Sample records for net fluid transport

  1. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis. (United States)

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J


    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  2. Fluid transport due to nonlinear fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard Jensen, J.


    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.


    Energy Technology Data Exchange (ETDEWEB)



    We became the acknowledged world leaders in the science fundamentals of the technology of water lubricated pipelines focusing on stability, numerical and experimental studies. We completed the first direct numerical simulation of axisymmetric core flow. We showed that the pressure at the front of the wave is large (the fluid enters a converging region) and it pushes the interface in, steepening the wave at its front. At the backside of the wave, behind the crest, the pressure is low (diverging flow) and it pulls the interface to the wall, smoothing the backside of the wave. The steepening of the wave can be regarded as a shock up by inertia and it shows that dynamics works against the formation of long waves which are often assumed but not justified in the analysis of such problems. We showed that the steep wave persists even as the gap between the core and the wall decreases to zero. The wave length also decreases in proportion, so that the wave shape is preserved in this limit. This leads to the first mathematical solution giving rise sharkskin. The analysis also showed that there is a threshold Reynolds number below which the total force reckoned relative to a zero at the wave crest is negative, positive above, and we conjectured, therefore that inertia is required to center a density matched core and to levitate the core off the wall when the density is not matched. Other work relates to self-lubricated transport of bitumen froth and self-lubricated transport of bitumen froth.

  4. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard


    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...


    Directory of Open Access Journals (Sweden)

    Elisabeta Mihaela CIORTEA


    Full Text Available Purpose of the paper is to analyze the Petri net model, to describe the transport process, part of amanufacturing system and its dynamics.A hibrid Petri net model is built to describe the dinamics of the transport process manufacturingsystem. Mathematical formulation of the dinamycs processes a detailed description. Based on this model, theanalysis of the transport process is designed to be able to execute a production plan and resolve any conflictsthat may arise in the system.In the analysis dinamics known two stages: in the continuous variables are discrete hybrid system in thehibrid discrete variables are used as safety control with very well defined responsibilities.In terms of the chosen model, analyze transport process is designed to help execute a production planand resolve conflicts that may arise in the process, and then the ones in the system

  6. Annual variation in the net longshore sediment transport rate

    CSIR Research Space (South Africa)

    Schoonees, JS


    Full Text Available from wave data spanning a number of years, or by measuring continuously the longshore transport over a number of years. In both cases, it must be known over how many consecutive years either the computations or the measurements should be done. Ž... the annual variation in the net longshore transport rates over a period of 7 years. In a study Ž . Žby Shi-Leng and Teh-Fu 1987 , a longshore sediment transport formula the Bijker, .1967 method was calibrated against short-term measurements at Nouakchott...

  7. Net transport of suspended matter due to tidal straining (United States)

    Jones, S. E.; Jago, C. F.; Simpson, J. H.; Rippeth, T. P.


    Net transport of suspended particulate matter (SPM) is well-known in tidal regions where there is time-velocity asymmetry due to frictional modification of the tide in shallow water. We present here observations which show a new mechanism for net flux of SPM in response to tidal straining in a region of freshwater influence (ROFI). In situ measurements of the particle size of suspended particulate matter (SPM) and turbulent energy dissipation have been made at a site in Liverpool Bay (Irish Sea) where there is significant resuspension of particles from the muddy sand substrate during spring tides. This is a ROFI where tidal straining dominates the temporal development of turbulence. On a spring tide the water column tries to stratify on the ebb and destratify on the flood, but these tendencies are masked by mixing due to tidal stirring. Nevertheless, there is a marked excess of TKE dissipation rate E on the flood, especially in the upper part of the water column. Resuspension occurs on both flood and ebb, but SPM flux is strongly asymmetric with a net shorewards component. Asymmetry is most pronounced for the larger particles which comprise most of the mass. Enhanced ? on the flood mixes large particles upwards into faster flowing water, which increases the flux. Comparable upwards mixing of large particles does not occur on the ebb where enhanced E is confined to slower bottom waters. The net flux is not seen on neap tides because, although there is more stratification due to tidal straining, there is essentially no resuspension. The net flux on springs is undoubtedly an important component of SPM transport (and any comparable particulates) in coastal regions.

  8. Chemically driven fluid transport in long microchannels (United States)

    Shen, Mingren; Ye, Fangfu; Liu, Rui; Chen, Ke; Yang, Mingcheng; Ripoll, Marisol


    Chemical gradients maintained along surfaces can drive fluid flows by diffusio-osmosis, which become significant at micro- and nano-scales. Here, by means of mesoscopic simulations, we show that a concentration drop across microchannels with periodically inhomogeneous boundary walls can laterally transport fluids over arbitrarily long distances along the microchannel. The driving field is the secondary local chemical gradient parallel to the channel induced by the periodic inhomogeneity of the channel wall. The flow velocity depends on the concentration drop across the channel and the structure and composition of the channel walls, but it is independent of the overall channel length. Our work thus presents new insight into the fluid transport in long microchannels commonly found in nature and is useful for designing novel micro- or nano-fluidic pumps.

  9. Tide-driven fluid mud transport in the Ems estuary (United States)

    Becker, Marius; Maushake, Christian; Winter, Christian


    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and

  10. Effect of osmolality on net fluid absorption in non-infected and ETEC-infected piglet small intestinal segments

    NARCIS (Netherlands)

    Kiers, J.L.; Hoogendoorn, A.; Nout, M.J.R.; Rombouts, F.M.; Nabuurs, M.J.A.; Meulen, van der J.


    In the small intestinal segment perfusion model the effect of osmolality on net fluid absorption in enterotoxigenic Escherichia coli (ETEC)-infected and non-infected small intestinal segments of piglets was investigated. In ETEC-infected segments net fluid absorption was reduced. Lowering the

  11. ER fluid applications to vibration control devices and an adaptive neural-net controller (United States)

    Morishita, Shin; Ura, Tamaki


    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  12. Molecular dynamics simulations of microscale fluid transport

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.


    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  13. Characterization of fluid transport in microscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H.


    A new tool for imaging both scalar transport and velocity fields in liquid flows through microscale structures is described. The technique employs an ultraviolet laser pulse to write a pattern into the flow by uncaging a fluorescent dye. This is followed, at selected time delays, by flood illumination with a pulse of visible light which excites the uncaged dye. The resulting fluorescence image collected onto a sensitive CCD camera. The instrument is designed as an oil immersion microscope to minimize the beam steering effects. The caged fluorescent dye is seeded in trace quantities throughout the active fluid, thus images with high contrast and minimal distortion due to any molecular diffusion history can be obtained at any point within the microchannel by selectivity activating the dye in the immediate region of interest. The author reports images of pressure- and electrokinetically-driven steady flow within round cross section capillaries having micron scale inner diameters. The author also demonstrates the ability to recover the velocity profile from a time sequence of these scalar images by direct inversion of the conserved scalar advection-convection equation.

  14. Transport phenomena in Newtonian fluids a concise primer

    CERN Document Server

    Olsson, Per


    This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum.  The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid.  Also provided at

  15. Observations on the decay of a thermocline in a rock bed with no net fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, D.E.; Clark, J.A.; Holstege, M.J.


    The transient thermal response of a rock bed with no net fluid flow is examined following all-day charging under clear sky conditions. The experimental system consists of 1.86 m/sup 2/ (20 ft/sup 2/) of flat-plate solar collectors using air as the working fluid, a flow control system, and a 0.357 m/sup 3/ (12.6 ft/sup 3/) rock bed for thermal energy storage. A thermocline is established in the bed during charging due to the timevarying nature of the collector outlet temperature. Experimental measurements of the temperature distribution in the bed for a 13-hour stagnation period allow a preliminary estimate of the loss of available energy in the storage medium. The net loss in thermodynamic availability is 30 percent. Since the temperatures in the upper regions of the bed are lower than those in the central regions at the end of charging under clear sky conditions, the possibility of natural convection motion of the fluid in the bed exists. An ''apparent'' local thermal diffusivity is calculated and from comparison with stagnant bed values indicates that natural convection motion may occur in the upper regions of the bed.

  16. Material transport of a magnetizable fluid by surface perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Böhm, V. [Faculty of Mechanical Engineering, Ilmenau University of Technology, Ilmenau D-98693 (Germany); Naletova, V.A. [Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Vorobyovy gory, 119899 Moscow (Russian Federation); Popp, J. [Faculty of Mechanical Engineering, Ilmenau University of Technology, Ilmenau D-98693 (Germany); Zeidis, I., E-mail: [Faculty of Mechanical Engineering, Ilmenau University of Technology, Ilmenau D-98693 (Germany); Zimmermann, K. [Faculty of Mechanical Engineering, Ilmenau University of Technology, Ilmenau D-98693 (Germany)


    Within the research for apedal, contour variable locomotion systems, the influence of an alternating magnetic field on the shape of the free surface of a magnetizable fluid (magnetic fluid) is studied. In the framework of the Stokes approximation, for the case where the amplitude of the alternating component of the applied magnetic field is much less than the magnitude of the permanent component, it is shown analytically that a periodical traveling applied magnetic field can generate a transport of the fluid in a prescribed direction. Numerical computations are performed to calculate and analyze the flow rate of the fluid as a function of the parameters of the field and the fluid. This effect can be used in fluid transporting engineering mini- and microsystems. - Highlights: • The influence of a magnetic field on the shape of a magnetic fluid is studied. • A periodical traveling magnetic field can generate a transport of the fluid. • This effect can be used in fluid transporting engineering mini- and microsystems.

  17. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly*,**

    Directory of Open Access Journals (Sweden)

    Megías Eugenio


    Full Text Available We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

  18. Multiscale modeling of fluid transport in tumors. (United States)

    Chapman, S Jonathan; Shipley, Rebecca J; Jawad, Rossa


    A model for fluid flow through the leaky neovasculature and porous interstitium of a solid tumor is developed. A network of isolated capillaries is analyzed in the limit of small capillary radius, and analytical expressions for the hydraulic conductivities and fractional leakage coefficients derived. This model is then homogenized to give a continuum description in terms of the vascular density. The resulting equations comprise a double porous medium with coupled Darcy flow through the interstitium and vasculature.

  19. Electrokinetically modulated peristaltic transport of power-law fluids. (United States)

    Goswami, Prakash; Chakraborty, Jeevanjyoti; Bandopadhyay, Aditya; Chakraborty, Suman


    The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Application of transport phenomena analysis technique to cerebrospinal fluid. (United States)

    Lam, C H; Hansen, E A; Hall, W A; Hubel, A


    The study of hydrocephalus and the modeling of cerebrospinal fluid flow have proceeded in the past using mathematical analysis that was very capable of prediction phenomenonologically but not well in physiologic parameters. In this paper, the basis of fluid dynamics at the physiologic state is explained using first established equations of transport phenomenon. Then, microscopic and molecular level techniques of modeling are described using porous media theory and chemical kinetic theory and then applied to cerebrospinal fluid (CSF) dynamics. Using techniques of transport analysis allows the field of cerebrospinal fluid dynamics to approach the level of sophistication of urine and blood transport. Concepts such as intracellular and intercellular pathways, compartmentalization, and tortuosity are associated with quantifiable parameters that are relevant to the anatomy and physiology of cerebrospinal fluid transport. The engineering field of transport phenomenon is rich and steeped in architectural, aeronautical, nautical, and more recently biological history. This paper summarizes and reviews the approaches that have been taken in the field of engineering and applies it to CSF flow.

  1. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L


    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  2. Prediction of transport and other physical properties of fluids

    CERN Document Server

    Bretsznajder, S


    Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con

  3. Analysis of Peristaltic Transport of Non-Newtonian Fluids Through Nonuniform Tubes: Rabinowitsch Fluid Model (United States)

    Singh, U. P.; Medhavi, Amit; Gupta, R. S.; Bhatt, Siddharth Shankar


    Peristaltic transport is an important mechanism of physiological phenomenon and peristaltic pumps. With the advancement of medical science, it has been established that the physiological fluids do not behave like Newtonian fluids. Therefore, in order to understand the behaviour and properties of physiological fluids during peristalsis, selection of appropriate fluid model is of great importance. In the present investigation, properties of peristaltic transport through nonuniform tube have been studied for non-Newtonian fluids using Rabinowitsch fluid model. Theoretical analysis has been presented for long wavelength and low Reynolds number approximation. To analyse various properties of the flow, analytical expressions for velocity, pressure gradient, pressure rise, friction force, and temperature have been obtained. The numerical results for the same have been obtained to present the effect of various physical and flow parameters on fluid velocity, pressure rise, friction force, and temperature. Significant variation of these properties has been observed in the analysis for non-Newtonian nature of the fluid and nonuniformity of the tube.

  4. The Taylor-Proudman column in a rapidly-rotating compressible fluid I. energy transports

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla University, Wonju (Korea, Republic of)


    A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. An examination is made of the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy flux content, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. A plausible argument is given to explain the difficulty in achieving the Taylor-Proudman column in a compressible rotating fluid. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy flux content.

  5. Fluid Petri Nets and hybrid model-checking: a comparative case study

    Energy Technology Data Exchange (ETDEWEB)

    Gribaudo, M.; Horvath, A.; Bobbio, A.; Tronci, E.; Ciancamerla, E.; Minichino, M


    The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison among the modeling power of well known tools can be carried out. Our approach is illustrated by means of a 'real world' hybrid system: the temperature control system of a co-generative plant.

  6. KM3NeT tower data acquisition and data transport electronics

    Directory of Open Access Journals (Sweden)

    Nicolau C.A.


    Full Text Available In the framework of the KM3Net European project, the production stage of a large volume underwater neutrino telescope has started. The forthcoming installation includes 8 towers and 24 strings, that will be installed 100 km off-shore Capo Passero (Italy at 3500 m depth. The KM3NeT tower, whose layout is strongly based on the NEMO Phase-2 prototype tower deployed in March 2013, has been re-engineered and partially re-designed in order to optimize production costs, power consumption, and usability. This contribution gives a description of the main electronics, including front-end, data transport and clock distribution system, of the KM3NeT tower detection unit.

  7. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.


    Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be

  8. Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene (United States)

    Lucas, Andrew; Crossno, Jesse; Fong, Kin Chung; Kim, Philip; Sachdev, Subir


    We develop a general hydrodynamic framework for computing direct current, thermal, and electric transport in a strongly interacting finite-temperature quantum system near a Lorentz-invariant quantum critical point. Our framework is nonperturbative in the strength of long-wavelength fluctuations in the background-charge density of the electronic fluid and requires the rate of electron-electron scattering to be faster than the rate of electron-impurity scattering. We use this formalism to compute transport coefficients in the Dirac fluid in clean samples of graphene near the charge neutrality point, and find results insensitive to long-range Coulomb interactions. Numerical results are compared to recent experimental data on thermal and electrical conductivity in the Dirac fluid in graphene and a substantially improved quantitative agreement over existing hydrodynamic theories is found. We comment on the interplay between the Dirac fluid and acoustic and optical phonons, and qualitatively explain the experimentally observed effects. Our work paves the way for quantitative contact between experimentally realized condensed matter systems and the wide body of high-energy inspired theories on transport in interacting many-body quantum systems.

  9. Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Mauro Pietribiasi

    Full Text Available The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters.The model follows a two-compartment structure (vascular and interstitial space and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP and the total hydraulic conductivity (LpS of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio.The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value.The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and fluid balance.


    Directory of Open Access Journals (Sweden)

    Marian Kučera


    Full Text Available Agricultural and transport equipment is ideally suited to use hydraulic oils. After engine oils, hydraulic fluids are the second most important group of lubricants. More than 85 % of these materials are currently mineral oil-based. In view of their high ecotoxicity and low biodegradability, mineral oil-based lubricants constitute a considerable threat to the environment. In contrast, most hydraulic fluids based on plant oils have a low environmental impact and are completely biodegradable. Moreover, lubricants based on plant oils display excellent tribological properties and generally have very high viscosity indices and flash points. For this reason, therefore, particularly soybean, sunflower and rapeseed seem to possess the relevant properties as a potential hydraulic fluid. There are several tribotechnical methods how to assess the current technical state of used lubricants (viscosity, water content, flash point, acidity. One of the modern methods how to detect wear particles is LaserNet Fines, which is a suitable technique for machine condition monitoring. The ageing of test oils is analysed by the Fourier transform infrared spectroscopy (FT-IR; for determining anti-wear properties of hydraulic oils, the standard STN EN ISO 20623:2004 indicates 1 hour under an applied load of 150 N. The objective of the paper is to show the description and examples of modern tribotechnical methods used for determination of the technical state of used biolubricants utilized in agriculture and transport machinery.

  11. What causes frictional behavior in fluid-mediated sediment transport? (United States)

    Pähtz, Thomas; Duran, Orencio


    Bagnoldian analytical models of sediment transport in Newtonian fluid (e.g., air or water) are based on Bagnold's assumption of a constant friction coefficient (particle-shear-pressure ratio, μ) at the interface (z = zb) between sediment bed and transport layer. In fact, this assumption is the main reason why these models predict the sediment load (which is the ratio between sediment transport rate and average particle velocity) to be proportional to the excess shear stress (τ - τt), a scaling that has been confirmed in many wind-tunnel and flume experiments. Here, using numerical simulations with the coupled DEM/RANS model of sediment transport in Newtonian fluid by Duran et al. (POF, 103306, 2012), we investigate the physical reasons for this frictional behavior. In the case of subaqueous transport, we find that a local rheology μ(I), where I is the viscous number, can explain most of the simulation data. However, this rheology breaks down for aeolian transport. In an attempt to unify these transport regimes, we propose a novel characterization of frictional behavior through the dimensionless parameter ζ = ⟨Fxcvx - Fzcvz⟩/⟨Fzcvx - Fxcvz⟩, where Fc is the contact force, v the particle velocity, and ⟨ṡ⟩ a local ensemble average. We analytically derive ζ ≈√3 - 1 for locations within the transport layer and slightly within the particle bed, where each derivation step and the final result are consistent with our numerical simulations throughout all simulated conditions. Our derivation is mainly based on the assumption that the conversion of horizontal kinetic particle energy into vertical kinetic particle energy in low-angle particle-bed impacts is the predominant collisional energy transformation process occurring in sediment transport. We then show that ζ(zs) ≈ μ(zs), where zs is the location at which the local production rate of particle fluctuation energy is maximal, and thus μ(zs) ≈√3- - 1. This final result, which explains the

  12. Measurements of fluid transport by controllable vertical migrations of plankton (United States)

    Houghton, Isabel A.; Dabiri, John O.


    Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.

  13. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)


    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  14. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids (United States)

    Chao, Benjamin F.


    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  15. Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid-heat-salt transport (United States)

    Wilson, A.; Ruppel, C.


    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  16. Effects of Channel Geometry and Coolant Fluid on Thermoelectric Net Power

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse; Sørensen, Kim


    generation in TEG for different size of hydraulic diameter of plate-fin heat sink and over a wide range of Reynolds number. The particular focus of this study is to find optimal Reynolds number in each considered channel hydraulic diameter and to explore optimal channel hydraulic diameter for maximum TEG net......, and the maximum net power output occurs at smaller Reynolds number when the channel hydraulic diameter reduces.......Channel geometry has a strong influence on the heat transfer coefficient and cooling energy input in a heat sink. The net power output in a thermoelectric generator (TEG) can be defined as power generation minus the required cooling energy in TEG. This study aims to evaluate the net power...

  17. Net sediment transport in tidal basins: quantifying the tidal barotropic mechanisms in a unified framework (United States)

    Gatto, Vincenzo Marco; van Prooijen, Bram Christiaan; Wang, Zheng Bing


    Net sediment transport in tidal basins is a subtle imbalance between large fluxes produced by the flood/ebb alternation. The imbalance arises from several mechanisms of suspended transport. Lag effects and tidal asymmetries are regarded as dominant, but defined in different frames of reference (Lagrangian and Eulerian, respectively). A quantitative ranking of their effectiveness is therefore missing. Furthermore, although wind waves are recognized as crucial for tidal flats' morphodynamics, a systematic analysis of the interaction with tidal mechanisms has not been carried out so far. We review the tide-induced barotropic mechanisms and discuss the shortcomings of their current classification for numerical process-based models. Hence, we conceive a unified Eulerian framework accounting for wave-induced resuspension. A new methodology is proposed to decompose the sediment fluxes accordingly, which is applicable without needing (semi-) analytical approximations. The approach is tested with a one-dimensional model of the Vlie basin, Wadden Sea (The Netherlands). Results show that lag-driven transport is dominant for the finer fractions (silt and mud). In absence of waves, net sediment fluxes are landward and spatial (advective) lag effects are dominant. In presence of waves, sediment can be exported from the tidal flats and temporal (local) lag effects are dominant. Conversely, sand transport is dominated by the asymmetry of peak ebb/flood velocities. We show that the direction of lag-driven transport can be estimated by the gradient of hydrodynamic energy. In agreement with previous studies, our results support the conceptualization of tidal flats' equilibrium as a simplified balance between tidal mechanisms and wave resuspension.

  18. Computational transport phenomena of fluid-particle systems

    CERN Document Server

    Arastoopour, Hamid; Abbasi, Emad


    This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...

  19. Geographic Information Systems-Transportation ISTEA management systems server-net prototype pooled fund study: Phase B summary

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, J. Jr.; Dean, C.D.; Armstrong, H.M. [and others


    The Geographic Information System-Transportation (GIS-T) ISTEA Management Systems Server Net Prototype Pooled Fund Study represents the first national cooperative effort in the transportation industry to address the management and monitoring systems as well as the statewide and metropolitan transportation planning requirements of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). The Study was initiated in November 1993 through the Alliance for Transportation Research and under the leadership of the New Mexico State Highway and Transportation Department. Sandia National Laboratories, an Alliance partner, and Geographic Paradigm Computing. Inc. provided technical leadership for the project. In 1992, the Alliance for Transportation Research, the New Mexico State Highway and Transportation Department, Sandia National Laboratories, and Geographic Paradigm Computing, Inc., proposed a comprehensive research agenda for GIS-T. That program outlined a national effort to synthesize new transportation policy initiatives (e.g., management systems and Intelligent Transportation Systems) with the GIS-T server net ideas contained in the NCHRP project {open_quotes}Adaptation of GIS to Transportation{close_quotes}. After much consultation with state, federal, and private interests, a project proposal based on this agenda was prepared and resulted in this Study. The general objective of the Study was to develop GIS-T server net prototypes supporting the ISTEA requirements for transportation planning and management and monitoring systems. This objective can be further qualified to: (1) Create integrated information system architectures and design requirements encompassing transportation planning activities and data. (2) Encourage the development of functional GIS-T server net prototypes. (3) Demonstrate multiple information systems implemented in a server net environment.

  20. Simulation of fluid, heat transport to estimate desert stream infiltration (United States)

    Kulongoski, J.T.; Izbicki, J.A.


    In semiarid regions, the contribution of infiltration from intermittent streamflow to ground water recharge may be quantified by comparing simulations of fluid and heat transport beneath stream channels to observed ground temperatures. In addition to quantifying natural recharge, streamflow infiltration estimates provide a means to characterize the physical properties of stream channel sediments and to identify suitable locations for artificial recharge sites. Rates of winter streamflow infiltration along stream channels are estimated based on the cooling effect of infiltrated water on streambed sediments, combined with the simulation of two-dimensional fluid and heat transport using the computer program VS2DH. The cooling effect of ground water is determined by measuring ground temperatures at regular intervals beneath stream channels and nearby channel banks in order to calculate temperature-depth profiles. Additional data inputs included the physical, hydraulic, and thermal properties of unsaturated alluvium, and monthly ground temperatures measurements over an annual cycle. Observed temperatures and simulation results can provide estimates of the minimum threshold for deep infiltration, the variability of infiltration along stream channels, and also the frequency of infiltration events.

  1. Petri Net Approach of Collision Prevention Supervisor Design in Port Transport System

    Directory of Open Access Journals (Sweden)

    Danko Kezić


    Full Text Available Modern port terminals are equipped with various localtransport systems, which have the main task to transport cargobetween local storehouses and transport resources (ships,trains, trucks in the fastest and most efficient way, and at thelowest possible cost. These local transport systems consist offully automated transport units (AGV- automatic guided vehiclewhich are controlled by the computer system. The portcomputer system controls the fully automated transport units inthe way to avoid possible deadlocks and collisions betweenthem. However, beside the fully automated local transportunits, there are human operated transport units (fork-lifttrucks, cranes etc. which cross the path oftheAGVfrom timeto time. The collision of human operated transp011 unit andA GV is possible due to human inattention. To solve this problem,it is necesswy to design a supe1vismy control system thatcoordinates and controls both human driven transport unit andA G V In other words, the human-machine interactions need tobe supen·ised. The supen•ising system can be realized in the waythat the port terminal is divided into zones. Vehicle movementsare supen•ised by a video system which detects the moving ofparticular l'ehicles as a discrete event. Based on detected events,dangerous moving of certain vehicles is blocked by the supe1visi11gsystem. The paper considers the design of collision preventionsupen•isor by using discrete event dynamic themy. The portterminal is modeled by using ordi1za1y Petri nets. The design ofcollision prevention supe1visor is cmTied out by using the P-inl'ariantmethod. The verification of the supervisor is done bycomputer simulation.

  2. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Møbjerg, N.; Sørensen, J. N.


    'blocking' of apical water channels and in 'aquaporin-null' simulation. Reduced rate of volume reabsorption in AQP(-/-) mice would also require decreased apical sodium permeability. Paracellular convection accounts for approx. 36% of the net Na+ absorption, and the model epithelium accomplishes uphill water...... simulates major physiological features of proximal tubule, including significantly lower water permeability of the AQP1-null preparation, and a ratio of net sodium uptake and oxygen consumption exceeding that predicted from stoichiometry of the Na+/K+-pump. Physical properties of interspace basement......Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species...

  3. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, E.H.; Møbjerg, N.; Sørensen, Jens Nørkær


    'blocking' of apical water channels and in 'aquaporin-null' simulation. Reduced rate of volume reabsorption in AQP(-/-) mice would also require decreased apical sodium permeability. Paracellular convection accounts for approx. 36% of the net Na+ absorption, and the model epithelium accomplishes uphill water...... simulates major physiological features of proximal tubule, including significantly lower water permeability of the AQP1-null preparation, and a ratio of net sodium uptake and oxygen consumption exceeding that predicted from stoichiometry of the Na+/K+-pump. Physical properties of interspace basement......Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species...

  4. Rotational effects of polymeric fluids on shape of filaments in melt extruded net structures

    CSIR Research Space (South Africa)

    Rawal, A


    Full Text Available The present work deals with the net structures, which are produced by replacing the static die (spinneret) with two concentric dies rotating in opposite directions in a melt extrusion process. These dies consist of defined number of slots with non...

  5. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo. (United States)

    Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H


    The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it

  6. Multiphysical modelling of fluid transport through osteo-articular media

    Directory of Open Access Journals (Sweden)

    Thibault Lemaire


    Full Text Available In this study, a multiphysical description of fluid transport through osteo-articular porous media is presented. Adapted from the model of Moyne and Murad, which is intended to describe clayey materials behaviour, this multiscale modelling allows for the derivation of the macroscopic response of the tissue from microscopical information. First the model is described. At the pore scale, electrohydrodynamics equations governing the electrolyte movement are coupled with local electrostatics (Gauss-Poisson equation, and ionic transport equations. Using a change of variables and an asymptotic expansion method, the macroscopic description is carried out. Results of this model are used to show the importance of couplings effects on the mechanotransduction of compact bone remodelling.Neste estudo uma descrição multifísica do transporte de fluidos em meios porosos osteo articulares é apresentada. Adaptado a partir do modelo de Moyne e Murad proposto para descrever o comportamento de materiais argilosos a modelagem multiescala permite a derivação da resposta macroscópica do tecido a partir da informação microscópica. Na primeira parte o modelo é apresentado. Na escala do poro as equações da eletro-hidrodinâmica governantes do movimento dos eletrolitos são acopladas com a eletrostática local (equação de Gauss-Poisson e as equações de transporte iônico. Usando uma mudança de variáveis e o método de expansão assintótica a derivação macroscópica é conduzida. Resultados do modelo proposto são usados para salientar a importância dos efeitos de acoplamento sobre a transdução mecânica da remodelagem de ossos compactados.

  7. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores (United States)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan


    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  8. Building waste management core indicators through Spatial Material Flow Analysis: net recovery and transport intensity indexes. (United States)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier


    In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. (United States)

    Sánchez, J M; Li, Y; Rubashkin, A; Iserovich, P; Wen, Q; Ruberti, J W; Smith, R W; Rittenband, D; Kuang, K; Diecke, F P J; Fischbarg, J


    The mechanism of transepithelial fluid transport remains unclear. The prevailing explanation is that transport of electrolytes across cell membranes results in local concentration gradients and transcellular osmosis. However, when transporting fluid, the corneal endothelium spontaneously generates a locally circulating current of approximately 25 microA cm(-2), and we report here that electrical currents (0 to +/-15 microA cm(-2)) imposed across this layer induce fluid movements linear with the currents. As the imposed currents must be approximately 98% paracellular, the direction of induced fluid movements and the rapidity with which they follow current imposition (rise time osmosis driven by sodium movement across the paracellular pathway. The value of the coupling coefficient between current and fluid movements found here (2.37 +/- 0.11 microm cm(2) hr(-1) microA (-1), suggests that: 1) the local endothelial current accounts for spontaneous transendothelial fluid transport; 2) the fluid transported becomes isotonically equilibrated. Ca(++)-free solutions or endothelial damage eliminate the coupling, pointing to the cells and particularly their intercellular junctions as a main site of electro-osmosis. The polycation polylysine, which is expected to affect surface charges, reverses the direction of current-induced fluid movements. Fluid transport is proportional to the electrical resistance of the ambient medium. Taken together, the results suggest that electro-osmosis through the intercellular junctions is the primary process in a sequence of events that results in fluid transport across this preparation.

  10. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    Energy Technology Data Exchange (ETDEWEB)

    Font Vivanco, David, E-mail: [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)


    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  11. Fluid Transport in Porous Media for Engineering Applications (United States)

    Benner, Eric Michael

    This doctoral dissertation presents three topics in modeling fluid transport through porous media used in engineering applications. The results provide insights into the design of fuel cell components, catalyst and drug delivery particles, and aluminum- based materials. Analytical and computational methods are utilized for the modeling of the systems of interest. Theoretical analysis of capillary-driven transport in porous media show that both geometric and evaporation effects significantly change the time dependent behavior of liquid imbibition and give a steady state flux into the medium. The evaporation-capillary number is significant in determining the time-dependent behavior of capillary flows in porous media. The analytical solutions for the front position for 1D and 2D capillary flows and under normal evaporation agree with experimental results. The lattice Boltzmann method (LBM) is used for versatile and flexible modeling of pore-scale phenomena in porous media. The LBM is used to show the the effects of various physical phenomena, such as multiphase, electrochemical, and dissolution, on pitting corrosion of aluminum surfaces in corrosive environments. In particular, each of these phenomena may spontaneously manifest phenomenological asymmetries that influence the growth of the corroding pit. Fluid motion in bimodal porous particles shows heterogeneous flow behavior in the medium. A brief discussion is given on implementations of parallel lattice Boltzmann schemes for future increase in simulation model capabilities. Each of these topic areas may be extended by further combining models of important physical phenomena. In the appendices, additional prospective results are overviewed. The font shape of capillary wicking from a finite line source into a 2D domain agrees qualitatively with empirical observations. A discussion of the background and application of the LBM to stress corrosion cracking in aluminum is given, where we show that thin cracks will

  12. Collisional transport across the magnetic field in drift-fluid models

    DEFF Research Database (Denmark)

    Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry


    altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence......Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...

  13. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard


    In the present work, we developed a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. The numerical model is based on the coupling between the porous media model and the lumped mass structural model. A novel interface was implemented...... was approximated by a set of dynamic porous zones, where the grid cells were updated at every iteration based on the transferred nodal positions from the structural model. A time stepping procedure was introduced, so the solver is applicable in both steady and unsteady conditions. In order to reduce...... the computational effort, sub-cycling was applied for the structural solver within each time step, based on the quasi-steady state assumption. The numerical model was validated against experiments in both steady and unsteady conditions. In general, the agreement is satisfactory....

  14. Brain washing: Transport of cerebral extracellular fluids and solutes


    Bedussi, B.


    Regulation of extracellular volume and fluid composition provides a robust microenvironment for brain cells. In peripheral tissue, fluid surplus and solutes are removed from the interstitium via drainage into lymphatic channels. Since the central nervous system lacks a proper lymphatic vasculature, a substantial part of this drainage may occur along paravascular spaces. The aim of the thesis was to investigate the physiology of brain extracellular fluids and their possible role in the removal...

  15. Brain washing : Transport of cerebral extracellular fluids and solutes

    NARCIS (Netherlands)

    Bedussi, B.


    Regulation of extracellular volume and fluid composition provides a robust microenvironment for brain cells. In peripheral tissue, fluid surplus and solutes are removed from the interstitium via drainage into lymphatic channels. Since the central nervous system lacks a proper lymphatic vasculature,

  16. Microscale fluid transport using optically controlled marangoni effect (United States)

    Thundat, Thomas G [Knoxville, TN; Passian, Ali [Knoxville, TN; Farahi, Rubye H [Oak Ridge, TN


    Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

  17. The Shiga toxin 2 B subunit inhibits net fluid absorption in human colon and elicits fluid accumulation in rat colon loops

    Directory of Open Access Journals (Sweden)

    V. Pistone Creydt


    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis, and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.

  18. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture (United States)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.


    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  19. A kinetic Monte Carlo approach to study fluid transport in pore networks (United States)

    Apostolopoulou, M.; Day, R.; Hull, R.; Stamatakis, M.; Striolo, A.


    The mechanism of fluid migration in porous networks continues to attract great interest. Darcy's law (phenomenological continuum theory), which is often used to describe macroscopically fluid flow through a porous material, is thought to fail in nano-channels. Transport through heterogeneous and anisotropic systems, characterized by a broad distribution of pores, occurs via a contribution of different transport mechanisms, all of which need to be accounted for. The situation is likely more complicated when immiscible fluid mixtures are present. To generalize the study of fluid transport through a porous network, we developed a stochastic kinetic Monte Carlo (KMC) model. In our lattice model, the pore network is represented as a set of connected finite volumes (voxels), and transport is simulated as a random walk of molecules, which "hop" from voxel to voxel. We simulated fluid transport along an effectively 1D pore and we compared the results to those expected by solving analytically the diffusion equation. The KMC model was then implemented to quantify the transport of methane through hydrated micropores, in which case atomistic molecular dynamic simulation results were reproduced. The model was then used to study flow through pore networks, where it was able to quantify the effect of the pore length and the effect of the network's connectivity. The results are consistent with experiments but also provide additional physical insights. Extension of the model will be useful to better understand fluid transport in shale rocks.

  20. Development and testing of heat transport fluids for use in active solar heating and cooling systems (United States)

    Parker, J. C.


    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  1. Center for low-gravity fluid mechanics and transport phenomena (United States)

    Kassoy, D. R.; Sani, R. L.


    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  2. Peristaltic transport of a Jeffrey fluid in contact with a Newtonian fluid in an inclined channel

    Directory of Open Access Journals (Sweden)

    A. Kavitha


    Full Text Available The peristaltic flow of a Jeffrey fluid in contact with a Newtonian fluid in an inclined symmetric channel is analyzed under the assumptions of long wavelength and low Reynolds number. The channel is inclined at angle of β with the horizontal. This model is useful to understand the two fluid flow behaviors in physiological systems. The velocity field, stream function, interface shape, pressure rise and frictional force at the wall over one cycle of wavelength are obtained and the results are shown graphically. It is observed that the variation of the interface shape gives rise to thinner peripheral region with increasing Jeffrey parameter λ1.

  3. Transport properties of supercritical fluids and their binary mixtures

    CERN Document Server

    Luedemann, H D


    The molecular dynamics of the two supercritical fluids most applied in industry and some of their mixtures are characterized by their self-diffusion coefficients D sub i , measured by high pressure high resolution nuclear magnetic resonance with the strengthened glass cell technique. The technical details of the apparatus will be given. The fluids studied are carbon dioxide and ammonia. For CO sub 2 , mixtures with C sub 6 H sub 6 , H sub 2 , CH sub 3 COOH and CH sub 3 OH were investigated. The NH sub 3 mixtures include C sub 6 H sub 6 , (CH sub 3) sub 3 N, CH sub 3 CN and CH sub 3 OH.

  4. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten


    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  5. Vorticity transport in shock driven plasma flows: A comparison of MHD and two-fluid models (United States)

    Bond, Daryl; Wheatley, Vincent; Pullin, Dale; Samtaney, Ravi


    Suppression of the Richtmyer-Meshkov instability in a plasma, through the application of a seed magnetic field, has been studied in the framework of ideal magnetohydrodymanics. These studies have shown that suppression is achieved through the transport of vorticity by magnetohydrodynamic waves away from a perturbed fluid-fluid interface where it was baroclinically generated by shock impact. The implementation of a more physically accurate, fully electromagnetic, two-fluid plasma representation allows a more realistic investigation of vorticity transport in shock driven plasma flows. Results comparing ideal one-dimensional two-fluid and magnetohydrodymanic flows are presented. Substantial increases in the complexity of the flow field and vorticity transport dynamics are observed with important ramifications for the stabilization of shock driven interfaces. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.

  6. Core-flood experiment for transport of reactive fluids in rocks (United States)

    Ott, H.; de Kloe, K.; van Bakel, M.; Vos, F.; van Pelt, A.; Legerstee, P.; Bauer, A.; Eide, K.; van der Linden, A.; Berg, S.; Makurat, A.


    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO2 and/or H2S in geological formations. Potential applications are geological sequestration of CO2 in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  7. A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1 (United States)

    Li, Qiaochu; Tseng, Kuo-Fu; King, Stephen J.; Qiu, Weihong; Xu, Jing


    Kinesin-1 (hereafter referred to as kinesin) is a major microtubule-based motor protein for plus-end-directed intracellular transport in live cells. While the single-molecule functions of kinesin are well characterized, the physiologically relevant transport of membranous cargos by small teams of kinesins remains poorly understood. A key experimental challenge remains in the quantitative control of the number of motors driving transport. Here we utilized "motile fraction" to overcome this challenge and experimentally accessed transport by a single kinesin through the physiologically relevant transport by a small team of kinesins. We used a fluid lipid bilayer to model the cellular membrane in vitro and employed optical trapping to quantify the transport of membrane-enclosed cargos versus traditional membrane-free cargos under identical conditions. We found that coupling motors via a fluid membrane significantly enhances the velocity of cargo transport by small teams of kinesins. Importantly, enclosing a cargo in a fluid lipid membrane did not impact single-kinesin transport, indicating that membrane-dependent velocity enhancement for team-based transport arises from altered interactions between kinesins. Our study demonstrates that membrane-based coupling between motors is a key determinant of kinesin-based transport. Enhanced velocity may be critical for fast delivery of cargos in live cells.

  8. Lagrangian transport characteristics of a class of three-dimensional inline-mixing flows with fluid inertia

    Energy Technology Data Exchange (ETDEWEB)

    Speetjens, M. F. M.; Demissie, E. A. [Department of Mechanical Engineering, Energy Technology Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), VIC 3190 Melbourne (Australia); Clercx, H. J. H. [Department of Applied Physics, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)


    Laminar mixing by the inline-mixing principle is a key to many industrial fluids-engineering systems of size extending from micrometers to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains limited. This study addresses these issues for inline mixers with cylindrical geometries and adopts the Rotated Arc Mixer (RAM) as a representative system. Transport is investigated from a Lagrangian perspective by identifying and examining coherent structures that form in the 3D streamline portrait. 3D effects and fluid inertia introduce three key features that are not found in simplified configurations: transition zones between consecutive mixing cells of the inline-mixing flow; local upstream flow (in certain parameter regimes); transition/inertia-induced breaking of symmetries in the Lagrangian equations of motion (causing topological changes in coherent structures). Topological considerations strongly suggest that there nonetheless always exists a net throughflow region between inlet and outlet of the inline-mixing flow that is strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior in that all states follow from the Hamiltonian breakdown of one common integrable state. A so-called period-doubling bifurcation is the only way to eliminate transport barriers originating from this state and thus is a necessary (yet not sufficient) condition for global chaos. Important in a practical context is that a common simplification in literature, i.e., cell-wise fully-developed Stokes flow (“2.5D approach”), retains these fundamental kinematic properties and deviates from the generic 3D inertial case only in a quantitative sense. This substantiates its

  9. Ketamine Inhibits Lung Fluid Clearance through Reducing Alveolar Sodium Transport

    Directory of Open Access Journals (Sweden)

    Yong Cui


    Full Text Available Ketamine is a broadly used anaesthetic for analgosedation. Accumulating clinical evidence shows that ketamine causes pulmonary edema with unknown mechanisms. We measured the effects of ketamine on alveolar fluid clearance in human lung lobes ex vivo. Our results showed that intratracheal instillation of ketamine markedly decreased the reabsorption of 5% bovine serum albumin instillate. In the presence of amiloride (a specific ENaC blocker, fluid resolution was not further decreased, suggesting that ketamine could decrease amiloride-sensitive fraction of AFC associated with ENaC. Moreover, we measured the regulation of amiloride-sensitive currents by ketamine in A549 cells using whole-cell patch clamp mode. Our results suggested that ketamine decreased amiloride-sensitive Na+ currents (ENaC activity in a dose-dependent fashion. These data demonstrate that reduction in lung ENaC activity and lung fluid clearance following administration of ketamine may be the crucial step of the pathogenesis of resultant pulmonary edema.

  10. Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)


    Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.

  11. Turbulent mixing and fluid transport within Florida Bay seagrass meadows (United States)

    Hansen, Jennifer C. R.; Reidenbach, Matthew A.


    Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.

  12. Coupling Hyporheic Nitrification-Denitrification: Evaluating Net Nitrate Source-Sink Dynamics as a Function of Transport and Reaction Kinetics (United States)

    Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Bokil, V. A.; Gonzalez Pinzon, R. A.


    The fate of biologically-available nitrogen (N) and carbon (C) in stream ecosystems is controlled by the coupling of physical transport and biogeochemical reaction kinetics. However, determining the relative role of physical and biogeochemical controls at different temporal and spatial scales is difficult. Hyporheic and riparian zones, where ground waters and stream waters mix, can be important locations controlling N and C transformations because they create strong gradients in both the physical and biogeochemical conditions that control redox biogeochemistry. We evaluated the coupling of physical transport and biogeochemical redox reactions by linking an advection, dispersion, and residence time model with a multiple Monod kinetics model simulating the concentrations of oxygen (O2), ammonium (NH4), nitrate (NO3), and dissolved organic carbon (DOC). The model successfully simulated the O2, NH4, NO3 and DOC concentration profiles observed in the hyporheic zone at our study site. We then used global Monte Carlo sensitivity analyses with a nondimensional form of the model to examine coupled nitrification-denitrification dynamics across many scales of transport and reaction conditions. Results demonstrated that the residence time of water in hyporheic systems and the uptake rate of O2 from either respiration and/or nitrification determined whether a hyporheic system was a source or a sink of NO3 to the stream. We further show that the net NO3 source or sink function of a hyporheic system is determined by the ratio of characteristic transport time to the characteristic reaction time of O2 (i.e., the Damköhler number, DaO2), where hyporheic systems with DaO2 > 1 will be net denitrification environments. Our coupling of the hydrologic and biogeochemical limitations of N transformations across different temporal and spatial scales within hyporheic zones allows us to explain the widely contrasting results of previous investigations of hyporheic N dynamics which variously

  13. Transepithelial Na+ transport and the intracellular fluids: a computer study. (United States)

    Civan, M M; Bookman, R J


    Computer simulations of tight epithelia under three experimental conditions have been carried out, using the rheogenic nonlinear model of Lew, Ferreira and Moura (Proc. Roy. Soc. London. B 206:53-83, 1979) based largely on the formulation of Koefoed-Johnsen and Ussing (Acta Physiol. Scand. 42: 298-308. 1958). First, analysis of the transition between the short-circuited and open-circuited states has indicated that (i) apical Cl- permeability is a critical parameter requiring experimental definition in order to analyze cell volume regulation, and (ii) contrary to certain experimental reports, intracellular Na+ concentration (ccNa) is expected to be a strong function of transepithelial clamping voltage. Second, analysis of the effects of lowering serosal K+ concentration (csK) indicates that the basic model cannot simulate several well-documented observations; these defects can be overcome, at least qualitatively, by modifying the model to take account of the negative feedback interaction likely to exist between the apical Na+ permeability and ccNa. Third, analysis of the strongly supports the concept that osmotically induced permeability changes in the apical intercellular junctions play a physiological role in conserving the body's stores of NaCl. The analyses also demonstrate that the importance of Na+ entry across the basolateral membrane is strongly dependent upon transepithelial potential, cmNa and csK; under certain conditions, net Na+ entry could be appreciably greater across the basolateral than across the apical membrane.

  14. The influence of flap inclination angle on fluid transport at ciliated walls (United States)

    Rockenbach, A.; Schnakenberg, U.


    In optimizing fluid flow at walls, research has turned to artificial cilia to mimic the propulsion of their whip-like beat of a metachronal traveling wave. Recently we developed a pneumatically actuated micro-membrane device which has rows of long flaps positioned off-center on membranes over a row of cavities, much like the comb row of a ctenophore. As little is known about how the flap inclination angle influences the fluid transport near the wall of such devices, this paper presents a detailed modeling and experimental investigation of this question using combined FEM-FVM (finite element method-finite volume method)-based simulations for inclination angles of 0°, 20°, 30°, and 45°. The experimental results agree well with those of the FEM-FVM simulations. Antiplectic fluid transport was observed for flap inclination angles lower than 20° whereas symplectic fluid transport was determined for those higher than 20°. In conclusion, the inclination angle of the flaps decisively affects the fluid transport direction and velocity.

  15. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L


    , and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level...... in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....

  16. Silicothermal fluid: A novel medium for mass transport in the lithosphere (United States)

    Wilkinson, J. J.; Nolan, J.; Rankin, A. H.


    New experimental data from synthetic fluid-inclusion studies in the system K2O-CO2-SiO2-H2O (KCSH) show that a potassic, silica-rich (≈ 90 wt% SiO2) fluid can coexist immiscibly with a supercritical, alkaline, aqueo-carbonic fluid and quartz from temperatures as low as 300 °C to more than 750 °C at relatively low geologic pressures (<200 MPa). This type of fluid phase may form in a range of geologic environments, including carbonatite complexes, alkaline subvolcanic-plutonic systems, and subduction zones. With a probable polymerized (silica-rich, melt-like) structure, such SiO2-rich fluids, if they form in the lithosphere, are likely to be important in the mobilization and transport of silica and large ion lithophile elements (e.g., K, Cs, Ba) and metals of economic significance (e.g., Au, Ag, U).

  17. Effect of hydrofracking fluid on colloid transport in the unsaturated zone. (United States)

    Sang, Wenjing; Stoof, Cathelijne R; Zhang, Wei; Morales, Verónica L; Gao, Bin; Kay, Robert W; Liu, Lin; Zhang, Yalei; Steenhuis, Tammo S


    Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.

  18. The nano-fluid better transports heat; Le nanofluide transporte mieux la chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V.


    Searchers from the Argonne laboratory (Chicago univ.) have presented a new generation of working fluids for heat transfers which include nano-size copper-oxide or aluminium-oxide particulates. The role of the particulates is to increase the thermal conductivity of the fluid up to 40%. Short paper. (J.S.)

  19. Fluid breakup in carbon nanotubes: An explanation of ultrafast ion transport (United States)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang


    Ultrafast ion transport in carbon nanotubes (CNTs) has been experimentally observed, but the underlying mechanism is unknown. In this work, we investigate ion transport in CNTs through molecular dynamics (MD) simulations. It is found that the flow in CNTs undergoes a transition from the passage of a continuous liquid chain to the transport of isolated ion-water clusters as the CNT length or the external electric filed strength is increased. The breakup of the liquid chain in CNTs greatly reduces the resistance caused by the hydrogen bonds of water and significantly enhances the ionic mobility, which explains the two-order-magnitude enhancement of ionic conductance in CNTs reported in the literature. A theoretical criterion for fluid breakup is proposed, which agrees well with MD results. The fluid breakup phenomenon provides new insights into enhancing ion transport in nanoconfinements.

  20. Aerodynamic study of state transport bus using computational fluid dynamics (United States)

    Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.


    The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.

  1. Modeling the transport of nanoparticle-filled binary fluids through micropores. (United States)

    Ma, Yongting; Bhattacharya, Amitabh; Kuksenok, Olga; Perchak, Dennis; Balazs, Anna C


    Understanding the transport of multicomponent fluids through porous medium is of great importance for a number of technological applications, ranging from ink jet printing and the production of textiles to enhanced oil recovery. The process of capillary filling is relatively well understood for a single-component fluid; much less attention, however, has been devoted to investigating capillary filling processes that involve multiphase fluids, and especially nanoparticle-filled fluids. Here, we examine the behavior of binary fluids containing nanoparticles that are driven by capillary forces to fill well-defined pores or microchannels. To carry out these studies, we use a hybrid computational approach that combines the lattice Boltzmann model for binary fluids with a Brownian dynamics model for the nanoparticles. This hybrid approach allows us to capture the interactions among the fluids, nanoparticles, and pore walls. We show that the nanoparticles can dynamically alter the interfacial tension between the two fluids and the contact angle at the pore walls; this, in turn, strongly affects the dynamics of the capillary filling. We demonstrate that by tailoring the wetting properties of the nanoparticles, one can effectively control the filling velocities. Our findings provide fundamental insights into the dynamics of this complex multicomponent system, as well as potential guidelines for a number of technological processes that involve capillary filling with nanoparticles in porous media.

  2. The fluid transport in inkjet-printed liquid rivulets (United States)

    Singler, Timothy; Liu, Liang; Sun, Xiaoze; Pei, Yunheng; Microfluidic; Interfacial Transport Lab Team


    Inkjet printing holds significant potential for the controlled deposition of solution-processed functional materials spanning applications from microelectronics to biomedical sciences. Although theoretical and experimental investigations addressing the stability criteria of the inkjet-printed liquid rivulets have been discussed in the literature, the associated transport phenomena have received little attention. This study focuses on the experimental investigation of printed rivulets, stable with respect to Rayleigh-Plateau, but exhibiting bulge instability. The morphological evolution and the depth-resolved flow field of the rivulets were assessed via high-speed imaging in conjunction with micro-PIV. We discuss in detail effects of repetitive wave motion induced by periodic drop impact at the leading edge and the associated pulsatile flow, as well as the persistent nonuniform mass distribution in the ridge region of the rivulet. The results provide an experimental foundation for more detailed theoretical modelling of printed rivulet flows.

  3. Sliding enhances fluid and solute transport into buried articular cartilage contacts. (United States)

    Graham, B T; Moore, A C; Burris, D L; Price, C


    Solutes and interstitial water are naturally transported from cartilage by load-induced interstitial fluid pressures. Fluid and solute recovery during joint articulation have been primarily attributed to passive diffusion and mechanical 'pumping' from dynamic loading. This paper tests if the sliding action of articulation is a significant and independent driver of fluid and solute transport in cartilage. The large osteochondral samples utilized in the present study preserve the convergent wedges necessary for physiological hydrodynamics. Following static load-induced fluid exudation and prior to sliding, a fluorescent solute (AlexaFluor 633) was added to the lubricant bath. In situ confocal microscopy was used to quantify the transport of solute from the bath into the buried stationary contact area (SCA) during sliding. Following static exudation, significant reductions in friction and strain during sliding at 60 mm/s were accompanied by significant solute transport into the inaccessible center of the buried contact; no such transport was detected for the 0- or 1 mm/s sliding conditions. The results suggest that external hydrodynamic pressures from sliding induced advective flows that carried solutes from the bath toward the center of contact. These results provide the first direct evidence that the action of sliding is a significant contributor to fluid and solute recovery by cartilage. Furthermore, they indicate that the sliding-induced transport of solutes into the buried interface was orders of magnitude greater than that attributable to diffusion alone, a result with critical implications for disease prevention and tissue engineering. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. A hybrid numerical-experimental study of fluid transport by migrating zooplankton aggregations (United States)

    Martinez, Monica; Dabiri, John; Nawroth, Janna; Gemmell, Brad; Collins, Samantha


    Zooplankton aggregations that undergo diel vertical migrations have been hypothesized to play an important role in local nutrient transport and global ocean dynamics. The degree of the contributions of these naturally occurring events ultimately relies on how efficiently fluid is transported and eventually mixed within the water column. By implementing solutions to the Stokes equations, numerical models have successfully captured the time-averaged far-field flow of self-propelled swimmers. However, discrepancies between numerical fluid transport estimates and field measurements of individual jellyfish suggest the need to include near-field effects to assess the impact of biomixing in oceanic processes. Here, we bypass the inherent difficulty of modeling the unsteady flow of active swimmers while including near-field effects by integrating experimental velocity data of zooplankton into our numerical model. Fluid transport is investigated by tracking a sheet of artificial fluid particles during vertical motion of zooplankton. Collective effects are addressed by studying different swimmer configurations within an aggregation from the gathered data for a single swimmer. Moreover, the dependence of animal swimming mode is estimated by using data for different species of zooplankton.

  5. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.


    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They

  6. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.


    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They are

  7. Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. (United States)

    Andreassen, S; Rees, S E


    This article describes a mathematical model of whole-body O2 and CO2 transport. The model includes representation of the acid-base chemistry of the blood, interstitial fluid, and tissues, plus transport of O2 and CO2 between compartments representing tissues, interstitial fluid, arterial and venous blood, and lungs. The model includes equations for calculation of all concentrations in the compartments, including equations describing the physicochemical properties and reaction equations of interstitial fluid and tissues. In addition, the model includes equations that describe the flow of substrate between the compartments and differential equations allowing calculation of the changes in state variables caused by the flow of substrates between the compartments. This model is designed to calculate the effects of metabolic and respiratory perturbations, such as variation in breathing pattern or production of strong acid at the tissues. The model reproduces the results of published experiments when used to simulate (1) normal conditions in the lungs, arterial and venous blood, interstitial fluid, and tissues during normal ventilation; (2) the characteristic two-exponential response to changes in minute ventilation; and (3) the relationship between arterial blood values of PCO2 and HCO3,p during inspiration of different fractions of CO2.

  8. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. (United States)

    Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan


    This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4.

  9. Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review

    Directory of Open Access Journals (Sweden)

    Zeng-Yuan Guo


    Full Text Available This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS. This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4.

  10. Geothermal Fluid Interaction with Mafic Rocks in Porous Media - AN Experimental and Reactive Transport Modeling Study (United States)

    Stefansson, A.


    Reaction and reactive transport modeling is becoming an increasingly popular method to study fluid-rock interaction and fluid transport on small to large scales. In this study, fluid-rock experiments were carried out and the observations compared with the results of reaction and reactive transport models. The systems studied included fluid-rock interaction of olivine on one hand and basaltic glass on the other hand with dilute aqueous solutions containing CO2 at acid to neutral pH and temperatures from ambient to 250 °C. The experiments were conducted using batch type experiments in closed reactors and 1-D plug experiments in flow-through reactors and the solution chemistry, the reaction progress, secondary mineralization and porosity changes analyzed as a function of time. The reaction and 1-D reactive transport simulations were conducted with the aid of the PHREEQC program. For the simulations the thermodynamic database for mineral reactions was largely updated and the kinetics of mineral dissolution as well as mineral nucleation and crystal growth was incorporated. According to the experimental results and the reactive transport simulations, olivine and basaltic glass progressively dissolves forming secondary minerals and solutes that are partially transported out of them column (system). The exact reaction path was found to depend on solution composition and pH and reaction progress (time). The mass movement of the system at a particular steady state as well as porosity changes may be divided into three stages. Stage I is characterized by initial olivine or basaltic glass leaching, stage II is characterized by progressive mineral formation and decrease in porosity and stage III is characterized by remobilization of the previously formed secondary minerals and eventual increase in porosity. The reaction and reactive transport modeling was found to simulate reasonable the reaction path as a function of reaction time. However, exact mass movement and time

  11. Lagrangian transport characteristics of a class of three-dimensional inline-mixing flows with fluid inertia (United States)

    Speetjens, Michel; Demissie, Esubalew; Metcalfe, Guy; Clercx, Herman


    Laminar inline mixing is key to many industrial systems. However, insight into fundamental transport phenomena in case of 3D conditions and fluid inertia remains limited. This is studied for inline mixers with a cylindrical geometry. Said effects introduce three key features absent in simplified configurations: smooth transition between mixing cells; local upstream flow; symmetry breaking. Topological considerations imply a net throughflow region strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior. All states follow from Hamiltonian breakdown of one common integrable state. Period-doubling bifurcation is the only way to eliminate transport barriers originating from the integrable state and thus necessary for global chaos. Important in a practical context is that a common simplification, i.e. cell-wise developed Stokes flow, retains these fundamental kinematic properties and deviates from the 3D inertial case essentially only in a quantitative sense. This substantiates its suitability for (at least first exploratory) studies on mixing properties. Dutch Technology Foundation Grant STW 11054.

  12. 26 CFR 1.172-8 - Net operating loss carryovers for regulated transportation corporations. (United States)


    ... intrastate, suburban, municipal, or interurban electric railroad, (b) On an intrastate, municipal, or suburban trackless trolley system, (c) On a municipal or suburban bus system, or (d) By motor vehicle not... and are substantially as favorable to users and consumers as are the regulated rates, transportation...

  13. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA) (United States)

    Marshall, J.; Stratton, D.


    of sand comminution on Mars. A multiple-grain transport model using just the equations of grain motion describing lift and drag is impossible to develop owing to stochastic effects --the very effects we wish to model. Also, unless we were to employ supercomputing techniques and extremely complex computer codes that could deal with millions of grains simultaneously, it would also be difficult to model grain transport if we attempted to consider every grain in motion. No existing computer models were found that satisfactorily used the equations of motion to arrive at transport flux numbers for the different populations of saltation and reptation. Modeling all the grains in a transport system was an intractable problem within our resources, and thus we developed what we believe to be a new modeling approach to simulating grain transport. The CFA deals with grain populations, but considers them to belong to various compartmentalized fluid units in the boundary layer. In this way, the model circumvents the multigrain problem by dealing primarily with the consequences of grain transport --momentum transfer between air and grains, which is the physical essence of a dynamic grain-fluid mixture. We thus chose to model the aeolian transport process as a superposition of fluids. These fluids include the air as well as particle populations of various properties. The prime property distinguishing these fluids is upward and downward grain motion. In a normal saltation trajectory, a grain's downwind velocity increases with time, so a rising grain will have a smaller downwind velocity than a failing grain. Because of this disparity in rising and falling grain proper-ties, it seemed appropriate to track these as two separate grain populations within the same physical space. The air itself can be considered a separate fluid superimposed within and interacting with the various grain-cloud "fluids". Additional informaiton is contained in the original.

  14. Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. (United States)

    Triacca, Valentina; Güç, Esra; Kilarski, Witold W; Pisano, Marco; Swartz, Melody A


    The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell-cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport. The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway. We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation. These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues. © 2017 American Heart Association, Inc.

  15. Effect of drink carbohydrate content on postexercise gastric emptying, rehydration, and the calculation of net fluid balance. (United States)

    Clayton, David J; Evans, Gethin H; James, Lewis J


    The purpose of this study was to examine the gastric emptying and rehydration effects of hypotonic and hypertonic glucose-electrolyte drinks after exercise-induced dehydration. Eight healthy males lost ~1.8% body mass by intermittent cycling and rehydrated (150% of body mass loss) with a hypotonic 2% (2% trial) or a hypertonic 10% (10% trial) glucose-electrolyte drink over 60 min. Blood and urine samples were taken at preexercise, postexercise, and 60, 120, 180, and 240 min postexercise. Gastric and test drink volume were determined 15, 30, 45, 60, 90, and 120 min postexercise. At the end of the gastric sampling period 0.3% (2% trial) and 42.1% (10% trial; p fluid balance was greater from 120 min during the 10% trial (p fluid balance was corrected for the volume of fluid in the stomach, it was greater at 60 and 120 min during the 2% trial (p fluid balance.

  16. Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. (United States)

    Salvador, J M; Inesi, G; Rigaud, J L; Mata, A M


    The synaptosomal plasma membrane Ca2+-ATPase (PMCA) purified from pig brain was reconstituted with liposomes prepared by reverse phase evaporation at a lipid to protein ratio of 150/1 (w/w). ATP-dependent Ca2+ uptake and H+ ejection by the reconstituted proteoliposomes were demonstrated by following light absorption and fluorescence changes undergone by arsenazo III and 8-hydroxy-1,3, 6-pyrene trisulfonate, respectively. Ca2+ uptake was increased up to 2-3-fold by the H+ ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, consistent with relief of an inhibitory transmembrane pH gradient (i.e. lumenal alkalinization) generated by H+ countertransport. The stoichiometric ratio of Ca2+/H+ countertransport was 1.0/0.6, and the ATP/Ca2+ coupling stoichiometry was 1/1 at 25 degrees C. The electrogenic character of the Ca2+/H+ countertransport was demonstrated by measuring light absorption changes undergone by oxonol VI. It was shown that a 20 mV steady state potential (positive on the lumenal side) was formed as a consequence of net charge transfer associated with the 1/1 Ca2+/H+ countertransport. Calmodulin stimulated ATPase activity, Ca2+ uptake, and H+ ejection, demonstrating that these parameters are linked by the same mechanism of PMCA regulation.

  17. Development of PIC-Fluid hybrid scheme for impurity generation and transport in BOUT++ framework (United States)

    Xiao, Xiaotao; Xu, Xueqiao


    Impurity generation and transport are an important topic of research in burning plasmas in order to avoid a significant degradation of the fusion capabilities of a reactor device. It is a critical issue for RF experiments due to the phenomenon of rf-enhanced impurity generation. In tokamaks, the impurity transport is usually complicated by the combination of turbulent-driven transport and neoclassical transport, So developing the PIC module in BOUT++ framework, which simulates tokamak edge plasmas using fluid models, will enhance the capability to efficiently simulate both turbulence and neoclassical physics in realistic geometry. The research will be carried out mainly in two steps: a test particle module, in which the orbits is advanced in given background plasma with turbulent electromagnetic field from BOUT++ edge turbulence simulations to yield the spatial distribution of impurities in edge plasmas from given sources at the divertor plates and at the protection limiters near RF antennas; and then a PIC-fluid hybrid module, in which background plasma and the turbulent electromagnetic fields will change with the impurity particle sources. The main issues such as particle weighting and sorting scheme, the communication between the fluid and the PIC parts, are discussed.

  18. Transport properties at fluids interfaces: a molecular study for a macroscopic modelling (United States)

    Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim


    Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.

  19. Slip Effects on Peristaltic Transport of a Particle-Fluid Suspension in a Planar Channel

    Directory of Open Access Journals (Sweden)

    Mohammed H. Kamel


    Full Text Available Peristaltic pumping induced by a sinusoidal traveling wave in the walls of a two-dimensional channel filled with a viscous incompressible fluid mixed with rigid spherical particles is investigated theoretically taking the slip effect on the wall into account. A perturbation solution is obtained which satisfies the momentum equations for the case in which amplitude ratio (wave amplitude/channel half width is small. The analysis has been carried out by duly accounting for the nonlinear convective acceleration terms and the slip condition for the fluid part on the wavy wall. The governing equations are developed up to the second order of the amplitude ratio. The zeroth-order terms yield the Poiseuille flow and the first-order terms give the Orr-Sommerfeld equation. The results show that the slip conditions have significant effect within certain range of concentration. The phenomenon of reflux (the mean flow reversal is discussed under slip conditions. It is found that the critical reflux pressure is lower for the particle-fluid suspension than for the particle-free fluid and is affected by slip condition. A motivation of the present analysis has been the hope that such theory of two-phase flow process under slip condition is very useful in understanding the role of peristaltic muscular contraction in transporting biofluid behaving like a particle-fluid mixture. Also the theory is important to the engineering applications of pumping solid-fluid mixture by peristalsis.

  20. The effect of magnetization and electric polarization on the anomalous transport coefficients of a chiral fluid (United States)

    Sadooghi, N.; Tabatabaee, S. M. A.


    The effects of finite magnetization and electric polarization on dissipative and non-dissipative (anomalous) transport coefficients of a chiral fluid are studied. First, using the second law of thermodynamics as well as Onsager’s time-reversal symmetry principle, the complete set of dissipative transport coefficients of this medium is derived. It is shown that the properties of the resulting shear and bulk viscosities are mainly affected by the anisotropy induced by external electric and magnetic fields. Then, using the fact that the anomaly induced currents do not contribute to entropy production, the corresponding algebro-differential equations to non-dissipative anomalous transport coefficients are derived in a certain derivative expansion. The solutions of these equations show that, within this approximation, anomalous transport coefficients are, in particular, given in terms of the electric susceptibility of the medium.

  1. Retrieval of dispersive and convective transport phenomena in fluids using stationary and nonstationary time domain analysis (United States)

    Stephens, J. B.; St.john, R. M.


    Simultaneously occuring dispersive and convective components of fluid kinematics are obtained by a time domain analysis of optically retrieved temporal histories of the transport phenomena. Utilizing triangulation of collimated optical fields of view from two radiometers to obtain the temporal histories of the intensity fluctuations associated with the transport phenomena has enabled investigators to retrieve the local convective transport by employing correlation statistics. The location of the peak in the covariance curve determines the transit time from which the convection velocity is calculated; whereas, the change in shape of the peak in the covariance curve determines the change in average frequency of the wave packet from which the dispersion velocity is calculated. Thus, two-component analysis requires the maximum possible enhancement of the delineation for the transport. The convection velocity is the result of a fixed reference frame calculation whereas, the dispersion velocity is the result of a moving reference frame calcuation.

  2. Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D.


    This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.

  3. Fluid/gravity correspondence: second order transport coefficients in compactified D4-branes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao; Chen, Yidian [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)


    We develop the boundary derivative expansion (BDE) formalism of fluid/gravity correspondence to nonconformal version through the compactified, near-extremal black D4-brane. We offer an explicit calculation of 9 second order transport coefficients, i.e., the τ{sub π}, τ{sub π}{sup ∗}, τ{sub Π}, λ{sub 1,2,3} and ξ{sub 1,2,3} for the strongly coupled, uncharged and nonconformal relativistic fluid which is the holographic dual of compactified, near extremal black D4-brane. We also show that the nonconformal fluid considered in this work is free of causal problem and admits the Haack-Yarom relation 4λ{sub 1}−λ{sub 2}=2ητ{sub π}.

  4. Corresponding-states principle and its practice thermodynamic, transport and surface properties of fluids

    CERN Document Server

    Xiang, Hong Wei


    The corresponding-states principle helps the understanding and calculating of thermodynamic, transport, and surface properties of substances in various states, required by our modern lifestyle. The Corresponding-States Principle and its Practice: Thermodynamic, Transport and Surface Properties of Fluids describes the origins and applications of the principle from a universal point of view with comparisons to experimental data where possible. It uses the universal theory to explain present theories. Emphasis is on the properties of pure systems, and the corresponding-states theory can also be e

  5. Unified theory of non-suspended sediment transport mediated by a Newtonian fluid (United States)

    Pähtz, Thomas; Durán, Orencio


    We present a unified theory of steady, homogeneous, non-suspended transport of nearly uniform spheres mediated by an arbitrary Newtonian fluid. The theory consists of elements that are rigorously derived from Newton's axioms and of semi-empirical elements that well describe simulation data, obtained using a coupled DEM/RANS numerical model of sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), for the entire simulated range of the particle-fluid-density ratio s=ρ_p/ρ_f, particle Reynolds number Re_p=√{(s-1)gd^3}/ν, and Shields number Θ=τ/[(ρ_p-ρ_f)gd], where g is the gravitational constant, d the mean particle diameter, and ν the kinematic viscosity. The theory takes into account our recent numerical finding that the mode of entrainment of bed sediment is controlled by the `impact number' Im=Re_p√{s+0.5} (, with entrainment through particle-bed impacts dominating most conditions (including turbulent bedload transport). Despite not being fitted to experimental data, the theory simultaneously reproduces measurements in air (s≈2100) and liquids (s≈1{-}5) of the transport cessation threshold Θ^ext (, obtained from extrapolation to vanishing transport, and the dimensionless value Q^\\ast=Q/(ρ_p√{(s-1)gd^3}) of the sediment transport rate Q. From the theory and simulations, we learn that considering added-mass, lubrication, fluid lift, and/or history forces is not required to quantitatively reproduce measurements. However, collisions between transported particles cannot be neglected as they are strongly influencing the scaling of Q_\\ast with Θ. We find such collisions are behind the asymptotic scaling Q_\\ast∝Θ^3Rep measured for transport in viscous liquids and also indirectly behind a transition from a linear scaling Q_\\ast∝√{Θ^ex_t}(Θ-Θ^ex_t) to a non-linear scaling Q_\\ast∝√{Θ}(Θ-Θ^ex_t) of the transport rate in turbulent bedload and

  6. Functional resistance of enamel and the phenomenon of transtegumental fluid transport

    Directory of Open Access Journals (Sweden)

    Okushko V.R. Okushko R.V. Ursan R.V.


    Full Text Available Current data related to transport of fluid through the covering tissue formations (skin, nail plate, dental enamel, gum valley are being analyzed. A supposition is made of transtegumental fluid transport (TFT as a general biological regularity which is specifically manifested in tissues of different functional purposes. Depending on the peculiarity of the organ, the tooth performs the TFT providing functional resistance of the enamel, whose level is clinically detected in the «test of enamel resistance» (TER used in modern research. The article draws attention to the reasonability of an in-depth study of the tooth physiology, where the central element is TFT. This phenomenon is of interest both from fundamental and highly practical standpoints. Identification of seasonal periods in the functional resistance decline makes it possible to get a distinct effect by means of concentrating prevention efforts on this. The TER sample, as well as other transtegumental fluid transport patterns, is to find place in the system of personalized predictive approach to caries diseases

  7. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics? (United States)

    McNair, James N; Newbold, J Denis


    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport

    NARCIS (Netherlands)

    Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.


    Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up

  9. Armoring, stability, and transport driven by fluid flow over a granular bed (United States)

    Allen, Benjamin; Kudrolli, Arshad


    We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.

  10. Transport of fluid from airspaces to the vasculature of rat lungs

    Energy Technology Data Exchange (ETDEWEB)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.


    Evidence has been reported which suggests that fluid can be absorbed from the lungs of awake and anesthetized sheep. In this study, the authors investigated the movement of water and solutes between the airspaces and vasculature of isolated, fluid-filled rat lungs. A 1.0g/dl albumin, buffered Ringer's lactate solution containing the protein label, T-1824, was instilled into the airways and the lungs were perfused with the same solution. In addition, /sup 125/I-albumin, /sup 22/Na/sup +/ and /sup 3/H-mannitol were placed in the airway solution. Samples were obtained of the perfusate at intervals throughout the experiment and fluid remaining in the airspaces was pumped into serial sample tubes at the end of 1 or 2 hours. T-1824 concentrations increased by 6.6 +/- 0.4% (S.E., n=5) at 1 hr and 12.9 +/- 0.1% at 2 hr, indicating a corresponding absorption of protein-poor fluid from the alveoli. By 2 hr, perfusate T-1824 had fallen by 4.4 +/- .1%, indicating that a fraction of the fluid leaving the airspaces had reached the perfusate. Addition of 5 x 10/sup -5/ M terbutaline increased T-1824 concentrations by 11.4 +/- 1.4% at 1 hr, but at 2 hr., concentrations were much more variable, and an increase in the movement of /sup 3/H-mannitol suggested alveolar-capillary injury. 5 x 10/sup -4/M ouabain reduced the rate of both blood flow and fluid absorption. The data are consistent with active Na/sup +/ and fluid transport in the isolated lung. Although terbutaline may accelerate this process, it appears to damage the epithelial barrier by 2 hrs.

  11. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model. (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo


    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

  12. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks. (United States)

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M


    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.

  13. Revisiting low-fidelity two-fluid models for gas–solids transport

    Energy Technology Data Exchange (ETDEWEB)

    Adeleke, Najeem, E-mail:; Adewumi, Michael, E-mail:; Ityokumbul, Thaddeus


    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  14. Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H. [Earth Science and Engineering, Imperial College, Prince Consort Road London (United Kingdom)


    In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)

  15. Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Griffiths; R. H. Nilson


    Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.

  16. Fluid Flow and Heat Transport Computation for Power-Law Scaling Poroperm Media

    Directory of Open Access Journals (Sweden)

    Peter Leary


    Full Text Available In applying Darcy’s law to fluid flow in geologic formations, it is generally assumed that flow variations average to an effectively constant formation flow property. This assumption is, however, fundamentally inaccurate for the ambient crust. Well-log, well-core, and well-flow empirics show that crustal flow spatial variations are systematically correlated from mm to km. Translating crustal flow spatial correlation empirics into numerical form for fluid flow/transport simulation requires computations to be performed on a single global mesh that supports long-range spatial correlation flow structures. Global meshes populated by spatially correlated stochastic poroperm distributions can be processed by 3D finite-element solvers. We model wellbore-logged Dm-scale temperature data due to heat advective flow into a well transecting small faults in a Hm-scale sandstone volume. Wellbore-centric thermal transport is described by Peclet number Pe ≡ a0φv0/D (a0 = wellbore radius, v0 = fluid velocity at a0, φ = mean crustal porosity, and D = rock-water thermal diffusivity. The modelling schema is (i 3D global mesh for spatially correlated stochastic poropermeability; (ii ambient percolation flow calibrated by well-core porosity-controlled permeability; (iii advection via fault-like structures calibrated by well-log neutron porosity; (iv flow Pe ~ 0.5 in ambient crust and Pe ~ 5 for fault-borne advection.

  17. Experimental Exploration of Particle-Scale Bed Load Transport and Near-Bed Fluid Velocities (United States)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.


    Bed load sediment particles move as complex motions over the surface of a stream bed, accelerating and decelerating in response to the near-bed turbulence and due to particle-bed interactions. Using high-speed imagery of coarse sand particles on a planer bed surface, we track individual particle motions from start to stop, combined with measurements of near-bed fluid velocities to better characterize the relationship between these properties. These simultaneous measurements provide an initial step towards describing the dynamic relationship between the fluid and particle entrainment on the grain-scale. We start with an Eulerian a priori method wherein we grid the analyzed area and compare the fluid velocity time series to the entrainment time series within each grid space. We progressively increase the size of the grids and monitor the correlation between the two time series. We then use an a posteriori method that focuses on the fluid velocities in the vicinity of entrained particles both at the moment of entrainment and prior to the initiation of motion. We further our analysis of the relationship between particle motions and the near-bed fluid using detailed measurements of particle motions to calibrate estimates of the sediment load using a pixel differencing method. This allows us to examine connections between the fluid and particle activity over many frames rather than over the limited, manually tracked time period. Furthermore, this allows us to empirically define a distribution of particle wait times, or the duration of time between successive entrainment events over a set area, which acts to determine the transport intensity. Preliminary results suggest that there is not a clear correlation between near-bed fluid velocities and particle entrainment. In absence of a correlation we find that (1) we must think more deeply about collective entrainment and how it 'works', and (2) we must consider how the microstructure of the particles on the bed act to set up

  18. Thyroxine (T4 Transfer from Blood to Cerebrospinal Fluid in Sheep Isolated Perfused Choroid Plexus: Role of Multidrug Resistance-Associated Proteins and Organic Anion Transporting Polypeptides

    Directory of Open Access Journals (Sweden)

    Kazem Zibara


    Full Text Available Thyroxine (T4 enters the brain either directly across the blood–brain barrier (BBB or indirectly via the choroid plexus (CP, which forms the blood–cerebrospinal fluid barrier (B-CSF-B. In this study, using isolated perfused CP of the sheep by single-circulation paired tracer and steady-state techniques, T4 transport mechanisms from blood into lateral ventricle CP has been characterized as the first step in the transfer across the B-CSF-B. After removal of sheep brain, the CPs were perfused with 125I-T4 and 14C-mannitol. Unlabeled T4 was applied during single tracer technique to assess the mode of maximum uptake (Umax and the net uptake (Unet on the blood side of the CP. On the other hand, in order to characterize T4 protein transporters, steady-state extraction of 125I-T4 was measured in presence of different inhibitors such as probenecid, verapamil, BCH, or indomethacin. Increasing the concentration of unlabeled-T4 resulted in a significant reduction in Umax%, which was reflected by a complete inhibition of T4 uptake into CP. In fact, the obtained Unet% decreased as the concentration of unlabeled-T4 increased. The addition of probenecid caused a significant inhibition of T4 transport, in comparison to control, reflecting the presence of a carrier mediated process at the basolateral side of the CP and the involvement of multidrug resistance-associated proteins (MRPs: MRP1 and MRP4 and organic anion transporting polypeptides (Oatp1, Oatp2, and Oatp14. Moreover, verapamil, the P-glycoprotein (P-gp substrate, resulted in ~34% decrease in the net extraction of T4, indicating that MDR1 contributes to T4 entry into CSF. Finally, inhibition in the net extraction of T4 caused by BCH or indomethacin suggests, respectively, a role for amino acid “L” system and MRP1/Oatp1 in mediating T4 transfer. The presence of a carrier-mediated transport mechanism for cellular uptake on the basolateral membrane of the CP, mainly P-gp and Oatp2, would account

  19. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure? (United States)

    Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio


    Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee


    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  1. The rheology of non-suspended sediment transport mediated by a Newtonian fluid (United States)

    Pähtz, Thomas; Durán, Orencio


    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  2. The role of carbon dioxide in the transport and fractionation of metals by geological fluids (United States)

    Kokh, Maria A.; Akinfiev, Nikolay N.; Pokrovski, Gleb S.; Salvi, Stefano; Guillaume, Damien


    Although carbon dioxide is one of the major components of crustal fluids responsible for ore deposit formation, its effect on transport and precipitation of metals remains unknown, due to a lack of direct experimental data and physical-chemical models for CO2-rich fluids. To fill this gap, we combined laboratory experiments and thermodynamic modeling to systematically quantify the role played by CO2 for the solubility of economically important metals such as Fe, Cu, Zn, Au, Mo, Pt, Sn under hydrothermal conditions. Solubility measurements of common ore minerals of these metals (FeS2, CuFeS2, ZnS, Au, MoS2, PtS, SnO2) were performed, using a flexible-cell reactor equipped with a rapid sampling device, in a single-phase fluid (CO2-H2O-KCl) at 350-450 °C and 600-750 bar, buffered with iron sulfide and oxide and alkali-aluminosilicate mineral assemblages. In addition, another type of experiments was conducted to measure gold solubility in more sulfur-rich supercritical CO2-H2O-S-NaOH fluids at 450 °C and 700 bar using a batch reactor that allows fluid quenching. Our results show that the solubilities of Si, Au, Mo, Pt and Cu either decrease (within 1 log unit) with CO2 contents in the fluid increasing from 0 to 50 wt%. These data were interpreted using a simple model that does not require any new adjustable parameters, and is based on the dielectric constant of the H2O-CO2 solvent and on the Born solvation parameter for the dominant metal-bearing species in an aqueous fluid. Our predictions using this model suggest that in a supercritical CO2-H2O-S-salt fluid typical of metamorphic Au deposits, in equilibrium with pyrite and chalcopyrite, the Cu/Fe ratio decreases by up to 2 orders of magnitude with an increase of CO2 content from 0 to 70 wt%. This effect is due to the decrease of the fluid dielectric constant in the presence of CO2, which favors the stability of neutral species (FeCl20) compared to charged ones (CuCl2-). Our results explain the Fe enrichment and Cu

  3. Bio-inspired Nano-capillary Self-powered Fluid Transport in Nanocomposite (NBIT III) (United States)


    marvel of bio -engineering, are structured to maintain their lubrication with lubricin – a DISTRIBUTION A. Approved for public release: distribution...AFRL-AFOSR-JP-TR-2017-0014 Bio -inspired Nano-capillary Self-powered Fluid Transport in Nanocomposite (NBIT III) Jingming Xu BROWN UNIVERSITY IN...ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      22-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 14 Aug 2013 to 13 Aug 2016 4. TITLE AND SUBTITLE Bio

  4. Implicit two-fluid simulation of electron transport in a plasma erosion opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.J.; Wallace, J.M.; Lee, K.


    The two-dimensional implicit code ANTHEM is used to model electron transport in Plasma Opening Switches. We look at low density (approx.4 x 10/sup 12/cm/sup -3/) switches at initial plasma temperatures as low as 5 eV. Two-fluid modeling (ions and electrons with inertia) and implicit determination of the fields is employed to allow time steps well in excess of the inverse plasma period, and cell sizes much larger than a Debye length - with the avoidance of the finite grid anomalous plasma heating characteristic of particle codes. Features indicative of both erosion and E > B plasma drift are manifest in the simulations.

  5. Analytical solutions for transport processes fluid mechanics, heat and mass transfer

    CERN Document Server

    Brenn, Günter


    This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .

  6. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. (United States)

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A; Song, Juan; Asokan, Aravind


    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4-/- mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4-/- mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.

  7. Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, R.J.; Slaby, F.J.; Posner, B.I.


    Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of (/sup 125/-I)iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of (/sup 125/I)iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on (/sup 125/I)iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of (/sup 125/I)iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of (/sup 125/I)iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions.

  8. Extracellular Acid-Base Balance and Ion Transport Between Body Fluid Compartments. (United States)

    Seifter, Julian L; Chang, Hsin-Yun


    Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl- or non Cl- anions and [Formula: see text]. Copyright © 2017 the American Physiological Society.

  9. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    Energy Technology Data Exchange (ETDEWEB)

    Önder, Asim; Meyers, Johan, E-mail: [Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300A, B3001 Leuven (Belgium)


    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub μ} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  10. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ashraf Aly [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Li, Zhen [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States); Sahle-Demessie, Endalkachew, E-mail: [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Sorial, George A. [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States)


    Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO{sub 2}, breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT{sup ®} based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing.

  11. Flexible fiber transport by a fluid flow in fractures with smooth and rough walls

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, M V [Grupo de Medios Porosos, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850 C1063 ACV, Buenos Aires, CONICET (Argentina); Auradou, H; Hulin, J P [Univ Pierre et Marie Curie-Paris 6, Univ Paris-Sud, CNRS, Lab FAST, Bat 502, Campus Univ, Orsay, F-91405 (France); Picard, G; Poitzsch, M, E-mail: vdangelo@fi.uba.a, E-mail: auradou@fast.u-psud.f [Schlumberger-Doll Research, 1 Hampshire St, Cambridge, MA 02139 (United States)


    The transport of flexible fibers by a flowing fluid has been studied experimentally in transparent model fractures. Both finite length segments (20mm <= l <= 150 mm) and continuous fibers penetrating freely into the model were used; their motion is monitored by means of a digital camera and of an image thresholding technique and is induced by the flow of water or of a polymer solution at a mean velocity U (50 <= U <= 400 mm.s{sup -1}). In a model with plane smooth parallel walls, the influence of the friction with the walls is small: fiber segments reach quickly a constant velocity as their distance x{sub m} to the inlet increases, the velocity of continuous fibers increases slower with distance before reaching a constant value. The second model fracture has two complementary rough self-affine walls with a relative lateral shift; it displays, in addition, a gradient of the aperture in the direction transverse to the mean flow. For this model, the transport of the fibers by flowing water is only possible in the region of largest aperture and is of a 'stop and go' type at low velocities. If water is replaced by the shear thinning polymer solution, the fibers move faster and continuously in high aperture regions; fiber transport also becomes possible in narrower regions.

  12. A fully resolved fluid-structure-muscle-activation model for esophageal transport (United States)

    Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.


    Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  13. Promotion of Streptococcus mutans glucose transport by human whole saliva and parotid fluid. (United States)

    Germaine, G R; Tellefson, L M


    Human saliva and parotid fluid have two effects on glucose uptake by Streptococcus mutans: a reduction in the overall rate of uptake, and the promotion of a biphasic mode of uptake. The former effect had been previously shown to result from lactoperoxidase-mediated inhibition of transport or metabolism or both. The objective of the present study was to uncover the basis of the second effect. Biphasic glucose uptake consisted of a rapid phase of low capacity and short duration (approximately 10 to 15 s) followed by a slower phase of high capacity and long duration (several minutes). The slow phase is typical of cells not exposed to the secretions (control cells). S. mutans BHT cells pretreated with as little as 10 microM glucose for 10 min at 37 degrees C, followed by its removal, subsequently exhibit biphasic glucose uptake typical of saliva- or parotid fluid-treated cells. Since pretreatment of the organism with glucose, whole saliva supernatant, or parotid fluid supported subsequent transport of the nonmetabolized glucose analog, 2-deoxyglucose, we concluded that pretreatments established a relatively stable pool of glycolytic intermediates (i.e., a phosphoenolpyruvate potential). Thin-layer chromatographic analysis of extracts from [14C]glucose-pretreated cells confirmed the presence of a stable pool of triose phosphates. Dialysis experiments indicated that high-molecular-weight substrates in the secretions were readily utilized by the organism to establish a phosphoenolpyruvate potential, especially when the lactoperoxidase system was rendered inactive. A survey of several carbohydrate constituents of salivary glycoproteins revealed that mannose, galactose, and N-acetylglucosamine, in addition to glucose, established phosphoenolpyruvate potentials in the organisms. Inactive substances included, among others, N-acetylgalactosamine and N-acetylneuraminic acid. In a survey of selected amino acids, arginine alone promoted 2-deoxyglucose accumulation by the organism

  14. Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts. (United States)

    Kortunov, P; Vasenkov, S; Kärger, J; Fé Elía, M; Perez, M; Stöcker, M; Papadopoulos, G K; Theodorou, D; Drescher, B; McElhiney, G; Bernauer, B; Krystl, V; Kocirik, M; Zikanova, A; Jirglova, H; Berger, C; Gläser, R; Weitkamp, J; Hansen, E W


    Pulsed-field gradient nuclear magnetic resonance (PFG NMR) has been applied to study molecular diffusion in industrial fluid catalytic cracking (FCC) catalysts and in USY zeolite for a broad range of molecular displacements and temperatures. The results of this study have been used to elucidate the relevance of molecular transport on various displacements for the rate of molecular exchange between catalyst particles and their surroundings. It turned out that this rate, which may determine the overall rate and selectivity of FCC process, is primarily related to the diffusion mode associated with displacements larger than the size of zeolite crystals located in the particles but smaller than the size of the particles. This conclusion has been confirmed by comparative studies of the catalytic performance of different FCC catalysts.

  15. Effects of irradiation and probenecid on cerebrospinal fluid transport of penicillin

    Energy Technology Data Exchange (ETDEWEB)

    Kourtopoulos, H.; Holm, S.E.; Norrby, S.R. (Umeaa Univ. (Sweden))


    A hitherto unrecognized interaction between whole brain irradiation and probenecid on cerebrospinal fluid (CSF) transport of benzylpenicillin has been demonstrated in rabbits. Healthy adult rabbits received 10 Gy (1000 rad) to the whole brain as a single dose. At different time intervals after irradiation the animals were subjected to single intravenous injections of benzylpenicillin. Studies on benzylpenicillin concentrations in CSF showed increasing values one week after irradiation suggesting a disturbance in blood-CSF barriers. Additionally, groups of rabbits were subjected to either irradiation, probenecid injections or both prior to antibiotic administration. All these treatments resulted in increased CSF concentration of benzylpenicillin relative to the concurrent serum levels. The increase of the CSF benzylpenicillin levels in the preirradiated animals was less pronounced in the animals treated with probenecid, compared to those who were irradiated only.

  16. Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics. (United States)

    Klymko, Katherine; Mandal, Dibyendu; Mandadapu, Kranthi K


    The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles. The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider the balance of internal angular momentum in addition to the usual moment of momentum. In the absence of spin, the moment of momentum is the same as the total angular momentum. In deriving the form of the balance of total angular momentum, we find the microscopic expressions for the couple stress tensor that drives the spin field. We show that the couple stress contains contributions from both intermolecular interactions and the active forces. The presence of spin leads to the idea of balance of moment of inertia due to the constant exchange of particles in a small neighborhood around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the system.

  17. Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics (United States)

    Klymko, Katherine; Mandal, Dibyendu; Mandadapu, Kranthi K.


    The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles. The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider the balance of internal angular momentum in addition to the usual moment of momentum. In the absence of spin, the moment of momentum is the same as the total angular momentum. In deriving the form of the balance of total angular momentum, we find the microscopic expressions for the couple stress tensor that drives the spin field. We show that the couple stress contains contributions from both intermolecular interactions and the active forces. The presence of spin leads to the idea of balance of moment of inertia due to the constant exchange of particles in a small neighborhood around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the system.

  18. A long-distance fluid transport pathway within fibrous connective tissues in patients with ankle edema. (United States)

    Li, Hongyi; Yang, Chongqing; Lu, Kuiyuan; Zhang, Liyang; Yang, Jiefu; Wang, Fang; Liu, Dongge; Cui, Di; Sun, Mingjun; Pang, Jianxin; Dai, Luru; Han, Dong; Liao, Fulong


    Although the microcirculatory dysfunctions of edema formation are well documented, the draining pattern of dermal edema lacks information. This study was to assess the potential drainage pathways of the interstitial fluid in patients with ankle edema using the anatomical and histological methods. Four amputees of lower leg participated in this study. Fluorescent imaging agent was injected into lateral ankle dermis in one volunteered patient before the amputation and three lower legs after the amputation. Physiologically in the volunteer or enhanced by cyclical compression on three amputated limbs, several fluorescent longitudinal pathways from ankle dermis to the broken end of the amputated legs were subsequently visualized and studied using histological methods, laser confocal microscopy and electron microscopy methods respectively. Interestingly, the fluorescent pathways confirmed to be fibrous connective tissues and the presence of two types: those of the cutaneous pathway (located in dermis or the interlobular septum among adipose tissues within the hypodermis) and those of the perivascular pathway (located in connective tissues surrounding the veins and the arteries). The intrinsic three-dimensional architecture of each fluorescent pathway was the longitudinally running and interconnected fibril bundles, upon which, an interfacial transport pathway within connective tissues was visualized by fluorescein. The current anatomical data suggested that a unique long-distance transport pathway composed of oriented fibrous connective tissues might play a pathophysiological role in draining dermal edema besides vascular circulations and provide novel understandings of general fibrous connective tissues in life science.

  19. Determining littoral sediment transport paths adjacent to an eroding carbonate beach through net sediment grain-size trend analysis: Lanikai Beach, Hawaii. (United States)

    Bochicchio, C. J.; Fletcher, C.; Vitousek, S.; Romine, B.; Smith, T.


    Identifying long-term trends of sediment transport in coastal environments is a fundamental goal shared by coastal scientists, engineers, and resource managers. Historical photographic analysis and predictive computer models have served as the primary approaches to charactering long-term trends in sediment flux. Net sediment grain-size trend analysis is an empirical, sedimentologically based technique that uses physical sediment samples to identify long-term sediment transport pathways. Originally developed by McLaren and Bowles (1985), net sediment grain-size trend analysis identifies progressive trends in grain-size parameters (mean size, sorting, and skewness) in sediment samples. Ultimately, the results give an indication of long-shore sediment transport, a visualization of individual littoral cells, and a better understanding of sediment processes in the near- shore region. We applied two methodologies put forth by Gao and Collins (1992) and Roux (1994) to 214 samples collected off Lanikai Beach, Hawaii; an excellent example of a coastal environment with chronic beach erosion. The Gao methodology searches point-to-point search for the two trend types used by McLaren. The Roux methodology simultaneously searches between five adjacent points for four trend types. Despite significant differences, similar trends dominate in both sets of results. The Gao methodology produces generalized trends while the Roux methodology shows finer details of sediment transport. Long-shore transport direction is shown to be northward for the majority of the study area, implying a sediment supply to the south. Therefore erosion is instigated if the sediment supply south of Lanikai Beach is cut off. A strong onshore sediment transport trend fails to accrete a beach in an armored section of the southern Lanikai coastline, demonstrating the erosive effect of increased wave refraction from coastal armoring. Results of the sediment trend analyses agree well with tidal current models

  20. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD) (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  1. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries. (United States)

    Vali, Alireza; Abla, Adib A; Lawton, Michael T; Saloner, David; Rayz, Vitaliy L


    In vivo measurement of blood velocity fields and flow descriptors remains challenging due to image artifacts and limited resolution of current imaging methods; however, in vivo imaging data can be used to inform and validate patient-specific computational fluid dynamics (CFD) models. Image-based CFD can be particularly useful for planning surgical interventions in complicated cases such as fusiform aneurysms of the basilar artery, where it is crucial to alter pathological hemodynamics while preserving flow to the distal vasculature. In this study, patient-specific CFD modeling was conducted for two basilar aneurysm patients considered for surgical treatment. In addition to velocity fields, transport of contrast agent was simulated for the preoperative and postoperative conditions using two approaches. The transport of a virtual contrast passively following the flow streamlines was simulated to predict post-surgical flow regions prone to thrombus deposition. In addition, the transport of a mixture of blood with an iodine-based contrast agent was modeled to compare and verify the CFD results with X-ray angiograms. The CFD-predicted patterns of contrast flow were qualitatively compared to in vivo X-ray angiograms acquired before and after the intervention. The results suggest that the mixture modeling approach, accounting for the flow rates and properties of the contrast injection, is in better agreement with the X-ray angiography data. The virtual contrast modeling assessed the residence time based on flow patterns unaffected by the injection procedure, which makes the virtual contrast modeling approach better suited for prediction of thrombus deposition, which is not limited to the peri-procedural state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Implementing fluid dynamics obtained from GeoPET in reactive transport models (United States)

    Lippmann-Pipke, Johanna; Eichelbaum, Sebastian; Kulenkampff, Johannes


    Flow and transport simulations in geomaterials are commonly conducted on high-resolution tomograms (μCT) of the pore structure or stochastic models that are calibrated with measured integral quantities, like break through curves (BTC). Yet, there existed virtually no method for experimental verification of the simulated velocity distribution results. Positron emission tomography (PET) has unrivaled sensitivity and robustness for non-destructive, quantitative, spatio-temporal measurement of tracer concentrations in body tissue. In the past decade, we empowered PET for its applicability in opaque/geological media - GeoPET (Kulenkampff et al.; Kulenkampff et al., 2008; Zakhnini et al., 2013) and have developed detailed correction schemes to bring the images into sharp focus. Thereby it is the appropriate method for experimental verification and calibration of computer simulations of pore-scale transport by means of the observed propagation of a tracer pulse, c_PET(x,y,z,t). In parallel, we aimed at deriving velocity and porosity distributions directly from our concentration time series of fluid flow processes in geomaterials. This would allow us to directly benefit from lab scale observations and to parameterize respective numerical transport models. For this we have developed a robust spatiotemporal (3D+t) parameter extraction algorithm. Here, we will present its functionality, and demonstrate the use of obtained velocity distributions in finite element simulations of reactive transport processes on drill core scale. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, in press. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008. Zakhnini, A., Kulenkampff, J., Sauerzapf, S

  3. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia G.; Rychagov, Sergey N.; Trainor, Thomas P. (Alaska Fairbanks); (Russ. Acad. Sci.)


    The use of geothermal fluids for the production of electricity poses a risk of contaminating surface waters when spent fluids are discharged into (near) surface environments. Arsenic (As) in particular is a common component in geothermal fluids and leads to a degradation of water quality when present in mobile and bioavailable forms. We have examined changes in arsenic speciation caused by quick transition from high temperature reducing conditions to surface conditions, retention mechanisms, and the extent of transport associated with the release of spent geothermal fluids at the Dachny geothermal fields (Mutnovsky geothermal region), Kamchatka, Russia -- a high temperature field used for electricity production. In the spent fluids, the arsenic concentration reaches 9 ppm, while in natural hot springs expressed in the vicinity of the field, the As concentration is typically below 10 ppb. The aqueous phase arsenic speciation was determined using Liquid Chromatography (LC) coupled to an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The arsenic speciation in the bottom sediments (< 65 {mu}m fraction) of the local surface waters was analyzed using X-ray Absorption Spectroscopy (XAS). Arsenic in the geothermal source fluids is predominantly found as As(III), while a mixture of As(III)/As(V) is found in the water and sediment of the Falshivaia River downstream from the power plant. The extent of elevated arsenic concentrations in water is limited by adsorption to the bottom sediment and dilution, as determined using Cl{sup -} from the deep well fluids as a tracer. Analysis of the Extended X-ray Absorption Fine Structure (EXAFS) spectra shows that sediment phase arsenic is associated with both Al- and Fe-rich phases with a bi-dentate corner sharing local geometry. The geothermal waste fluids released in the surface water create a localized area of arsenic contamination. The extent of transport of dissolved As is limited to {approx}7 km downstream from the source

  4. CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling (United States)

    Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuo...

  5. Dynamic Structure Factor and Transport Coefficients of a Homogeneously Driven Granular Fluid in Steady State (United States)

    Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo


    We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.

  6. Efficient Coupling of Fluid-Plasma and Monte-Carlo-Neutrals Models for Edge Plasma Transport (United States)

    Dimits, A. M.; Cohen, B. I.; Friedman, A.; Joseph, I.; Lodestro, L. L.; Rensink, M. E.; Rognlien, T. D.; Sjogreen, B.; Stotler, D. P.; Umansky, M. V.


    UEDGE has been valuable for modeling transport in the tokamak edge and scrape-off layer due in part to its efficient fully implicit solution of coupled fluid neutrals and plasma models. We are developing an implicit coupling of the kinetic Monte-Carlo (MC) code DEGAS-2, as the neutrals model component, to the UEDGE plasma component, based on an extension of the Jacobian-free Newton-Krylov (JFNK) method to MC residuals. The coupling components build on the methods and coding already present in UEDGE. For the linear Krylov iterations, a procedure has been developed to ``extract'' a good preconditioner from that of UEDGE. This preconditioner may also be used to greatly accelerate the convergence rate of a relaxed fixed-point iteration, which may provide a useful ``intermediate'' algorithm. The JFNK method also requires calculation of Jacobian-vector products, for which any finite-difference procedure is inaccurate when a MC component is present. A semi-analytical procedure that retains the standard MC accuracy and fully kinetic neutrals physics is therefore being developed. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 15-ERD-059, by PPPL under Contract DE-AC02-09CH11466, and supported in part by the U.S. DOE, OFES.

  7. Giant larvaceans: biologically equivalent flapping flexible foils exhibit bending modes that enhance fluid transport (United States)

    Katija, Kakani; Sherman, Alana; Robison, Bruce


    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. A group of midwater organisms, known as giant larvaceans (genus Bathochordaeus), beat their tails to drive food and particle-laden water through complex, mucus filtering structures to feed. Giant larvaceans, whose motion and kinematics resemble flapping flexible foils, range in size from 1 to 10 cm in length, and can be found between the surface and 400 m. Using remotely-operated vehicles and DeepPIV, an instrument that enables in situ particle image velocimetry (PIV) measurements, the filtration rates and kinematics of giant larvaceans were investigated. These measurements yielded filtration rates for giant larvaceans as high as 80 L/hr, which exceeds expected filtration rates by a factor of 2 when compared with other larvacean groups. Comparing tail kinematics between Bathochordeaus and smaller larvaceans reveals differences in tail bending modes, where a hinge is present throughout the tail beat in giant larvaceans. Using laboratory PIV measurements with swimming animals and soft-bodied mechanical mimics, we reveal how these differences in tail kinematics can lead to enhanced fluid transport. This work has been supported by the Packard Foundation.

  8. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality (United States)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  9. The SLC16A family of monocarboxylate transporters (MCTs)--physiology and function in cellular metabolism, pH homeostasis, and fluid transport. (United States)

    Adijanto, Jeffrey; Philp, Nancy J


    The SLC16A family of monocarboxylate transporters (MCTs) is composed of 14 members. MCT1 through MCT4 (MCTs 1-4) are H(+)-coupled monocarboxylate transporters, MCT8 and MCT10 transport thyroid hormone and aromatic amino acids, while the substrate specificity and function of other MCTs have yet to be determined. The focus of this review is on MCTs 1-4 because their role in lactate transport is intrinsically linked to cellular metabolism in various biological systems, including skeletal muscle, brain, retina, and testis. Although MCTs 1-4 all transport lactate, they differ in their transport kinetics and vary in tissue and subcellular distribution, where they facilitate "lactate-shuttling" between glycolytic and oxidative cells within tissues and across blood-tissue barriers. However, the role of MCTs 1-4 is not confined to cellular metabolism. By interacting with bicarbonate transport proteins and carbonic anhydrases, MCTs participate in the regulation of pH homeostasis and fluid transport in renal proximal tubule and corneal endothelium, respectively. Here, we provide a comprehensive review of MCTs 1-4, linking their cellular distribution to their functions in various parts of the human body, so that we can better understand the physiological roles of MCTs at the systemic level. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Fluid shear stress increases transepithelial transport of Ca(2+) in ciliated distal convoluted and connecting tubule cells. (United States)

    Mohammed, Sami G; Arjona, Francisco J; Latta, Femke; Bindels, René J M; Roepman, Ronald; Hoenderop, Joost G J


    In kidney, transcellular transport of Ca(2+) is mediated by transient receptor potential vanilloid 5 and Na(+)-Ca(2+) exchanger 1 proteins in distal convoluted and connecting tubules (DCTs and CNTs, respectively). It is not yet understood how DCT/CNT cells can adapt to differences in tubular flow rate and, consequently, Ca(2+) load. This study aims to elucidate the molecular mechanisms by which DCT/CNT cells sense fluid dynamics to control transepithelial Ca(2+) reabsorption and whether their primary cilia play an active role in this process. Mouse primary DCT/CNT cultures were subjected to a physiologic fluid shear stress (FSS) of 0.12 dyn/cm(2) Transient receptor potential vanilloid 5 and Na(+)-Ca(2+) exchanger 1 mRNA levels were significantly increased upon FSS exposure compared with static controls. Functional studies with (45)Ca(2+) demonstrated a significant stimulation of transepithelial Ca(2+) transport under FSS compared with static conditions. Primary cilia removal decreased Ca(2+) transport in both static and FSS conditions, a finding that correlated with decreased expression of genes involved in transepithelial Ca(2+) transport; however, FSS-induced stimulation of Ca(2+) transport was still observed. These results indicate that nephron DCT and CNT segments translate FSS into a physiologic response that implicates an increased Ca(2+) reabsorption. Moreover, primary cilia influence transepithelial Ca(2+) transport in DCTs/CNTs, yet this process is not distinctly coupled to FSS sensing by these organelles.-Mohammed, S. G., Arjona, F. J., Latta, F., Bindels, R. J. M., Roepman, R., Hoenderop, J. G. J. Fluid shear stress increases transepithelial transport of Ca(2+) in ciliated distal convoluted and connecting tubule cells. © FASEB.

  11. Particle-based mesoscale modeling of flow and transport in complex fluids (United States)

    Tuzel, Erkan

    The dynamic behavior of complex liquids and soft materials is of great importance in a wide range of disciplines. Computational studies of these phenomena are particularly demanding because of the presence of disparate length and energy scales, and the complicated coupling between the embedded objects and the hydrodynamic flow field. The goal of this dissertation is to contribute to the understanding of these systems through the development and application of robust, quantitative mesoscale simulation techniques which incorporate both hydrodynamic interactions and thermal fluctuations. The work involves the further development of a specific particle-based mesoscale algorithm---stochastic rotation dynamics---which solves the hydrodynamic equations by following the discrete time dynamics of particles with continuous coordinates and velocities, using efficient multi-particle collisions. A detailed study of the long length- and time-scale properties of the algorithm, which involves analytical derivations of hydrodynamic equations, Green-Kubo relations, and transport coefficients is presented. Extensive simulations are performed to verify these results. The original algorithm is generalized to model dense fluids and binary mixtures. The equation of state and analytical expressions for the transport coefficients are derived. It is also shown that the non-ideal model exhibits an order-disorder transition and caging in the limit of large collision frequencies. The phase diagram of the entropically driven de-mixing transition of the binary mixture is presented, the surface tension for a droplet is calculated, and a detailed analysis of the capillary wave spectrum is performed. Finally, the algorithm is extended to amphiphilic mixtures in order to be able to study microemulsions and micelle formation. We have also developed a constrained dynamics algorithm for modeling the dynamical behavior of wormlike chains embedded in a mesoscale solvent. Rigorously enforced bond

  12. Equation de transport, Level Set et mécanique eulérienne. Application au couplage fluide-structure


    Maitre, Emmanuel


    English version available.; My works were devoted to numerical analysis of nonlinear elliptic-parabolic equations, neutrons transport equation and fabrics mechanic. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in biomechanics.; Mes recherches ont porté sur l'analyse des équations à double non linéarité, le transport neutronique et la mécanique des textiles, et plus récemment...

  13. Fluid Creep Effects on Near-Wall Solute Transport for Non-Isothermal Ampoules (United States)

    Papadopoulos, Dimitrios; Rosner, Daniel E.


    There is a growing practical and theoretical interest in developing accurate macroscopic modelling for flows arising in chemical or physical vapor transport (VT) crystal growth experiments, including those conducted in reduced gravity environments. Rosner was the first person to point out that previously neglected rarefield gas dynamics phenomena (Stefan and bouyancy-driven flows) become rather important sources of convection. In particular, the combination of rarefaction and strong gradients of temperature (and/or concentration) tangential to the side-walls of the ampoule induces convective flows known as thermal (and concentration) 'creep' respectively. His order-of-magnitude estimates revealed that thermal creep effects can be non-negligible even at normal gravitational levels. On the macroscopic level, the bulk fluid mechanics can be adequately described by the familiar macroscopic equations as long as the boundary conditions are modified to account for the integrated effect of kinetic boundary layers adjacent to solid boundaries. Motivated by the growing importance of these phenomena, we have embarked on a series of computational studies to elucidate these fundamental creep-induced effects for a rarefied gas in simple, two-dimensional confined geometries. However, unlike previous related studies, we resort to a microscopic description of the gas, mathematically expressed by the Boltzmann integro-differential equation. We employ the direct simulation Monte Carlo (DSMC) method of Bird, the theoretical foundations and several practical applications. In the case of thermally induced flows, the no-time counter method of Bird is used, as implemented for a hard-sphere gas. The scheme has been also extended to account for realistic molecular interaction models, an extension necessary if the diffusion physics underlying concentration creep are to be captured.

  14. Influences of chemical reaction and wall properties on MHD Peristaltic transport of a Dusty fluid with Heat and Mass transfer

    Directory of Open Access Journals (Sweden)

    R. Muthuraj


    Full Text Available The influence of elasticity of flexible walls on peristaltic transport of a dusty fluid with heat and mass transfer in a horizontal channel in the presence of chemical reaction has been investigated under long wavelength approximation. Expressions have been constructed for stream function, temperature and concentration by using perturbation technique. The effects of various parameters on heat and mass transfer characteristics of the flow are discussed through graphs.


    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    We have developed a four-fluid, three-dimensional magnetohydrodynamic model of the solar wind interaction with the local interstellar medium. The unique features of the model are: (a) a three-fluid description for the charged components of the solar wind and interstellar plasmas (thermal protons, electrons, and pickup protons), (b) the built-in turbulence transport equations based on Reynolds decomposition and coupled with the mean-flow Reynolds-averaged equations, and (c) a solar corona/solar wind model that supplies inner boundary conditions at 40 au by computing solar wind and magnetic field parameters outward from the coronal base. The three charged species are described by separate energy equations and are assumed to move with the same velocity. The fourth fluid in the model is the interstellar hydrogen which is treated by separate continuity, momentum, and energy equations and is coupled with the charged components through photoionization and charge exchange. We evaluate the effects of turbulence transport and pickup protons on the global heliospheric structure and compute the distribution of plasma, magnetic field, and turbulence parameters throughout the heliosphere for representative solar minimum and maximum conditions. We compare our results with Voyager 1 observations in the outer heliosheath and show that the relative amplitude of magnetic fluctuations just outside the heliopause is in close agreement with the value inferred from Voyager 1 measurements by Burlaga et al. The simulated profiles of magnetic field parameters in the outer heliosheath are in qualitative agreement with the Voyager 1 observations and with the analytical model of magnetic field draping around the heliopause of Isenberg et al.

  16. Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)


    Gauss-Bonnet holographic fluid is a useful theoretical laboratory to study the effects of curvature-squared terms in the dual gravity action on transport coefficients, quasinormal spectra and the analytic structure of thermal correlators at strong coupling. To understand the behavior and possible pathologies of the Gauss-Bonnet fluid in 3+1 dimensions, we compute (analytically and non-perturbatively in the Gauss-Bonnet coupling) its second-order transport coefficients, the retarded two- and three-point correlation functions of the energy-momentum tensor in the hydrodynamic regime as well as the relevant quasinormal spectrum. The Haack-Yarom universal relation among the second-order transport coefficients is violated at second order in the Gauss-Bonnet coupling. In the zero-viscosity limit, the holographic fluid still produces entropy, while the momentum diffusion and the sound attenuation are suppressed at all orders in the hydrodynamic expansion. By adding higher-derivative electromagnetic field terms to the action, we also compute corrections to charge diffusion and identify the non-perturbative parameter regime in which the charge diffusion constant vanishes.

  17. Boron desorption and fractionation in Subduction Zone Fore Arcs: Implications for the sources and transport of deep fluids (United States)

    Saffer, Demian M.; Kopf, Achim J.


    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate fluid flow and chemical transport from depths of several kilometers. Identifying the source regions for these fluids is essential toward quantifying flow pathways and volatile fluxes through fore arcs, and in understanding their connection to the loci of excess pore pressure at depth. Here we develop a model to track the coupled effects of boron desorption, smectite dehydration, and progressive consolidation within sediment at the top of the subducting slab, where such deep fluid signals likely originate. Our analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, pore water freshening is maximized because dehydration releases bound water into low porosity sediment, whereas boron concentrations and isotopic signatures are modest because desorption is strongly sensitive to temperature and is only partially complete. For warmer slabs, freshening is smaller, because dehydration occurs earlier and into larger porosities, but the boron signatures are larger. The former scenario is typical of nonaccretionary margins where insulating sediment on the subducting plate is commonly thin. This result provides a quantitative explanation for the global observation that signatures of deeply sourced fluids are generally strongest at nonaccretionary margins. Application of our multitracer approach to the Costa Rica, N. Japan, N. Barbados, and Mediterranean Ridge subduction zones illustrates that desorption and dehydration are viable explanations for observed geochemical signals, and suggest updip fluid migration from these source regions over tens of km.

  18. Anomalous transport properties of a two-phase system of HTSC + NiTiO sub 3 paramagnetics, forming the net of random Josephson junctions

    CERN Document Server

    Petrov, M I; Shajkhutdinov, K A; Popkov, S I


    The magnetoresistive properties of the 92.5 at % Y sub 3 sub / sub 4 Lu sub 1 sub / sub 4 Ba sub 2 Cu sub 3 O sub 7 + 7.5 at % NiTiO sub 3 composites, representing the net of random tunnel transitions of the Josephson type, are synthesized and studied. The area, whereon R does not depend on the j-current and slightly depends on the H magnetic field is identified on the temperature dependences of the electric resistance R(T) of the composites with the NiTiO sub 3 paramagnetic compound below the temperature of the HTSC T sub c transition. The anomalous behavior of the HTSC + NiTiO sub 3 composites is explained by the effect of the Ni atoms magnetic moments in the dielectric barriers on the current transport

  19. Transport and fluctuations in granular fluids from Boltzmann equation to hydrodynamics, diffusion and motor effects

    CERN Document Server

    Puglisi, Andrea


    This brief offers a concise presentation of granular fluids from the  point of view of non-equilibrium statistical physics. The emphasis is on fluctuations, which can be large in granular fluids due to the small system size (the number of grains is many orders of magnitude smaller than in molecular fluids). Firstly, readers will be introduced to the most intriguing experiments on fluidized granular fluids. Then granular fluid theory, which goes through increasing levels of coarse-graining and emerging collective phenomena, is described. Problems and questions are initially posed at the level of kinetic theory, which describes particle densities in full or reduced phase-space. Some answers become clear through hydrodynamics, which describes the evolution of slowly evolving fields. Granular fluctuating hydrodynamics, which builds a bridge to the most recent results in non-equilibrium statistical mechanics, is also introduced. Further and more interesting answers come when the dynamics of a massive intruder are...

  20. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  1. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej


    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  2. Relevance of collisionality in the transport model assumptions for divertor detachment multi-fluid modelling on JET

    DEFF Research Database (Denmark)

    Wiesen, S.; Fundamenski, W.; Wischmeier, M.


    A revised formulation of the perpendicular diffusive transport model in 2D multi-fluid edge codes is proposed. Based on theoretical predictions and experimental observations a dependence on collisionality is introduced into the transport model of EDGE2D–EIRENE. The impact on time-dependent JET gas...... fuelled ramp-up scenario modelling of the full transient from attached divertor into the high-recycling regime, following a target flux roll over into divertor detachment, ultimately ending in a density limit is presented. A strong dependence on divertor geometry is observed which can mask features...... of the new transport model: a smoothly decaying target recycling flux roll over, an asymmetric drop of temperature and pressure along the field lines as well as macroscopic power dependent plasma oscillations near the density limit which had been previously observed also experimentally. The latter effect...

  3. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice (United States)

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M


    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  4. Modeling Fluid and Heat Transport in a New Type Thermal Isomerization Fluidized Bed Reactor (United States)

    Yang, Xiaoxiao; Fu, Zewu; Zhao, Yuying; Liu, Liujun; Li, Rui


    In the current work, with a new concept of resident ratio which impacts the reaction time, a fluid flow and heat transfer model were employed for simulating pressure drop, temperature profile and fluid flow properties of new type thermal isomerization reactor. The thermal isomerization experiment of β-pinenewas performed using the reactor. Momentum equation, energy equation and kinetic equationswere used to describe the fluid flow and heat transfer. The experimental results were in good agreement with theoretical simulation which indicated that the temperature difference between boundary and initial can be decreased by using steel balls and this modified fluidized bed can improve the yield and selectivity of the products effectively.

  5. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill


    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  6. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander (United States)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  7. MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient

    Directory of Open Access Journals (Sweden)

    Chengru Jiao


    Full Text Available This paper studies the magnetohydrodynamic (MHD thermosolutal Marangoni convection heat and mass transfer of power-law fluids driven by a power law temperature and a power law concentration which is assumed that the surface tension varies linearly with both the temperature and concentration. Heat and mass transfer constitutive equation is proposed based on N-diffusion proposed by Philip and the abnormal convection-diffusion model proposed by Pascal in which we assume that the heat diffusion depends non-linearly on both the temperature and the temperature gradient and the mass diffusion depends non-linearly on both the concentration and the concentration gradient with modified Fourier heat conduction for power law fluid. The governing equations are reduced to nonlinear ordinary differential equations by using suitable similarity transformations. Approximate analytical solution is obtained using homotopy analytical method (HAM. The transport characteristics of velocity, temperature and concentration fields are analyzed in detail.

  8. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena (United States)

    Li, Zhaorui; Livescu, Daniel


    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  9. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct (United States)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.


    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular-to-rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  10. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach. (United States)

    Gao, Xi; Kong, Bo; Vigil, R Dennis


    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. From 3D gravity to coupled fluid and heat transport modelling - a case study from the Upper Rhine Graben (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias


    Numerical models that predict and help to understand subsurface hydrothermal conditions are key to reduce the risk of drilling non-productive geothermal wells. Such simulations of coupled fluid and heat transport need a reliable 3D structural model. Therefore, we use an integrated approach of data-based 3D structural, gravity, conductive thermal and thermo-hydraulic coupled modelling. The Upper Rhine Graben (URG) is known for its large potential for deep geothermal energy that is already used in e.g. Soultz-sous-Forêts. In the frame of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration, grant agreement no. 608553), we assess the dominant processes and effective physical properties that control the deep thermal field of the URG. Therefore, we have built a lithospheric-scale 3D structural model of the URG by integrating existing data-based 3D models, deep seismic reflection and refraction profiles, as well as receiver function data. 3D gravity modelling was used to assess the internal configuration of the upper crystalline crust in addition to deep seismic lines. The resulting gravity-constrained 3D structural model was then used as base to calculate the 3D conductive thermal field. An analysis of deviations between measured and calculated temperatures revealed that heat transport connected to fluid circulation is probably relevant at depths above 2500 m. To test this hypotheses smaller-scale and higher resolution models for coupled fluid and heat transport were simulated. We present the results from this combined workflow considering 3D gravity and 3D thermal modelling.

  12. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow (United States)

    Rodriquez, Alvaro Che


    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  13. The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths (United States)

    Berkesi, Márta; Guzmics, Tibor; Szabó, Csaba; Dubessy, Jean; Bodnar, Robert J.; Hidas, Károly; Ratter, Kitti


    Upper mantle peridotite xenoliths from the Tihany Maar Volcanic Complex, Bakony-Balaton Highland Volcanic Field (Central Pannonian Basin, Hungary) contain abundant pyroxene-hosted negative crystal shaped CO2-rich fluid inclusions. The good correlation between enrichment of the clinopyroxenes in Al2O3, TiO2, Na2O, MREE and Zr, and the presence of fluid inclusions in the xenoliths provide strong evidence for fluid-related cryptic metasomatism of the studied xenoliths. The FIB-SEM (focused ion beam-scanning electron microscopy) exposure technique revealed a thin glass film, covering the wall of the fluid inclusions, which provides direct evidence that the silicate components were formerly dissolved in the CO2-rich fluid phase. This means that at upper mantle conditions CO2-rich fluids are capable of transporting trace and major elements, and are the agents responsible for cryptic metasomatism of the peridotite wall rock. Several daughter phases, including magnesite, quartz and sulfide, were identified in the fluid inclusions. Magnesite and quartz are the products of a post entrapment carbonation reaction, whereby the reactants are the CO2-rich fluid and the host orthopyroxene. It is likely that the thin glass film prevented or arrested further growth of the magnesite and quartz by isolating the fluid from the host orthopyroxene, resulting in the preservation of residual CO2 in the fluid inclusions.

  14. Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Todaka, Norifumi; Akasaka, Chitosi; Xu, Tianfu; Pruess, Karsten


    Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. Mn-rich smectite precipitated near the mixing front and is likely to form an impermeable barrier between regions with acidic and neutral fluids.

  15. Peristaltic transport of a Maxwell fluid in a porous asymmetric channel through a porous medium

    Directory of Open Access Journals (Sweden)

    Safia Akram


    Full Text Available The present study investigates the peristaltic flow of a Maxwell fluid in a porous asymmetric channel through a porous medium. An analytical solution has been found using regular perturbation method. The stream function and average mean velocity are obtained. The graphical results are presented to discuss the physical behavior of various parameters appearing in the problem.

  16. Tackling Fluid Overload in a High-transporter Diabetic Patient on ...

    African Journals Online (AJOL)

    CAPD) are more prone to fluid overload than non-diabetic patients, but the use of hypertonic glucose solutions to improve their ultrafiltration (UF) may hamper their glycemic control. Maintaining euvolemia in such patients may be tricky and needs ...

  17. Numerical Modeling of Fluid Flow and Thermal Transport in Gravity-Dominated 3D Microchannels

    NARCIS (Netherlands)

    Odesola, Isaac F.; Ashaju, Abimbola Ayodeji; Ige, Ebenezer O.

    The success recorded by the usage of microchannel in high flux cooling application, has led to several studies aimed at advancement in microchannel fluid flow and heat transfer technology. A recent study area with promising breakthrough is the effects of gravity on microscale flow. Numerical

  18. A Chaotic-Dynamical Conceptual Model to Describe Fluid flow and Contaminant Transport in a Fractured Vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris; Doughty, Christine; Stoops, Thomas M.; Wood, thomas R.; Wheatcraft, Stephen W.


    (1) To determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. (2) To introduce a new approach to the multiscale characterization of flow and transport in fractured basalt vadose zones and to develop physically based conceptual models on a hierarchy of scales. The following activities are indicative of the success in meeting the project s objectives: A series of ponded infiltration tests, including (1) small-scale infiltration tests (ponded area 0.5 m2) conducted at the Hell s Half Acre site near Shelley, Idaho, and (2) intermediate-scale infiltration tests (ponded area 56 m2) conducted at the Box Canyon site near Arco, Idaho. Laboratory investigations and modeling of flow in a fractured basalt core. A series of small-scale dripping experiments in fracture models. Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from nonlinear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; Development of a conceptual model and mathematical and numerical algorithms for flow and transport that incorporate (1) the spatial variability of heterogeneous porous and fractured media, and (2) the description of the temporal dynamics of flow and transport, both of which may be chaotic. Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial heterogeneity and flow phenomena are affected by nonlinear dynamics, and in particular, by chaotic processes. The scientific and practical value of this approach is that we can predict the range within which the parameters of flow and transport change with time in order to design and manage the remediation, even when we can not predict

  19. Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions (United States)

    Angot, Philippe; Goyeau, Benoît; Ochoa-Tapia, J. Alberto


    We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of the interfacial transition region Ωfp of the one-domain representation is very small compared to the macroscopic length scale L . The analysis leads to an equivalent two-domain representation where transport phenomena in the transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive dividing interface Σ between the homogeneous fluid and porous regions. These jump conditions are thus stated up to first-order in O (d /L ) with d /L ≪1 . The originality and relevance of this asymptotic model lies in its general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that case, the comparison between the present model and the different models available in the literature gives explicit expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional flows, the general asymptotic model yields the different components of the jump conditions including a new specific equation for the cross-flow pressure jump on Σ .

  20. Structure, inferred mechanical properties, and implications for fluid transport in the décollement zone, Costa Rica convergent margin (United States)

    Tobin, Harold; Vannucchi, Paola; Meschede, Martin


    Faults in a variety of tectonic settings can act as both conduits for and barriers to fluid flow, sometimes simultaneously. Documenting the interaction between hydrologic and tectonic processes in active faults in situ is the key to understanding their mechanical behavior and large-scale fluid transport properties. We present observations of the plate boundary décollement zone at the Middle America Trench off Costa Rica, showing that it is structurally divisible into an upper brittle-fracture dominated domain overlying a lower, ductile domain. Pore-water geochemical evidence shows that along-fault flow is occurring specifically in the upper brittle domain, but is hydrologically isolated from fluids in the underlying footwall sediments. We propose a model for the mechanics of these contrasting domains in which differing stress paths coexist in the upper and lower parts of the décollement zone. The data suggest a mechanically controlled permeability anisotropy at a scale of several meters to ˜10 m across the décollement zone. This documentation of separate yet simultaneously active mechanical and hydrologic subregimes within a décollement provides a relatively simple explanation for enhanced along-fault permeability coexisting with reduced cross-fault permeability, without requiring matrix-scale permeability anisotropy.

  1. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Energy Technology Data Exchange (ETDEWEB)

    ChiBin, Zhang; XiaoHui, Lin, E-mail:; ZhaoMin, Wang; ChangBao, Wang


    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5–8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall. - Highlights: • A model of MDCPs for IA-MDT in permeable microvessels was established. • An experimental device was established, the CE of MDCPs was measured. • The predicted CE of MDCPs was 5–8% higher in the IA-MDT model.

  2. RESTful NET

    CERN Document Server

    Flanders, Jon


    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  3. Phytoplankton growth balanced by clam and zooplankton grazing and net transport into the low-salinity zone of the San Francisco Estuary (United States)

    Kimmerer, Wim J.; Thompson, Janet K.


    We estimated the influence of planktonic and benthic grazing on phytoplankton in the strongly tidal, river-dominated northern San Francisco Estuary using data from an intensive study of the low salinity foodweb in 2006–2008 supplemented with long-term monitoring data. A drop in chlorophyll concentration in 1987 had previously been linked to grazing by the introduced clam Potamocorbula amurensis, but numerous changes in the estuary may be linked to the continued low chlorophyll. We asked whether phytoplankton continued to be suppressed by grazing and what proportion of the grazing was by benthic bivalves. A mass balance of phytoplankton biomass included estimates of primary production and grazing by microzooplankton, mesozooplankton, and clams. Grazing persistently exceeded net phytoplankton growth especially for larger cells, and grazing by microzooplankton often exceeded that by clams. A subsidy of phytoplankton from other regions roughly balanced the excess of grazing over growth. Thus, the influence of bivalve grazing on phytoplankton biomass can be understood only in the context of limits on phytoplankton growth, total grazing, and transport.

  4. Modeling of plasma and thermo-fluid transport in hybrid welding (United States)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of

  5. Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid. (United States)

    Bhattacharjee, Saikat; Mondal, Mrinmoy; De, Sirshendu


    Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  7. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  8. Recent Advances in Numerical Modeling of Reactive Chemical Transport in Sulfur-Bearing Rock-Fluid Systems (United States)

    Pruess, K.; Xu, T.; Apps, J. A.


    Redox processes that involve sulfur-bearing mineral phases play a crucial role in the development of ore deposits, in the degradation of mining wastes, and in geologic disposal and sequestration of sour gases. The underlying processes involve considerable physical and chemical complexity, and microbial interactions may play an important role as well. Fluid flow and mass transport typically take place in settings that involve heterogeneities on multiple scales, and may be dominated by fast preferential pathways such as fractures. Both aqueous and gas phases may actively participate in chemical interactions, and redox processes that are kinetically controlled may play a dominant role. System behavior is further complicated by non-stoichiometric and metastable mineral phases, and by feedbacks between hydraulic, chemical, and thermal effects. Effective processes and their characteristic parameters are dependent on space and time scales, and vastly different time scales can be relevant for the hydraulic and chemical systems. The complexity and diversity of sulfur-bearing rock-fluid systems is illustrated with two examples of reactive transport, the supergene enrichment of copper protores due to weathering processes during desertification over geologic time, and the disposal of gas mixtures including SO2 and H2S through underground injection. We highlight the description of physical and chemical processes, mathematical modeling approaches, numerical solution techniques, and illustrative results. Mineral assemblages in natural analog systems provide important constraints for thermodynamic data, that must be honored in order that realistic results may be obtained. Our paper concludes with a summary of current challenges for modeling reactive chemical transport. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

  9. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.


    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  10. Alfvén eigenmode stability and critical gradient energetic particle transport using the Trapped-Gyro-Landau-Fluid model (United States)

    Sheng, He; Waltz, R. E.; Staebler, G. M.


    The Trapped-Gyro-Landau-Fluid (TGLF) transport model is a physically realistic and comprehensive theory based on a local quasilinear transport model fitted to linear and nonlinear GYRO gyrokinetic simulations [Staebler et al., Phys. Plasmas 14, 55909 (2007)]. This work presents the first use of the TGLF model to treat low-n Alfvén eigenmode (AE) stability and energetic particle (EP) transport. TGLF accurately recovers the local GYRO toroidicity-induced AE (TAE) and energetic particle mode (EPM) linear growth and frequency rates for a fusion alpha case. With a very high grid resolution, TGLF can quickly find the critical EP pressure gradient profile for stiff EP transport based on an AE linear threshold given the background thermal plasma profiles in DIII-D. The TGLF critical gradient profile using the recipe γAE = 0, that is the linear AE growth rate without additional driving rates from the background plasma gradients, matches the more expensive linear GYRO results with a single worst toroidal mode number n. TGLF can easily find the minimum critical gradient profile with testing multiple ns. From a database of runs using a newly developed TGLFEP code, a rough but insightful parametric "power law" scaling for critical EP beta is demonstrated. An important toroidal stabilization condition on the EP pressure gradient pEP/LpEP drive is isolated: R /LpEP>CR ˜ 3 , where LpEP is the EP pressure gradient length and R is the tokamak major radius. This paper also demonstrates that relaxation of the fixed slowing down EP profile shape approximation often used to find the critical EP density profile has little effect on the resulting EP transport. The single EP species critical gradient model is generalized to handle two EP species.

  11. A numerical framework for bubble transport in a subcooled fluid flow (United States)

    Jareteg, Klas; Sasic, Srdjan; Vinai, Paolo; Demazière, Christophe


    In this paper we present a framework for the simulation of dispersed bubbly two-phase flows, with the specific aim of describing vapor-liquid systems with condensation. We formulate and implement a framework that consists of a population balance equation (PBE) for the bubble size distribution and an Eulerian-Eulerian two-fluid solver. The PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which we include the condensation of the bubbles as an internal phase space convection. We investigate the robustness of the DQMOM formulation and the numerical issues arising from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute a distribution with dynamic bubble sizes. Such a property is advantageous to capture the wide range of bubble sizes associated with the condensation process. Furthermore, we compare the computational performance of the DQMOM-based framework with the MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size distribution with a good numerical precision in only a small fraction of the computational time required by MUSIG. For the two-fluid solver, we examine the implementation of the mass, momentum and enthalpy conservation equations in relation to the coupling to the PBE. In particular, we propose a formulation of the pressure and liquid continuity equations, that was shown to correctly preserve mass when computing the vapor fraction with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a consistent overall framework that couples the PBE and two-fluid solvers is achieved.


    A two-dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between nonaqueous phase liquid, water, gas and solid phases in porous media under the assumption of local chemical equilib...

  13. Peristaltic transport of a Carreau fluid in a compliant rectangular duct

    Directory of Open Access Journals (Sweden)

    Arshad Riaz


    Full Text Available The study of peristaltic flow of a Carreau fluid in a compliant rectangular channel has been analyzed in this article. The assumptions of low Reynolds number and long wavelength approximation are utilized here to simplify the complicated governing equations for the three dimensional flow geometry. The resulting highly non-linear partial differential constitutive equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The effects of various physical parameters on velocity distribution have been observed graphically for both two and three dimensional aspects. The trapping scheme has also been discussed by plotting stream lines.

  14. Synthesis and characterization of polymer layers for control of fluid transport (United States)

    Vatansever, Fehime

    The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a

  15. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James


    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  16. The Influence of a Micropolar Fluid on Peristaltic Transport in an Annulus: Application of the Clot Model

    Directory of Open Access Journals (Sweden)

    Kh. S. Mekheimer


    Full Text Available A serious pathological condition is encountered when some blood constituents deposited on the blood vessels get detached from the wall, join the blood stream again and form a clot. Study of the peristaltic transport of a micropolar fluid in an annular region is investigated under low Reynolds number and long wavelength approximations. We model a small artery as a tube having a sinusoidal wave travelling down its wall and a clot model inside it. Closed form solutions are obtained for the velocity and the microrotation components, as well as the stream function, and they contain new additional parameters, namely, δ, the height of the clot, N, the coupling number and m, the micropolar parameter. The pressure rise and friction force on the inner and the outer tubes have been discussed for various values of the physical parameters of interest.

  17. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria


    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  18. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering. (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner


    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid. (United States)

    Tabassum, Rabil; Mehmood, R; Nadeem, S


    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Rotation effect on peristaltic transport of a Jeffrey fluid in an asymmetric channel with gravity field

    Directory of Open Access Journals (Sweden)

    A.M. Abd-Alla


    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied under long wavelength and low Reynolds number assumptions are investigated. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress on the channel walls have been computed numerically. The effects of the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravitational field are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel.

  1. Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. (United States)

    Lipinski, Doug; Mohseni, Kamran


    The flow structures produced by the hydromedusae Sarsia tubulosa and Aequorea victoria are examined using direct numerical simulation and Lagrangian coherent structures (LCS). Body motion of each hydromedusa is digitized and input to a CFD program. Sarsia tubulosa uses a jetting type of propulsion, emitting a single, strong, fast-moving vortex ring during each swimming cycle while a secondary vortex of opposite rotation remains trapped within the subumbrellar region. The ejected vortex is highly energetic and moves away from the hydromedusa very rapidly. Conversely, A. victoria, a paddling type hydromedusa, is found to draw fluid from the upper bell surface and eject this fluid in pairs of counter-rotating, slow-moving vortices near the bell margins. Unlike S. tubulosa, both vortices are ejected during the swimming cycle of A. victoria and linger in the tentacle region. In fact, we find that A. victoria and S. tubulosa swim with Strouhal numbers of 1.1 and 0.1, respectively. This means that vortices produced by A. victoria remain in the tentacle region roughly 10 times as long as those produced by S. tubulosa, which presents an excellent feeding opportunity during swimming for A. victoria. Finally, we examine the pressure on the interior bell surface of both hydromedusae and the velocity profile in the wake. We find that S. tubulosa produces very uniform pressure on the interior of the bell as well as a very uniform jet velocity across the velar opening. This type of swimming can be well approximated by a slug model, but A. victoria creates more complicated pressure and velocity profiles. We are also able to estimate the power output of S. tubulosa and find good agreement with other hydromedusan power outputs. All results are based on numerical simulations of the swimming jellyfish.

  2. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube. (United States)

    Tripathi, D; Anwar Bég, O


    This paper studies the peristaltic transport of a viscoelastic fluid (with the fractional second-grade model) through an inclined cylindrical tube. The wall of the tube is modelled as a sinusoidal wave. The flow analysis is presented under the assumptions of long wave length and low Reynolds number. Caputo's definition of fractional derivative is used to formulate the fractional differentiation. Analytical solutions are developed for the normalized momentum equations. Expressions are also derived for the pressure, frictional force, and the relationship between the flow rate and pressure gradient. Mathematica numerical computations are then performed. The results are plotted and analysed for different values of fractional parameter, material constant, inclination angle, Reynolds number, Froude number and peristaltic wave amplitude. It is found that fractional parameter and Froude number resist the flow pattern while material constant, Reynolds number, inclination of angle and amplitude aid the peristaltic flow. Furthermore, frictional force and pressure demonstrate the opposite behaviour under the influence of the relevant parameters emerging in the equations of motion. The study has applications in uretral biophysics, and also potential use in peristaltic pumping of petroleum viscoelastic bio-surfactants in chemical engineering and astronautical applications involving conveyance of non-Newtonian fluids (e.g. lubricants) against gravity and in conduits with deformable walls.

  3. A prospective evaluation of the contribution of ambient temperatures and transport times on infrared thermometry readings of intravenous fluids utilized in EMS patients. (United States)

    Joslin, Jeremy; Fisher, Andrew; Wojcik, Susan; Cooney, Derek R


    During cold weather months in much of the country, the temperatures in which prehospital care is delivered creates the potential for inadvertently cool intravenous fluids to be administered to patients during their transport and care by emergency medical services (EMS). There is some potential for patient harm from unintentional infusion of cool intravenous fluids. Prehospital providers in these cold weather environments are likely using fluids that are well below room temperature when prehospital intravenous fluid (IVF) warming techniques are not being employed. It was hypothesized that cold ambient temperatures during winter months in the study location would lead to the inadvertent infusion of cold intravenous fluids during prehospital patient care. Trained student research assistants obtained three sequential temperature measurements using an infrared thermometer in a convenience sample of intravenous fluid bags connected to patients arriving via EMS during two consecutive winter seasons (2011 to 2013) at our receiving hospital in Syracuse, New York. Intravenous fluids contained in anything other than a standard polyvinyl chloride bag were not measured and were not included in the study. Outdoor temperature was collected by referencing National Weather Service online data at the time of arrival. Official transport times from the scene to the emergency department (ED) and other demographic data was collected from the EMS provider or their patient care record at the time of EMS interaction. Twenty-three intravenous fluid bag temperatures were collected and analyzed. Outdoor temperature was significantly related to the temperature of the intravenous fluid being administered, b = 0.69, t(21) = 4.3, p time did not predict the measured intravenous fluid temperatures, b = 0.12, t(20) = 0.55, p times of cold ambient temperatures can lead to the infusion of cool intravenous fluid and may result in harm to patients. Short transport times do not limit

  4. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome (United States)

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.


    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  5. Enabling the environmentally clean air transportation of the future: a vision of computational fluid dynamics in 2030 (United States)

    Slotnick, Jeffrey P.; Khodadoust, Abdollah; Alonso, Juan J.; Darmofal, David L.; Gropp, William D.; Lurie, Elizabeth A.; Mavriplis, Dimitri J.; Venkatakrishnan, Venkat


    As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be ‘cleaner’ and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. PMID:25024413

  6. Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods (United States)

    Fei, K.; Chen, T. S.; Hong, C. W.

    Carbon dioxide bubble removal at the anode of a direct methanol fuel cell (DMFC) is an important technique especially for applications in the portable power sources. This paper presents numerical investigations of the two-phase flow, CO 2 bubbles in a liquid methanol solution, in the anode microchannels from the aspect of microfluidics using a thermal lattice Boltzmann model (TLBM). The main purpose is to derive an efficient and effective computational scheme to deal with this technical problem. It is then examined by a commercially available software using Navier-Stokes plus volume of fluid (VOF) method. The latter approach is normally employed by most researchers. A simplified microchannel simulation domain with the dimension of 1.5 μm in height (or width) and 16.0 μm in length has been setup for both cases to mimic the actual flow path of a CO 2 bubble inside an anodic diffusion layer in the DMFC. This paper compares both numerical schemes and results under the same operation conditions from the viewpoint of fuel cell engineering.

  7. Understanding fluid transport through the multiscale pore network of a natural shale

    Directory of Open Access Journals (Sweden)

    Davy Catherine A.


    Full Text Available The pore structure of a natural shale is obtained by three imaging means. Micro-tomography results are extended to provide the spatial arrangement of the minerals and pores present at a voxel size of 700 nm (the macroscopic scale. FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm; a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Transmission Electron Microscopy (TEM is used to visualize the pore space with a typical pixel size of less than 1 nm and a porosity ranging from 0.12 to 0.25. On this scale, in the absence of 3D images, the pore structure is reconstructed by using a classical technique, which is based on truncated Gaussian fields. Permeability calculations are performed with the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach on the bigger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the nanoscale pore structure on the overall permeability is similar to that of the mesoscale. Complementarily, the macroscopic permeability is measured on a centimetric sample with a neutral fluid (ethanol. The upscaled permeability on the macroscopic scale is in good agreement with the experimental results.

  8. Localization of the site of major resistance to fluid transport in Bruch's membrane. (United States)

    Starita, C; Hussain, A A; Patmore, A; Marshall, J


    To determine the site of highest resistance to the movement of water across Bruch's membrane in humans. A hydraulic conductivity chamber was designed that enabled us to measure flow across Bruch's membrane while ablating its subepithelial aspect using an excimer laser (193 nm). When resistance was lost, samples were fixed and processed for electron microscopy. Changes in the hydraulic conductivity of Bruch's membrane in response to the excimer-mediated sequential removal of tissue layers was studied in four control eyes of donors 26, 46, 61, and 76 years of age and in one eye of an 83-year-old donor with age-related macular degeneration. The number of laser pulses required to abolish the resistance in Bruch's membrane was found to be dependent on the age of the donor. The ablation rate was approximately 0.11 micron per pulse. Loss of resistance correlated with removal of layers internal to the layer of elastin. This study indicates that the inner collage-nous layer imparts the major resistance to fluid movement between the retinal pigment epithelium and the choroid. Aging changes in the ultrastructure of these compartments could be responsible for the decrease in hydraulic conductivity observed in early life in previous studies.

  9. Transport of particles, drops, and small organisms in density stratified fluids (United States)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil


    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  10. Modelling laminar transport phenomena in a Casson rheological fluid from an isothermal sphere with partial slip

    Directory of Open Access Journals (Sweden)

    Subbarao Annasagaram


    Full Text Available The laminar boundary layer flow and heat transfer of Casson non-Newtonian fluid from a permeable isothermal sphere in the presence of thermal and hydrodynamic slip conditions is analyzed. The surface of the sphere is maintained at a constant temperature. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite-difference scheme. Increasing velocity slip induces acceleration in the flow near the surface of the sphere and the reverse effect further from the surface. Increasing velocity slip consistently enhances temperatures throughout the boundary layer regime. An increase in thermal slip parameter strongly decelerates the flow and also reduces temperatures in the boundary layer regime. An increase in Casson rheological parameter acts to elevate considerably the skin friction (non-dimensional wall shear stress and this effect is pronounced at higher values of tangential coordinate. Temperatures are however very slightly decreased with increasing values of Casson rheological parameter. Increasing mass flow injection (blowing at the sphere surface causes a strong acceleration, whereas increasing suction is found to induce the opposite effect. The study finds applications in rheological chocolate food processing.

  11. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)


    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  12. Copper transport. (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N


    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  13. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    Energy Technology Data Exchange (ETDEWEB)

    Dutrow, Barbara


    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  14. Transport properties of dense monatomic and molecular fluids and their mixtures, and the corresponding states principle I. shear viscosity and thermal conductivity (United States)

    van Loef, J. J.


    A corresponding states analysis of the shear viscosity and the thermal conductivity of dense monatomic and molecular fluids composed of either diatomic molecules and CO 2 or light hydrocarbons is presented. The transport coefficients are reduced using Lennard-Jones parameters σ and ε/ kB, the values of which are chosen such that the reduced critical density and the reduced critical temperature have the same values for each of the fluids considered. Using evaluated transport coefficients along isotherms and isobars ( P ⩽ 100 MPa), it appears that the reduced fluidity and reduced thermal resistivity increase closely linearly with the reduced molar volume in a large fraction of the liquid range. Presenting a comprehensive set of data this way it is easy, a) to verify that the transport coefficients of monatomic fluids (except 4He) obey corresponding states principle, b) to compare the experimental data with molecular dynamical calculations, c) to estimate transport coefficients of the superheated monatomic liquid of known density, d) to investigate to which extent transport coefficients of molecular fluids correspond with those of the monatomic ones, e) to predict transport coefficients of a molecular liquid of a type similar to those for which η s and λ are available, provided the equation of state is known (e.g. CO, NO, C 2H 2), f) to discriminate data sources using a consistency test (e.g. η s of liquid CO and Cl 2), g) to predict transport coefficients of binary monatomic and molecular liquid mixtures provided their molar volume is known, using the Lorentz-Berthelot mixing rules to determine η and ε/ kB (e.g. (Ar + Kr), (Ar + CH 4), (Kr + CH 4) , (N 2 + CH 4)).

  15. Electrophoretic NMR studies of electrical transport in fluid-filled porous systems. (United States)

    Holz, M; Heil, S R; Schwab, I A


    An NMR technique is described which allows the observation of ionic charge carriers moving in the electric field within a porous system saturated with electrolyte solution. This method, which was recently developed in our laboratory, gives experimental access to the study of electric transport in disordered media on a microscopic level and offers new potential for morphology studies. We performed 1H NMR PFG self-diffusion measurements on ions combined with ionic drift velocity measurements by electrophoretic NMR (ENMR), each as a function of observation time Delta. In this way we obtained time-dependent self-diffusion coefficients D(+/-) (Delta) and time-dependent electric mobilities mu(+/-) (Delta) of polyatomic cations and anions in porous media. The porous media used were gels and glass bead packs. From the behaviour of D(+/-) (Delta) and mu(+/-) (Delta) at long observation times the tortuosities T(p) (D(+/-)) and T(p) (mu(+/-)) are derived, allowing a direct experimental check of the validity of the Einstein relation (D(+/-) is proportional to mu(+/-)) in a disordered medium. The tortuosities obtained via the diffusivity of ions are compared with those obtained via the diffusivity of water molecules. We also make a first attempt to derive the specific surface S/V(p) from the time-dependence of the ionic mobility at short observation times and discuss possible advantages of those measurements in morphology studies of porous media.

  16. Study of transient flow and particle transport in continuous steel caster molds: Part I. Fluid flow (United States)

    Yuan, Quan; Thomas, Brian G.; Vanka, S. P.


    Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle. Three large-eddy simulations (LES) have been validated with measurements and used to compare results between full-pool and symmetric half-pool domains and between a full-scale water model and actual behavior in a thin-slab steel caster. First, time-dependent turbulent flow in the submerged nozzle is computed. The time-dependent velocities exiting the nozzle ports are then used as inlet conditions for the flow in the liquid pool. Complex time-varying flow structures are observed in the simulation results, in spite of the nominally steady casting conditions. Flow in the mold region is seen to switch between a “double-roll” recirculation zone and a complex flow pattern with multiple vortices. The computed time-averaged flow pattern agrees well with measurements obtained by hot-wire anemometry and dye injection in full-scale water models. Full-pool simulations show asymmetries between the left and right sides of the flow, especially in the lower recirculation zone. These asymmetries, caused by interactions between two halves of the liquid pool, are not present in the half-pool simulation. This work also quantifies differences between flow in the water model and the corresponding steel caster. The top-surface liquid profile and fluctuations are predicted in both systems and agree favorably with measurements. The flow field in the water model is predicted to differ from that in the steel caster in having higher upward velocities in the lower-mold region and a more uniform top-surface liquid profile. A spectral analysis of the computed velocities shows characteristics similar to previous measurements. The flow results presented here are later used (in Part II of this article) to investigate the transport of inclusion particles.

  17. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD) (United States)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori


    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  18. A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate-electrolyte solution or water in healthy young men. (United States)

    Seery, Suzanne; Jakeman, Philip


    Appropriate rehydration and nutrient intake in recovery is a key component of exercise performance. This study investigated whether the recovery of body net fluid balance (NFB) following exercise and thermal dehydration to -2 % of body mass (BM) was enhanced by a metered rate of ingestion of milk (M) compared with a carbohydrate-electrolyte solution (CE) or water (W). In randomised order, seven active men (aged 26·2 (sd 6·1) years) undertook exercise and thermal dehydration to -2 % of BM on three occasions. A metered replacement volume of M, CE or W equivalent to 150 % of the BM loss was then consumed within 2-3 h. NFB was subsequently measured for 5 h from commencement of rehydration. A higher overall NFB in M than CE (P=0·001) and W (P=0·006) was observed, with no difference between CE and W (P=0·69). After 5 h, NFB in M remained positive (+117 (sd 122) ml) compared with basal, and it was greater than W (-539 (sd 390) ml, P=0·011) but not CE (-381 (sd 460) ml, P=0·077, d=1·6). Plasma osmolality (Posm) and K remained elevated above basal in M compared with CE and W. The change in Posm was associated with circulating pre-provasopressin (r s 0·348, Pfluid ingestion acts in synergy with the nutrient composition of M in the restoration of NFB following exercise and thermal dehydration.

  19. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.; Xu, T.; Pruess, K.


    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic

  20. An open-label, randomized positron emission tomography (PET) study in healthy male volunteers consisiting of Part A and Part B. Part A: Clinical validation of norepinephrine transporter (NET) PET ligand, (S,S)-[11C]O-methylreboxetine ([11C]MRB) using different doses of oral atomoxetine as NET reuptake inhibitor. Part B: Evaluation of NET occupancy, as measured by [11C]MRB, with multiple dosing regimens of orally administered GSK372475.

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Joanna


    Results from human studies with the PET radiotracer (S,S)-[(11)C]O-methyl reboxetine ([(11)C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K(i)=2-5 nM). METHODS: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [(11)C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volume (DV). Images were normalized to a template, and average parametric images for each group were formed. RESULTS: [(11)C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density approximately 40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24+/-7%; 100 mg=31+/-11%), these differences were not significant. The different blocking between MBR (average decrease=28+/- 10%) and THL (average decrease=17+/-10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the difference between the

  1. Boron desorption in subduction forearcs: Systematics and implications for the origin and transport of deeply-sourced fluids (United States)

    Saffer, D. M.; Kopf, A.


    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate upward fluid flow and chemical transport from depths of several km. Identifying the source regions and flow pathways of these fluids is a key step toward quantifying volatile fluxes through forearcs, and in understanding their potential connection to loci of excess pore pressure along the plate boundary. Here, we focus on observations of pore water freshening (reported in terms of [Cl]), elevated [B], and light δ11B. Pore water freshening is generally thought to result from clay dehydration, whereas the B and δ11B signatures are interpreted to reflect desorption of isotopically light B from pelitic sediments with increasing temperature. We develop a model to track the coupled effects of B desorption, smectite dehydration, and progressive consolidation within the underthrusting sediment section. Our model incorporates established kinetic models of clay dehydration, and experimental data that define the temperature-dependent distribution coefficient (Kd) and fractionation of B in marine sediments. A generic sensitivity analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, freshening is maximized because dehydration releases bound water into low porosity sediment, whereas B concentrations and isotopic signatures are modest because desorption is only partially complete. For warmer slabs, [B] and [Cl] signals are smaller, because heating and desorption occur shallower and into larger porosities, but the predicted δ11B signal is larger. The former scenario is typical of non-accretionary margins where the insulating sediment layer on the subducting plate is commonly <1 km thick. This result provides a quantitative explanation for the global observation that [Cl] depletion and [B] enrichment signals are generally strongest at non-accretionary margins. Application of our multi

  2. Trace-element mobilization in slabs due to non steady-state fluid rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China) (United States)

    John, Timm; Klemd, Reiner; Gao, Jun; Garbe-Schönberg, Carl-Dieter


    The mafic high-pressure rocks of the Tianshan (NW China) display an interconnected network of eclogite-facies veins derived by prograde blueschist dehydration. They provide insight into fluid-rock interaction and element load during long-distance fluid flow occurring due to the major fluid release of subducting oceanic crust. This case study focuses on an eclogite-facies transport vein, its blueschist host and the reaction zone (blueschist-alteration zone), which is located in the central part of the vein. The blueschist mainly consists of glaucophane, micas, epidote, dolomite, and garnet while the vein consists of omphacite, quartz, and apatite. Within the blueschist-alteration zone glaucophane, paragonite, and dolomite have been replaced by omphacite and garnet. Rock textures indicate that the infiltration of external fluids produced the transport vein, most likely due to hydraulic embrittlement. These fluids also triggered the eclogitization of the blueschist-alteration zone. The almost twice as high Li concentration of the vein and the blueschist-alteration zone in comparison to the blueschist host supports the assumption of an external origin of the fluids. The low in trace element vein-forming fluid caused a strong mobilization of all trace elements in those parts of the host the passing fluid reacted with. 40-80% of the trace elements were scavenged which coincided with a loss of the large-ion-lithophile- and light-rare-earth-elements (LILE and LREE), almost double the loss of the heavy-rare-earth and high-field-strength-elements (HREE and HFSE). Around 75% of the total carbon was released as CO 2 into the reactive fluid. The main difference between the blueschist host and the blueschist-alteration zone is the replacement of glaucophane, dolomite, and titanite by omphacite, garnet, and minor rutile respectively, whereas garnet, epidote, rutile, and phengite occur in both zones of the rock. Therefore, the fluid-flow regime rather than the mineral assemblages

  3. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically- reactive single-species solute transport (United States)

    Voss, C.I.


    SUTRA (Saturated-Unsaturated Transport) is a computer program which can be used to simulate the movement of fluid and the transport of either energy or dissolved substances in a subsurface environment. The model employs a two-dimensional hybrid finite-element and integrated-finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated by SUTRA: (1) fluid density-dependent saturated or unsaturated groundwater flow, and either (2a) transport of a solute in the groundwater, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay, or, (2b) transport of thermal energy in the groundwater and solid matrix of the aquifer. SUTRA provides, as the primary calculated results, fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA may also be used to simulate simpler subsets of the above process. SUTRA may be employed for areal and cross-sectional models of saturated groundwater flow systems, and for cross-sectional models of unsaturated zone flow. Solute transport simulation using SUTRA may be used to simulate natural or man-induced chemical transport, solute sorption, production and decay. SUTRA may be used for simulation of variable density leachate movement, and for cross-sectional simulation of salt-water intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between fresh water and salt water. SUTRA energy transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. (USGS)

  4. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori


    Full Text Available Abstract Guanidino compounds (GCs, such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCSFB have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC 6A8 expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6 and organic cation transporter (OCT3/SLC22A3 expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen

  5. Histamine elimination from the cerebrospinal fluid across the blood-cerebrospinal fluid barrier: involvement of plasma membrane monoamine transporter (PMAT/SLC29A4). (United States)

    Usui, Takuya; Nakazawa, Ayumi; Okura, Takashi; Deguchi, Yoshiharu; Akanuma, Shin-Ichi; Kubo, Yoshiyuki; Hosoya, Ken-Ichi


    The elimination of histamine, an excitatory neurotransmitter, from the brain/CSF across the blood-brain barrier and blood-CSF barrier (BCSFB) was investigated using Wistar rats, which were anesthetized with pentobarbital sodium. An in vivo intracerebral microinjection study suggested that there was only partial efflux of [3 H]histamine from the rat brain across the blood-brain barrier. The [3 H]histamine elimination clearance from the rat CSF was 3.8-fold greater than that of a CSF bulk flow marker, and the elimination of [3 H]histamine was significantly inhibited by the co-administration of unlabeled histamine, suggesting the involvement of a carrier-mediated process in histamine elimination from the CSF. The uptake study of [3 H]histamine by the isolated rat choroid plexus revealed histamine elimination from the CSF across the BCSFB. The [3 H]histamine uptake by TR-CSFB3 cells, a model cell line for the BCSFB, exhibited temperature-dependent and saturable kinetics, suggesting the involvement of carrier-mediated transport of histamine at the BCSFB. In the inhibition study, [3 H]histamine uptake by TR-CSFB3 cells was significantly inhibited by substrates and/or inhibitors of plasma membrane monoamine transporter (PMAT/SLC29A4), but not affected by substrates of organic cation transporters. These results suggest the elimination of histamine from the CSF via plasma membrane monoamine transporter at the BCSFB. © 2016 International Society for Neurochemistry.

  6. Two-phase and three-dimensional simulations of complex fluid-sediment transport down a slope and impacting water bodies (United States)

    Pudasaini, Shiva P.; Kattel, Parameshwari; Kafle, Jeevan; Pokhrel, Puskar R.; Khattri, Khim B.


    We present a technique that simulates transport and flow of a real two-phase fluid (a mixture of fluid and sediment particles) down three-dimensional slopes and channels. This technique combines novel mechanics formulations and modeling into a unified high-resolution framework, providing a unique opportunity to simulate two-phase subearial landslides and debris flows with dynamically changing concentrations of solid particles. This mixture then impacts downslope with particle-laden fluid reservoirs, rivers, fjords, lakes, or oceans. This results in a super tsunami wave in the fluid body, while the submarine debris flow moves along the bathymetry. The same modelling technique can be applied to simulate rock-ice avalanches and turbidity currents with changing physical properties and mechanical responses of the phases that enhances the flow mobility. These results fundamentally advance our present knowledge associated with the complex mechanics and dynamics of multi-phase geophysical mass flows, including the subearial and submarine sediment transport and deposition processes. Our findings contribute significantly to our understanding of mixing and separation between phases, generation and propagation of special solid and fluid structures, and phase-transitions during the flow process. Finally, these results provide new insights into the evolution of morphodynamics of steep mountain slopes and channels. References Pudasaini, S. P. A general two-phase debris flow model. Journal of Geophysical Research, 117, F03010, 2012. doi: 10.1029/2011JF002186. Pudasaini, S. P. and Miller, S. A. A real two-phase submarine debris flow and tsunami. American Institute of Physics Proceedings, 1479, 197-200, 2012. doi: 10.1063/1.4756096.

  7. Numerical modeling of coupled fluid flow, heat transport and mechanical deformation: An example from the Chanziping ore district, South China

    Directory of Open Access Journals (Sweden)

    Minghui Ju


    Full Text Available This paper presents numerical investigation on the ore-forming fluid migration driven by tectonic deformation and thermally-induced buoyancy force in the Chanziping ore district in South China. A series of numerical scenarios are considered to examine the effect of meteoric water precipitation, the dip angle of the faults, unconformity surface, and thermal input on the ore genesis. Our computations reveal that the downward basinal fluid flow driven by extensional stress mixes with the upward basal fluid driven by the thermal input from depth at the junction of two faults at a temperature of about 200 °C, triggering the precipitation of the Chanziping uranium deposit.

  8. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.


    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  9. On transient-flows of the Ostwald-de Waele fluids-transport in the Darcy-Brinkman porous medium (United States)

    Siddiqui, Abuzar Abid


    This paper presents the mathematical formulation of the pulsatile motion of an Ostwald-de Waele (OdW) fluid in the circular-annular duct and the rectangular channel filled with the Darcy-Brinkman porous material/medium. The Ostwald-de Waele fluid model, modified for the Darcy-Brinkman medium, is used to get the boundary value problems (BVPs). These BVPs contain non-linear partial differential equations (PDEs). These PDEs are further transformed to the ordinary differential equations (ODEs) on using the pulsatile-transformation. The ODEs are solved numerically for different values of OdW-index. However, the exact solutions are also derived for one of the shear-thickening fluids (e.g., p = 2) and the Newtonian fluids (p = 1) in order to validate the numerical results. The numerical results are also compared with the existing or present-derived-analytical solution for the Newtonian fluids. It is observed that the porosity, the permeability and the frequency influence on the fluid-speed, the discharge and the stresses. The fact of relation of the permeability to the porosity is not only valid for the Darcian but also for the Darcy-Brinkman medium. The permeability decreases as the porosity decreases only for shear thinning fluids (p < 1). The imposed pulsatile pressure-gradient results the oscillatory ambient fluid-flow for both the geometries (circular-annular duct and rectangular channel). The radial normal stress is dominant in annular duct whereas the shear stress is significant in rectangular channel.

  10. On transient-flows of the Ostwald-de Waele fluids-transport in the Darcy-Brinkman porous medium

    Directory of Open Access Journals (Sweden)

    Abuzar Abid Siddiqui


    Full Text Available This paper presents the mathematical formulation of the pulsatile motion of an Ostwald-de Waele (OdW fluid in the circular-annular duct and the rectangular channel filled with the Darcy-Brinkman porous material/medium. The Ostwald-de Waele fluid model, modified for the Darcy-Brinkman medium, is used to get the boundary value problems (BVPs. These BVPs contain non-linear partial differential equations (PDEs. These PDEs are further transformed to the ordinary differential equations (ODEs on using the pulsatile-transformation. The ODEs are solved numerically for different values of OdW-index. However, the exact solutions are also derived for one of the shear-thickening fluids (e.g., p = 2 and the Newtonian fluids (p = 1 in order to validate the numerical results. The numerical results are also compared with the existing or present-derived-analytical solution for the Newtonian fluids. It is observed that the porosity, the permeability and the frequency influence on the fluid-speed, the discharge and the stresses. The fact of relation of the permeability to the porosity is not only valid for the Darcian but also for the Darcy-Brinkman medium. The permeability decreases as the porosity decreases only for shear thinning fluids (p < 1. The imposed pulsatile pressure-gradient results the oscillatory ambient fluid-flow for both the geometries (circular-annular duct and rectangular channel. The radial normal stress is dominant in annular duct whereas the shear stress is significant in rectangular channel.

  11. Reactive transport of CO2-rich fluids in simulated wellbore interfaces: Experiments and models exploring behaviour on length scales of 1 to 6 m (United States)

    Wolterbeek, T. K. T.; Raoof, A.; Peach, C. J.; Spiers, C. J.


    Defects present at casing-cement interfaces in wellbores constitute potential pathways for CO2 to migrate from geological storage systems. It is essential to understand how the transport properties of such pathways evolve when penetrated by CO2-rich fluids. While numerous studies have explored this problem at the decimetre length-scale, the 1-10-100 m scales relevant for real wellbores have received little attention. The present work addresses the effects of long-range reactive transport on a length scale of 1-6 m. This is done by means of a combined experimental and modelling study. The experimental work consisted of flow-through tests, performed on cement-filled steel tubes, 1-6 m in length, containing artificially debonded cement-interfaces. Four tests were performed, at 60-80 °C, imposing flow-through of CO2-rich fluid at mean pressures of 10-15 MPa, controlling the pressure difference at 0.12-4.8 MPa, while measuring flow-rate. In the modelling work, we developed a numerical model to explore reactive transport in CO2-exposed defects on a similar length scale. The formulation adopted incorporates fluid flow, advective and diffusive solute transport, and CO2-cement chemical reactions. Our results show that long-range reactive transport strongly affects the permeability evolution of CO2-exposed defects. In the experiments, sample permeability decreased by 2-4 orders, which microstructural observations revealed was associated with downstream precipitation of carbonates, possibly aided by migration of fines. The model simulations show precipitation in initially open defects produces a sharp decrease in flow rate, causing a transition from advection to diffusion-dominated reactive transport. While the modelling results broadly reproduce the experimental observations, it is further demonstrated that non-uniformity in initial defect aperture has a profound impact on self-sealing behaviour and system permeability evolution on the metre scale. The implication is that

  12. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. (United States)

    Hladky, Stephen B; Barrand, Margery A


    The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na(+)-pumps. K(+) secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na(+) tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K(+) concentration within tight limits. This is most likely because Na(+)-pumps vary the rate at which K(+) is transported out of ISF in response to small changes in K(+) concentration. There is also evidence for functional regulation of K(+) transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3(-) and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3(-) transport is slow or


    Interest in producing ethanol from bio-mass in an attempt to make transportation ecologically sustainable continues to grow. In recent years, a large number of assessments have been conducted to assess the environmental merit of biofuels. Two detailed reviews that looked at the s...

  14. Probe for evaluating the absorbing and transport scattering properties of turbid fluids using low-cost time-of-flight technology (United States)

    Hebden, Jeremy C.; Shah, Ruchir; Chitnis, Danial


    A probe is described that when immersed into a highly scattering fluid provides a measurement of its scattering and absorbing properties at a single optical wavelength. It uses recently available low-cost proximity sensor modules to estimate the mean flight times of photons diffusely transmitted between near-infrared sources and detectors at two different separations. The probe has been designed with a specific application for enabling the rapid and efficient production of fluids, which mimic the optical properties of biological tissues. The potential of the device is demonstrated using precalibrated solutions of intralipid, an intravenous nutrient, and absorbing dye. It is shown that a combination of time-of-flight measurements at two source-detector separations can uniquely specify the absorption coefficient and the transport scattering coefficient.

  15. Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of \\mathbf{E}\\times \\mathbf{B} discharges (United States)

    Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.


    Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.

  16. Transportation (United States)


    container. It now permits free transit of shipping containers from their western ports, if transported by rail directly to the U.S. ( Mireles , 2005, p...Transportation Industry Study Seminar. Mireles , Richard, Castillo. (2005, January). A Cure for West Coast Congestion. Logistics Today, Vol. 46, Issue 1. 1

  17. Characterization of immortalized choroid plexus epithelial cell lines for studies of transport processes across the blood-cerebrospinal fluid barrier


    Kläs Juliane; Wolburg Hartwig; Terasaki Tetsuya; Fricker Gert; Reichel Valeska


    Abstract Background Two rodent choroid plexus (CP) epithelial cell lines, Z310 and TR-CSFB, were compared with primary rat CP epithelial cells and intact CP tissue with respect to transport protein expression, function and tight junction (TJ) formation. Methods For expression profiles of transporters and TJ proteins, qPCR and western blot analysis were used. Uptake assays were performed to study the functional activity of transporters and TJ formation was measured by trans-epithelial electric...

  18. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science


    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ```` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at} The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  19. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)


    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at} The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  20. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. (United States)

    Price, Christopher; Zhou, Xiaozhou; Li, Wen; Wang, Liyun


    Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (-3 N peak load or 400 µε surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments. Copyright © 2011 American Society for Bone and Mineral Research.

  1. Modèle multi-échelle du transport de fluide dans un milieu poreux chargé avec échanges cationiques : application aux tissus osseux (United States)

    Kaiser, Joanna; Lemaire, Thibault; Naili, Salah; Sansalone, Vittorio


    To better understand the bone diseases, many models of porous cortical bone have been developed to simulate its in vivo behaviour. Thus we proposed multiscale models including multiphysical phenomena governing the hydraulic response of bone. However, all these models neglected the possible ionic exchanges at the cellular level. Since such chemical reactions directly change the physico-chemical properties of the tissue, the interstitial flow is also modified. The aim of this study is so to include these ionic exchanges in the bone fluid transport description by deriving their consequences at the macroscale. To cite this article: J. Kaiser et al., C. R. Mecanique 337 (2009).

  2. The origin of fetal sterols in second-trimester amniotic fluid : endogenous synthesis or maternal-fetal transport?

    NARCIS (Netherlands)

    Baardman, Maria E.; Erwich, Jan Jaap H. M.; Berger, Rolf M. F.; Hofstra, Robert M. W.; Kerstjens-Frederikse, Wilhelmina S.; Luetjohann, Dieter; Plosch, Torsten; Lutjohann, D.

    OBJECTIVE: Cholesterol is crucial for fetal development. To gain more insight into the origin of the fetal cholesterol pool in early human pregnancy, we determined cholesterol and its precursors in the amniotic fluid of uncomplicated, singleton human pregnancies. STUDY DESIGN: Total sterols were

  3. Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture (United States)

    Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan


    This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an

  4. Net Ecosystem Carbon Flux (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  5. Short-term fluid, heat, and solute transport in deep 'georeservoirs' likely to become 'EGS': some challenges to ICDP hydrogeologists who might like using artificial tracers (United States)

    Ghergut, Julia; Behrens, Horst; Huenges, Ernst; Rose, Peter; Sauter, Martin


    During Fall 2013, the Integrated Continental Scientific Drilling Programme (ICDP) set out to define a new Science Plan that shall replace its past-decade version (Harms et al., eds., 2005) for the decade to come. Geoscientists worldwide were welcomed to suggest new imaging and exploration methods, new sites to drill, new challenges to be addressed with a view at new 'societal needs' (Harms and Wiersberg 2013). Save for two outstanding exceptions at the Mutnovsky volcano in Russia and the KTB site in Germany, the use of artificial tracers, especially within forced-gradient tests, has not been on the agenda of most ICDP projects so far (other than for purposes of monitoring microbial contamination in conjunction with drilling activities); deep-reservoir exploration and characterization efforts were restrained to non-fluid-invasive techniques on the one hand, and to sites featuring some unique earth-historical traits, on the other hand. Surely, this was not for lack of interest in quantifying fluid transport in the deep subsurface in general, but mainly due to operational, technical, and financial constraints (lack of resources / lack of opportunity for significant fluid turnover within the target, deep-seated georeservoirs, and fear of persistent, large-scale georeservoir contamination by non-pristine fluids). - This is likely to change during the forthcoming decade(s), owing to worldwide increased interest in some 'georesource' or 'georeservoir' play types (Moeck 2013) that have not been in the ICDP focus so far, including non-volcanogenic geothermal, and allowing for man-made design and intervention into how those 'georesources' or 'georeservoirs' shall work for us. Among the latter, petrothermal systems (Jung 2013, Huenges and Jung 2004) acquire growing recognition as a promising (and maybe unique) option for baseload energy supply in vast areas of the Northern hemisphere, at very low emissions and (in the long run) moderate costs. With petrothermal coming into

  6. Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions. (United States)

    Hayat, Tasawar; Zahir, Hina; Tanveer, Anum; Alsaedi, Ahmad


    The purpose of present article is to examine the peristaltic flow of Jeffrey fluid in a curved channel. An electrically conducting fluid in the presence of radial applied magnetic field is considered. Analysis of heat and mass transfer is carried out. More generalized realistic constraints namely the convective conditions are utilized. Soret and Dufour effects are retained. Problems formulation is given for long wavelength and low Reynolds number assumptions. The expressions of velocity, temperature, heat transfer coefficient, concentration and stream function are computed. Effects of emerging parameters arising in solutions are analyzed in detail. It is found that velocity is not symmetric about centreline for curvature parameter. Also maximum velocity decreases with an increase in the strength of magnetic field. Further it is noticed that Soret and Dufour numbers have opposite behavior for temperature and concentration.

  7. Plasma-to-ascitic fluid transport rate of albumin in patients with decompensated cirrhosis. Relation to intraperitoneal albumin

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Ring-Larsen, H; Lassen, N A


    Albumin-kinetics and haemodynamic studies were performed in 20 patients with decompensated liver cirrhosis in order to improve the knowledge on genesis and perpetuation of hepatic ascites, especially with respect to determinants of intraperitoneal protein. A positive relationship was found betwee...... in the 'lymph-imbalance' theory of ascites formation, whereas a 'fluid equilibrium' theory seems to be too simple, especially with respect to explain protein sequestration in the peritoneal cavity....

  8. The Mistral base case to validate kinetic and fluid turbulence transport codes of the edge and SOL plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dif-Pradalier, G., E-mail: [Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Gunn, J. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ciraolo, G. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Chang, C.S. [Courant Institute of Mathematical Sciences, N.Y. University, New York, NY 10012 (United States); Chiavassa, G. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Diamond, P. [Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Fedorczak, N. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ghendrih, Ph., E-mail: [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Isoardi, L. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Kocan, M. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ku, S. [Courant Institute of Mathematical Sciences, N.Y. University, New York, NY 10012 (United States); Serre, E. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Tamain, P. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)


    Experimental data from the Tore Supra experiments are extrapolated in the SOL and edge to investigate the Kelvin-Helmholtz instability. The linear analysis indicates that a large part of the SOL is rather unstable. The effort is part of the set-up of the Mistral base case that is organised to validate the codes and address new issues on turbulent edges, including the comparison of kinetic and fluid modelling in the edge plasma.

  9. Characterization of immortalized choroid plexus epithelial cell lines for studies of transport processes across the blood-cerebrospinal fluid barrier

    Directory of Open Access Journals (Sweden)

    Kläs Juliane


    Full Text Available Abstract Background Two rodent choroid plexus (CP epithelial cell lines, Z310 and TR-CSFB, were compared with primary rat CP epithelial cells and intact CP tissue with respect to transport protein expression, function and tight junction (TJ formation. Methods For expression profiles of transporters and TJ proteins, qPCR and western blot analysis were used. Uptake assays were performed to study the functional activity of transporters and TJ formation was measured by trans-epithelial electrical resistance (TEER and visualized by electron microscopy. Results The expression of known ATP-binding cassette (Abc transporter and solute carrier (Slc genes in CP was confirmed by qPCR. Primary cells and cell lines showed similar, but overall lower expression of Abc transporters and absent Slc expression when compared to intact tissue. Consistent with this Mrp1, Mrp4 and P-gp protein levels were higher in intact CP compared to cell lines. Functionality of P-gp and Mrp1 was confirmed by Calcein-AM and CMFDA uptake assays and studies using [3H]bis-POM-PMEA as a substrate indicated Mrp4 function. Cell lines showed low or absent TJ protein expression. After treatment of cell lines with corticosteroids, RNA expression of claudin1, 2 and 11 and occludin was elevated, as well as claudin1 and occludin protein expression. TJ formation was further investigated by freeze-fracture electron microscopy and only rarely observed. Increases in TJ particles with steroid treatment were not accompanied by an increase in transepithelial electrical resistance (TEER. Conclusion Taken together, immortalized cell lines may be a tool to study transport processes mediated by P-gp, Mrp1 or Mrp4, but overall expression of transport proteins and TJ formation do not reflect the situation in intact CP tissue.

  10. Professional Enterprise NET

    CERN Document Server

    Arking, Jon


    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  11. Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity. (United States)

    Naikkhwah, Wida; O'Donnell, Michael J


    Drosophila are tolerant of high levels of dietary salt and can provide a useful model for studies of the physiology of salt stress. The effects of NaCl- and KCl-rich diets on haemolymph ionoregulation and Malpighian tubule (MT) fluid secretion, Na(+) and K(+) secretion and transepithelial potential were examined in larval and adult Drosophila melanogaster. K(+) concentrations in the haemolymph of adults reared on the KCl-rich (0.4 mol l(-1)) diet did not differ from the values for insects reared on the control diet. In the haemolymph of larvae reared on the K-rich diet, K(+) concentrations increased from 23 to 75 mmol l(-1) after 6 h, then returned to the control value within 48 h. Na(+) concentrations in the haemolymph of adults or larvae reared for 1-7 days on the NaCl-rich (0.4 mol l(-1)) diet increased by ~50% relative to values for insects reared on the control diet. Rates of secretion of fluid, Na(+) and K(+) by MTs isolated from larvae reared on the Na-rich diet for >6 h and bathed in control saline containing 20 mmol l(-1) K(+) did not differ from the values for tubules of larvae reared on the control diet. Evidence of phenotypic plasticity was seen in the response of MTs isolated from larvae reared on the K-rich diet for >6 h and bathed in saline containing 60 mmol l(-1) K(+); secretion of fluid and K(+) increased by >50% relative to the values for tubules of larvae reared on the control diet. Secretion of fluid, Na(+) and K(+) increased when tubules were bathed in haemolymph collected from larvae reared on the Na- or K-rich diets. Secretion was further increased by addition of exogenous cAMP but not by addition of thapsigargin to the haemolymph. The results show that haemolymph ionoregulation in larvae reared on salt-rich diets involves both alterations in the basal secretion rates of Na(+) and/or K(+) as well as stimulatory effects of diuretic factors present in the haemolymph. The results suggest that such factors stimulate tubule fluid and ion

  12. Transportes

    Directory of Open Access Journals (Sweden)

    Hidalgo Fernández-Cano, Amalio


    Full Text Available El movimiento de materiales dentro de la Factoría está atendido por tres principales medios de transporte, en consonancia con las características del material y de los desplazamientos. Así se han establecido: sistemas de cintas transportadoras, una red ferroviaria de ancho normal y una completa malla de caminos enlazando funcionalmente las instalaciones.

  13. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. (United States)

    Zlokovic, B V; Jovanovic, S; Miao, W; Samara, S; Verma, S; Farrell, C L


    Leptin is a circulating hormone that controls food intake and energy homeostasis. Little is known about leptin entry into the central nervous system (CNS). The blood-cerebrospinal fluid (CSF) barrier at the choroid plexus and the blood-brain barrier (BBB) at the cerebral endothelium are two major controlling sites for entry of circulating proteins into the brain. In the present study, we characterized leptin transport across the blood-CSF barrier and the BBB by using a brain perfusion model in lean rats. Rapid, high-affinity transport systems mediated leptin uptake by the hypothalamus (KM = 0.2 ng/ml) and across the blood-CSF barrier (KM = 1.1 ng/ml). High affinity in vivo binding of leptin was also detected in the choroid plexus (KD = 2.6 ng/ml). In contrast, low affinity carriers for leptin (KM = 88 to 345 ng/ml) were found at the BBB in the CNS regions outside the hypothalamus (e.g. cerebral cortex, caudate nucleus, hippocampus). Our findings suggest a key role of high affinity leptin transporters in the hypothalamus and choroid plexus in regulating leptin entry into the CNS and CSF under physiological conditions. Low affinity transporters at the BBB outside the hypothalamus could potentially contribute to overall neuropharmacological effects of exogenous leptin.

  14. Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Gehard W. [Univ. of California, Berkeley, CA (United States)


    Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.

  15. Workload of official contests, net cost of transport, and metabolic power of Mangalarga Marchador horses of marcha batida or picada gaits. (United States)

    Lage, J; Fonseca, M G; de Barros, G G M; Feringer-Júnior, W H; Pereira, G T; Ferraz, G C


    This study aimed to characterize the maximum heart rate (HR) and the intensity of official marcha contests (OMC) and to compare the cost of transport (COT) and metabolic power (Pmet) of Mangalarga Marchador (MM) horses of marcha batida (MB) and marcha picada (MP) gaits. Twenty-two MM horses participated in this study. The experiment was conducted in 3 phases: 1) maximum effort test (MET), 2) OMC, and 3) standardized marcha test (SMT). To characterize the HR, 19 horses (14 MB and 5 MP) underwent a MET. Of those, 13 (9 MB and 4 MP) were monitored during the OMC, which consisted of 4 stages: marcha, walk, functional trial, and rest. The average heart rate (HR) in each stage of the OMC was related to the HR to determine their relative intensity. The SMT was performed with 14 horses (9 MB and 5 MP), of which 11 had already participated in the previous stages. The COT and Pmet were calculated from the HR values obtained during the SMT. Blood samples were collected to analyze plasma lactate concentration ([Lac]). One-way ANOVA or 1-way repeated-measures ANOVA followed by the Tukey's test ( 0.05). This indicated that horses of both groups had the same physical fitness levels. The OMC stages defined in our study differed ( < 0.05) regarding the relative intensity of the HR, except for the walk and standing stages, which were similar ( = 0.0875). The MP group presented greater COT ( = 0.0247) and Pmet ( = 0.0193). It can be concluded that the mean HR of MM horses (MB and MP) is 212 ± 11 bpm. The OMC of the MM breed can be characterized as an effort of intermittent and submaximal intensity. In addition, the locomotion of the MB horses is probably more energetically efficient than that of MP horses.

  16. Fluid shear stress increases transepithelial transport of Ca2+ in ciliated distal convoluted and connecting tubule cells.

    NARCIS (Netherlands)

    Mohammed, S.G.; Arjona, F.J.; Latta, F.; Bindels, R.J.M.; Roepman, R.; Hoenderop, J.G.J.


    In kidney, transcellular transport of Ca2+ is mediated by transient receptor potential vanilloid 5 and Na+-Ca2+ exchanger 1 proteins in distal convoluted and connecting tubules (DCT and CNT, respectively). It is not yet understood how DCT/CNT cells can adapt to differences in tubular flow rate and,

  17. Multiphasic fluid models and multicomponents reactive transport in porous media; Modelos de flujo multifasico no isotermo y de transporte reactivo multicomponente en medios porosos

    Energy Technology Data Exchange (ETDEWEB)

    Juncosa, R. [Universidad Politecnica de Madrid (Spain)


    The design and construction of repositories for toxic waste, such as radioactive waste of medium and high activity, require tools, that will enable us to predict how the system will behave. The rational behind this Dissertation is based precisely on developing numerical models to study and predict coupled thermal, mechanical, hydrodynamic and geochemical behavior of clays intended to be used as engineered barriers in radioactive waste repository. In order to meet the requirements of the FEBEX Project (Full Scale Engineered Barriers Experiment) it was necessary to develop thermo-hydro-geochemical conceptual and numerical models (THG). For this purpose a THG code was developed to simulate and predict the THG behavior of the clay barrier. The code was created after considering two options. (a) The development of a completely new code, or (b) the coupling of existing codes. In this Dissertation we chose the second option, and developed a new program (FADES-CORE), which was obtained by using the FADES thermo-hydro-mechanical code (Navarro, 1997) and the CORE-LE code (Samper et al., 1998). This process entailed the modification of FADES, the addition of new subroutines for the calculation of solute transport, the modification of CORE-LE and the introduction of additional geochemical and transport processes. (Author)

  18. WaveNet (United States)


    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  19. Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles (United States)

    Weiner, Andre; Bothe, Dieter


    This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.

  20. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt


    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  1. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael


    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  2. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex


    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  3. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie


    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  4. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers. (United States)

    Gukasyan, Hovhannes J; Lee, Vincent H L; Kim, Kwang-Jin; Kannan, Ram


    permeability of GSH across RCEC layers was approximately eight times higher in the basolateral-to-apical (secretion) direction than the opposite (absorption) direction. GSH is transported across RCEC membranes by both Na(+)-dependent and -independent processes. Analysis of the Na(+)-dependent uptake process gave an approximate 1:1 coupling ratio for Na(+)-GSH cotransport. The Na(+)-independent component is highly sensitive to cell membrane potential. Net secretion of GSH into the apical fluid may play a role in the protection of conjunctival tissue and tear film from oxidant insults.

  5. Experiment-Model Comparisons of Turbulence, Transport, and Flows in a Magnetized Linear Plasma Using a Global Two-Fluid Braginskii Solver (United States)

    Gilmore, M.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Rogers, B. N.


    Ongoing experiments and numerical modeling of the dynamics of electrostatic turbulence and transport in the presence of flow shear are being conducted in helicon plasmas in the linear HelCat (Helicon-Cathode) device. Modeling is being done using GBS, a 3D, global two-fluid Braginskii code that solves self-consistently for plasma equilibrium as well as fluctuations. Past experimental measurements of flows have been difficult to reconcile with simple expectations, such as azimuthal flows being dominated by Er x Bz rotation. Therefore, recent measurements have focused on understanding plasma flows, and the role of neutral dynamics. In the model, a set of two-fluid drift-reduced Braginskii equations are evolved using the Global Braginskii Solver Code (GBS). For low-field helicon-sourced Ar plasmas a non-negligible cross-field thermal collisional term must be added to shift the electric potential in the ion momentum and vorticity equations as the ions are unmagnetized. Significant radially and axially dependent neutral profiles are also included in the simulations to try and match those observed in HelCat. Ongoing simulations show a mode dependence on the axial magnetic field along with strong axial variations that suggest drift waves may be important in the low-field case. Supported by U.S. National Science Foundation Award 1500423.

  6. On computational fluid dynamics models for sinonasal drug transport: relevance of nozzle subtraction and nasal vestibular dilation. (United States)

    Basu, S; Frank-Ito, D O; Kimbell, J S


    Generating anatomically realistic three-dimensional (3D) models of the human sinonasal cavity for numerical investigations of sprayed drug transport presents a host of methodological ambiguities. For example, subject-specific radiographic images used for 3D reconstructions typically exclude spray bottles. Subtracting a bottle contour from the 3D airspace and dilating the anterior nasal vestibule for nozzle placement augment the complexity of model-building. So, we explored the question: how essential are these steps to adequately simulate nasal airflow and identify the optimal delivery conditions for intranasal sprays? In particular, we focused on particle deposition patterns in the maxillary sinus, a critical target site for chronic rhinosinusitis (CRS). The models were reconstructed from post-surgery computed tomography scans for a 39-year-old Caucasian male, with CRS history. Inspiratory airflow patterns during resting breathing are reliably tracked through CFD-based steady state laminar-viscous modeling and such regimes portray relative lack of sensitivity to inlet perturbations. Consequently, we hypothesized that the posterior airflow transport and the particle deposition trends should not be radically affected by the nozzle subtraction and vestibular dilation. The study involved 1 base model and 2 derived models; the latter two with nozzle contours (two different orientations) subtracted from the dilated anterior segment of the left vestibule. We analyzed spray transport in the left maxillary sinus for multiple release conditions. Similar release points, localized on an approximately 2mm-by-4.5mm contour, facilitated improved maxillary deposition in all three test cases. This suggests functional redundancy of nozzle insertion in a 3D numerical model for identifying the optimal spray release locations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins (United States)

    Bitzer, Klaus


    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in Post

  8. Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties

    Directory of Open Access Journals (Sweden)

    Odziomek Marcin


    Full Text Available Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a rheological properties and (b mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method. First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.

  9. Force of crystallisation-development during CaO hydration: theory vs. experiment and the role of fluid transport (United States)

    Wolterbeek, Tim; van Noort, Reinier; Spiers, Chris


    When chemical reactions that involve an increase in solid volume proceed in a confined space, this may under certain conditions lead to the development of a so-called force of crystallisation (FoC). In other words, reaction can result in stress being exerted on the confining boundaries of the system. In principle, any thermodynamic driving force that is able to produce a supersaturation with respect to a solid product can generate a FoC, as long as precipitation can occur under confined conditions, i.e. within load-bearing grain contacts. Well-known examples of such reactions include salt damage, where supersaturation is caused by evaporation and surface curvature effects, and a wide range of mineral reactions where the solid products comprise a larger volume than the solid reactants. Frost heave, where crystallisation is driven by fluid under-cooling, i.e. temperature change, is a similar process. In a geological context, FoC-development is widely considered to play an important role in pseudomorphic replacement, vein formation, and reaction-driven fracturing. Chemical reactions capable of producing a FoC such as the hydration of CaO (lime), which is thermodynamically capable of producing stresses in the GPa range, also offer obvious engineering potential. Despite this, relatively few studies have been conducted where the magnitude of the FoC is determined directly. Indeed, the maximum stress obtainable by CaO hydration has not been validated or determined experimentally. Here we report uni-axial compaction/expansion experiments performed in an oedometer-type apparatus on pre-compacted CaO powder, at 65 °C and at atmospheric pore fluid pressure. Using this set-up, the FoC generated during CaO hydration could be measured directly. Our results show FoC-induced stresses reaching up to 153 MPa, with the hydration reaction stopping or slowing down significantly before completion. Failure to achieve the GPa stresses predicted by thermodynamic theory is attributed to

  10. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces (United States)

    Valchev, Galin; Dantchev, Daniel


    We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ . The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T , μ , or L , in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding

  11. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M


    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  12. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris


    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  13. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette


    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  14. Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia (United States)

    Agangi, Andrea; Reddy, Steven M.


    The Sunda arc of Indonesia is an excellent example of how volcanic processes at convergent plate margins affect the distribution of metals and control the distribution of ore deposits. In this paper, we report microtextural observations and microanalytical data (SEM-EDS and LA-ICP-MS) of silicate and sulfide melt inclusions from fresh samples of volcanic rocks from the 2008 eruption of Mt. Krakatau and 1963 eruption of Mt. Batur, Sunda arc, Indonesia that bear implications on the concentration and transport of Cu and other chalcophile elements in mafic-intermediate magmas in arc settings. These multi-phase inclusions contain glass, amphibole and plagioclase, together with co-trapped apatite, magnetite, sulfides and lobed, drop-like Fe-oxide. We observed two stages of sulfide formation: 1) early-formed sulfide globules (pyrrhotite and intermediate solid solution), which derived from an immiscible sulfide melt and only occur as inclusions in phenocrysts; and 2) late-formed, irregular Cu-rich sulfides (intermediate solid solution to bornite), which were deposited in the presence of an aqueous fluid, and are contained as fluid phase precipitates in vapour bubbles of melt inclusions and in vesicles, as well as finely dispersed grains in the groundmass. Microtextural observations and X-ray elemental maps show that interaction between sulfide globules and aqueous fluid resulted in partial oxidation and transfer of Cu between the fluid and the sulfide phase. A compilation of whole-rock analyses from the Sunda arc indicates that Cu reaches 250-300 ppm in mafic samples (SiO2 ≤ 52 wt.%), and then suddenly drops with progressive fractionation to < 50 ppm in intermediate-felsic samples. This behaviour can be explained by sulfide melt exsolution or degassing and scavenging of Cu occurring at various stages of magma fractionation (at MgO 8-2.5 wt.%). These trends can be effectively modelled by sulfide saturation during fractional crystallisation at oxygen fugacities varying

  15. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow (United States)

    van den Bremer, Ton S.; Taylor, Paul H.


    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  16. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.


    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  17. Analysis of technologies for natural gas transportation in Brazil: results comparison of the application of payback and NPV (Net Present Value) methods; Analise de tecnologias de transporte de gas natural no Brasil: comparacao dos resultados da aplicacao dos metodos 'payback' e VPL (Valor Presente Liquido)

    Energy Technology Data Exchange (ETDEWEB)

    Baioco, Juliana Souza; Santarem, Clarissa Andrade [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia de Petroleo; Bone, Rosemarie Broeker; Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Industrial


    The increased demand for natural gas leads to global integration of markets, leading to decisions that cover the various technologies of transportation, noting the specific locations. The transport of natural gas considered more traditional (Liquefied Natural Gas and Pipeline) often unviable economically areas of operation due to cost. In this case, there are alternative technologies to reduce those costs. The article is to compare the technologies of transport, using the methodology of the Net Present Value (VPL) to identify one that has more positive VPL, which is the most profitable. Thus, in search of validate the results of SUBERO et al. (2004) for gas transport by Pipelines, Liquefied Natural Gas and Compressed Natural Gas. In addition, they are compared these results with the method of VPL and with the economic analysis presented in using the payback period of CHANG (2001) and SANTAREM et al. (2007). It was found that the results obtained in Brazil were identical to those obtained by CHANG (2001) and SUBERO et al. (2007), saving only some differences in magnitude due to the specific characteristics of the Brazilian economy. In other words, for the Brazilian case, the technology of Compressed Natural Gas (CNG) was the most economically viable with the method of VPL, followed by technology, Pipeline and Liquefied Natural Gas (LNG), regardless of the interest rates of 10% and 6.5% and periods of 20 and 30 years. The contribution of this work is to show that despite of the method, payback or VPL, the various alternatives for transporting natural gas to Brazil have the same ranking and economic viability. (author)

  18. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot. (United States)

    Mithraratne, K; Ho, H; Hunter, P J; Fernandez, J W


    A coupled computational model of the foot consisting of a three-dimensional soft tissue continuum and a one-dimensional (1D) transient blood flow network is presented in this article. The primary aim of the model is to investigate the blood flow in major arteries of the pathologic foot where the soft tissue stiffening occurs. It has been reported in the literature that there could be up to about five-fold increase in the mechanical stiffness of the plantar soft tissues in pathologic (e.g. diabetic) feet compared with healthy ones. The increased stiffness results in higher tissue hydrostatic pressure within the plantar area of the foot when loaded. The hydrostatic pressure acts on the external surface of blood vessels and tend to reduce the flow cross-section area and hence the blood supply. The soft tissue continuum model of the foot was modelled as a tricubic Hermite finite element mesh representing all the muscles, skin and fat of the foot and treated as incompressible with transversely isotropic properties. The details of the mechanical model of soft tissue are presented in the companion paper, Part 1. The deformed state of the soft tissue continuum because of the applied ground reaction force at three foot positions (heel-strike, midstance and toe-off) was obtained by solving the Cauchy equations based on the theory of finite elasticity using the Galerkin finite element method. The geometry of the main arterial network in the foot was represented using a 1D Hermite cubic finite element mesh. The flow model consists of 1D Navier-Stokes equations and a nonlinear constitutive equation to describe vessel radius-transmural pressure relation. The latter was defined as the difference between the fluid and soft tissue hydrostatic pressure. Transient flow governing equations were numerically solved using the two-step Lax-Wendroff finite difference method. The geometry of both the soft tissue continuum and arterial network is anatomically-based and was developed using

  19. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D


    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  20. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)


    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  1. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael


    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  2. Microgravity Fluids for Biology, Workshop (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.


    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  3. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike


    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  4. PhysioNet (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  5. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R


    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  6. Stimulating effects of sorbitol and L-xylose on rat ileal Ca transport in vitro. (United States)

    Lacour, B; Ohan, J; Aznag, A; Drüeke, T B


    The direct effect of sorbitol and L-xylose on net intestinal calcium transport was compared to that of lactose, by determining unidirectional steady state calcium fluxes in segments of rat ileum in vitro under short-circuited conditions. The iso-molar addition of either 100 mM sorbitol, L-xylose, or lactose in mucosal buffer fluid increased the absorptive flux of Ca from mucosa to serosa to a similar extent and thus reversed ileal net Ca transport from net secretion to a zero net movement. The three substances decreased tissue conductance and reversed tissue polarity. At 200 mM, sorbitol induced a stimulation of net Ca transport due to an enhancement of absorptive Ca flux but in addition due to a decrease of secretory Ca flux from serosa to mucosa. The presence of 1 mM N-ethylmaleimide abolished the effects of sorbitol on ileal Ca flux. In conclusion, the present result shows that sorbitol, L-xylose, and lactose increase net Ca absorption to a comparable extent, in the absence of electrochemical or osmotic gradients. Such an absence of specificity suggests a stimulation of transcellular Ca transport related to the decrease of Na concentration in mucosal solution.

  7. TideNet (United States)


    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  8. Building Neural Net Software


    Neto, João Pedro; Costa, José Félix


    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  9. Interaction Nets in Russian


    Salikhmetov, Anton


    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  10. Programming NET 35

    CERN Document Server

    Liberty, Jesse


    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  11. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system; Modelisation couplee (transport - reaction) des interactions fluides - argiles et de leurs effets en retour sur les proprietes physiques de barrieres ouvragees en bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Marty, N


    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  12. In vitro study to compare the coronal microleakage of Tempit UltraF, Tempit, IRM, and Cavit by using the fluid transport model. (United States)

    Koagel, Susan O; Mines, Pete; Apicella, Michael; Sweet, Mark


    An adequate coronal seal is critical for the success of root canal therapy. The purpose of this study was to assess and compare the coronal microleakage of 4 temporary filling materials used to seal the access cavity in root canal treated teeth. Standardized access cavities were prepared in 55 extracted human, single canal teeth. They were instrumented by using a crown-down method to a size 45 file. The smear layer was removed with a 1-minute soak with 17% ethylenediaminetetraacetic acid followed by a 10-minute soak with 5.25% NaOCl and dried with paper points. All roots were obturated with gutta-percha and AH Plus sealer by using the continuous wave of condensation technique. The teeth were randomly divided into 4 groups of 10 teeth, with the remaining teeth serving as positive and negative controls. The access openings of the teeth in the experimental groups were filled with 4 mm of Cavit, IRM, Tempit, or Tempit-Ultra-F. All teeth were stored in 100% humidity at 37 degrees for 10 days, allowing sealer to set before testing. After thermocycling for 500 cycles (5 degrees C-55 degrees C), microleakage was measured by using the fluid transport model at 10 psi. All materials tested leaked. Kruskal-Wallis and Mann-Whitney U analysis indicated significantly less leakage (P Cavit and IRM. There were no statistically significant differences between Tempit Ultra-F and Tempit or between Cavit, IRM, and Tempit.

  13. The blood-cerebrospinal fluid barrier--first evidence for an active transport of organic mercury compounds out of the brain. (United States)

    Lohren, Hanna; Bornhorst, Julia; Galla, Hans-Joachim; Schwerdtle, Tanja


    Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood-brain barrier, limited data are available regarding the second brain regulating interface, the blood-cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood-CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport.

  14. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 2. development of the liquid hydrogen transportation tanker); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 2 hen ekitai suiso yuso tanker no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)



    Technology development is being conducted for construction of the long distance transportation tanker of large quantity liquid hydrogen. In fiscal 1997, test pieces of thermal insulating materials to be planned for fiscal 1998 were designed and studied. The purpose of the test is to confirm thermal insulating performance and behaviors of each material under the temperature of liquid hydrogen. The inside of the outer tank of the experimental equipment was held at vacuum of 10{sup -6} to 10{sup -7} Torr to exclude thermal convection effects and evaluate only heat coming from heater through the test piece. The heat from the heater at the lower part of the test piece is through the test piece and makes the liquid hydrogen of the upper tank evaporate. Thermal conductivity of the test piece is calculated from the evaporation quantity. As to PUF (polyurethane foam) panels, studied were reformation preventive measures, influential evaluation of the side transfer heat quantity, and the time required for vacuuming. In the vacuum panel, study subjects were extracted on the selection of core materials, reformation preventive measures, deterioration with age, the practical manufacturing method of experimental panels, etc. As to the super insulation, subjects were studied on the performance measuring method/accuracy, measures against heat transfer from the inside of the experimental equipment, control of the vacuum degree, etc. 10 refs., 45 figs., 6 tabs.

  15. La plataforma .NET


    Fornas Estrada, Miquel


    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  16. Biological Petri Nets

    CERN Document Server

    Wingender, E


    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  17. Investigation of micropump mechanism for medical application (blood transport application) (United States)

    Piterah, N. S. M.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.


    A microfluidic device is a beneficial device in transporting and controling the flow of fluid in microfluidic system especially in biomedical research and application. This study proposed a valveless micropump design with reciprocating micropumping concept. This micropump mechanism model was specifically designed to overcome hydrodynamic reversibility effectively at low Reynolds number and work on finite pressure loads. The transportation of microfluidic especially biological material such as blood was presented clearly in this micropumping mechanism. The transportation of fluid throughout microchannel with low Reynolds number 16 produced 7.5 m3 maximum net volume of blood pumped from left to right and configured upstroke and downstroke situation during 0.74 seconds and 0.24 seconds respectively.

  18. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations. Y Narahari ...

  19. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna


    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  20. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt


    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  1. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian


    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  2. Game Theory .net. (United States)

    Shor, Mikhael


    States making game theory relevant and accessible to students is challenging. Describes the primary goal of is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  3. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  4. Amniotic fluid (United States)

    ... or movements Too much amniotic fluid is called polyhydramnios . This condition can occur with multiple pregnancies (twins ... development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Burton GJ, Sibley CP, Jauniaux ...

  5. Conceptual design and performance analysis of a novel flexible-valve micropump using magneto-fluid-solid interaction (United States)

    Ehsani, Abbas; Nejat, Amir


    An electromagnetic actuated micropump with flexible sequence of valves is presented and investigated in the present article. Two flexible valves are placed inside the microchannel in order to bidirectionalize flow, employing the idea of rectifying mechanism of lymphangion in the lymphatic transport system. A time-dependent magnetic field exerts force on the soft magnetorheological elastomer (SMRE) wall, and therefore, the enclosed fluid is forced to move. The valve series are embedded in such a way that prevent flow from leaving the left terminal, and stop fluid flow entering from the right terminal. Therefore some fluid move left to right, which is called VNet. The net volume is considered as the target design for the performance of the micropump. A fully coupled time-dependent magneto-fluid-solid interaction (MFSI) simulation of two-dimensional incompressible fluid flow is conducted. The finite element method is used to solve all physics involved. Simulation results indicate capability of the proposed mechanism to propel fluid in one direction. A parametric study is performed to investigate the effect of key geometric, magnetic, and structural parameters on the net transported volume. Results show that under optimum conditions the micropump is able to transmit a net volume of fluid nearly two times more than the basic design. The final model is able to pump 0.055 (μl) of water (at 25 °C) in 1 s. The proposed micropump can operate in a wide range of applications, such as artificial organs, organ-on-chip, and aerospace applications.

  6. Food Safety Nets:


    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane


    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  7. Net technical assessment


    Wegmann, David G.


    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  8. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German


    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  9. Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A


    Full Text Available Abstract Background Defects in the low density lipoprotein receptor-related protein-1 (LRP-1 and p-glycoprotein (Pgp clearance of amyloid beta (Aβ from brain are thought to contribute to Alzheimer’s disease (AD. We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier. Methods CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV or into the jugular vein (intravenous (IV was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF. Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. Results We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain

  10. Lipopolysaccharide impairs amyloid β efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. (United States)

    Erickson, Michelle A; Hartvigson, Pehr E; Morofuji, Yoichi; Owen, Joshua B; Butterfield, D Allan; Banks, William A


    Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer's disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood-brain barrier. CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells. These results suggest that LRP-1

  11. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry


    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  12. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2...

  13. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.


    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  14. Teaching Tennis for Net Success. (United States)

    Young, Bryce


    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  15. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten


    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  16. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov


    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  17. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne


    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  18. expansions to and an introduction to (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01 ( is the new moniker for a collection of databases: and Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site ( In this article, (i) we provide an update on the expansions of that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. is an independent component of and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to since its last description in NAR, 2012, and also introduces and presents its new sibling site, PMID:25392426


    Directory of Open Access Journals (Sweden)

    Evelia Schettini


    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  20. The equivalency between logic Petri workflow nets and workflow nets. (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue


    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  1. Fluid Mechanics. (United States)

    Drazin, Philip


    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  2. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius


    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  3. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence.

    Directory of Open Access Journals (Sweden)

    Md Mahmodul Hasan Sohel

    Full Text Available Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down in exosomes and 30 miRNAs differentially expressed (21 up and 9 down in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.

  4. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...


    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah


    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  6. Expression of inducible nitric oxide synthase and effects of L-arginine on colonic nitric oxide production and fluid transport in patients with "minimal colitis"

    DEFF Research Database (Denmark)

    Perner, Anders; Andresen, Lars; Normark, Michel


    Some patients with idiopathic, chronic diarrhoea have minimal, non-specific colonic inflammation. As nitric oxide (NO) acts as a secretagogue in the colon, we studied the expression of inducible NO synthase (iNOS) in mucosal biopsies and the effects of NOS stimulation on colonic transfer of fluid...

  7. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    NARCIS (Netherlands)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil G.R.; Carpenter, Brett M.; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André|info:eu-repo/dai/nl/370832132; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon A H; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin


    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep

  8. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Directory of Open Access Journals (Sweden)

    Giordano Thomas H


    Full Text Available It is well established through field observations, experiments, and chemical models that oxidation (redox state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT and red-bed related base metal (RBRBM deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354 and G. M. Anderson (Econ. Geol., 1975, 70, 937–942 are capable of transporting sufficient amounts of Pb (up to 10 ppm and Zn (up to 100 ppm in the form of carboxylate

  9. Experimental study of the apatite-carbonate-H2O system at P = 0.5 GPa and T = 1200°C: Efficiency of fluid transport in carbonatite (United States)

    Gorbachev, N. S.; Shapovalov, Yu. B.; Kostyuk, A. V.


    Partitioning of more than 35 elements between coexisting phases in the apatite (Apt)-carbonate (Carb)-H2O system was studied experimentally at P = 0.5 GPa and T = 1200°C for estimation of the efficiency of fluid transport during the formation of carbonatite in platform alkaline intrusions. The interphase partition coefficients of elements ( D) range from n × 10-2 to 100 and higher, which provides evidence for their effective fractionation in the system. The following elements were distinguished: (1) Apt-compatible (REE, Y, Th, Cu, and W), which are concentrated in apatite; (2) hydrophile (Na, K, Mg, Ba, S, Mn, Pb, U, W, and Re), which are preferably distributed into fluid or the carbonate melt. The high hydrophilicity of alkali metals controls the alkaline character of postmagmatic fluids and related metasomatic rocks, whereas the high D(Fl/Apt) and D(Fl/LCarb) for S, Zr, W, Re, and U show their high potential in relation to U-W-Re mineralization.

  10. An Electrically Tight In Vitro Blood-Brain Barrier Model Displays Net Brain-to-Blood Efflux of Substrates for the ABC Transporters, P-gp, Bcrp and Mrp-1

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella


    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate......, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one...... isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport....

  11. Mass transport in a thin layer of power-law mud under surface waves (United States)

    Liu, Jie; Bai, Yuchuan; Xu, Dong


    The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

  12. GOMA - A full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport: User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, P.R.; Sackinger, P.A.; Rao, R.R. [and others


    GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing physics, (2) fixed, according to a global analytical representation, or (3) moving in time and space under user-prescribed kinematics. The goal is to enable the user to predict boundary position or motion simultaneously with the physics of the problem being analyzed and to pursue geometrical design studies and fluid-structure interaction problems. The moving mesh algorithm treats the entire domain as a computational Lagrangian solid that deforms subject to the physical principles which dictate boundary position. As an added benefit, the same Lagrangian solid mechanics can be exploited to solve multi-field problems for which the solid motion and stresses interact with other transport phenomena, either within the same material phase (e.g. shrinking coating) or in neighboring material phases (e.g. flexible blade coating). Thus, analyses of many fluid-structure interaction problems and deformable porous media problems are accessible. This document serves as a user`s guide and reference for GOMA and provides a brief overview of GOMA`s capabilities, theoretical background, and classes of problems for which it is targeted.

  13. Modelling laminar transport phenomena in a Casson rheological fluid from an isothermal sphere with partial slip in a non-Darcy porous medium

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.


    Full Text Available The flow and heat transfer of Casson fluid from a permeable isothermal sphere in the presence of slip condition in a non-Darcy porous medium is analyzed. The sphere surface is maintained at a constant temperature. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite-difference scheme. Increasing the velocity slip parameter is found to decrease the velocity and boundary layer thickness and increases the temperature and the boundary layer thickness. The velocity decreases with the increase the non-Darcy parameter and is found to increase the temperature. The velocity increases with the increase the Casson fluid parameter and is found to decrease the temperature. The Skin-friction coefficient and the local Nusselt number is found to decrease with the increase in velocity and thermal slip parameters respectively.

  14. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  15. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD


    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  16. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.


    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  17. Fluid Mud in Energetic Systems: FLUMES II (United States)


    FINAL REPORT Fluid Mud in Energetic Systems: FLUMES II Gail C. Kineke Dept of...the dynamics of fluid mud and its role in the transport and deposition of sediment in coastal environments. In particular, we sought greater...understanding of the processes that influence the formation and maintenance of fluid mud in energetic environments. OBJECTIVES The research is a process

  18. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev


    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  19. Worldwide clean energy system technology using hydrogen (WE-NET). subtask 5. Development of hydrogen transfer and storage technology (research and development of technologies for hydrogen transport and storage by hydrogen absorbing alloys); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)



    This report describes a guiding principle of new hydrogen absorbing alloy design, case studies on the stationary hydrogen storage systems for multiple dwelling houses using hydrogen absorbing alloys and on the hydrogen fuel tank systems for a motor vehicle, and survey on development status in the world. As a result of the investigation of alloys, it was concluded that realization of hydrogen absorbing alloys with new target properties of the WE-NET Project is not easy through the current technology. It was found that two kinds of Mg-based and V-based high capacity materials must be selected as target alloys among current alloys, and that three techniques, i.e., ultra-fine microstructure, composite, and amorphousness, are effective for improving the hydrogen discharge property which has been a problem of these alloys. It was desired that the latest techniques are established by integrating these materials and techniques. It is necessary to promote the development of brake-through new materials by new concepts and technologies through the cooperation of national institutes, universities, and companies. 124 refs., 56 figs., 11 tabs.

  20. Supercritical fluid reverse micelle separation (United States)

    Fulton, J.L.; Smith, R.D.


    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  1. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  2. Complex Fluids and Hydraulic Fracturing. (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H


    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  3. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  4. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 9. Development of liquid hydrogen transportation and storage technologies - 1; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 9. Ekitai suiso yuso chozo gijutsu no kaihatsu - 1

    Energy Technology Data Exchange (ETDEWEB)



    This paper describes the achievements in fiscal 2000 from the development of liquid hydrogen transportation and storage technologies. Discussions were given on the following three types of specimens as the heat insulation performance test structures: the vacuum panel type (polyurethane foam coated with SUS sheet, while the inside is kept in the vacuum state); the solid vacuum type (combination of polyurethane foam with vacuum heat insulation); and the powder under normal pressure type (a structure in which the ambient of powder pearlite heat insulating material becomes the atmospheric pressure, whereas a SUS case is set up to separate vacuum layer of the test apparatus from atmosphere layer of the specimen, with the SUS case filled with pearlite). Adding the two types of specimens used in the previous fiscal year, five test specimens in total were discussed on the result of the performance tests to advance the database management. As a low temperature strength test for the insulating materials, the compression test was performed on a microsphere being a kind of solid vacuum (normal pressure) heat insulating materials at room temperature, the liquid nitrogen temperature and in liquid hydrogen atmosphere. The compression strength under liquid hydrogen is 1,044 MPa, which is two times greater than the normal temperature strength of 496 MPa, representing the compression strength rising in proportion with temperature drop. Problems were extracted in developing a small capacity liquid hydrogen transportation and storage system. (NEDO)

  5. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge


    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  6. Conformal Nets II: Conformal Blocks (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André


    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  7. The market performance and determinants of net returns to artisanal ...

    African Journals Online (AJOL)

    The result of the multiple regression analysis showed that age, household size, farming experience and access to credit were significant determinants of fishermen net returns while age, educational level, price of the product (fish) and transport cost were significant determinants of the marketers'(wholesalers and retailers) ...

  8. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko


    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  9. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits


    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  10. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José


    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  11. PolicyNet Publication System (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  12. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  13. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A


    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  14. Report on the Program "Fluid-mediated particle transport in geophysical flows" at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013 (United States)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre


    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  15. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn


    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  16. The Economics of Net Neutrality


    Hahn, Robert W.; Wallsten, Scott


    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  17. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone (United States)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin


    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  18. Fluid dynamics

    CERN Document Server

    Bernard, Peter S


    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  19. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses. (United States)


    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  20. 29 CFR 4204.13 - Net income and net tangible assets tests. (United States)


    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  1. A Forward Reachability Algorithm for Bounded Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    David, Alexandre; Jacobsen, Lasse; Jacobsen, Morten


    Timed-arc Petri nets (TAPN) are a well-known time extension of thePetri net model and several translations to networks of timedautomata have been proposed for this model.We present a direct, DBM-basedalgorithm for forward reachability analysis of bounded TAPNs extended with transport arcs...

  2. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density (United States)

    Friedel, Michael J.


    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water


    Energy Technology Data Exchange (ETDEWEB)

    J.A. Heveal


    This Analysis/Model Report (AMR) describes enhancements made to the infiltration model documented in Flint et al. (1996) and documents an analysis using the enhanced model to generate spatial and temporal distributions over a model domain encompassing the Yucca Mountain site, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone, the average depth below the ground surface (at a given location) from which water is removed by evapotranspiration. The estimates of net infiltration are used for defining the upper boundary condition for the site-scale 3-dimensional Unsaturated-Zone Ground Water Flow and Transport (UZ flow and transport) Model (CRWMS M&O 2000a). The UZ flow and transport model is one of several process models abstracted by the Total System Performance Assessment model to evaluate expected performance of the potential repository at Yucca Mountain, Nevada, in terms of radionuclide transport (CRWMS M&O 1998). The net-infiltration model is important for assessing potential repository-system performance because output from this model provides the upper boundary condition for the UZ flow and transport model that is used to generate flow fields for evaluating potential radionuclide transport through the unsaturated zone. Estimates of net infiltration are provided as raster-based, 2-dimensional grids of spatially distributed, time-averaged rates for three different climate stages estimated as likely conditions for the next 10,000 years beyond the present. Each climate stage is represented using a lower bound, a mean, and an upper bound climate and corresponding net-infiltration scenario for representing uncertainty in the characterization of daily climate conditions for each climate stage, as well as potential climate variability within each climate stage. The set of nine raster grid maps provide spatially

  4. A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF Thermal Spray

    Directory of Open Access Journals (Sweden)

    Mehdi Jadidi


    Full Text Available In thermal spraying processes, molten, semi-molten, or solid particles, which are sufficiently fast in a stream of gas, are deposited on a substrate. These particles can plastically deform while impacting on the substrate, which results in the formation of well-adhered and dense coatings. Clearly, particles in flight conditions, such as velocity, trajectory, temperature, and melting state, have enormous influence on the coating properties and should be well understood to control and improve the coating quality. The focus of this study is on the high velocity oxygen fuel (HVOF spraying and high velocity suspension flame spraying (HVSFS techniques, which are widely used in academia and industry to generate different types of coatings. Extensive numerical and experimental studies were carried out and are still in progress to estimate the particle in-flight behavior in thermal spray processes. In this review paper, the fundamental phenomena involved in the mentioned thermal spray techniques, such as shock diamonds, combustion, primary atomization, secondary atomization, etc., are discussed comprehensively. In addition, the basic aspects and emerging trends in simulation of thermal spray processes are reviewed. The numerical approaches such as Eulerian-Lagrangian and volume of fluid along with their advantages and disadvantages are explained in detail. Furthermore, this article provides a detailed review on simulation studies published to date.

  5. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T


    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  6. A Brief Survey of the Equilibrium and Transport Properties of Critical Fluids and the Degree to Which Microgravity is Required for Their Experimental Investigation (United States)

    Ferrell, Richard A.


    The modern theory of second order phase transitions is very successful in calculating the critical exponents as an asymptotic expansion in powers of epsilon = 4 - D, the deviation of D = 3, the spatial dimension of the actual physical system from that of the abstract four-dimensional reference model. This remarkable mathematical 'tour de force' leaves unanswered, however, many fundamental questions concerning the exact nature of how the fluctuations interact. I discuss here some experiments which would help to further our understanding of the equilibrium critical properties. Especially promising would be a measurement of the temperature dependence of the turbidity very close to the critical point. This has the promise of determining the small and elusive but fundamentally important anomalous dimension exponent eta. I also review various ways of measuring the critical transport coefficients and point out some cases where ground based experiments may usefully supplement flight experiments.

  7. Microscale Investigation of Thermo-Fluid Transport in the Transition FIL, Region of an Evaporating Capillary Meniscus Using a Microgravity Environment (United States)

    Kihm, K. D.; Allen, J. S.; Hallinan, K. P.; Pratt, D. M.


    In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under which concentric and individually controlled micro-heaters are vapor-deposited to maintain either a constant surface temperature or a controlled temperature variation. Local heat transfer rates, required to maintain the desired wall temperature boundary condition, will be measured and recorded by the concentric thermoresistance heaters controlled by a Wheatstone bridge circuit, The proposed experiment employs a novel technique to maintain a constant liquid volume and liquid pressure in the capillary region of the evaporating meniscus so as to maintain quasi-stationary conditions during measurements on the transition film region. Alternating use of Fizeau interferometry via white and monochromatic light sources will measure the thin film slope and thickness variation, respectively. Molecular Fluorescence Tracking Velocimetry (MFTV), utilizing caged fluorophores of approximately 10-nm in size as seeding particles, will be used to measure the velocity profiles in the thin film region. An optical sectioning technique using confocal microscopy will allow submicron depthwise resolution for the velocity measurements within the film for thicknesses on the order of a few microns. Digital analysis of the fluorescence image-displacement PDFs, as described in the main proposal, can further enhance the

  8. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein


    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  9. An Efficient Translation of Timed-Arc Petri Nets to Networks of Timed Automata

    DEFF Research Database (Denmark)

    Byg, Joakim; Jørgensen, Kenneth Yrke; Srba, Jiri


    to enforce urgency and with transport arcs to generalise the read-arcs. We also describe a novel translation from the extended timed-arc Petri net model to networks of timed automata. The translation is implemented in the tool TAPAAL and it uses UPPAAL as the verification engine. Our experiments confirm......Bounded timed-arc Petri nets with read-arcs were recently proven equivalent to networks of timed automata, though the Petri net model cannot express urgent behaviour and the described mutual trans- lations are rather inefficient. We propose an extension of timed-arc Petri nets with invariants...

  10. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius


    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  11. Net4Care PHMR Library

    DEFF Research Database (Denmark)


    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  12. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur


    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  13. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.


    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  14. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    CERN Document Server

    Che, H


    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation during Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports along current sheets are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the streaming energy of current sheets and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into the heat of electrons moving along the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that rela...

  15. Fluid Shifts (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide


    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  16. Convective and diffusive effects on particle transport in asymmetric periodic capillaries.

    Directory of Open Access Journals (Sweden)

    Nazmul Islam

    Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.

  17. Fluid Fascinations

    NARCIS (Netherlands)

    Bokhove, Onno; Zwart, Valerie; Haveman, Martha J.

    De Art & Science show “Fluid Fascinations��? omvat een presentatie over de wetenschappelijke context, inclusief een live experiment (ontworpen samen met kunstenaar/designer Wout Zweers); en, gemengde media en olieverfschilderijen, en digitale fotowerken van kunstenares Valerie Zwart. De show is

  18. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)


    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  19. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs


    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  20. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.


    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  1. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.


    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  2. Development of Network Interface Cards for TRIDAQ systems with the NaNet framework (United States)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Di Lorenzo, S.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Valente, P.; Vicini, P.


    NaNet is a framework for the development of FPGA-based PCI Express (PCIe) Network Interface Cards (NICs) with real-time data transport architecture that can be effectively employed in TRIDAQ systems. Key features of the architecture are the flexibility in the configuration of the number and kind of the I/O channels, the hardware offloading of the network protocol stack, the stream processing capability, and the zero-copy CPU and GPU Remote Direct Memory Access (RDMA). Three NIC designs have been developed with the NaNet framework: NaNet-1 and NaNet-10 for the CERN NA62 low level trigger and NaNet3 for the KM3NeT-IT underwater neutrino telescope DAQ system. We will focus our description on the NaNet-10 design, as it is the most complete of the three in terms of capabilities and integrated IPs of the framework.

  3. Fluid mechanics in the perivascular space. (United States)

    Wang, Peng; Olbricht, William L


    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker


    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  5. Army Net Zero Prove Out. Army Net Zero Training Report (United States)


    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  6. Army Net Zero Prove Out. Net Zero Waste Best Practices (United States)


    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  7. Avaliação do desempenho logístico do transporte rodoviário de madeira de áreas de fomento florestal com o uso de rede de Petri Evaluation of the wood hauling logistic performance in farm forest areas using Petri net

    Directory of Open Access Journals (Sweden)

    Carlos Cardoso Machado


    of optimizing physical resources, guaranteeing a flow of uninterrupted provisioning and appropriate volume of wood entrance in the regional deposits. The operational cycle of wood transport is organized by the activities of wood loading in the field, wood hauling, wood unloading in the deposit and unhauling. The Temporal Petri Net was used, because it works with two times - sensitization duration. Simulations were carried out with the ARP and ARP software systems, in order to simulate, analyze and evaluate the operational performance. The variations employed in each scenery are due to the quality of the highway, under the current conditions, as for the vertical and horizontal geometry and the irregularity quotient, in each deposit, for the different types of vehicle and form of the adopted wood loading. In the areas of uneven topography, the improvement of the highways altering their quality level has a higher influence for the increase in the performance of the vehicles, and Toco and Truck presented better results. In the areas of plains, the choice of the vehicle has a higher influence in the increase of the performance of the transport, since the topography and the quality of the current highways already contribute to the performance. In these cases, the relation between transported ton and distance and time will be higher for the vehicles with higher capacity of liquid load.

  8. Fluid Mechanics (United States)

    Pnueli, David; Gutfinger, Chaim


    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  9. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei


    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... modeloutput, and provides the 95%-confidence interval of the net power output with respect to the fluid property uncertainties. The methodology has been applied to a molecular design problem for an ORCusing a low-temperature heat source and consisted of the following four parts: 1) formulation...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output...

  10. Forced fluid removal versus usual care in intensive care patients with high-risk acute kidney injury and severe fluid overload (FFAKI)

    DEFF Research Database (Denmark)

    Berthelsen, Rasmus E.; Itenov, Theis; Perner, Anders


    , randomised clinical trial recruiting adult intensive care patients with acute kidney injury and fluid overload, defined as more than 10% of ideal bodyweight. Patients are randomised with concealed allocation to either standard care or forced fluid removal with a therapeutic target of negative net fluid...... has resolved. The primary outcome measure is fluid balance at 5days after randomisation and secondary outcomes include mean daily fluid balance, fluid balance at discharge from the intensive care unit, time to neutral fluid balance, number of serious adverse reactions and number of protocol violations...

  11. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  12. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow (United States)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Liu, Yang; Malthe-Sørenssen, Anders; Jamtveit, Bjørn


    The transport of fluids through the Earth's crust controls the redistribution of elements to form mineral and hydrocarbon deposits, the release and sequestration of greenhouse gases, and facilitates metamorphic reactions that influence lithospheric rheology. In permeable systems with a well-connected porosity, fluid transport is largely driven by fluid pressure gradients. In less permeable rocks, deformation may induce permeability by creating interconnected heterogeneities, but without these perturbations, mass transport is limited along grain boundaries or relies on transformation processes that self-generate transient fluid pathways. The latter can facilitate large-scale fluid and mass transport in nominally impermeable rocks without large-scale fluid transport pathways. Here, we show that pervasive, fluid-driven metamorphism of crustal igneous rocks is directly coupled to the production of nanoscale porosity. Using multi-dimensional nano-imaging and molecular dynamics simulations, we demonstrate that in feldspar, the most abundant mineral family in the Earth's crust, electrokinetic transport through reaction-induced nanopores (mediated mineral transformation reactions can be considerably influenced by nanofluidic transport phenomena.

  13. Measurement and Prediction of Volumetric and Transport Properties of Reservoir Fluids At High Pressure Mesure et prédiction des propriétés volumétriques et des propriétés de transport des fluides de gisement à haute pression

    Directory of Open Access Journals (Sweden)

    De Sant'ana H. B.


    Full Text Available Discoveries of oil and gas fields under severe conditions of temperature (above 150°C or pressure (in excess of 50 MPa have been made in various regions of the world. In the North Sea, production is scheduled from deep reservoirs at 190°C and 110 MPa. This brings with it important challenges for predicting the properties of reservoir fluids, both from an experimental and a theoretical standpoint. In order to perform fluid studies for these reservoir conditions, IFP has developed a specific mercury-free high pressure apparatus with sapphire windows, a phase sampling device and viscosity determination by the capillary tube method. Its application is illustrated here using examples of real fluids and model mixtures. This equipment was first used to measure volumetric properties for gases. It has been shown that very high compressibility factors can be found with HP-HT gas condensates. This has a strong influence on recovery factors during primary depletion. In order to predict more accurately the volumetric properties of mixtures under these conditions, we propose to use a conventional equation of state, such as Peng-Robinson, with two improvements :- a modified temperature-dependent volume translation method, calibrated for high pressure density data; the method is simple, more accurate than other volume translation methods and fully consistent with lumping procedures;- a quadratic mixing rule on the covolume. Specific phase behavior can also be found. At low temperatures, wax crystallization can occur from a fluid which is a gas condensate at reservoir temperature. This feature is due to the simultaneous presence of abundant methane and heavy paraffins. A study of model fluids in a sapphire cell has allowed us to identify the possible types of phase diagrams. Although generally not considered to be an important parameter, gas viscosity may have some importance in the production of HP-HT accumulations, because of high flow rates. Viscosity

  14. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  15. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library



      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  16. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.


    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  17. Isolated unit tests in .Net


    Haukilehto, Tero


    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  18. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman


    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  19. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni


    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  20. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W


    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  1. Long Term RadNet Quality Data (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  2. Phosphorylation of the norepinephrine transporter at threonine 258 and serine 259 is linked to protein kinase C-mediated transporter internalization

    DEFF Research Database (Denmark)

    Jayanthi, Lankupalle D; Annamalai, Balasubramaniam; Samuvel, Devadoss J


    an hypothesis that PKC-mediated phosphorylation of NET is required for transporter internalization. Phosphoamino acid analysis of 32P-labeled native NETs from rat placental trophoblasts and heterologously expressed wild type human NET (WT-hNET) from human placental trophoblast cells revealed that the phorbol....... Most interestingly, the plasma membrane insertion of the WT-hNET and hNET double mutant were not affected by beta-PMA. Although the WT-hNET showed increased endocytosis and redistribution from caveolin-rich plasma membrane domains following beta-PMA treatment, the hNET double mutant was completely...

  3. The role of zinc ions in reverse transport mediated by monoamine transporters

    DEFF Research Database (Denmark)

    Scholze, Petra; Nørregaard, Lene; Singer, Ernst A


    and the norepinephrine transporter (hNET). Mutation of the Zn2+ coordinating residue His(193) to Lys (the corresponding residue in hNET) eliminated the effect of Zn2+ on efflux. Conversely, the reciprocal mutation (K189H) conferred Zn2+ sensitivity to hNET. The intracellular [3H]MPP+ concentration was varied to generate......-diffusion and support the concept that inward and outward transport represent discrete operational modes of the transporter. In addition, they indicate a physiological role of Zn2+, because Zn2+ also facilitated transport reversal of DAT in rat striatal slices....

  4. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading. (United States)

    Chuang, Shih-Youeng; Popovich, John M; Lin, Leou-Chyr; Hedman, Thomas P


    In vitro study of genipin crosslinking effect on disc water content changes under compressive loading and unloading. To investigate the influence of collagen crosslinking on hydration and fluid flow in different regions of intact discs, and to evaluate the nutritional implications. Age-related reductions of nutrient supply and waste product removal are critically important factors in disc pathogenesis. Diffusion and fluid flow are blocked by subchondral bone thickening, cartilaginous endplate calcification, loss of hydrophilic proteoglycans, and clogging of anular pores by degraded matrix molecules. Previous studies demonstrated increased hydraulic permeability and macromolecular transport through crosslinked collagenous matrices. Genipin has also demonstrated the capability to increase retention of proteoglycans. A total of 57 bovine lumbar motion segments were divided randomly into phosphate buffered saline and 0.33% genipin-soaked treatment groups. Water content changes were measured using a mass-loss technique in 3 intervertebral disc regions following successive stages of compressive loading and unloading (post-treatment, after 1 hour 750 N compression, and after a subsequent 24-hour period of nominal loading). Net flow of fluid into or out of a region was determined from the percentage change in mean water content from successive groups. Fluid flow to and from the nucleus doubled with genipin crosslinking. Relative to the buffer-only controls, overall net fluid flow increased 103% in the nucleus pulposus, 36% in the inner anulus, and was 31% less in the outer anulus of genipin treated discs. The effects of genipin crosslinking on matrix permeability and proteoglycan retention can alter hydration levels and fluid flow in the intervertebral disc. Resulting increases in fluid flow, including a doubling of flow to and from the nucleus, could lead to enhanced nutritional inflow and waste product outflow for the disc, and may have implications for emerging cell

  5. PsychoNet: a psycholinguistc commonsense ontology


    Mohtasseb, Haytham; Ahmed, Amr


    Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization...

  6. 78 FR 72451 - Net Investment Income Tax (United States)


    ... Revenue Service 26 CFR Part 1 RIN 1545-BL74 Net Investment Income Tax AGENCY: Internal Revenue Service...). These regulations provide guidance on the computation of net investment income. The regulations affect... lesser of: (A) The individual's net investment income for such taxable year, or (B) the excess (if any...

  7. 47 CFR 69.302 - Net investment. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account...

  8. 47 CFR 65.450 - Net income. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  9. 47 CFR 65.500 - Net income. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  10. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David


    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  11. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro


    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...

  12. 27 CFR 4.37 - Net contents. (United States)


    ... the volume of wine within the container, except that the following tolerances shall be allowed: (1... THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is...

  13. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong


    transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).

  14. High net calcium uptake explains the hypersensitivity of the freshwater pulmonate snail, Lymnaea stagnalis, to chronic lead exposure. (United States)

    Grosell, Martin; Brix, Kevin V


    Previous studies have shown that freshwater pulmonate snails of the genus Lymnaea are exceedingly sensitive to chronic Pb exposure. An EC20 of influx was significantly inhibited (39%) and corresponding net Ca(2+) flux was significantly reduced from 224 to -23nmolg(-1)h(-1). An 85% increase in Cl(-) influx was also observed, while Na(+) ion transport appeared unaffected. Finally, a marked alkalosis of extracellular fluid was observed with pH increasing from 8.35 in the control to 8.65 in the 18.9microgl(-1) Pb-exposed group. Results based on direct measurement of Ca(2+) influx in 1g snails gave an influx nearly an order of magnitude higher (750nmolg(-1)h(-1)) than in comparably sized fish in similar water chemistry. Under control conditions, specific growth rate in newly hatched snails was estimated at 16.7% per day over the first 38-day post-hatch and whole body Ca(2+) concentrations were relatively constant at approximately 1100nmolg(-1) over this period. Based on these data, it is estimated that newly hatched snails have net Ca(2+) uptake rates on the order of 7600nmolg(-1)h(-1). A model was developed integrating these data and measured inhibition of Ca(2+) influx rates of 13.4% and 38.7% in snails exposed to 2.7 and 18.9microgl(-1)Pb, respectively. The model estimates 45% and 83% reductions in newly hatched snail growth after 30-day exposure in these two Pb-exposed groups. These results compare well with previous direct measurements of 47% and 90% reductions in growth at similar Pb concentrations, indicating the high net Ca(2+) uptake is the controlling factor in observed Pb hypersensitivity.

  15. VitisNet: "Omics" integration through grapevine molecular networks.

    Directory of Open Access Journals (Sweden)

    Jérôme Grimplet

    Full Text Available BACKGROUND: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet. METHODOLOGY/PRINCIPAL FINDINGS: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024 genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 "Metabolic", 15 "Genetic Information Processing", 12 "Environmental Information Processing", 3 "Cellular Processes", 21 "Transport", and 80 "Transcription Factors". The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. CONCLUSIONS/SIGNIFICANCE: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome

  16. Multiple vertebral fluid-fluid levels

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, O.; Demaerel, P.; Catry, F.; Breuseghem, I. Van [University Hospitals Gasthuisberg, Department of Radiology, Leuven (Belgium); Ballaux, F. [University Hospitals Gasthuisberg, Department of Pathology, Leuven (Belgium); Samson, I. [University Hospitals Gasthuisberg, Department of Orthopedic Surgery, Leuven (Belgium)


    We present a case of multiple vertebral metastases, with multiple fluid-fluid levels, from a moderately to poorly differentiated carcinoma of unknown origin. We suggest that fluid-fluid levels in multiple vertebral lesions are highly suggestive of bone metastases. (orig.)

  17. NET 40 Generics Beginner's Guide

    CERN Document Server

    Mukherjee, Sudipta


    This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy.

  18. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding


    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...... marker is proven to erroneously yield a positive NRI. Some insight into this phenomenon is provided. Since large values for the NRI statistic may simply be due to use of poorly fitting risk models, we suggest caution in using the NRI as the basis for marker evaluation. Other measures of prediction...

  19. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    Van Rijswick, R.; Van Rhee, C.


    Piston diaphragm pumps are used world-wide for the transport of aggressive and/or abrasive fluids in the chemical, mining and mineral processing industries. Figure 1 shows a cross section of a piston diaphragm pump as is used in the mining and mineral processing industries for the transport of

  20. Multiscale modeling for fluid transport in nanosystems.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.


    Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.

  1. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich


    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  2. Gyroelastic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kerbel, G.D.


    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  3. Fluid flow and radionuclide transport in complex repository mines. Synthesis report part 1/2. Two-phase flow in a saline repository using the example ERAM; Fluidstroemung und Radionuklidtransport in komplexen Endlagerbergwerken. Synthesebericht Teil 1/2. Zweiphasenfluss in einem salinaren Endlager am Beispiel des ERAM

    Energy Technology Data Exchange (ETDEWEB)

    Kock, Ingo; Frieling, Gerd; Navarro, Martin


    The aim of the project is the understanding of two-phase flow processes in a complex final repository system. The consideration of two-phase flow processes for calculations concerning the modeled final repository system induces processes and effects that influence the fluid and radionuclide transport significantly. Two-phase flow processes cover not only capillary pressures and the relative permeability but also a basic competition of phases for the pore volume with respect to storage and transport and density driven vertical phase separation.

  4. Chemical processes related to net ozone tendencies in the free troposphere

    Directory of Open Access Journals (Sweden)

    H. Bozem


    Full Text Available Ozone (O3 is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry–transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above  ∼  6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6–8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx. In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5–6 compared to the undisturbed upper tropospheric background. The chemistry–transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction.

  5. Chemical processes related to net ozone tendencies in the free troposphere


    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst


    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in-situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3D chemistry-transport model simulations. In general, observation-based net ozone tendencies are p...

  6. Chemical processes related to net ozone tendencies in the free troposphere (United States)

    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst


    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).

  7. Quantifying the net social benefits of vehicle trip reductions : guidance for customizing the TRIMMS(c) model. (United States)


    This study details the development of a series of enhancements to the Trip Reduction Impacts of : Mobility Management Strategies (TRIMMS) model. TRIMMS allows quantifying the net social : benefits of a wide range of transportation demand management...

  8. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes (United States)

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in the...

  9. Avaliação do desempenho logístico do transporte rodoviário de madeira utilizando rede de petri em uma empresa florestal de Minas Gerais Evalution of logistic performance of wood hauling using petri net in a forest industry of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Raiane Ribeiro Machado


    wood transport cycle time consists of wood loading, wood hauling, wood unloading, garage and wood unhauling. A cellulose producing company in the State of Minas Gerais was used as case study. Initially, the logistics and supply chain of the company was diagnosed to know the main existent obstacles along the chain; defining their preliminary vary key parameters, based on the characterization of their structure and operation; finally, the main directors that condition their efficiency and competitiveness were identified and evaluated. The model of chain logistics of wood transport used the Temporal Petri Net for working with two times that correspond to a sensitization period. Their properties are as follows: simulation (working with hypothetical scenarios, dynamic (exit values depend on the entrance values; determinist (exit variables are not random; continuous (time is measured by real numbers; and temporal in the transitions. Scenarios, with the same variations in the two wood-producing regionals were created, and simulations with the JARP and ARP software were carried out to evaluate the operational and economic performance. The variations applied to the scenarios were: improvement of the forest roads; increase of loader numbers, and improvement of garage efficiency. For both regionals, the scenario with the three variations (Scenario 7 presented the largest reduction in cycle times of wood transport in relation to the current situation, being 19.24% and 21.48%, respectively, for Rio Doce and Cocais das Estrelas. The analyzed operational cost is the value paid for the freight, not including the investment costs. Both regionals, Rio Doce and Cocais das Estrelas, presented a larger reduction in the Scenario 7, of 20.09% and 21.22%, respectively.

  10. Performance Evaluation of Workflows Using Continuous Petri Nets with Interval Firing Speeds (United States)

    Hiraishi, Kunihiko

    In this paper, we study performance evaluation of workflow-based information systems. Because of state space explosion, analysis by stochastic models, such as stochastic Petri nets and queuing models, is not suitable for workflow systems in which a large number of flow instances run concurrently. We use fluid-flow approximation technique to overcome this difficulty. In the proposed method, GSPN (Generalized Stochastic Petri Nets) models representing workflows are approximated by a class of timed continuous Petri nets, called routing timed continuous Petri nets (RTCPN). In RTCPN models, each discrete set is approximated by a continuous region on a real-valued vector space, and variance in probability distribution is replaced with a real-valued interval. Next we derive piecewise linear systems from RTCPN models, and use interval methods to compute guaranteed enclosures for state variables. As a case study, we solve an optimal resource assignment problem for a paper review process.

  11. Continuous hemofiltration for anasarca: recovery of renal function after 71 liters of net ultrafiltration. (United States)

    Prowle, J; Bellomo, R; Buckmaster, J; Gutteridge, G; Hart, G; Opdam, H; Silvester, W; Warrillow, S


    We report on a 64-year-old female presenting with anasarca secondary to volume loading in the setting of chronic liver disease, acute on chronic renal failure, circulatory failure and sepsis. Over 37 days, a net negative fluid balance of 71 L was achieved using continuous hemofiltration, with spontaneous recovery of urine output, vasopressor independence and resolution of coagulopathy. This case report underlines the pathophysiological role of tissue edema in the downward spiral of hepato-renal and cardio-renal dysfunction and illustrates that very large volumes of tissue fluid can be safely and effectively removed with continuous renal replacement therapy, thereby permitting recovery of organ function. To our knowledge, there have been no previous reports of such large volume net fluid removal by progressive ultrafiltration in the intensive care unit.

  12. Fluid-solid modeling of lymphatic valves (United States)

    Caulk, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon; Alexeev, Alexander


    The lymphatic system performs important physiological functions such as the return of interstitial fluid to the bloodstream to maintain tissue fluid balance, as well as the transport of immune cells in the body. It utilizes contractile lymphatic vessels, which contain valves that open and close to allow flow in only one direction, to directionally pump lymph against a pressure gradient. We develop a fluid-solid model of geometrically representative lymphatic valves. Our model uses a hybrid lattice-Boltzmann lattice spring method to capture fluid-solid interactions with two-way coupling between a viscous fluid and lymphatic valves in a lymphatic vessel. We use this model to investigate the opening and closing of lymphatic valves, and its effect on lymphatic pumping. This helps to broaden our understanding of the fluid dynamics of the lymphatic system.

  13. Vieillissement du polyamide 11 utilisé dans les conduites flexibles : influence de la composition du fluide transporté Influence of the Chemical Nature of the Environment on the Aging of Polyamide 11 Used for Offshore Flexible Pipes

    Directory of Open Access Journals (Sweden)

    Ubrich E.


    Full Text Available Le polyamide 11 est utilisé comme gaine d'étanchéité interne des conduites flexibles de transport de produits pétroliers. Dans certaines conditions d'utilisation, celui-ci subit une dégradation de ses propriétés mécaniques et physico-chimiques initiales. Des échanges de matières s'établissent entre le matériau et le fluide transporté : des composés constitutifs du fluide (eau, hydrocarbures peuvent être absorbés par le polyamide tandis que le principal additif du matériau (le plastifiant est extrait. Cette étude, entreprise pour déterminer l'influence de la composition du milieu chimique sur les propriétés du polyamide 11, a permis : 1 De développer une nouvelle méthode d'analyse des matières diffusant dans le polyamide 11. Le principe de cette méthode consiste à réaliser une thermodésorption des différentes matières présentes dans le polymère et à les analyser en ligne par spectrométrie de masse à moyenne résolution (résolution = 3000. Cette méthode permet l'analyse quantitative simultanée du plastifiant résiduel, de l'eau et des hydrocarbures absorbés ainsi que la détermination de la répartition par familles chimiques de ces hydrocarbures. 2 De proposer un modèle prédictif du vieillissement du polyamide 11 dans des milieux modèles constitués d'eau, d'une coupe gazole principalement aliphatique et d'une coupe gazole principalement aromatique. La composition de ces différents milieux de vieillissement a été choisie à l'aide d'un plan d'expériences appliqué aux mélanges. L'influence de l'eau sur les propriétés mécaniques (diminution de l'allongement à la rupture et physico-chimiques (diminution de la masse moléculaire moyenne et augmentation du taux de cristallinité a été mise en évidence. Par ailleurs, quel que soit le milieu de vieillissement, à 140°C, le plastifiant est extrait du polyamide. L'influence du milieu aromatique sur la plastification du matériau a été d

  14. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano


    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  15. FPGA shore station demonstrator for KM3NeT

    Energy Technology Data Exchange (ETDEWEB)

    Anassontzis, E.G. [Physics Department, University of Athens (Greece); Belias, A.; Koutsoukos, S.; Koutsoumpos, V. [NESTOR Institute for Astroparticle Physics, National Observatory of Athens, 24001 Pylos (Greece); Manolopoulos, K., E-mail: [NESTOR Institute for Astroparticle Physics, National Observatory of Athens, 24001 Pylos (Greece); Resvanis, L.K. [Physics Department, University of Athens (Greece); NESTOR Institute for Astroparticle Physics, National Observatory of Athens, 24001 Pylos (Greece)


    The KM3NeT readout concept is based on a point-to-point optical network connecting the 10,000 optical modules in the deep-sea neutrino telescope with the shore station. The numerous fiber optic channels arriving at the shore station will be concentrated on the shore electronics systems, which will receive, merge and time order the data, and send them to the DAQ system. Although the network functionality is bi-directional, the physical channel allocation is asymmetric; most channels are assigned to the data reception and only a few channels are used for control with data transport from shore to the telescope. We will discuss the FPGA based platform systems for the shore station and the appropriate firmware implementation for the data gathering and broadcast demands of a neutrino telescope. We will present our experiences based on FPGA evaluation platforms suitable to build a demonstrator of the KM3NeT shore station.

  16. Automatic fluid dispenser (United States)

    Sakellaris, P. C. (Inventor)


    Fluid automatically flows to individual dispensing units at predetermined times from a fluid supply and is available only for a predetermined interval of time after which an automatic control causes the fluid to drain from the individual dispensing units. Fluid deprivation continues until the beginning of a new cycle when the fluid is once again automatically made available at the individual dispensing units.

  17. NETS - Danish participation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alsen, S. (Grontmij - Carl Bro, Glostrup (Denmark)); Theel, C. (Baltic Sea Solutions, Holeby (Denmark))


    Within the NICe-funded project 'Nordic Environmental Technology Solutions (NETS)' a new type of networking at the Nordic level was organized in order to jointly exploit the rapidly growing market potential in the environmental technology sector. The project aimed at increased and professionalized commercialization of Nordic Cleantech in energy and water business segments through 1) closer cooperation and joint marketing activities, 2) a website, 3) cleantech product information via brochures and publications 4) and participating in relevant trade fairs and other industry events. Facilitating business-to-business activities was another core task for the NETS project partners from Norway, Sweden, Finland and Denmark with the aim to encourage total solutions for combined Cleantech system offers. The project has achieved to establish a Cleantech register of 600 Nordic Cleantech companies, a network of 86 member enterprises, produced several publications and brochures for direct technology promotion and a website for direct access to company profiles and contact data. The project partners have attended 14 relevant international Cleantech trade fairs and conferences and facilitated business-to-business contacts added by capacity building offers through two company workshops. The future challenge for the project partners and Nordic Cleantech will be to coordinate the numerous efforts within the Nordic countries in order to reach concerted action and binding of member companies for reliable services, an improved visibility and knowledge exchange. With Cleantech's growing market influence and public awareness, the need to develop total solutions is increasing likewise. Marketing efforts should be encouraged cross-sectional and cross-border among the various levels of involved actors from both the public and the private sector. (au)

  18. Sediment transport along the Goa-north Karnataka Coast, western India

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    of sediment transport. Although sediment-transport direction is bi-directional, net major sediment transport is southward. The geomorphic study identified possible sediment sources and sinks. Contributions of sources and losses due to sinks are assessed...

  19. Collection of apoplastic fluids from Arabidopsis thaliana leaves

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann


    The leaf apoplast comprises the extracellular continuum outside cell membranes. A broad range of processes take place in the apoplast, including intercellular signaling, metabolite transport, and plant-microbe interactions. To study these processes, it is essential to analyze the metabolite conte...... in apoplastic fluids. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves. Here, methods to collect apoplastic washing fluid and guttation fluid from Arabidopsis thaliana leaves are described....

  20. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children. (United States)

    Cicchetti, Dante; Rogosch, Fred A


    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  1. Brake Fluid Compatibility with Hardware (United States)


    Fluid, DOT III, DOT V, MIL-PRF-46176, deposition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...UNCLASSIFIED ix ACRONYMS AND ABBREVIATIONS DC Direct Current, amps DOT Department of Transportation ECU Electronic Control Unit EOT End of test...triggers the Electronic Control Unit ( ECU ) to turn on the pump motors to raise the system pressure again. It is the cycling of the dump and pump that

  2. Fluid inclusions — What can we learn? (United States)

    Crawford, Maria Luisa


    Fluid inclusions have been reported from all types of metamorphic rocks hence a free fluid phase must be present even at deep crustal levels. Mobile and chemically reactive fluids are thus available to transport both heat and matter through crustal rocks. The most important information gained from fluid inclusion studies is a detailed knowledge of the composition of the fluid phase(s) present during metamorphism. Early studies drew attention to the presence of variable and sometimes highly saline aqueous brines in most metamorphic environments as well as CH 4 in low grade rocks and CO 2 at higher grades. Subsequently the role played by brines in expanding the unmixing solvus of the aqueous and carbonic components of common metamorphic fluids to cover a wide P-T range has been emphasized. Metamorphic petrologists have only slowly adapted their thermodynamic models for metamorphic equilibria to these data. More recently, studies have demonstrated that N 2 is a common phase especially in late or lower temperature fluids. Little is known of the role of nitrogen in the solid phases involved in metamorphism. Do the high nitrogen contents observed in some fluids reflect a significant nitrogen component in the minerals in those rocks? Or do processes related to the compositional evolution of the fluid phase act to concentrate nitrogen in later stage fluids?

  3. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically....... Balbo and W. Reisig, 18 submitted papers, and seven project papers. The submitted papers and project presentations were selectedby the programme committee and a panel of referees from a large number of submissions....

  4. Are You Neutral About Net Neutrality (United States)


    Information Resources Management College National Defense University Are You Neutral About Net Neutrality ? A presentation for Systems & uses Verizon FiOS for phone, TV, and internet service 3 Agenda Net Neutrality —Through 2 Lenses Who Are the Players & What Are They Saying...Medical Treatment Mini-Case Studies Updates Closing Thoughts 4 Working Definitions of Net Neutrality "Network Neutrality" is the concept that

  5. Texture Based Image Analysis With Neural Nets (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.


    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  6. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    Directory of Open Access Journals (Sweden)

    Graves Patricia M


    Full Text Available Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use. Methods Generalized linear latent and mixed models (GLLAMM were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy; net factors (condition, age, net density; household factors (number of rooms [2006] or sleeping spaces [2007], IRS, women's knowledge and school attendance [2007 only], wealth, altitude; and cluster level factors (rural or urban were investigated in univariate and multi-variable models for each survey. Results In 2006, increased net use was associated with: age 25-49 years (adjusted (a OR = 1.4, 95% confidence interval (CI 1.2-1.7 compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5; fewer nets with holes (Ptrend = 0.002; and increasing net density (Ptrend [all nets in HH good] = 1.6; 95% CI 1.2-2.1; increasing net density (Ptrend [per additional space] = 0.6, 95% CI 0.5-0.7; more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7; and increasing household altitude (Ptrend Conclusion In both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density, and improving net condition while focusing on education and promotion of net use, especially in school-age children

  7. Synovial fluid analysis (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  8. Pro Agile NET Development with Scrum

    CERN Document Server

    Blankenship, Jerrel; Millett, Scott


    Pro Agile .NET Development with SCRUM guides you through a real-world ASP.NET project and shows how agile methodology is put into practice. There is plenty of literature on the theory behind agile methodologies, but no book on the market takes the concepts of agile practices and applies these in a practical manner to an end-to-end ASP.NET project, especially the estimating, requirements and management aspects of a project. Pro Agile .NET Development with SCRUM takes you through the initial stages of a project - gathering requirements and setting up an environment - through to the development a

  9. Pro ASP.NET MVC 4

    CERN Document Server

    Freeman, Adam


    The ASP.NET MVC 4 Framework is the latest evolution of Microsoft's ASP.NET web platform. It provides a high-productivity programming model that promotes cleaner code architecture, test-driven development, and powerful extensibility, combined with all the benefits of ASP.NET. ASP.NET MVC 4 contains a number of significant advances over previous versions. New mobile and desktop templates (employing adaptive rendering) are included together with support for jQuery Mobile for the first time. New display modes allow your application to select views based on the browser that's making the request whi

  10. Professional Visual Basic 2010 and .NET 4

    CERN Document Server

    Sheldon, Bill; Sharkey, Kent


    Intermediate and advanced coverage of Visual Basic 2010 and .NET 4 for professional developers. If you've already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is your book. You'll find a quick review of introductory topics-always helpful-before the author team of experts moves you quickly into such topics as data access with ADO.NET, Language Integrated Query (LINQ), security, ASP.NET web programming with Visual Basic, Windows workflow, threading, and more. You'll explore all the new features of Visual Basic 2010 as well as all t

  11. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.


    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  12. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure


    When designing complex systems, mechanisms for structuring, composing, and reusing system components are crucial. Today, there are many approaches for equipping Petri nets with such mechanisms. In the context of defining a standard interchange format for Petri nets, modular PNML was defined....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high...

  13. Fluid pumping using magnetic cilia (United States)

    Hanasoge, Srinivas; Ballard, Matt; Alexeev, Alexander; Hesketh, Peter; Woodruff School of Mechanical Engineering Team


    Using experiments and computer simulations, we examine fluid pumping by artificial magnetic cilia fabricated using surface micromachining techniques. An asymmetry in forward and recovery strokes of the elastic cilia causes the net pumping in a creeping flow regime. We show this asymmetry in the ciliary strokes is due to the change in magnetization of the elastic cilia combined with viscous force due to the fluid. Specifically, the time scale for forward stroke is mostly governed by the magnetic forces, whereas the time scale for the recovery stroke is determined by the elastic and viscous forces. These different time scales result in different cilia deformation during forward and backward strokes which in turn lead to the asymmetry in the ciliary motion. To disclose the physics of magnetic cilia pumping we use a hybrid lattice Boltzmann and lattice spring method. We validate our model by comparing the simulation results with the experimental data. The results of our study will be useful to design microfluidic systems for fluid mixing and particle manipulation including different biological particles. USDA and NSF.

  14. Experiments and simulation of a net closing mechanism for tether-net capture of space debris (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.


    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  15. Effects of extracellular fluid volume and plasma bicarbonate concentration on proximal acidification in the rat.


    Alpern, R J; Cogan, M G; Rector, F C


    The effects of systemic bicarbonate concentration and extracellular fluid volume status on proximal tubular bicarbonate absorption, independent of changes in luminal composition and flow rate, were examined with in vivo luminal microperfusion of rat superficial proximal convoluted tubules. Net bicarbonate absorption and bicarbonate permeability were measured using microcalorimetry. From these data, net bicarbonate absorption was divided into two parallel components: proton secretion and passi...

  16. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao


    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  17. Fluid Mechanics of Blood Clot Formation. (United States)

    Fogelson, Aaron L; Neeves, Keith B


    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  18. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  19. Price smarter on the Net. (United States)

    Baker, W; Marn, M; Zawada, C


    Companies generally have set prices on the Internet in two ways. Many start-ups have offered untenably low prices in a rush to capture first-mover advantage. Many incumbents have simply charged the same prices on-line as they do off-line. Either way, companies are missing a big opportunity. The fundamental value of the Internet lies not in lowering prices or making them consistent but in optimizing them. After all, if it's easy for customers to compare prices on the Internet, it's also easy for companies to track customers' behavior and adjust prices accordingly. The Net lets companies optimize prices in three ways. First, it lets them set and announce prices with greater precision. Different prices can be tested easily, and customers' responses can be collected instantly. Companies can set the most profitable prices, and they can tap into previously hidden customer demand. Second, because it's so easy to change prices on the Internet, companies can adjust prices in response to even small fluctuations in market conditions, customer demand, or competitors' behavior. Third, companies can use the clickstream data and purchase histories that it collects through the Internet to segment customers quickly. Then it can offer segment-specific prices or promotions immediately. By taking full advantage of the unique possibilities afforded by the Internet to set prices with precision, adapt to changing circumstances quickly, and segment customers accurately, companies can get their pricing right. It's one of the ultimate drivers of e-business success.

  20. Supercritical Fluids: Nanotechnology and Select Emerging Applications (United States)


    cholesterol from food products, Mohamad and Mansoori (2002), and pollution remediation using environmentally friendly supercritical fluids Ekhtera et...material needs in energy, health, communication, transportation, food , water, etc.’’ WHAT IS A SUPERCRITICAL FLUID? For a pure material, a supercritical...Technology Council (NSTC). WTEC, Loyola College, Maryland, MD. Hu, X. and Lesser, A.J. (2004) Enhanced crystallization of bisphenol -A poly- carbonate

  1. Worldwide survey of absorption fluids data

    Energy Technology Data Exchange (ETDEWEB)

    Macriss, R.A.; Zawacki, T.S.


    The overall objective of this study is to develop improved data for the thermodynamic, transport and physical properties of absorption fluids. A specific objective of this phase of the study is to compile, catalog and coarse-screen the available worldwide data of known absorption fluid systems and publish it as a reference document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. 3 refs., 3 figs., 1 tab.

  2. 78 FR 72393 - Net Investment Income Tax (United States)


    ... Investment Income Tax; Final and Proposed Rules #0;#0;Federal Register / Vol. 78, No. 231 / Monday, December... Parts 1 and 602 RIN 1545-BK44 Net Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury... Investment Income Tax and the computation of Net Investment Income. The regulations affect individuals...

  3. 77 FR 72611 - Net Investment Income Tax (United States)


    ... December 5, 2012 Part V Department of the Treasury Internal Revenue Service 26 CFR Part 1 Net Investment... Investment Income Tax AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of proposed rulemaking...) the individual's net investment income for such taxable year, or (B) the excess (if any) of (i) the...

  4. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.


    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  5. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.


    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  6. Using the MVC architecture on . NET platform


    Ježek, David


    This thesis deals with usage of MVC (Model View Controller) technology in web development on ASP.NET platform from Microsoft. Mainly it deals with latest version of framework ASP.NET MVC 3. First part describes MVC architecture and the second describes usage of MVC in certain parts of web application an comparing with PHP.

  7. Analysis of Petri Nets and Transition Systems

    Directory of Open Access Journals (Sweden)

    Eike Best


    Full Text Available This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.

  8. 27 CFR 7.27 - Net contents. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 7.27 Section 7.27 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... the net contents are displayed by having the same blown, branded, or burned in the container in...

  9. Petri nets and other models of concurrency

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Sassone, Vladimiro


    This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency.......This paper retraces, collects, and summarises contributions of the authors - in collaboration with others - on the theme of Petri nets and their categorical relationships to other models of concurrency....

  10. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    This report is identical to an earlier version of May 1978 except that Chapter 5 has been revised. A new paper: "A Petri Net Definition of a System Description Language", DAIMI, April 1979, 20 pages, extends the Petri net model to include a data state representing the program variables. Delta...

  11. Net neutrality and inflation of traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, Florian

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate the short-run effects of different net neutrality rules. Content differs in its

  12. Net Neutrality and Inflation of Traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, F.


    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate different net neutrality rules. Content differs in its sensitivity to delay.

  13. The Net Neutrality Debate: The Basics (United States)

    Greenfield, Rich


    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and…

  14. Dynamic response of the thermometric net radiometer (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters


    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  15. Teaching and Learning with the Net Generation (United States)

    Barnes, Kassandra; Marateo, Raymond C.; Ferris, S. Pixy


    As the Net Generation places increasingly greater demands on educators, students and teachers must jointly consider innovative ways of teaching and learning. In this, educators are supported by the fact that the Net Generation wants to learn. However, these same educators should not fail to realize that this generation learns differently from…

  16. Verification of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær


    Timed-Arc Petri Nets (TAPN) are an extension of the classical P/T nets with continuous time. Tokens in TAPN carry an age and arcs between places and transitions are labelled with time intervals restricting the age of tokens available for transition firing. The TAPN model posses a number...

  17. A Brief Introduction to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt


    Coloured Petri Nets (CP-nets or CPN) is a graphical oriented language for design, specification, simulation and verification of systems. It is in particular well- suited for systems in which communication, synchronisation and resource sharing are important. Typical examples of application areas a...

  18. Gill net and trammel net selectivity in the northern Aegean Sea, Turkey

    Directory of Open Access Journals (Sweden)

    F. Saadet Karakulak


    Full Text Available Fishing trials were carried out with gill nets and trammel nets in the northern Aegean Sea from March 2004 to February 2005. Four different mesh sizes for the gill nets and the inner panel of trammel nets (16, 18, 20 and 22 mm bar length were used. Selectivity parameters for the five most economically important species, bogue (Boops boops, annular sea bream (Diplodus annularis, striped red mullet (Mullus surmuletus, axillary sea bream (Pagellus acarne and blotched picarel (Spicara maena, caught by the two gears were estimated. The SELECT method was used to estimate the selectivity parameters of a variety of models. Catch composition and catch proportion of several species were different in gill and trammel nets. The length frequency distributions of the species caught by the two gears were significantly different. The bi-modal model selectivity curve gave the best fit for gill net and trammel net data, and there was little difference between the modal lengths of these nets. However, a clear difference was found in catching efficiency. The highest catch rates were obtained with the trammel net. Given that many discard species and small fish are caught by gill nets and trammel nets with a mesh size of 16 mm, it is clear that these nets are not appropriate for fisheries. Consequently, the best mesh size for multispecies fisheries is 18 mm. This mesh size will considerably reduce the numbers of small sized individuals and discard species in the catch.

  19. Cilia-based transport networks (United States)

    Bodenschatz, Eberhard

    Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks. I shall also show results on how to assemble artificial cilia and cilia carpets. Supported by the BMBF MaxSynBio.

  20. Discrete, continuous, and hybrid petri nets

    CERN Document Server

    David, René


    Petri nets do not designate a single modeling formalism. In fact, newcomers to the field confess sometimes to be a little puzzled by the diversity of formalisms that are recognized under this "umbrella". Disregarding some extensions to the theoretical modeling capabilities, and looking at the level of abstraction of the formalisms, Condition/Event, Elementary, Place/Transition, Predicate/Transition, Colored, Object Oriented... net systems are frequently encountered in the literature. On the other side, provided with appropriate interpretative extensions, Controled Net Systems, Marking Diagrams (the Petri net generalization of State Diagrams), or the many-many variants in which time can be explicitly incorporated -Time(d), Deterministic, (Generalized) Stochastic, Fuzzy...- are defined. This represents another way to define practical formalisms that can be obtained by the "cro- product" of the two mentioned dimensions. Thus Petri nets constitute a modeling paradigm, understandable in a broad sense as "the total...

  1. Fuel cell water transport (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.


    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  2. Arachnoid cysts do not contain cerebrospinal fluid: A comparative chemical analysis of arachnoid cyst fluid and cerebrospinal fluid in adults

    Directory of Open Access Journals (Sweden)

    Haaland Øystein A


    Full Text Available Abstract Background Arachnoid cyst (AC fluid has not previously been compared with cerebrospinal fluid (CSF from the same patient. ACs are commonly referred to as containing "CSF-like fluid". The objective of this study was to characterize AC fluid by clinical chemistry and to compare AC fluid to CSF drawn from the same patient. Such comparative analysis can shed further light on the mechanisms for filling and sustaining of ACs. Methods Cyst fluid from 15 adult patients with unilateral temporal AC (9 female, 6 male, age 22-77y was compared with CSF from the same patients by clinical chemical analysis. Results AC fluid and CSF had the same osmolarity. There were no significant differences in the concentrations of sodium, potassium, chloride, calcium, magnesium or glucose. We found significant elevated concentration of phosphate in AC fluid (0.39 versus 0.35 mmol/L in CSF; p = 0.02, and significantly reduced concentrations of total protein (0.30 versus 0.41 g/L; p = 0.004, of ferritin (7.8 versus 25.5 ug/L; p = 0.001 and of lactate dehydrogenase (17.9 versus 35.6 U/L; p = 0.002 in AC fluid relative to CSF. Conclusions AC fluid is not identical to CSF. The differential composition of AC fluid relative to CSF supports secretion or active transport as the mechanism underlying cyst filling. Oncotic pressure gradients or slit-valves as mechanisms for generating fluid in temporal ACs are not supported by these results.

  3. Fluid mechanics in fluids at rest. (United States)

    Brenner, Howard


    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  4. Pro visual C++/CLI and the net 35 platform

    CERN Document Server

    Fraser, Stephen


    Pro Visual C++/CLI and the .NET 3.5 Platform is about writing .NET applications using C++/CLI. While readers are learning the ins and outs of .NET application development, they will also be learning the syntax of C++, both old and new to .NET. Readers will also gain a good understanding of the .NET architecture. This is truly a .NET book applying C++ as its development language not another C++ syntax book that happens to cover .NET.

  5. Geothermal energy production with supercritical fluids (United States)

    Brown, Donald W.


    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  6. Performance Comparison and Selection of Transformer Fluid

    Directory of Open Access Journals (Sweden)

    Lu Yang


    Full Text Available Transformer fluid directly affects the working state of the components and the cooling efficiency of transformer. There are three kinds of transformer fluid used for electric locomotive, EMU and suburban rail vehicles: mineral oil, silicone liquid and synthetic ester based insulating oil. In this paper, the three kinds of oil are compared from the fire safety, environmental protection, reliability and low maintenance. It provides a strong basis for the selection of transformer fluid. By comprehensive analysis, synthetic ester based insulating oil can completely replace mineral oil and silicone liquid. With rail transport safety and environmental protection standards improving, synthetic ester based insulating oil will be the best choice for transformer.

  7. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi


    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  8. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi


    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid...... be chosen. The fabrication of a prototype flow meter and experimental verification of the analytical data were reported. The fabricated prototype is able to measure the velocity of the water in an open channel....... and with measuring its travel time between two different positions, its velocity could be calculated. Given the velocity of the auxiliary fluid, the velocity of the main fluid could be calculated. Using this technique, it is possible to measure the velocity of any kind of fluids, if an appropriate auxiliary fluid...

  9. An Integrated Model to Compare Net Electricity Generation for Carbon Dioxide- and Water-Based Geothermal Systems (United States)

    Agarwal, Vikas

    Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed by Brown in 2000 and its advantages have been discussed by him and other researchers such as Karsten Pruess and Fouillac. This work assesses the net electricity that could be generated by using supercritical CO2 as a geothermal working fluid and compares it with water under the same temperature and pressure reservoir conditions. This procedure provides a method of direct comparison of water and CO2 as geothermal working fluids, in terms of net electricity generation over time given a constant geothermal fluid flow rate. An integrated three-part model has been developed to determine net electricity generation for CO2- and water-based geothermal reservoirs. This model consists of a wellbore model, reservoir simulation, and surface plant simulation. To determine the bottomhole pressure and temperature of the geothermal fluid (either water or CO2) in the injection well, a wellbore model was developed using fluid-phase, thermodynamic equations of state, fluid dynamics, and heat transfer models. A computer program was developed that solves for the temperature and pressure of the working fluid (either water or CO 2) down the wellbore by simultaneously solving for the fluid thermophysical properties, heat transfer, and frictional losses. For the reservoir simulation, TOUGH2, a general purpose numerical simulator has been used to model the temperature and pressure characteristics of the working fluid in the reservoir. The EOS1 module of TOUGH2 has been used for the water system and the EOS2 module of the TOUGH2 code has been employed for the CO2 case. The surface plant is simulated using CHEMCAD, a chemical process simulator, to determine the net electricity generated. A binary organic (iso-pentane) Rankine cycle is simulated. The calculated net electricity generated for the optimized water and CO2 systems are compared over the working time of the reservoir. Based on the theoretical

  10. Postoperative fluid management


    Kayilioglu, Selami Ilgaz; Dinc, Tolga; Sozen, Isa; Bostanoglu, Akin; Cete, Mukerrem; Coskun, Faruk


    Postoperative care units are run by an anesthesiologist or a surgeon, or a team formed of both. Management of postoperative fluid therapy should be done considering both patients’ status and intraoperative events. Types of the fluids, amount of the fluid given and timing of the administration are the main topics that determine the fluid management strategy. The main goal of fluid resuscitation is to provide adequate tissue perfusion without harming the patient. The endothelial glycocalyx dysf...

  11. NetCTLpan: pan-specific MHC class I pathway epitope predictions

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lundegaard, Claus


    Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates...... ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal...... cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying...

  12. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli


    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.


    Directory of Open Access Journals (Sweden)

    Rhafidilla Vebrynda


    Full Text Available Di dalam artikel ini, peneliti ingin melihat perkembangan teknologi di Indonesia sebagai sebuah peluang untuk menjalankan sebuah program berita berbasis video kiriman masyarakat. Perkembangan teknologi tersebut adalah teknologi penyiaran, teknologi sosial media dan teknologi dalam proses produksi sebuah video. Di Indonesia, jumlah televisi semakin banyak. Setiap stasiun televisi harus bersaing untuk dapat bertahan hidup. Net TV merupakan sebuah stasiun televisi baru di Indonesia yang harus memiliki berbagai program unggulan baru agar dapat bersaing dengan televisi lainnya yang sudah ada. Net TV menggunakan berbagai platform media untuk menjalankan program Net Citizen Journalism (Net CJ. Penggunaan berbagai platform media dikenal dengan istilah multiplatform dan secara teoritis dikenal dengan istilah konvergensi. Konvergensi yaitu saat meleburnya domain-domain dalam berbagai media komunikasi. Artikel ini menggunakan metode studi kasus untuk melihat bagaimana konvergensi terjadi dalam proses pengelolaan program Net CJ. Teknik pengumpulan data adalah dengan wawancara mendalam, observasi dan studi dokumen. Wawancara mendalam dilakukan dari tiga sudut pandang yaitu dari pengelola program, pengguna/audience dan pengamat media. Penelitian ini menemukan bahwa dengan menggunakan berbagai platform media yang fungsinya berbeda, memiliki satu tujuan yang sama yaitu untuk menjalankan program Net CJ. Adapun berbagai platform dalam proses produksi program yaitu tayangan TV konvensional, streaming TV, website, aplikasi Net CJ, facebook, twitter, instagram dan path. Konvergensi media dijalankan dalam dua proses, yaitu proses produksi dan proses promosi program berita.

  14. Net Neutrality: Media Discourses and Public Perception

    Directory of Open Access Journals (Sweden)

    Christine Quail


    Full Text Available This paper analyzes media and public discourses surrounding net neutrality, with particular attention to public utility philosophy, from a critical perspective. The article suggests that further public education about net neutrality would be beneficial. The first portion of this paper provides a survey of the existing literature surrounding net neutrality, highlighting the contentious debate between market-based and public interest perspectives. In order to contextualize the debate, an overview of public utility philosophy is provided, shedding light on how the Internet can be conceptualized as a public good. Following this discussion, an analysis of mainstream media is presented, exploring how the media represents the issue of net neutrality and whether or not the Internet is discussed through the lens of public utility. To further examine how the net neutrality debate is being addressed, and to see the potential impacts of media discourses on the general public, the results of a focus group are reported and analyzed. Finally, a discussion assesses the implications of the net neutrality debate as presented through media discourses, highlighting the future of net neutrality as an important policy issue.

  15. Approximation methods for stochastic petri nets (United States)

    Jungnitz, Hauke Joerg


    Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay

  16. Visual Studio 2010 and NET 4 Six-in-One

    CERN Document Server

    Novak, Istvan; Granicz, Adam


    Complete coverage of all key .NET 4 and Visual Studio 2010 languages and technologies. .NET 4 is Microsoft's latest version of their core programming platform, and Visual Studio 2010 is the toolset that helps write .NET 4 applications. This comprehensive resource offers one-stop shopping for all you need to know to get productive with .NET 4. Experienced author and .NET guru Mitchel Sellers reviews all the important new features of .NET 4, including .NET charting and ASP.NET charting, ASP.NET dynamic data and jQuery, and the addition of F# as a supported package language. The expansive coverag

  17. Selected topics of fluid mechanics (United States)

    Kindsvater, Carl E.


    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as

  18. Does amniotic fluid volume affect fetofetal transfusion in monochorionic twin pregnancies? Modelling two possible mechanisms

    NARCIS (Netherlands)

    Umur, Asli; van Gemert, Martin J. C.; Ross, Michael G.


    Clinical evidence suggests that increased amniotic fluid volume due to polyhydrarnnios increases placental vascular resistance. We have sought to model the possible effects of an increased amniotic fluid volume oil the net fetofetal transfusion in monochorionic twin pregnancies. We wanted to compare

  19. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    , the conferences have 150-200 participants, one third of these coming from industry and the rest from universities and research institutions. The 1992 conference was organized by the School of Computing and Management Sciences at Sheffield City Polytechnic, England. The volume contains twoinvited papers, by G......This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically...

  20. Performance Analysis using Coloured Petri Nets

    DEFF Research Database (Denmark)

    Wells, Lisa Marie

    an explicit separation between modelling the behaviour of a system and monitoring the behaviour of the model. As a result, cleaner and more understandable models can be created. The third paper presents a novel method for adding auxiliary information to coloured Petri net models. Coloured Petri nets models...... in a very limited and predictable manner, and it is easy to enable and disable the auxiliary information. The fourth paper is a case study in which the performance of a web server was analysed using coloured Petri nets. This case study has shown that it is relatively easy to analyse the performance...