists in determining the best way of controlling and using the transportation time, with all the implicit benefits. The purpose of this paper is to answer all these questions beginning with a detailed revision of the main technological innovations developed by the leading car manufacturers at world level, such as BMW, Mercedes Benz, Ford, etc. concerned in bringing to the market the best vehicles that burn less or none fossil fuels and at the same time comply with the every day more strict standards on the environmental pollution subject. Through these innovations the advantages and disadvantages of each one of them are set forth, with special emphasis in the technologies that, to our concern, will be the most convenient to promote in the years to come. [Espanol] Las nuevas tecnologias desarrolladas para la reduccion del uso de combustibles fosiles en automoviles se pueden caracterizar por la manera en que estas tratan de reducir

  2. Green energy - the road to a Danish energy system without fossil fuels. Summary of the work, results and recommendations of the Danish Commission on Climate Change Policy

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This summary report describes the main outcomes of the deliberations of the Danish Commission on Climate Change Policy. It includes a proposal for how Denmark can become independent of fossil fuels and, at the same time, meet the target of reducing greenhouse gases by 80%-95% compared with 1990. In addition, 40 specific recommendations for initiatives which will contribute to the realisation of the vision are presented. The documentation section of the overall report, which is only available in Danish, presents the Climate Commission's work in more detail, as well as a description of the comprehensive analyses on which the Climate Commission has based its recommendations. Finally, the background documents, which have been prepared at the request of the Climate Commission are available (in Danish) at the Commission's website, www.klimakommissionen.dk. We can both reduce Danish emissions of greenhouse gasses significantly, and make Denmark independent of fossil fuels. This will require a total conversion of the Danish energy system; conversion away from oil, coal and gas, which today account for more than 80% of our energy consumption, and to green energy with wind turbines and bioenergy as the most important elements. The cost of conversion may seem surprisingly low. The low cost means that not only can we maintain our present living standards, we can also have considerable economic growth, so that energy expenditures will constitute less of our budgets in the future than today. The reason the cost is not higher is primarily because we will not have to pay for overpriced fossil fuels and CO{sub 2} reductions, and we will be able to limit our energy consumption through efficiency improvements in all areas in the future. It is difficult to make predictions about the exact design of the green energy system of the future. However, in overall terms it could look like this: 1) Energy will be used far more efficiently, so that we can, for example, heat our houses

  3. Electric power monthly with data for June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity, and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation by energy source and capability of new generating units by company and plant are also included. A section is included in the report which summarizes major industry developments. 1 fig., 64 tabs.

  4. Observationally based surface fluxes of CH4 and N2O, and fossil fuel-derived CO2 for a 300x100 km region (the Netherlands)

    Science.gov (United States)

    Laan, S. V.; Karstens, U.; Neubert, R.; Laan-Luijkx, I. V.; Meijer, H. A.

    2010-12-01

    Fossil fuel-derived CO2 (FFCO2), CH4 and N2O are the most important anthropogenic greenhouse gases that are held responsible for most of the observed increase in global surface temperature. Currently, their mixing ratios are monitored very accurately and with high precision at many stations around the world. However, quantitative knowledge about their sources and sinks on relative small temporal and spatial scales is still not satisfactory. This makes it also difficult to independently validate the emission reductions as reported by countries who are committed to internationally agreed reduction targets. The reported emissions are based on statistical methods and inventories of known sources and sinks. This method, however, relies heavily on the availability and correctness of the data and can be biased if relevant information is missing (or wrong). We use a customized version of the 222Radon-flux approach to determine regional fluxes of FFCO2, CH4 and N2O from their mixing ratios and 222Rn concentrations observed at station Lutjewad in the Netherlands. The radioactive noble gas 222Rn is used as a tracer for atmospheric mixing and dilution. After surface emanation 222Rn experiences the same atmospheric mixing and dilution as any other constituent released from, or close to, the surface. A coefficient is determined from the ratio of the 222Rn concentrations to the 222Rn soil flux (assumed to be well-known) and applied to calculate surface fluxes from the mixing ratios of (e.g.) FFCO2, CH4 and N2O, sampled at the same height. The mixing ratios of FFCO2 are determined from CO mixing ratios, calibrated with 14CO2 measurements. Since CO2 from fossil fuels does not contain any 14C, and the sources of CO are closely linked to that of FFCO2, a high temporal resolution proxy record can be made from which surface fluxes can be calculated. A back trajectory model is used to select emissions representative for the Netherlands and to distinguish between local sources and those

  5. New-generation radiotracers for nAChR and NET

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yushin [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: ding@bnl.gov; Fowler, Joanna [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-10-01

    Advances in radiotracer chemistry and instrumentation have merged to make positron emission tomography (PET) a powerful tool in the biomedical sciences. Positron emission tomography has found increased application in the study of drugs affecting the brain and whole body, including the measurement of drug pharmacokinetics (using a positron-emitter-labeled drug) and drug pharmacodynamics (using a labeled tracer). Thus, radiotracers are major scientific tools enabling investigations of molecular phenomena, which are at the heart of understanding human disease and developing effective treatments; however, there is evidently a bottleneck in translating basic research to clinical practice. In the meantime, the poor ability to predict the in vivo behavior of chemical compounds based on their log P's and affinities emphasizes the need for more knowledge in this area. In this article, we focus on the development and translation of radiotracers for PET studies of the nicotinic acetylcholine receptor (nAChR) and the norepinephrine transporter (NET), two molecular systems that urgently need such an important tool to better understand their functional significance in the living human brain.

  6. The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition

    Science.gov (United States)

    Sgouridis, Sgouris; Csala, Denes; Bardi, Ugo

    2016-09-01

    Planning the appropriate renewable energy (RE) installation rate should balance two partially contradictory objectives: substituting fossil fuels fast enough to stave-off the worst consequences of climate change while maintaining a sufficient net energy flow to support the world’s economy. The upfront energy invested in constructing a RE infrastructure subtracts from the net energy available for societal energy needs, a fact typically neglected in energy projections. Modeling feasible energy transition pathways to provide different net energy levels we find that they are critically dependent on the fossil fuel emissions cap and phase-out profile and on the characteristic energy return on energy invested of the RE technologies. The easiest pathway requires installation of RE plants to accelerate from 0.12 TWp yr-1 in 2013 to peak between 7.3 and 11.6 TWp yr-1 in the late 2030s, for an early or a late fossil-fuel phase-out respectively in order for emissions to stay within the recommended CO2 budget.

  7. Hydrologic impacts of past shifts of Earth's thermal equator offer insight into those to be produced by fossil fuel CO2.

    Science.gov (United States)

    Broecker, Wallace S; Putnam, Aaron E

    2013-10-15

    Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.

  8. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium

    Science.gov (United States)

    Pan, Y.; Tian, S.; Liu, D.; Fang, Y.; Zhu, X.; Zhang, Q.; Zheng, B.; Michalski, G. M.; Wang, Y.

    2016-12-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its major contributions to nitrogen deposition and particle pollution. However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of 15N (expressed using δ15N values) of ammonium (NH4+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ˜ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After factoring the isotope exchange between NH3 gas and aerosol NH4+, the δ15N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ15N values of aerosol NH4+ to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. This work also shed lights on the sources of nitrogen deposition in downwind ecosystems.

  9. Space/time explicit Hestia version 2.0 fossil fuel CO2 emissions for the Los Angeles Basin: comparison to atmospheric monitoring, emission drivers, and policy implications

    Science.gov (United States)

    Gurney, K. R.; Liang, J.; Patarasuk, R.; O'Keeffe, D.; Newman, S.; Rao, P.; Hutchins, M.; Huang, J.

    2016-12-01

    The Los Angeles Basin represents one of the largest metropolitan areas in the United States and is home to the Megacity Carbon Project, a multi-institutional effort led by NASA JPL to understand the total carbon budget of the Los Angeles Basin. A key component of that effort is the Hestia bottom-up fossil fuel CO2 emissions data product, which quantifies FFCO2 every hour to the spatial scale of individual buildings and road segments. This data product has undergone considerable revision in the last year and the version 2.0 data product is now complete covering the 2011-2014 time period. In this presentation, we highlight the advances in the Hestia version 2.0 including the improvements to onroad, building and industrial emissions. We make comparisons to the independently reported GHG reporting program of the EPA and to in-situ atmospheric measurement of CO2 at two monotiring locations in Pasadena and Palos Verdes. We provide an analysis of the socioeconomic drivers of emissions in the building and onroad transportation sectors across the domain highlighting hotspots of emissions and spatially-specific opportunities for reductions.

  10. Estimation of the external cost of energy production based on fossil fuels in Finland and a comparison with estimates of external costs of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Otterstroem, T. [Ekono Energy Ltd, Helsinki (Finland)

    1995-12-31

    Ekono Energy Ltd. and Soil and Water Ltd. participated in 1993 - 1994 in the SIHTI 2 research programme of the Ministry of Trade and Industry by carrying out the project `Estimation of the extremal cost of energy production in Finland`. The aim of the survey was to assess the external costs of Finnish energy production which are incurred by the environmental impacts of emissions during the life cycles of fossil fuels. To this end, the survey studied the environmental impacts of emissions on a local level (population centres), on a national level (Finland) and on a global level. The main target was to develop a method for calculating the economic value of these impacts. The method was applied to the emissions in 1990. During the survey, the main emphasis was put on developing and applying indirect valuation methods. An indirect method proceeds through dose-response functions. The dose-response function links a certain emission quantity, concentration or deposition to the extent or intensity of the effect. When quantitative data on hazards is available, it is possible to carry out monetary valuation by means of market prices or people`s otherwise expressed willingness to pay (WTP). Monetary valuation includes many uncertainty factors, of which the most significant with regard to this study are the transferability of dose-response functions and willingness-to-pay values from different kinds of conditions, additivity of damage values, uncertainty factors and problems related to discounting

  11. Cases for the Net Generation: An Empirical Examination of Students' Attitude toward Multimedia Case Studies

    Science.gov (United States)

    Sheppard, Michael; Vibert, Conor

    2016-01-01

    Case studies have been an important tool in business, legal, and medical education for generations of students. Traditional text-based cases tend to be self-contained and structured in such a way as to teach a particular concept. The multimedia cases introduced in this study feature unscripted web-hosted video interviews with business owners and…

  12. Assessment of cleaner electricity generation technologies for net CO{sub 2} mitigation in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Limmeechokchai, B.; Suksuntornsiri, P. [Thammasat University, Pathum Thani (Thailand)

    2007-02-15

    The choice of electricity generation technologies not only directly affects the amount of CO{sub 2} emission from the power sector, but also indirectly affects the economy-wide CO{sub 2} emission. It is because electricity is the basic requirement of economic sectors and final consumption within the economy. In Thailand, although the power development plan (PDP) has been planned for the committed capacity to meet the future electricity demand, there are some undecided electricity generation technologies that will be studied for technological options. The economy-wide CO{sub 2} mitigations between selecting cleaner power generation options instead of pulverized coal-thermal technology of the undecided capacity are assessed by energy input-output analysis (IOA). The decomposition of IOA presents the fuel-mix effect, input structural effect, and final demand effect by the change in technology of the undecided capacity. The cleaner technologies include biomass power generation, hydroelectricity and integrated gasification combined cycle (IGCC). Results of the analyses show that if the conventional pulverized coal technology is selected in the undecided capacity, the economy-wide CO{sub 2} emission would be increased from 223 million ton in 2006 to 406 million ton in 2016. Renewable technology presents better mitigation option for replacement of conventional pulverized coal technology than the cleaner coal technology. The major contributor of CO{sub 2} mitigation in cleaner coal technology is the fuel mix effect due to higher conversion efficiency.

  13. Catering to the Needs of the "Digital Natives" or Educating the "Net Generation"?

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Dirckinck-Holmfeld, Lone; Jones, Chris

    2010-01-01

    that there is a generation of digital natives, but that young people may need to develop skills often associated with the digital natives. The authors present a case reflecting these pedagogical aims, involving an online Web 2.0 learning environment called Ekademia. The findings of the case reflect a gap between...... to curricular activities, involve a more concerted pedagogical effort, and be supported by a higher degree of institutionalization....

  14. Generation of daily solar irradiation by means of artificial neural net works

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Adalberto N.; Tiba, Chigueru; Fraidenraich, Naum [Departamento de Energia Nuclear, da Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - CDU, CEP 50.740-540 Recife, Pernambuco (Brazil)

    2010-11-15

    The present study proposes the utilization of Artificial Neural Networks (ANN) as an alternative for generating synthetic series of daily solar irradiation. The sequences were generated from the use of daily temporal series of a group of meteorological variables that were measured simultaneously. The data used were measured between the years of 1998 and 2006 in two temperate climate localities of Brazil, Ilha Solteira (Sao Paulo) and Pelotas (Rio Grande do Sul). The estimates were taken for the months of January, April, July and October, through two models which are distinguished regarding the use or nonuse of measured bright sunshine hours as an input variable. An evaluation of the performance of the 56 months of solar irradiation generated by way of ANN showed that by using the measured bright sunshine hours as an input variable (model 1), the RMSE obtained were less or equal to 23.2% being that of those, although 43 of those months presented RMSE less or equal to 12.3%. In the case of the model that did not use the measured bright sunshine hours but used a daylight length (model 2), RMSE were obtained that varied from 8.5% to 37.5%, although 38 of those months presented RMSE less or equal to 20.0%. A comparison of the monthly series for all of the years, achieved by means of the Kolmogorov-Smirnov test (to a confidence level of 99%), demonstrated that of the 16 series generated by ANN model only two, obtained by model 2 for the months of April and July in Pelotas, presented significant difference in relation to the distributions of the measured series and that all mean deviations obtained were inferior to 0.39 MJ/m{sup 2}. It was also verified that the two ANN models were able to reproduce the principal statistical characteristics of the frequency distributions of the measured series such as: mean, mode, asymmetry and Kurtosis. (author)

  15. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    Science.gov (United States)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  16. To break away from fossil fuels : a contribution to solve climatic change and energy security for Quebec; S'affranchir des carburants fossiles : une contribution a la lutte aux changements climatiques et a la securite energetique du Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, P.; Seguin, H.; Waridel, L.

    2006-06-15

    In response to growing energy demands, Quebec has proposed the construction of 3 deep water terminals to accommodate methane tankers which transport liquefied natural gas (LNG). This paper focused on the proposed Gros Cacouna Port project in the St. Lawrence Seaway which is currently under study and subject to approval. Equiterre, questioned the energy security aspect of the proposal and argued that increasing Quebec's reliance on increasingly expensive energy would decrease energy security. In addition, importation of LNG would bring a clear exit of capital outside the province. Equiterre also argued that reliance on fossil fuels should be decreased in order to mitigate greenhouse gas emissions which contribute to climate change. The organization questioned whether the economic and social need for the proposed project justifies a greater dependency on fossil fuels and the associated impact on the environment and fragile ecosystems of the St. Lawrence. It was suggested that alternative solutions such as renewable energy sources and energy efficiency should be explored in order to promote sustainable development, increase energy security and reduce greenhouse gases. Equiterre argued that Quebec can and must decrease, and even eliminate, its dependence on fossil fuels, including natural gas, for Quebec's economic, social and environmental well-being. For these reasons, Equiterre recommended that the proposed project be rejected, particularly since the project proponents failed to show the real impact that the project would have on Quebec markets. 72 refs., 10 tabs., 21 figs.

  17. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    Science.gov (United States)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  18. Distributions of carbon pricing on extraction, combustion and consumption of fossil fuels in the global supply-chain

    Science.gov (United States)

    Karstensen, Jonas; Peters, Glen

    2018-01-01

    Pricing carbon is one of the most important tools to reduce emissions and mitigate climate change. Already, about 40 nations have implemented explicit or implicit carbon prices, and a carbon price was explicitly stated as a mitigation strategy by many nations in their emission pledges submitted to the Paris Agreement. The coverage of carbon prices varies significantly between nations though, often only covering a subset of sectors in the economy. We investigate the propagation of carbon prices along the global supply-chain when the carbon price is applied at the point where carbon is removed from the ground (extraction), is combusted (production), or where goods and services are consumed (consumption). We consider both the regional and sectoral effects, and compare the carbon price income and costs relative to economic output. We find that implementation using different accounting systems makes a significant difference to revenues and increased expenditure, and that domestic and global trade plays a significant role in spreading the carbon price between sectors and countries. A few single sectors experience the largest relative price increases (especially electricity and transport), but most of the carbon price is ultimately paid by households for goods and services due to the large expenditure and indirect supply chain impacts. We finally show that a global carbon price will generate a larger share of revenue relative to GDP in non-OECD nations than OECD nations, independent on the point of implementation.

  19. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  20. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    Science.gov (United States)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  1. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    Energy Technology Data Exchange (ETDEWEB)

    Kaupp, A. [Energetica International Inc., Suva (Fiji)

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  2. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009

    Directory of Open Access Journals (Sweden)

    J. C. Turnbull

    2011-01-01

    Full Text Available Direct quantification of fossil fuel CO2 (CO2ff in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500% between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO

  3. Advances in the research line of diagnosing of faults in fossil fuel power plants; Avances en la linea de investigacion de diagnostico de fallas en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruz H, Jose A [Universidad Autonoma del Carmen, Campeche (Mexico); Sanchez C, Edgar N [Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional, Mexico, D.F. (Mexico); Suarez Cerda, Dionisio A; Quintero R, Agustin [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    This article deals with a research in progress searching to take care of the faults that occur with greatest frequency in the fossil fuel power plants of Mexico with the aid of tools of computational intelligence such as the neuronal networks and the fuzzy logic, for the online recognition of the dynamic behavior patterns of variable groups. What this research looks for is the development of individual systems, in relation to the computational intelligence techniques that continuously supervise the functioning of the unit and inform the operator of the eventual faults in the understanding that on time attention to the faults will result in a minimum cost. The advantages of these diagnosis mechanisms are established in comparison to alternative diagnosis methods, such as their associative memory useful to store fault patterns. [Spanish] Se trata de una investigacion en progreso que busca atender las fallas que ocurren con mayor frecuencia en las unidades termoelectricas de Mexico con la ayuda de herramientas de inteligencia computacional como las redes neuronales y la logica difusa, para el reconocimiento en linea de patrones de comportamiento dinamico de grupos de variables. Lo que esta investigacion busca es desarrollar sendos sistemas, en relacion a las tecnicas de inteligencia computacional, que supervisen continuamente el funcionamiento de la unidad e informen al operador de fallas eventuales, en el entendido que la oportuna atencion a fallas redituara en un costo minimo. Las ventajas de estos mecanismos de diagnostico se establecen en comparacion a metodos de diagnostico alternativos, como su memoria asociativa util para almacenar patrones de falla.

  4. Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

    1985-12-01

    Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

  5. Assessment of wind energy potential for eletricity generation in ...

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to the fossil fuel generators during the dry season, the latter are normally used to supplement the ... the already limited hydrological resources in the country could be used for irrigation schemes instead of channelling them for developing new hydropower plants.

  6. assessment of wind energy potential for electricity generation in ...

    African Journals Online (AJOL)

    Renewable energy sources such as wind, if thoroughly investigated, could be used to reduce the dependence on fossil fuels for electricity generation. Although wind energy is one of the most efficient renewable energy sources, it is very variable compared to other sources of energy. It is also more sensitive to variations with ...

  7. assessment of wind energy potential for electricity generation in ...

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators ... it is very variable compared to other sources of energy. It is also more sensitive to variations with topography and weather patterns compared to solar energy. ... A study on wind speed pattern and the available wind power in Tanzania.

  8. Fossil fuel producers under threat

    NARCIS (Netherlands)

    van der Ploeg, F.

    2016-01-01

    Oil and gas producers face three threats: prolonged low oil and gas prices, tightening of climate policy and a tough budget on cumulative carbon emissions, and technological innovation producing cheap substitutes for oil and gas. These threats pose real risks of putting oil and gas producers out of

  9. Electric power monthly, April 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  10. Electric power monthly, May 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  11. Review of light--water reactor safety studies. Volume 3 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Farnaam, M.R.K.

    1977-01-01

    This report summarizes and compares important studies of light-water nuclear reactor safety, emphasizing the Nuclear Regulatory Commission's Reactor Safety Study, work on risk assessment funded by the Electric Power Research Institute, and the Report of the American Physical Society study group on light-water reactor safety. These reports treat risk assessment for nuclear power plants and provide an introduction to the basic issues in reactor safety and the needs of the reactor safety research program. Earlier studies are treated more briefly. The report includes comments on the Reactor Safety Study. The manner in which these studies may be used and alterations which would increase their utility are discussed.

  12. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 4. Radiological emergency response planning for nuclear power plants in California

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.

    1977-01-01

    This report reviews the state of emergency response planning for nuclear power plants in California. Attention is given to the role of Federal agencies, particularly the Nuclear Regulatory Commission, in planning for both on and off site emergency measures and to the role of State and local agencies for off site planning. The relationship between these various authorities is considered. Existing emergency plans for nuclear power plants operating or being constructed in California are summarized. The developing role of the California Energy Resources Conservation and Development Commission is examined.

  13. Beyond the Net Generation Debate: A Comparison of Digital Learners in Face-to-Face and Virtual Universities

    Directory of Open Access Journals (Sweden)

    Begoña Gros

    2012-10-01

    Full Text Available In the last decade, an important debate has arisen about the characteristics of today’s students due to their intensive experience as users of ICT. The main belief is that frequent use of technologies in everyday life implies that competent users are able to transfer their digital skills to learning activities. However, empirical studies developed in different countries reveal similar results suggesting that the “digital native” label does not provide evidence of a better use of technology to support learning. The debate has to go beyond the characteristics of the new generation and focus on the implications of being a learner in a digitalised world. This paper is based on the hypothesis that the use of technology to support learning is not related to whether a student belongs to the Net Generation, but that it is mainly influenced by the teaching model.The study compares behaviour and preferences towards ICT use in two groups of university students: face-to-face students and online students. A questionnaire was applied to a sample of students from five universities with different characteristics (one offers online education and four offer face-to-face education with LMS teaching support.Findings suggest that although access to and use of ICT is widespread, the influence of teaching methodology is very decisive. For academic purposes, students seem to respond to the requirements of their courses, programmes, and universities. There is a clear relationship between students’ perception of usefulness regarding certain ICT resources and their teachers’ suggested uses of technologies. The most highly rated technologies correspond with those proposed by teachers. The study shows that the educational model (face-to-face or online has a stronger influence on students’ perception of usefulness regarding ICT support for learning than the fact of being a digital native.

  14. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  15. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Peavey; Norm Bessette

    2007-09-30

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  16. A Statistical Method for Estimating Missing GHG Emissions in Bottom-Up Inventories: The Case of Fossil Fuel Combustion in Industry in the Bogota Region, Colombia

    Science.gov (United States)

    Jimenez-Pizarro, R.; Rojas, A. M.; Pulido-Guio, A. D.

    2012-12-01

    The development of environmentally, socially and financially suitable greenhouse gas (GHG) mitigation portfolios requires detailed disaggregation of emissions by activity sector, preferably at the regional level. Bottom-up (BU) emission inventories are intrinsically disaggregated, but although detailed, they are frequently incomplete. Missing and erroneous activity data are rather common in emission inventories of GHG, criteria and toxic pollutants, even in developed countries. The fraction of missing and erroneous data can be rather large in developing country inventories. In addition, the cost and time for obtaining or correcting this information can be prohibitive or can delay the inventory development. This is particularly true for regional BU inventories in the developing world. Moreover, a rather common practice is to disregard or to arbitrarily impute low default activity or emission values to missing data, which typically leads to significant underestimation of the total emissions. Our investigation focuses on GHG emissions by fossil fuel combustion in industry in the Bogota Region, composed by Bogota and its adjacent, semi-rural area of influence, the Province of Cundinamarca. We found that the BU inventories for this sub-category substantially underestimate emissions when compared to top-down (TD) estimations based on sub-sector specific national fuel consumption data and regional energy intensities. Although both BU inventories have a substantial number of missing and evidently erroneous entries, i.e. information on fuel consumption per combustion unit per company, the validated energy use and emission data display clear and smooth frequency distributions, which can be adequately fitted to bimodal log-normal distributions. This is not unexpected as industrial plant sizes are typically log-normally distributed. Moreover, our statistical tests suggest that industrial sub-sectors, as classified by the International Standard Industrial Classification (ISIC

  17. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method

    Science.gov (United States)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Maenhaut, Willy; Claeys, Magda; Molnár, Mihály; Major, István; Ajtai, Tibor; Utry, Noémi; Bozóki, Zoltán

    2017-11-01

    An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC), organic carbon (OC), levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m-3, respectively. The EC and organic matter (1.6 × OC) accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF) combustion represented 36 % of the total carbon (TC = EC + OC) in the PM2.5 size fraction. Biomass burning (BB) was a major source (40 %) for the OC in the PM2.5 size fraction, and a substantial source (11 %) for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon-levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF) to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB) were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO) made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as domestic and industrial heating or cooking using gas, oil or coal

  18. Is the "Net Generation" Ready for Digital Citizenship? Perspectives from the IEA International Computer and Information Literacy Study 2013. Policy Brief No. 6

    Science.gov (United States)

    Watkins, Ryan; Engel, Laura C.; Hastedt, Dirk

    2015-01-01

    The rise of digital information and communication technologies (ICT) has made the acquisition of computer and information literacy (CIL) a leading factor in creating an engaged, informed, and employable citizenry. However, are young people, often described as "digital natives" or the "net generation," developing the necessary…

  19. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  20. Is there a "net generation" in veterinary medicine? A comparative study on the use of the Internet and Web 2.0 by students and the veterinary profession.

    Science.gov (United States)

    Tenhaven, Christoph; Tipold, Andrea; Fischer, Martin R; Ehlers, Jan P

    2013-01-01

    Informal and formal lifelong learning is essential at university and in the workplace. Apart from classical learning techniques, Web 2.0 tools can be used. It is controversial whether there is a so-called net generation amongst people under 30. To test the hypothesis that a net generation among students and young veterinarians exists. An online survey of students and veterinarians was conducted in the German-speaking countries which was advertised via online media and traditional print media. 1780 people took part in the survey. Students and veterinarians have different usage patterns regarding social networks (91.9% vs. 69%) and IM (55.9% vs. 24.5%). All tools were predominantly used passively and in private, to a lesser extent also professionally and for studying. The use of Web 2.0 tools is useful, however, teaching information and media skills, preparing codes of conduct for the internet and verification of user generated content is essential.

  1. Power of efficiency : international comparisons of energy efficiency and CO2 emissions of fossil-based power generation

    NARCIS (Netherlands)

    Graus, W.H.J.|info:eu-repo/dai/nl/308005015

    2010-01-01

    The thesis looks at developments in capacity, energy efficiency and CO2 emissions of fossil power generation. Fossil fuel combustion for power generation is responsible for 27% of total greenhouse gas emissions emitted globally in 2005. It is estimated that by implementing best available technology

  2. Multi-objective Generation Expansion Planning for Integrating Largescale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Kang, Chongqing

    2013-01-01

    Due to the growth of energy consumption, the extensive use of conventional fossil fuels from the exhaustible resources and the environmental concerns, high penetration of renewable energy resources is considerably observed worldwide. Wind power generation is holding the first rank in terms...... of utilization and importance. In the last decade, the growth rate of the global installed wind capacity has been about 30% per annum. Denmark, Germany, and Spain are the first few countries generating 20% of their electricity from wind turbines....

  3. Increasing the capacity of distributed generation in electricity networks by intelligent generator control

    OpenAIRE

    Aristides E. Kiprakis

    2005-01-01

    The rise of environmental awareness as well as the unstable global fossil fuel market has brought about government initiatives to increase electricity generation from renewable energy sources. These resources tend to be geographically and electrically remote from load centres. Consequently many Distributed Generators (DGs) are expected to be connected to the existing Distribution Networks (DNs), which have high impedance and low X/R ratios. Intermittence and unpredictability of the vario...

  4. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States

    Directory of Open Access Journals (Sweden)

    D. P. Turner

    2007-08-01

    Full Text Available Bottom-up scaling of net ecosystem production (NEP and net biome production (NBP was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2 in the western United States. Landsat resolution (30 m remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980–2002 of distributed meteorology (1 km resolution at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC. For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m−2 yr−1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996–2000, mean NEP for the study area was 17.0 TgC yr−1, with strong interannual variation (SD of 10.6. The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr−1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002

  5. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States

    Science.gov (United States)

    Turner, D. P.; Ritts, W. D.; Law, B. E.; Cohen, W. B.; Yang, Z.; Hudiburg, T.; Campbell, J. L.; Duane, M.

    2007-08-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2) in the western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980-2002) of distributed meteorology (1 km resolution) at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC). For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m-2 yr-1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996-2000, mean NEP for the study area was 17.0 TgC yr-1, with strong interannual variation (SD of 10.6). The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr-1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002 because of the combination of a dry climate year and a large (200 000 ha) fire. These results highlight

  6. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    Science.gov (United States)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2016-10-01

    Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H

  7. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    Directory of Open Access Journals (Sweden)

    X. Fan

    2016-10-01

    Full Text Available Humic-like substances (HULIS in smoke fine particulate matter (PM2.5 emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch and fossil fuels (lignite coal and diesel fuel were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV–vis (ultraviolet–visible spectroscopy, excitation–emission matrix (EEM fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2–23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0–21.7 and 56.9–66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for  ∼  0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV–vis spectra, a distinct band at λex∕λem ≈  280∕350 nm in EEM spectra, lower H ∕ C and O ∕ C molar ratios, and a high content of [Ar–H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS

  8. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method

    Directory of Open Access Journals (Sweden)

    I. Salma

    2017-11-01

    Full Text Available An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC, organic carbon (OC, levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m−3, respectively. The EC and organic matter (1.6  ×  OC accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF combustion represented 36 % of the total carbon (TC  =  EC + OC in the PM2.5 size fraction. Biomass burning (BB was a major source (40 % for the OC in the PM2.5 size fraction, and a substantial source (11 % for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon–levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as

  9. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains.

    Science.gov (United States)

    Kumar, Ajay; Demirel, Yasar; Jones, David D; Hanna, Milford A

    2010-05-01

    Thermochemical gasification is one of the most promising technologies for converting biomass into power, fuels and chemicals. The objectives of this study were to maximize the net energy efficiency for biomass gasification, and to estimate the cost of producing industrial gas and combined heat and power (CHP) at a feedrate of 2000kg/h. Aspen Plus-based model for gasification was combined with a CHP generation model, and optimized using corn stover and dried distillers grains with solubles (DDGS) as the biomass feedstocks. The cold gas efficiencies for gas production were 57% and 52%, respectively, for corn stover and DDGS. The selling price of gas was estimated to be $11.49 and $13.08/GJ, respectively, for corn stover and DDGS. For CHP generation, the electrical and net efficiencies were as high as 37% and 88%, respectively, for corn stover and 34% and 78%, respectively, for DDGS. The selling price of electricity was estimated to be $0.1351 and $0.1287/kWh for corn stover and DDGS, respectively. Overall, high net energy efficiencies for gas and CHP production from biomass gasification can be achieved with optimized processing conditions. However, the economical feasibility of these conversion processes will depend on the relative local prices of fossil fuels. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Social preferences toward energy generation with woody biomass from public forests in Montana, USA

    Science.gov (United States)

    Robert M. Campbell; Tyron J. Venn; Nathaniel M. Anderson

    2016-01-01

    In Montana, USA, there are substantial opportunities for mechanized thinning treatments on public forests to reduce the likelihood of severe and damaging wildfires and improve forest health. These treatments produce residues that can be used to generate renewable energy and displace fossil fuels. The choice modeling method is employed to examine the marginal...

  11. A very high-resolution (1 km×1 km global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights

    Directory of Open Access Journals (Sweden)

    S. Maksyutov

    2011-01-01

    Full Text Available Emissions of CO2 from fossil fuel combustion are a critical quantity that must be accurately given in established flux inversion frameworks. Work with emerging satellite-based inversions requires spatiotemporally-detailed inventories that permit analysis of regional natural sources and sinks. Conventional approaches for disaggregating national emissions beyond the country and city levels based on population distribution have certain difficulties in their application. We developed a global 1 km×1 km annual fossil fuel CO2 emission inventory for the years 1980–2007 by combining a worldwide point source database and satellite observations of the global nightlight distribution. In addition to estimating the national emissions using global energy consumption statistics, emissions from point sources were estimated separately and were spatially allocated to exact locations indicated by the point source database. Emissions from other sources were distributed using a special nightlight dataset that had fewer saturated pixels compared with regular nightlight datasets. The resulting spatial distributions differed in several ways from those derived using conventional population-based approaches. Because of the inherent characteristics of the nightlight distribution, source regions corresponding to human settlements and land transportation were well articulated. Our distributions showed good agreement with a high-resolution inventory across the US at spatial resolutions that were adequate for regional flux inversions. The inventory can be extended to the future using updated data, and is expected to be incorporated into models for operational flux inversions that use observational data from the Japanese Greenhouse Gases Observing SATellite (GOSAT.

  12. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  13. Semiconductor thermoelectric generators

    CERN Document Server

    Fahrner, Wolfgang R

    2009-01-01

    It is well-known that fossil fuels are being rapidly depleted, and that atomic power is rejected by many people. As a consequence, there is a strong trend towards alternative sources such as wind, photovoltaics, solar heat and biomass. Strangely enough, quite another power source is generally neglected: namely, the thermoelectric generator (a device which converts heat, i.e. thermal energy, directly into electrical energy). The reason for this neglect is probably the low conversion efficiency, which is of the order of a few percent at most. However, there are two arguments in favor of the ther

  14. Electric power monthly with data for December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  15. Electric power monthly, May 1995 with data for February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisiommakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuel, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  16. Electric power monthly, June 1995 with data for March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-19

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 68 tabs.

  17. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  18. Electric power monthly, December 1997 with data for September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  19. Electric power monthly, June 1998, with data for March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and Us levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 5 refs., 57 tabs.

  20. Electric power monthly with data for October 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics are published on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. A monthly utility update and summary of industry developments are also included. 63 tabs., 1 fig.

  1. Electric power monthly with data for August 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 1 fig., 63 tabs.

  2. Electric power monthly, July 1999, with data for April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the Electric Power Monthly (EPM). This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 1 fig., 64 tabs.

  3. Electric power monthly with data for January 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  4. Electric power monthly with data for October 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  5. Electric power monthly, September 1996, with data for June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  6. Electric power monthly, December 1996 with data for September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The report presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  7. NET-VISA, a Bayesian method next-generation automatic association software. Latest developments and operational assessment.

    Science.gov (United States)

    Le Bras, Ronan; Kushida, Noriyuki; Mialle, Pierrick; Tomuta, Elena; Arora, Nimar

    2017-04-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been developing a Bayesian method and software to perform the key step of automatic association of seismological, hydroacoustic, and infrasound (SHI) parametric data. In our preliminary testing in the CTBTO, NET_VISA shows much better performance than its currently operating automatic association module, with a rate for automatic events matching the analyst-reviewed events increased by 10%, signifying that the percentage of missed events is lowered by 40%. Initial tests involving analysts also showed that the new software will complete the automatic bulletins of the CTBTO by adding previously missed events. Because products by the CTBTO are also widely distributed to its member States as well as throughout the seismological community, the introduction of a new technology must be carried out carefully, and the first step of operational integration is to first use NET-VISA results within the interactive analysts' software so that the analysts can check the robustness of the Bayesian approach. We report on the latest results both on the progress for automatic processing and for the initial introduction of NET-VISA results in the analyst review process

  8. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    Science.gov (United States)

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  9. Generation of high-resolution wind fields from the dense meteorological station network WegenerNet in South-Eastern Austria

    Science.gov (United States)

    Schlager, Christoph; Kirchengast, Gottfried; Fuchsberger, Jürgen

    2016-04-01

    To investigate weather and climate on a local scale as well as for evaluating regional climate models (RCMs) the Wegener Center at the University of Graz established the long-term field experiment WegenerNet Feldbach region, a dense grid of 153 meteorological stations. The observations of these stations are managed by an automatic WegenerNet Processing system. This system includes a quality check of collected observations and a Data Product Generator (DPG), among other subsystems. Products already implemented in the DPG are gridded weather and climate products, generated from the main parameters temperature, precipitation and relative humidity (Kirchengast et. al., Bull. Amer. Meteor. Soc., 95, 227-242, 2014). Missing elements are gridded wind fields from wind observations. Wind is considered as one of the most difficult meteorological variables to model and depends on many different parameters such as topography and surface roughness. Therefore a simple interpolation can only be performed in case of uniform characteristics of landscape. The presentation introduces our method of generation of wind fields from near real-time observations of the WegenerNet. Purpose of this work is to provide a database with 3D wind fields in a high spatial and time resolution as addition to the existing products, for evaluating convection permitting climate models as well as investigating weather and climate on a local scale. Core of the application is the diagnostic California Meteorological Model (CALMET). This model computes 3D wind fields based on meteorological observational data, a digital elevation model and land use categories. The application generates the required input files from meteorological stations of the WegenerNet Feldbach region and triggers the start of the CALMET model with these input files. In a next step the modeled wind fields are stored automatically every 30 minutes with a spatial resolution of 100 x 100 m in the WegenerNet database. To verify the

  10. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  11. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  12. Hydrogen: A real alternative to fossil fuels and bio fuels in the Spanish vehicle industry; El Hidrogeno: Una alternativa real a los combustible fosiles y a los biocombustible para automoacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sobrino, F.; Rodriguez-Monroy, C.; Hernandez-Perez, J. L.

    2010-07-01

    For several years, UE has been trying to increase the use of bio fuels to replace petrol or diesel in the transports with the aim of fulfilling a commitment about climate change, supplying environmentally friendly conditions, promoting renewable energy sources. To achieve this, the 2003/30/EC Directive states that in all the European countries, before 31st December 2010, at least 5.75% of all petrol and diesel fuels used for transport are bio fuels. In previous papers, the authors evaluated this possibility. Analyzing hydrogen as replacement of fossil fuels and bio fuels nowadays in spain and a technical,economic and environmental point of view is the aim of this paper. (Author)

  13. Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape

    Science.gov (United States)

    Peters, Emily B.; McFadden, Joseph P.

    2012-09-01

    In a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA, we simultaneously measured net CO2 exchange of trees using sap flow and leaf gas exchange measurements, net CO2exchange of a turfgrass lawn using eddy covariance from a portable tower, and total surface-atmosphere CO2 fluxes (FC) using an eddy covariance system on a tall tower. Two years of continuous measurements showed that net CO2exchange varied among vegetation types, with the largest growing-season (Apr-Nov) net CO2 uptake on a per cover area basis from evergreen needleleaf trees (-603 g C m-2), followed by deciduous broadleaf trees (-216 g C m-2), irrigated turfgrass (-211 g C m-2), and non-irrigated turfgrass (-115 g C m-2). Vegetation types showed seasonal patterns of CO2exchange similar to those observed in natural ecosystems. Scaled-up net CO2 exchange from vegetation and soils (FC(VegSoil)) agreed closely with landscape FC measurements from the tall tower at times when fossil fuel emissions were at a minimum. Although FC(VegSoil) did not offset fossil fuel emissions on an annual basis, the temporal pattern of FC(VegSoil) did significantly alter the seasonality of FC. Total growing season FC(VegSoil)in recreational land-use areas averaged -165 g C m-2 and was dominated by turfgrass CO2 exchange (representing 77% of the total), whereas FC(VegSoil) in residential areas averaged -124 g C m-2 and was dominated by trees (representing 78% of the total). Our results suggest urban vegetation types can capture much of the variability required to predict seasonal patterns and differences in FC(VegSoil) that could result from changes in land use or vegetation composition in temperate cities.

  14. The HLA-net GENE[RATE] pipeline for effective HLA data analysis and its application to 145 population samples from Europe and neighbouring areas.

    Science.gov (United States)

    Nunes, J M; Buhler, S; Roessli, D; Sanchez-Mazas, A

    2014-05-01

    In this review, we present for the first time an integrated version of the Gene[rate] computer tools which have been developed during the last 5 years to analyse human leukocyte antigen (HLA) data in human populations, as well as the results of their application to a large dataset of 145 HLA-typed population samples from Europe and its two neighbouring areas, North Africa and West Asia, now forming part of the Gene[va] database. All these computer tools and genetic data are, from now, publicly available through a newly designed bioinformatics platform, HLA-net, here presented as a main achievement of the HLA-NET scientific programme. The Gene[rate] pipeline offers user-friendly computer tools to estimate allele and haplotype frequencies, to test Hardy-Weinberg equilibrium (HWE), selective neutrality and linkage disequilibrium, to recode HLA data, to convert file formats, to display population frequencies of chosen alleles and haplotypes in selected geographic regions, and to perform genetic comparisons among chosen sets of population samples, including new data provided by the user. Both numerical and graphical outputs are generated, the latter being highly explicit and of publication quality. All these analyses can be performed on the pipeline after scrupulous validation of the population sample's characterisation and HLA typing reporting according to HLA-NET recommendations. The Gene[va] database offers direct access to the HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and -DPB1 frequencies and summary statistics of 145 population samples having successfully passed these HLA-NET 'filters', and representing three European subregions (South-East, North-East and Central-West Europe) and two neighbouring areas (North Africa, as far as Sudan, and West Asia, as far as South India). The analysis of these data, summarized in this review, shows a substantial genetic variation at the regional level in this continental area. These results have main implications for population genetics

  15. The Future of Electricity Generation in New Zealand

    OpenAIRE

    Bishop, Phil; Bull, Brian

    2008-01-01

    Increasing demand for electricity in New Zealand requires approximately 150 megawatts of new capacity to be installed annually. Rapidly increasing global prices for fossil fuels; the New Zealand Energy Strategy with its focus on renewable technologies; climate change policies; and a gradual shift from an energy constrained electricity system to one with capacity constraints are all factors underlying a change in the type of generation plant being installed and the location of that plant. This...

  16. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  17. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  18. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  19. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  20. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; hide

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.